Unuversity | School of
Of GlangW Engineering

Snakemake workflows for metagenomics data

Student Name: Kai Liu
Student ID: 2397780
Supervisor: Umer Zeeshan ljaz

August 2020

A thesis submitted in partial fulfilment of the requirements for the
degree of
MASTER OF SCIENCE IN COMPUTER SYSTEM ENGINEERTING

Abstract

With the continuous development of life sciences and metagenomics, the
research on microbial communities is also continuously strengthened. The
new generation of genome sequencing technology has brought about new
changes in the analysis of microbial communities. These new technologies can
quickly and accurately analyze and sequence the genomes of microbial
communities. RNA sequencing (also called RNA-Seq) is the one of these
technologies, which uses high throughput techniques to transcript the
sequences. In the traditional data analysis process, these techniques are
divided into multiple steps by the researcher. The researcher wrote a script
for each step to connect. There is a lot of repetitive work in this process, which
is not only time-consuming, but also may produce wrong results due to errors
between the steps. The workflow based on Snakemake can greatly improve
the efficiency of data analysis, reduce repetitive labor, and make analysis data
easier to manage. The essence of Snakemake workflow is a python script that
can be written. Snakemake compiles each analysis step into a corresponding
rule, and uses shell commands for input and output. This project used 24

samples of fecal which was provided by Dr. Umer.

Acknowledgment

[would like to express my thanks towards my supervisor Umer Zeeshan ljaz,
for giving me the opportunity to study this incredibly interesting new subject.
[would also like to thank him for the many meetings we had and the guidance

he provided on numerous occasions.

[would also like to take this opportunity to thank my fellow Masters students,

who were always around whenever I needed a helping hand.

Abbreviations and Definitions

NGS = Next Generation Sequencing

PCR = Polymerase chain reaction

OTU = Operational Taxonomic Unit

RNA = Ribonucleic Acid

SD = Shine-Dalgarno sequence

IDE = Integrated Development Environment

dNTP = deoxynucleoside triphosphate

ddNTP = dideoxynucleoside triphosphate

2.1

2.2

Contents

INEFOAUCEION ...ttt 6
ANQALYSIS ... 11

ENVIFONMIENT ..t 11

OO Rt R Rt 12
Program DESISINc..ccoiiiiiiie b 16
DIESCUSSION.......ouiiiiiiiiiiiiie et bbb 26
CONCIUSIONo.ooiiiie et 33
REFEIEIICES ...ttt 36

1. Introduction

Metagenomics is a new method of studying microbial diversity which is
developed on the basis of genomics [1]. Metagenomics directly extracts the
DNA of all microorganisms from the ecological environment and constructs a
metagenomic database to study the genetic information composition and
microbial community structure of all microorganisms contained in the sample

environment.

Microbial community refers to a structural unit formed by various
microorganisms in a specific ecological environment. Microbial communities
are widely present in ecosystems, and they are an important part of
ecosystems. Different populations in the microbial community can co-exist in
an orderly manner [2]. In a sense, it can be said that the development of

microbial communities led to the development of organisms.

Most of current research on microbial communities is based on traditional
microbiology subjects. These subjects contain biochemistry, molecular
biology, and genetics. Some studies have shown that the number of cultured
microorganisms may be less than 1% of the total number of microorganisms
in nature environment, which means that the study of microbial communities

has full prospects.

Traditional microbial research methods are mainly based on selective
cultivation or identification and classification based on metabolic
characteristics, morphological characteristics and antigen characteristics [3].
The disadvantage of this method is that some bacteria are small in number
and difficult to cultivate, or the existing medium and culture technology are
not suitable for microbial cultivation, or some bacteria grow extremely slowly.

Unknown bacteria cannot be identified also is the disadvantage. These

disadvantages will cause the number and diversity of the normal flora to be

greatly underestimated.

First generation sequencing, also called Sanger sequencing, is a sequencing
technology that uses DNA polymerase synthesis reactions [4]. Under stable
and appropriate situation, DNA polymerase can catalyze the synthesis of DNA
strands. This process requires DNA templates, primers and deoxynucleoside
triphosphates(dNTP). ddNTP is a dideoxynucleoside triphosphate. In this
dideoxynucleoside triphosphate the C3 position is connected to a hydroxyl
group after deoxygenation [5]. In general, the -OH on the C3 position is used
as the next dNTP connection site. Therefore, the ddNTP that has lost its oxygen
atom cannot be connected to the next dNTP, thereby terminating the DNA
strand extension. Label the dideoxynucleoside triphosphate with a
radioisotope and add the marked dideoxynucleoside triphosphate to the
regular PCR reaction. When dideoxynucleoside triphosphate binds, DNA
synthesis will be aborted. After dozens of periods, DNA with different lengths
and one base difference in length will be obtained [6]. The obtained products
are divided into four lanes for polyacrylamide gel electrophoresis. Finally,
DNA sequence is deduced backward based on the band positions of the four

bases.

5 AGCTTCAGTC hz;gri;nis A G
G¥%

AG 5' -
AG 5' -
TCAG5'
GTCAG 5
AGTCAG 5 -
AAGTCAG 5' -
GAAGTCAG 5 -
GAAGTCAG S5 smier
TCGAAGTCAG S5 fragments -

| -
a1

Input
template
strand

——— -

O-4O0>»r0-4400 >

aO>PO-HO0>>00H

Figure 1: Diagram of Sanger sequencing

7

With the continuous development of Metagenomics, the first generation
sequencing technology gradually cannot meet the huge number of sequencing
needs. Second generation sequencing technology, which is also called as high
throughput sequencing technology [7]. It solves the defect that the first-
generation sequencing can only measure one sequence. With the continuous
deepening of scientific research, researchers began to analyze all sequence
information in a species or sample. At this time, the method of first-generation
sequencing cannot meet the sequencing needs. The second-generation
sequencing technology was born under such circumstances. It is called high-
throughput sequencing because it can measure many sequences at the same
time. Researchers randomly break the DNA into countless small fragments by
using some physical or chemical methods. Then they enrich these DNA
fragments by constructing a reference base [8]. In the Illumina sequencing

platform, this enrichment process is bridge amplification.

Bridge PCR uses the adapter fixed on the surface of the Flowcell as a template
for bridge amplification. After continuous cycles of amplification and
denaturation, each DNA fragment will eventually be concentrated into a
bundle at its own location, and each bundle contains many copies of a single
DNA template. Next, put the completed library into a sequencer for
sequencing. The sequencing machine has a unique area in which DNA
fragments can be attached together. Each fragment has an independent
connection space, so the sequencer can simultaneously detect all additional
DNA sequence information. Finally, by using bioinformatics analysis

technology, small pieces of fragments are spliced into larger pieces [9].

Sample preparation
DNA (5 pg)

Template
dNTPs

and
polymerase

.' ;.W

Figure 2: Bridge amplification

This thesis studied how the Snakemake workflow was used for metagenomics,
and useed 16S RNA sequences as a sample to illustrate the workflow. 16S
ribosomal rRNA, or 16S RNA, is a part of the 30S small subunit of prokaryotic
ribosomes and binds to Shine-Dalgarno (SD) sequence, which has
approximately 1500 bases [10]. 16S RNA is widely distributed in prokaryotes,
which can provide sufficient information and has a relatively slow
evolutionary process. The 16S rRNA gene region contains both conserved
sequences and variable sequences. While reflecting the genetic relationship of
biological species, it also reveals the characteristic accounting sequence of
biological species [11]. Therefore, it is used to identify the species of

prokaryotes. This thesis useed the sequences supported by Dr.Umer Zeeshan

ljaz from cluster MScBioinf@becker.eng.gla.ac.uk.

In the traditional transcriptome data analysis process, the analysis is
generally divided into multiple steps, and each step contains one or more
analysis software. Researchers need to connect various steps through

programming scripts, and there will be a large number of repetitive data

9

analysis operations during the analysis process, which not only requires
certain computer skills for researchers, but also consumes a lot of time and
energy in repetitive. At present, the amount of sequencing data is growing
rapidly. In the era of big data, more powerful transcriptome data analysis tools
are needed [12]. Therefore, some sequencing tools such as QIIME and
VSEARCH workflow have been developed. However, these tools are not
without their shortcomings. Most of them require frequent user intervention
(manually enter the command line to control the analysis process). In order
to reduce repetitive work and improve the efficiency and automation of data

analysis, an analysis framework based on Snakemake was developed.

10

2. Analysis

2.1 Environment

Snakemake is a process management tool written based on Python.
Snakemake simplifies each step into a rule. It uses shell commands or Python
code to input and output files. It can also use Python language to manage the
software running process. Using Snakemake to build transcriptome analysis
can improve the efficiency of transcription component data analysis.
Snakemake workflow can greatly improve the efficiency of transcriptome data
analysis, and is easy to use, providing convenience for researchers with non-
computer background [13]. The program of Snakemake workflow in the thesis

is based on python version Python 2.6.6.

In order to run Snakemake correctly, the first thing is to confirm the operating
system. If using Linux or MacOS X operating, there is no need to change
operating system. If the operating system is Windows, users need to set up a
Linux virtual machine (VM). The programming of this thesis was all done
using MobaXterm under Windows environment. In the process of building the
Snakemake framework, users needed to install a lot of software related to
transcriptome analysis. This framework used Conda to automatically
download and install the required software, avoiding the time-consuming
manual download and installation of the software, and the software version
error. Conda can also configure related dependencies to complete a series of
operations such as creating, saving, loading and switching the operating
environment in the local computer system. In terms of framework parameters,
software parameters, file paths and other settings, the framework is uniformly
set through the configuration file config.yaml, and there is no need to
repeatedly set the same parameters. At the same time, users can also set up

and manage the framework through the configuration file, and customize the

11

transcriptome analysis mode. In terms of software selection, the relevant
software for transcriptome analysis was studied and compared, and
mainstream software with better performance, wide application, and strong

stability was selected to be used in the framework.

2.2 Tools

Vim

The program was coded in Vim on Dr.Umer’s cluster. Vim is a lightweight text
editor. It has a wealth of functions to meet the needs of developers, such as
code completion, compilation and error prompts. It is widely used among
programmers. Compared with other common IDEs (such as pycharm, vscode),
Vim has a steeper learning curve. However, as a lightweight text editor, Vim
has many advantages. Vim can adapt well to various hardware environments,
can automate and script tasks, can remotely debug and modify code, can
quickly support new languages, and can quickly adopt new development

models.

sickle

Sickle is a kind of sequence quality trimming tool. Sickle uses a sliding
window and quality and length thresholds to determine where to trim the
reads. When the sickle starts to get the quality value, the window starts to
slide, and the length is 0.1 times the reads. If the length of reads is less than 1,
the sliding window is set to the length of reads. Otherwise, this window slides
along the quality value until it rises above the threshold and trims at that
position. When the quality drops below the threshold, trim again at that

position. Finally, the sequence after quality trimming is obtained [14].

12

Sickle can be regarded as a filter, generating high-quality reads for use by

other downstream analysis tools. According to sickle documentation

https://github.com/najoshi/sickle, sickle supports three types of quality

values: [llumina, Solexa and Sanger.

Sickle: Quality Trimming

IIIIIIIIIIIII%IEII:IEI

Figure 3: Diagram of Sickle

SPAdes

Due to the complexity of the natural environment and the diversity of biology,
a large part of bacteria is difficult to clone and cultivate in the laboratory,
making it impossible to sequence these bacteria using existing technologies.
SPAdes is a useful open-source assembler program, it has several kinds of
assembly pipeline toolkits. SPAdes can be used for single bacteria data and
multiple bacteria data to generate easy-to-operate compilation bacteria data.
SPAdes can run in a Linux environment and cooperate with the
BayesHammer module to perform only error correction. After using SPAdes
assembler program the system will create a corrected folder for each

sequence. These folders will contain the error-corrected reads of each paired-

13

https://github.com/najoshi/sickle

end sequence [15].

VSEARCH

VSEARCH is an open source and free multi-threaded 64-bit assembly tool.
VSEARCH is widely used in metagenomics, genomics and population
genomics to process nucleotide sequence data [16]. The VSEARCH program
adopts a complete dynamic programming strategy and uses multi-threaded
parallel computing to improve the speed and accuracy of identifying similar
nucleotide sequences. VSEARCH has a variety of methods for processing
nucleotide sequences, such as precision-based search, paired alignment,
arrangement supplementation, sorting sampling and normalization
processing. The VSEARCH version used in this project was vsearch

v2.10.4 linux x86 64.

PANDAseq

The simplest method of sequencing is single-end sequencing, that is, there is
only one sequencing primer, so that PCR can only be performed along the
direction of this primer, and all reads can only be read in one direction.
However, this sequencing method has some limitations. Taking [llumina as an
example, the quality of sequencing will decrease with the progress of
sequencing, so the reads will be less accurate in the future. The solution that
researchers came up with was paired-end sequencing. For a 500 bp sequence,
the downstream quality of single-end sequencing will be poor [17]. But by
measuring 250 bp-300 bp from two directions and then splicing them

together, the accuracy of sequencing can be greatly improved.

14

PANDseq can be used to do the paired-end sequencing. The linker sequence
of paired-end sequencing is more complicated than single-end sequencing.
First, in order to perform sequencing in two directions separately, two
sequencing primers in different directions are required. Secondly, in order to
distinguish the reads in the two directions, a small index sequence is added in
front of one of the sequencing primers to mark. The length of each read in
paired-end sequencing is more than half of the entire sequence, so it can be

spliced according to the overlapping part of the two Reads.

15

3. Program Design

This Snakemake workflow project referred to Dr. Umer's tutorial on VSEARCH
workflow. Figure 4 showed the overview of the Snakemake pipeline. Before
designing the program, configure the environment of Snakemake, and entered
the command source activate snakemake to activate the working
environment. Then entered the calling commands of various tools such as
Sickle, VSEARCH and PANDAseq to ensure these tools could be used
normally on the system. The next step was creating a Snakemake workflow
configuration file by entering touch Snakefile. The path where this
Snakefile located was the directory where the workflow program generated
output files. Then created a folder to store the original input files under the
current path. The folder created in this project was named samples, which was
used to store 24 pairs sequences. Every pair of the sequence contained a

forward read sequence and a reverse read sequence.

Figure 4: Snakemake workflow overview

First, the input and output of the program needed to be determined. According
16

to the requirements of the project, the input of the program was the nucleotide
sequences in FASTQ format, and the output is the integrated OTU (operational
taxonomic unit) FASTQ file and OTU table. In this project all the nucleotide
sequences in FASTQ format were support by Dr.Umer’s cluster

MScBioinf@becker.eng.gla.ac.uk [18]. Since Snakemake has an

advantage that it can process multiple data in batches and user do not need to
set parameters multiple times, wildcards can be used as input. The most basic
and important file in microbial diversity analysis is OTU table. Almost all
subsequent analyses, such as alpha diversity analysis, beta diversity analysis,
difference analysis, etc., were based on OTU table. The OTU table contains the
OTU types and sequence numbers of all samples. The information of all OTUs’

species annotation can also be found in OUT table.

SAMPLES, = glob_wildcards("samples/{sample} R1_@@1.fastq")
NB_SAMPLES = len(SAMPLES)

for smp in SAMPLES:
message("Sample " + smp + " will be processed")

rule final:
input:
"all.otutab.txt"

Figure 5: Wildcard and OTU table

The FASTQ file is a kind of file based on text-based format which is used to
record nucleotide sequences and corresponding quality scores. The FASTQ
file usually consists of 4 lines of ASCII characters to indicate the information
of the sequence, of which the fourth line records the quality score of the

sequence.

Since the input is a FASTQ file, each sequence has a specific quality score. The
quality score can be considered as the correct rate of calling sequences during

the sequencing process. The quality score is usually adapted form 0 to 40.
17

mailto:MScBioinf@becker.eng.gla.ac.uk

Table 1 indicated the mapping relationship between quality score and

probability of incorrect base call [19].

QUALITY PROBABILITY OF BASE CALL
SCORE INCORRECT ACCURACY
BASE CALL

10 1in 10 90%
20 1in 100 99%
30 1in 1000 99.9%
40 1in 10000 99.99%
50 1in 100000 99.999%
60 1in 1000000 99.9999%

Table 1: mapping relationship between quality score and probability of incorrect

base call.

The following formula shows how to determine the quality value of the base:

Quality(q) = —101log 10

Equation: The formula of calculating quality score

The quality of reads produced by most sequencing programs might drop at
the 3'and 5'ends. If these sequences were not trimmed, the bases may be

paired in the wrong place. This might lead to errors in downstream analysis.

After inputting all the sequences as FASTQ file, quality trimming should be
18

performed by using sickle. A sickle command called sickle pe hasbeen
used in this program. This command could take both forward and reverse
paired-end FASTAQ files as input like “sample. fastg”, and then outputted
two trimmed paired-end FASTQ files like “sample trim.fastqg” and a
single read file like “sample singlet.fastqg”. This step was shown as

figure 6.

rule sickle:
input:
torward="samples/{sample} R1 @e1l.fastq",
reverse="samples/{sample} R2 @@1.fastq"
output:
forward trim="samples/{sample} R1 @01 trim.fastq"”,
reverse trim="samples/{sample} R2 081 trim.fastq",
singlet="samples/{sample} R2 @01 singlet.fastq"
shell:
"""sickle pe -f {input.forward} \
-r {input.reverse} \
-t "sanger’ \
-0 {output.forward trim} \
-p {output.reverse trim} \
-s {output.singlet} \
-q 20 -1 10

TN

Figure 6: Sickle

In this rule, the command sickle pe meant using paired-end trimming
technology, — f meant the one input of this rule is forward reads FASTQ file, -
r meant the other input is reverse reads FASTQ file. -0 and -p indicated the
output of this rule were trimmed paired-end FASTQ file. -s represented the
other output is singleton FASTQ file. —g represented the quality threshold and

-1 represented the length threshold.

After quality trimming by sickle, the trimmed FASTQ files were transferred to
SPAdes. The rule of SPAdes was shown as figure 7. SPAdes program
cooperated with the BayesHammer module to perform only error correction

and generate a folder named corrected for each sequence. This folder
19

contained the error corrected FASTQ files and unpaired FASTQ files.

rule spades:
input:
ri="samples/{sample} R1 @81 trim.fastq",
r2="samples/{sample} R2 881 trim.fastq"
output:
o=directory("samples/{sample} corrected")
shell:
spades.py -1 {input.rl} -2 {input.r2} \
--only-error-correction \
--careful -o {output.o}

IRTRE

Figure 7: Rule SPAdes

The next step was to use PANDAseq to compare all the sequences in the
corrected folder and reconstruct an overlapping sequence. A schematic
diagram of PANDseq reconstructing overlapping sequences was shown in
Figure 8. First, it aligned forward reads and reverse reads, then identified the
best overlap, and finally reconstructed the complete overlap sequence. This

part could be design as a rule shown in figure 9.

Forward Primer
o
Forward Read |

Reverse Primer
ey
| Reverse Read

Reconstructed Sequence

Highly-Overlapping Scenario

Forward Primer

Forward Read | P

[3 | Reverse Read

i v »
iReverse Primer
| |

Reconstructed Sequence

Figure 8: Diagram of PANDseq

20

rule pandaseq:

input:

l=directory("samples/{sample} corrected"”)
output:

o="samples/{sample} overlap.fasta”
shell:

pandaseq -f {input.l}/corrected/* R1*fastq.gz \
-r {input.l}/corrected/* R2*fastq.gz > {output.o}

Figure 9: Rule PANDseq

Then users can integrate all the overlapped sequences to generate a

multiplexed FASTQ file. Figure 10 shows the rule design of multiplexed.

rule merge all:

input:

i=expand(“samples/{smp} overlap.fasta”, smp=SAMPLES)
output:

m="multiplexed.fasta"
shell:

W

(for i in $(echo {input.i}); \
do awk -v k=%$i '/~»/{{$0=">barcodelabel="k";}
S"(++1)}}1" $1; done) > multiplexed.fasta

W

Figure 10: Rule Multiplexed

This multiplexed FASTQ file contains all overlap sequences, which makes the
sequence information easier to distinguish. For example, figure 11 shows a
part of multiplexed file. In this example the sequence comes from the second
sequence of *109-2 5109 LO0O1 overlap.fasta”.
>barcodelabel=samples/109-2 S109 L0001 overlap.fasta;S2

GTAGGCGGTTCGTCGCGT GTGTGAAAGTCC
ATCGCTTAACGGTGG (GTACGGGCGGGCTTGAGTGCGGTAGGGGAGACTGGAATT GGTGTAACGGTG

GAATGTGTAGATATCGG CACC GGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTG
GGGAGCGAACAG

Figure 11: Partial multiplexed sequence

In order to make sure the downstream VSEARCH program can run normally,

21

multiplexed file needs to be linearized, dereplicated and sorted. Then use
singleton to remove any sequence that the size is 1. These processes can be

designed as figure 12.

rule linearize fasta:

input:

i="multiplexed.fasta"
output:

o="multiplexed linearized.fasta"”
shell:

awk 'NR==1 {{print ; next}} \
{{printf /~>/ ? "\\n"$0"\\n" : $1}} \
END {{print}}"' {input.i} > {output.o}

wan

rule dereplicate sort singleton:
input:
i="multiplexed linearized.fasta"
output:
uc="multiplexed linearized dereplicated vsearch min2.uc",
fasta="multiplexed linearized dereplicated vsearch min2.fasta"
shell:

vsearch --threads 20 \

--derep fulllength {input.i} --minuniquesize 2 \
--sizein --sizeout --fasta_width @ --uc {output.uc} \
--output {output.fasta}

Figure 12: Rule VSEARCH

The next step is to cluster the generated sequences at 97% by the VSEARCH
program. Clustering at 97% is to facilitate the analysis of the similarity of
sequences. Researchers usually set the same signs for various classifications
(such as strains, groups, genus, and groups). The sequence is usually divided
into different OTUs according to a similarity threshold of 97%, and each OTU
is usually considered as coming from one microbial species [20]. If the
similarity is less than 97%, it can be regarded as coming from different species,
and if the resemblance is less than 95%, it can be regarded as a different genus.

The program of this step can be designed as shown in figure 13.

22

rule precluster 97:
input:
i="multiplexed linearized dereplicated vsearch min2.fasta"
output:
uc="all.preclustered.uc"”,
centroids="all.preclustered.fasta"
shell:

"W

vsearch --cluster size {input.i} \

--threads 5 --1d ©.97 --strand plus --sizein \
--sizeout --fasta width @ --uc {output.uc} \
--centroids {output.centroids}

"W

Figure 13: Rule Cluster at 97%

The next purpose was using denovo to get rid of chimera. Denovo assembly
is a method of sequencing from the head of the genome. This method can be
used for transcription without a reference genome [21]. Since upstream
sequences may produce sequences with repetitive fragments when they
overlap, devono is used to eliminate these chimeras. The sequences
processed by denovo will get better used in the downstream identification
process. Chimera referred to a sequence reconstructed from different
sequence shown as figure 14. Then we could use a database supported by

Dr.Umer to remove the low bacteria.

HEEEEEEEEEEEEN
OOoooodooononn
EEEEEENEEEENEN
OO0000000000008

X IBNEEEEEENENN
X OO0 eEee .

Chimera

Figure 14: The example of removing chimera

23

rule denovo:
input:
i="all.preclustered.fasta"
output:

o="all.denovo.nonchimeras.fasta"
shell:

nnn

vsearch --uchime denovo {input.i} \
--sizein --sizeout --fasta width @ \
--nonchimeras {output}

rule ref chimera_detection:
input:
i="all.denovo.nonchimeras.ftasta"
output:
o="all.ref.nonchimeras.fasta"
shell:
"""vsearch --uchime_ref {input.i} \

--threads 5 --db /home/opt/vsearch GOLD DATABASE/gold.fasta \
--sizein --sizeout --fasta width @ --nonchimeras {output.o}

Figure 15: Rule denovo

The final step was generating the OTU table. First, the user renamed all
sequences to be prefixed with "OTU_" and gives an integer identifier. Then the
users could use the OTUs as reference to search the original multiplexed

sequences. Finally, the OTU table could be created in a tab-delimited format.

rule OTU table:

input:
i="all.ref.nonchimeras.fasta"

output:
ol="all.clustered.uc",
o2="all.otus.fasta",
o3="all.otutab.txt"

shell:

o

vsearch --cluster size {input.i} \

--threads 5 --id .97 --strand plus --sizein --sizeout)\
--fasta width @ --uc {output.ol} --relabel OTU \
--centroids {output.o2} --otutabout {output.o3}

W

Figure 16: Rule OTU table

OTU table can be regarded as the most basic and important document in
24

microbial diversity analysis. OTU table is a reference table obtained after all
OTUs are clustered and annotated. Calculate the distance measurement or
similarity between two different sequences through a certain distance
measurement method, and then compare with the OTU table to determine the

biological characteristics of a specific OTU.

25

4. Discussion

In order to visualize the process, users could use a command snakemake -
-dag | dot -Tsvg> dag.svg to output the entire process. Due to the
excessive number of the input FASTQ files, only some sequences were
intercepted and displayed as samples, as shown in Figure 17. It can be seen
from this DAG diagram that the tasks in Snakemake workflow can be executed

independently of each other.

sickle sickle sickle sickle sickle sickle
sample: 126-2_§125 L001 sample: 128-2_§127 L001 sample: 130-2_8129 L001 sample: 13-1_§13 1001 sample: 132-2_§131 1001 sample: 20-1_$20 L001
spades spades spades spades spades spades
pandaseq pandaseq pandaseq pandaseq pandaseq pandaseg
merge all
linearize_fasta

dereplicate_sort_singleton

precluster_98

denovo

.................

table

Figure 17: DAG for the example Snakemake Workflow

26

In order to check whether the sequences are processed correctly in each step,

user can check the reads after each step to verify. By usingbiocawk -cfastx

'"END{print NR}' command, these reads could be counted. Table 2

recorded the original reads of each sequence, trimmed reads after quality

trimming, and overlapped reads after integration.

Original Reads

Trimmed Reads

Overlapped Reads

109-2 5382 5368 5270
110-2 3745 3731 3659
113-2 1907 1904 1868
114-2 7536 7518 7427
115-2 5585 5564 5480
117-2 206085 205750 203582
119-2 13616 13561 13393
1-1 21165 21085 20723
120-2 9784 9744 9606
126-2 1689 1675 1640
128-2 27086 27023 26760
130-2 13728 13217 13061
13-1 32388 32323 31915
132-2 13130 13100 13013
20-1 55596 55493 54944
27-1 23450 23410 22981
32-1 4586 4566 4468
38-1 10527 10499 10367
45-1 5007 4992 4874
51-1 35597 35463 35066
56-1 33292 33199 32869
62-1 7538 7331 7163
68-1 17025 16986 16672
7-1 1 1 1

Table 2: The sequences reads of every step

27

Original Reads

Trimmed Reads

Overlap Reads

109-2 1 0.997398737 0.979189892
110-2 1 0.996261682 0.977036048
113-2 1 0.998426848 0.97954903
114-2 1 0.997611465 0.985536093
115-2 1 0.996239928 0.981199642
117-2 1 0.998374457 0.987854526
119-2 1 0.995960635 0.983622209
1-1 1 0.996220175 0.979116466
120-2 1 0.995911693 0.981807032
126-2 1 0.991711072 0.970988751
128-2 1 0.997674075 0.987964262
130-2 1 0.962776807 0.95141317
13-1 1 0.997993084 0.985395826
132-2 1 0.997715156 0.991089109
20-1 1 0.998147349 0.988272538
27-1 1 0.998294243 0.98
32-1 1 0.995638901 0.974269516
38-1 1 0.997340173 0.984800988
45-1 1 0.997004194 0.973437188
51-1 1 0.996235638 0.985083013
56-1 1 0.997206536 0.987294245
62-1 1 0.972539135 0.950252056
68-1 1 0.997709251 0.979265786
7-7 1 1 1

Table 3: Normalized Reads

Since the length of each sequence is different, in order to show the changes of

reads in each step more clearly, users can standardize all reads. Table 3 is the

value of each read after normalization processing.

28

109-2 110-2 113-2 114 -2 e 15 -2 e 117 -2

119-2 1-1 120-2 126-2 128-2 130-2
—13-1 132-2 20-1 27-] e=—32-1 38-1

45-1 51-1 56-1 62-1 68-1 7-7

0.99

0.98

0.97

0.96

0.95
0.94
Original Reads Trimmed Reads Overlap Reads

Figure 18: Reads of analysis steps

This graph showed how the reads of every analysis step changed. The x axis
meaned steps of analysis and the y axis meaned normalized reads. It could be
seen that most of all sequences remain over 97% reads after overlapped

except “130-2” and “62-1".

As mentioned in the above section, the Snakemake Workflow finally
generated 3 files: all.clustered.uc, all.otus.fasta and a OTU

table.

all.otus.fasta file contained all of the OTU sequences and a part of OTU

sequences was shown as figure 19.

29

MobaTextEditor - O x

File Edit Search View Format Syntax Special Tools

kxR R(QOE s

M. X|=

all.otus.fasta

1poTU 1;5ize-106112

2 TACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCCGCGCCGGGTACGGGCGGGCTTGAGTG
» CGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTCACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAAC
r AGG

3 >0TU_2;size=411682

4 TACGTAGGGGGCGAGCGTTATCCGGATTCATTGGGCGTAAAGCGCGLGTAGGCGGCCCGGCAGGCCGGGGGTCGAAGCGGGGGGCTCAACCCCCCGAAGCCCCCGGAACCTCCGLGGCTTGGGTC
» CGGTAGGGGAGGGTGGAACACCCGGTGTAGCGGTGGAATGCGCAGATATCGGGTGGAACACCGGTGGCGAAGGCGGCCCTCTGGGCCGAGACCGACGCTGAGGCGCGAAAGCTGGGGGAGCGAAC
» AGG

5>0TU_3;size=25996

6 TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTG
» CCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAAC
r AGG

7 >0TU_4;size=15463

8 TACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGATTGGTCAGTCTGTCTTAAAAGTTCGGGGCTTAACCCCGTGATGGGATGGAAACTGCCAATCTAGAGTAT
» CGGAGAGGAAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAAGAACACCAGTGGCGAAGGCGACTTTCTGGACGAAAACTGACGCTGAGGCGCGAAAGCCAGGGGAGCGAACG
» GG

9 >0TU_5;size=12721

10 TACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTGATAAGTCTGAAGTTAAAGGCTGTGGCTCAACCATAGTTCGCTTTGGAAACTGTCAAACTTGAGTGC
» AGAAGGGGAGAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCGAACA
' GG

11/>0TU_6;51ze=11926

12 TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCATGGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGAACTGTCAGGCTAGAGTG
» TCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAAC
» AGG

13/>0TU_7;size=11541

14 TACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTAGATAAGTCTGAAGT TAAAGGCTGTGGCTTAACCATAGTACGCTTTGGAAACTGTTTAACTTGAGTGC
» AAGAGGGGAGAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGCTTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACA
' GG

15/>0TU_8;s1ze=11160

16 AACGTAGGGTGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGACCGGCAAGTTGGAAGTGAAAACTATGGGCTCAACCCATAAATTGCTTTCAAAACTGCTGGCCTTGAGTA
» GTGCAGAGGTAGGTGGAATTCCCGGTGTAGCGGTGGAATGCGTAGATATCGGGAGGAACACCAGTGGCGAAGGCGACCTACTGGGCACCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCAAAC
» AGG

17/>0TU_9;size=10893

18 TACAGAGGTCTCAAGCGTTGTTCGGAATCACTGGGCGTAAAGCGTGCGTAGGCGGTTTCGTAAGTCGTGTGTGAAAGGCGGGGGCTCAACCCCCGGACTGCACATGATACTGCGAGACTAGAGTA
» ATGGAGGGGGAACCGGAATTCTCGGTGTAGCAGTGAAATGCGTAGATATCGAGAGGAACACTCGTGGCGAAGGCGGGTTCCTGGACATTAACTGACGCTGAGGCACGAAGGCCAGGGGAGCGAAA
» GGG

19/>0TU_10;51ze=10560

20 TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCACGGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGAACTGCTGAGCTAGAGTG
» TCGGAGAGGCAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTGCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAAC
» AGG

21 >0TU_11;size=10154

22 TACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGAGACTTGAGTG
» CAGAAGAGGAGAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAAC

C:\Users\39243\OneDrive\DOCUME~1\MobaXterm\slash\392: UNIX Plain text 1057 lines Row #1 Col #1

Figure 19: Partial OTU FASTQ file

There were thousands of 16S sequences obtained by high-throughput
sequencing. If each sequence is to be annotated with species, it would be a lot
of work and time-consuming. Moreover, errors in the process of 16S
amplification and sequencing would reduce the accuracy of the results. 0TU
was introduced into 16S sequencing for analysis. First, users could cluster
similar sequences, divided them into a small number of taxa, and annotated
species based on taxa. This not only simplified the workload and improved the
analysis efficiency, but also removed some sequencing errors during the
clustering process, which improves the accuracy of the analysis [22]. If users
wanted to check whether the OTU sequence exists or correct, it could be

matched on the website https://blast.ncbi.nlm.nih.gov/Blast.cgi. In order to

prove the effectiveness of the program, OTU 1 was chosen as a sample for

30

https://blast.ncbi.nlm.nih.gov/Blast.cgi

matching. The matching result was shown as figure 20, it indicated the OTU 1

was partial sequence of bifidobacterium faecale strain 2731 16S ribosomal

RNA gene.
Descriptions Graphic Summary Taxonomy
Alignmentview| Pairwise v ‘ D CDS feature @ [Restore defaults

1 sequences selected @

& Download v GenBank Graphics

Bifidobacterium faecale strain 2731 16S ribosomal RNA gene, partial sequence
Sequence ID: MT611742.1 Length: 1421 Number of Matches: 1

Range 1: 479 to 731 GenBank Graphics

Score Expect Identities Gaps Strand
468 bits(253) 7e-128 253/253(100%) 0/253(0%) Plus/Plus

Query 1 TACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGT 60
Shjct 479 TACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGT 338
Query 61 CGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCCGCGCCGGGTACGGGLGGGCTT 120

Shjet 539 CGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCCGCGCCGGGTACGGGLGGGCTT 598
Query 121 GAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAA 180
Shjct 599 GAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAA 638
Query 181 GAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTCACTGACGCTGAGGAGCGAAAGCGTG 240
Shjct 639 GAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTCACTGACGCTGAGGAGCGAAAGCGTG T18
Query 241 GGGAGCGAACAGG 253

Shjct 719 GGGAGCGAACAGG 731

Figure 20: OTU_1 matched result

After clustering the OTUs and classifying species annotations, an OTU table
could be generated [23]. This OTU_table generated by Snakemake workflow
in the project contained the OTU type and sequence number of each sample.
Due to the denovo method of clustering, OTU_table retained the maximum
species sequences in the sample. If the amount of sequencing in a sample was
larger (the sequencing technology cannot guarantee the absolute consistency
of the sequencing amount of each sample), the number of sequences of various
microorganisms in the sample would be more than other samples, and the
amount of sequences for every OTU increased accordingly. Therefore, the

sequence number of OTU could not be directly compared between samples.

31

Instead, it was necessary to convert the number of sequences into a ratio,
which was the relative abundance (the amount of sequences divided by the
total amount of sample). Then used this ratio for horizontal comparison. Due

to the large size of OTU table file, the partial diagram was shown in Figure 21.

| MobaTextEditor - O X

File Edit Search View Format Syntax Special Tools

OB P aXEE=srxRrlaamn Sk dq s B

otu_table.bd l

~||!'|-' 0 &

leUId 109-2 1-1 11e@-2 113-2 114-2 115-2 117-2 119-2 120-2 126-2 128-2 130-2 13-1 132-2 2@-1 27-1 32-1 38-1 »
v 45-1 51-1 56-1 62-1 68-1 7-1

20TU_169 1117 921 329 55 17 1466 18 1 2 10 1912 13990 22 © 4 0@ 815 158 0 @

30TU_18 541 1201 459 124 418 331 77600 843 975 234 3191 525 2709 151 100 112 419 3 8 1111 156 58 704 @
40TU_ 14 155 4@4 145 2 114 56 3396 52 151 35 75 72 365471 21 2 3 4 7 128 65557 4 @

50TU_11 72 151 9 13 3 1 3778 115 222 91 41 182 52 8632 © 1@ 1 156 12 228 @

60TU 23 370 @ @ 12 14 43 3799 99 129 31 1288 3 110521 12203 558
70TU_24 224 42 15 12 158 19 1425 284 150 6 1184 418 517 367 25 4 2 925 0
80TU 22 272 3 77 6 483 21 6565 106 229 43 210 236 1350 335 32 2 49 163 329
90TU_9 110 15 1 1e 275 69 2937 75 3 © 682 924 3588 405 27 © 15 © 2 12515 3
10 OTU_18 102 435 142 9 490 36 5166 504 185 33 398 198 512 261 18 4 2 1 146 2081
110TU_129 16 @@ 8@ ©® 59 19 11 @57 21 56 51@12 0200200

12 0TU_31 1e3 88 78 26 1906 © 1441 560 11 7 785 135 341 526 22 @ 56 2 3 192 29 296 4 0
130TU_ 387 21012 1410 ©17 @ 0030000141200

14 0TU_13 277 4739 83 6 686 34 3242 727 216 128 564 262 1273 976 81 6 19 © 862 4219 8530 289 10 ©
150TU_130 19 2 @0 @ 03000013600 1@52 6000RQO0

16 0TU_26 37 1131 28 3 4 32 204 422 423 28 99 367 1@ 792 14 4 11 151 146 543 6 @

17 0TU_6 54 751 36 2 231 30 2657 213 72 2 121 130 209 97 31 52 @ 270 2246 910

18 0TU_5 52 9 177 48 202 14 7470 425 139 67 633 118 0 1741 7 0 61 © 13 7521590

190TU 1351 2@ 25 @020 40013 7842000014423 00

200TU_3@ 43 5 13 4 11e 30 1995 192 2 170 281 162 6 3 2044 225554 1680

21 0TU_3 115 836 503 2 1227 618 26140 2090 742 272 1833 225 7255 247 122 2 643 1 6 876 2 106 8 @

220TU 9@ 3@ 81519 © 77 11814 56 13 19 24 171 1152 1¢ © @ e 14291 11¢@

23 0TU_149 41 152 29 6 54 62 718 119 117 44 72 99 63 44 107 37 42 37 33 269 119 89 1e5 @
240TU_126 25 @62 115 ©20 19 2132 31 144390 10 @ 235 3 @00

250TU 35 4@ @46 ©1 21184 23314038 042 4010002000

26 OTU_159 44 14@ 2@ 2 31 39 568 11@ 78 34 53 68 51 32 73 26 28 23 33 201 107 63 96 @

27 0TU_16 1@@ 1926 67 3 508 44 2304 283 424 35 219 81 408 209 27 14 @ 64 324 27 14 4 @

28 OTU_85 34 212 20 59 324 9 1047 63 122 1353 0 @0 14 139 12180

29 0TU_41 26 193 32 7 @247 30 357 1624 146 30 20179 21 157 54 © @

30 0TU_12 91 11@ 18 21 9 126 3 27 7 7 28 261 5 25 A952 7 1723 150 28 4965 8¢ 143 @

31 0TU_119 5@ 198 35 65 96 874 178 158 53 97 111 76 55 126 39 54 42 43 298 142 107 134 @
320TU 121 10 2 @ 63 400152 600000Q000020000

330TU 5@ 65 2@ @ 35520 2545 189 1979 400011000080

34 0TU_310 12 38 915 17 26 23 1e 9 17 13 7 33 11 13 13 6 47 26 16 27 ©

35 0TU_37 27 75 16 7 39522 90 o 14 128 150 4 17 114 22 17 3 88 53 156 @

3 0TU 20 29 5 @ 42251 71 41323 413 3530 93 4522 144 115 163 172 38 @

370TU_123 40 3 2 0 225 10 ©22 47 135 2e1e12 78 eeovoe

38 0TU 19 56 2761 30 9 37 4 1128 144 74 11 39 32 65 14113 114 1555 2380
390TU_118 2 9 2 214 25 25 23 9017 16 68 110@0@446 25 0@0

400TU 79 6193 16 705171 266 8 21 148423113 180 3 68 50

41 0TU_ 133 66 263 37 5 64 112 934 153 147 47 78 129 76 54 121 55 54 39 36 363 150 111 121 @

42 0TU_ 149 39 114 21 1 36 55 492 97 80 28 49 58 34 28 56 27 16 18 27 156 81 75 69 @

7
@
2 7 3@
2 120a@
e
6 451 7 @

2]
@
2
2

@009

Q@
8
3
3
2
]

AnATIL £ a9 2 99 coac 3 oac na a2 a2 2 c £

C:\Users\39243\OneDrive\DOCUME~ 1\MobaXterm\slash\392: UNIX Plain text 506 lines Row #1 Col #1

Figure 21: Partial diagram of OTU table

32

5. Conclusion

The main goal of this project is to build a pipeline for automated processing of
metagenomics data. This goal could be accomplished by creating a Snakemake
workflow program. By using this pipeline, users could automatically perform
sequencing by inputting the specified file at the initial stage when analyzing
metagenomics data. This design ensured the stability and repeatability of the

program.

The sequencing framework built on Snakemake reduces the requirements of
the process for data format conversion and script writing, and could process
transcript data simply, efficiently and conveniently. In this thesis, a workflow
for metagenomics analysis was initially established. Using this workflow, a set
of sequencing data analysis processes could be efficiently completed, and
corresponding data and visualization results could be obtained. Based on this
Snakemake workflow, sequencing analysis could be made easier to perform,
which provided convenience for researchers with a non-computer
background to perform transcriptome analysis. The construction of a
sequencing data analysis workflow based on Snakemake could provide a

reference for the construction of subsequent related analysis frameworks.

The research of microbiome largely depends on the level of technology and
methods of microbiome. With the development of microbiome, new
algorithms and computing platforms are constantly being developed.
However, different omics techniques have their own advantages and
disadvantages. Therefore, in addition to developing new technologies and
methods to cope with the continuously generated microbial data, it is also
necessary to focus on the integration and complementarity of various
methods to improve accuracy and complementarity. In terms of data analysis,

microbiology research involves the acquisition of large amounts of data,

33

statistical analysis and modeling. Therefore, the development of
bioinformatics is particularly important. Only by further improving analysis
technology, developing appropriate algorithms and software, and organically
combining analysis technology, data processing, multivariate statistical

analysis and visualization, can we better promote microbiology research.

Microbiology data analysis will be transformed into microbiology data science.
The collection, storage, function mining and development and utilization of
big data of microbiome are the core issues that restrict the development of
microbiome. In terms of data collection, a standardized analysis process
should be developed and implemented to ensure that the data is reproducible,
robust, reproducible and universal. In the process of data analysis, relevant
reference databases should be further enriched. In recent years, as the cost of
sequencing has decreased, microbiome data has increased dramatically. But
most of the data is used once. Therefore, how to fully excavate and use the
existing massive sequencing data is another important challenge facing
microbiology research. In the process of microbiome research and
development, we should strongly support the development of microbiome
data science, formulate effective data standards and achieve interoperability,
and establish a microbiome data centre that compares data, analyses data,

integrates data and achieves data standardization.

In the process of building Snakemake workflow, improving the universality of
related functions is a difficult problem, which required continuous debugging.
In terms of workflow functions, this project had only carried out basic
development, and some specific functions required more profound
knowledge in other fields. This had led to the lack of richness of the workflow
functions. I hope to enrich its functions in the later stage. On the other hand,
the operability of workflow needed to be enhanced, and user steps should be

optimized as much as possible. In terms of software selection for workflow,

34

this project had selected open source projects as much as possible, which was
convenient to call at any time. In the follow-up work, I will continue to
improve the pipeline content and parameter configuration to adapt to more

different RNA sequences.

35

6. References

[1]. Wooley,]J. C., Godzik, A. and Friedberg, I. (2010) ‘A primer on

metagenomics’, PLoS Computational Biology, 6(2).

[2]. Hilty, M. et al. (2010) ‘Disordered microbial communities in asthmatic

airways’, PLoS ONE, 5(1).

[3]. Chen, L., Fu, C. and Wang, G. (2017) ‘Microbial diversity associated with
ascidians: a review of research methods and application’, Symbiosis.

Symbiosis, 71(1), pp- 19-26.

[4]. Yang, Y. and Smith, S. A. (2013) ‘Optimizing de novo assembly of short-

read RNA-seq data for phylogenomics.,, BMC genomics, 14.

[5]. Sikkema-Raddatz, B. et al. (2013) ‘Targeted Next-Generation Sequencing
can Replace Sanger Sequencing in Clinical Diagnostics’, Human Mutation,

34(7), pp. 1035-1042.

[6]. Marchant, |. et al. (2014) ‘Comparative evaluation of the new FDA
approved THxXIDTM-BRAF test with high resolution melting and sanger
sequencing’, BMC Cancer, 14(1), pp. 1-9.

[7]. Metzker, M. L. (2010) ‘Sequencing technologies the next generation’,

Nature Reviews Genetics. Nature Publishing Group, 11(1), pp. 31-46.

[8]. Franzosa, E. A. et al. (2015) ‘Sequencing and beyond: Integrating
molecular “omics” for microbial community profiling’, Nature Reviews

Microbiology. Nature Publishing Group, 13(6), pp. 360-372.

36

[9]. Hlumina Inc. (2017) ‘lllumina sequencing introduction’, Illumina
sequencing introduction, (October), pp. 1-8. doi:
http://www.illumina.com/content/dam/illumina-

marketing/documents/products/illumina_sequencing_introduction.pdf.

[10]. Yang, Y. et al. (2018) ‘Application Progress of 16s rRNA High-

Throughput Sequencing Technology on Human Medicine’, pp. 16-18.

[11]. Klindworth, A. et al. (2013) ‘Evaluation of general 16S ribosomal RNA
gene PCR primers for classical and next-generation sequencing-based

diversity studies’, Nucleic Acids Research, 41(1), pp. 1-11.

[12]. Sharma, C. M. and Konrad, U. F. (2014) ‘BIOINFORMATICS
APPLICATIONS NOTE READemption — a tool for the computational analysis

of deep-sequencing - based transcriptome data’, 30(23), pp. 3421-3423.

[13]. Koster,]. and Rahmann, S. (2012) ‘Snakemake-a scalable bioinformatics

workflow engine’, Bioinformatics, 28(19), pp. 2520-2522.

[14]. D’Amore, R. et al. (2016) ‘A comprehensive benchmarking study of
protocols and sequencing platforms for 16S rRNA community profiling’, BMC
Genomics. BMC Genomics, 17(1).

[15]. Bankevich, A. et al. (2012) ‘SPAdes: A new genome assembly algorithm
and its applications to single-cell sequencing’, Journal of Computational

Biology, 19(5), pp. 455-477.

[16]. Rognes, T. et al. (2016) ‘VSEARCH: A versatile open source tool for

metagenomics’, Peer], 2016(10), pp. 1-22.

[17]. Masella, A. P. et al. (2012) ‘PANDAseq: Paired-end assembler for

illumina sequences’, BMC Bioinformatics, 13(1), pp. 1-7.

37

[18]. Quince, C. et al. (2015) ‘Extensive modulation of the fecal metagenome
in children with Crohn’s disease during exclusive enteral nutrition’, American

Journal of Gastroenterology, 110(12), pp. 1718-1729.

[19]. George, B. et al. (2017) ‘Transcriptome Sequencing for Precise and
Accurate Measurement of Transcripts and Accessibility of TCGA for Cancer
Datasets and Analysis’, Applications of RNA-Seq and Omics Strategies - From

Microorganisms to Human Health.

[20]. Wu, C. et al. (2019) ‘A Markov-based model for predicting the
development trend of soil microbial communities in saline-alkali land in

Wudi County’, Concurrency Computation, 31(10), pp. 1-8.

[21]. Wang, Z. et al. (2012) ‘The genome of flax (Linum usitatissimum)
assembled de novo from short shotgun sequence reads’, Plant Journal, 72(3),

pp- 461-473.

[22]. Edgar, R. C. (2013) ‘UPARSE: Highly accurate OTU sequences from
microbial amplicon reads’, Nature Methods, 10(10), pp. 996-998.

[23]. Olesen, S. W., Duvallet, C. and Alm, E. J. (2017) ‘DbOTU3: A new
implementation of distribution-based OTU calling’, PLoS ONE, 12(5), pp. 1-
13.

38

Appendices

Source code:

#This 1s adopted from
#http://pedagogix-tagc.univ-
mrs.fr/courses/ABD/practical/snakemake/snake_intro.html

e #it
A set of functions
e #it

import sys
def message(mes):

sys.stderr.write("|--- " + mes + "\n")

=
----------------- #it

The List of samples to be processed

o e
————————————————— ##

SAMPLES, = glob_wildcards("samples/{sample} R1_001.fastq")
NB_SAMPLES = len(SAMPLES)

for smp in SAMPLES:

message("Sample " + smp + " will be processed")

rule final:
input:
"all.otutab.txt"

rule sickle:
input:
forward="samples/{sample} R1 _001.fastq",
reverse="samples/{sample} R2_001.fastq"
output:
forward_trim="samples/{sample} R1 001 trim.fastq",
reverse_trim="samples/{sample} R2_ 001 trim.fastq",
singlet="samples/{sample} R2 001 singlet.fastq"
shell:
"""sickle pe -f {input.forward} \
-r {input.reverse} \
-t 'sanger' \
-0 {output.forward_trim} \
39

-p {output.reverse_trim} \
-s {output.singlet} \
-q 20 -1 10

rule spades:
input:
rl="samples/{sample} R1 001 trim.fastq",
r2="samples/{sample} R2 001 trim.fastq"
output:
o=directory("samples/{sample} corrected")
shell:
spades.py -1 {input.rl} -2 {input.r2} \
--only-error-correction \
--careful -o {output.o}

rule pandaseq:

input:

l=directory("samples/{sample} corrected")
output:

o="samples/{sample} overlap.fasta"
shell:

pandaseq -f {input.l}/corrected/* R1*fastq.gz \
-r {input.l}/corrected/* R2*fastq.gz > {output.o}

#Help for including shell commands in snakemake:
#https://stackoverflow.com/questions/560965417/awk-command-fails-1in-

snakemake-use-singularity

rule merge all:

input:

i=expand("samples/{smp} overlap.fasta", smp=SAMPLES)
output:

m="multiplexed.fasta"
shell:

(for i in $(echo {input.i}); \
do awk -v k=$i '/~>/{{$06=">barcodelabel="k";\
S"(++i)}}1' $i; done) > multiplexed.fasta

40

rule linearize_ fasta:
input:
i="multiplexed.fasta"
output:

o="multiplexed linearized.fasta"
shell:

awk 'NR==1 {{print ; next}} \
{{printf /~>/ ? "\\n"$0"\\n" : $13}} \
END {{print}}"' {input.i} > {output.o}

rule dereplicate_sort_singleton:
input:
i="multiplexed_linearized.fasta"
output:
uc="multiplexed linearized_dereplicated_vsearch_min2.uc",

fasta="multiplexed linearized_dereplicated vsearch_min2.fasta"
shell:

vsearch --threads 20 \

--derep_fulllength {input.i} --minuniquesize 2 \
--sizein --sizeout --fasta_width @ --uc {output.uc} \
--output {output.fasta}

rule precluster_97:
input:
i="multiplexed_linearized_dereplicated_vsearch_min2.fasta"
output:
uc="all.preclustered.uc",

centroids="all.preclustered.fasta"
shell:

vsearch --cluster_size {input.i} \

--threads 5 --id ©.97 --strand plus --sizein \
--sizeout --fasta_width @ --uc {output.uc} \
--centroids {output.centroids}

rule denovo:
input:
i="all.preclustered.fasta"

41

output:

o="all.denovo.nonchimeras.fasta"
shell:

vsearch --uchime_denovo {input.i} \
--sizein --sizeout --fasta_width @ \
--nonchimeras {output}

rule ref_chimera_detection:
input:
i="all.denovo.nonchimeras.fasta"
output:

o="all.ref.nonchimeras.fasta"
shell:

vsearch --uchime_ref {input.i} \

--threads 5 --db /home/opt/vsearch_GOLD DATABASE/gold.fasta \
--sizein --sizeout --fasta_width @ --nonchimeras {output.o}

rule OTU_table:
input:
i="all.ref.nonchimeras.fasta"
output:
0l="all.clustered.uc",
02="all.otus.fasta",

o3="all.otutab.txt"
shell:

vsearch --cluster_size {input.i} \

--threads 5 --id ©.97 --strand plus --sizein --sizeout \
--fasta_width @ --uc {output.ol} --relabel OTU_ \
--centroids {output.o2} --otutabout {output.o3}

42

	1. Introduction
	2. Analysis
	2.1 Environment
	2.2 Tools
	3. Program Design
	4. Discussion
	5. Conclusion
	6. References

