
1

Snakemake workflows for metagenomics data

Student Name: Kai Liu
Student ID: 2397780

Supervisor: Umer Zeeshan Ijaz

August 2020

A thesis submitted in partial fulfilment of the requirements for the
degree of

MASTER OF SCIENCE IN COMPUTER SYSTEM ENGINEERTING

2

Abstract

With the continuous development of life sciences and metagenomics, the

research on microbial communities is also continuously strengthened. The

new generation of genome sequencing technology has brought about new

changes in the analysis of microbial communities. These new technologies can

quickly and accurately analyze and sequence the genomes of microbial

communities. RNA sequencing (also called RNA-Seq) is the one of these

technologies, which uses high throughput techniques to transcript the

sequences. In the traditional data analysis process, these techniques are

divided into multiple steps by the researcher. The researcher wrote a script

for each step to connect. There is a lot of repetitive work in this process, which

is not only time-consuming, but also may produce wrong results due to errors

between the steps. The workflow based on Snakemake can greatly improve

the efficiency of data analysis, reduce repetitive labor, and make analysis data

easier to manage. The essence of Snakemake workflow is a python script that

can be written. Snakemake compiles each analysis step into a corresponding

rule, and uses shell commands for input and output. This project used 24

samples of fecal which was provided by Dr. Umer.

3

Acknowledgment

I would like to express my thanks towards my supervisor Umer Zeeshan Ijaz,

for giving me the opportunity to study this incredibly interesting new subject.

I would also like to thank him for the many meetings we had and the guidance

he provided on numerous occasions.

I would also like to take this opportunity to thank my fellow Masters students,

who were always around whenever I needed a helping hand.

4

Abbreviations and Definitions

NGS = Next Generation Sequencing

PCR = Polymerase chain reaction

OTU = Operational Taxonomic Unit

RNA = Ribonucleic Acid

SD = Shine-Dalgarno sequence

IDE = Integrated Development Environment

dNTP = deoxynucleoside triphosphate

ddNTP = dideoxynucleoside triphosphate

5

Contents

1. Introduction .. 6

2. Analysis .. 11

2.1 Environment ... 11

2.2 Tools .. 12

3. Program Design ... 16

4. Discussion .. 26

5. Conclusion ... 33

6. References ... 36

6

1. Introduction

Metagenomics is a new method of studying microbial diversity which is

developed on the basis of genomics [1]. Metagenomics directly extracts the

DNA of all microorganisms from the ecological environment and constructs a

metagenomic database to study the genetic information composition and

microbial community structure of all microorganisms contained in the sample

environment.

Microbial community refers to a structural unit formed by various

microorganisms in a specific ecological environment. Microbial communities

are widely present in ecosystems, and they are an important part of

ecosystems. Different populations in the microbial community can co-exist in

an orderly manner [2]. In a sense, it can be said that the development of

microbial communities led to the development of organisms.

Most of current research on microbial communities is based on traditional

microbiology subjects. These subjects contain biochemistry, molecular

biology, and genetics. Some studies have shown that the number of cultured

microorganisms may be less than 1% of the total number of microorganisms

in nature environment, which means that the study of microbial communities

has full prospects.

Traditional microbial research methods are mainly based on selective

cultivation or identification and classification based on metabolic

characteristics, morphological characteristics and antigen characteristics [3].

The disadvantage of this method is that some bacteria are small in number

and difficult to cultivate, or the existing medium and culture technology are

not suitable for microbial cultivation, or some bacteria grow extremely slowly.

Unknown bacteria cannot be identified also is the disadvantage. These

7

disadvantages will cause the number and diversity of the normal flora to be

greatly underestimated.

First generation sequencing, also called Sanger sequencing, is a sequencing

technology that uses DNA polymerase synthesis reactions [4]. Under stable

and appropriate situation, DNA polymerase can catalyze the synthesis of DNA

strands. This process requires DNA templates, primers and deoxynucleoside

triphosphates(dNTP). ddNTP is a dideoxynucleoside triphosphate. In this

dideoxynucleoside triphosphate the C3 position is connected to a hydroxyl

group after deoxygenation [5]. In general, the -OH on the C3 position is used

as the next dNTP connection site. Therefore, the ddNTP that has lost its oxygen

atom cannot be connected to the next dNTP, thereby terminating the DNA

strand extension. Label the dideoxynucleoside triphosphate with a

radioisotope and add the marked dideoxynucleoside triphosphate to the

regular PCR reaction. When dideoxynucleoside triphosphate binds, DNA

synthesis will be aborted. After dozens of periods, DNA with different lengths

and one base difference in length will be obtained [6]. The obtained products

are divided into four lanes for polyacrylamide gel electrophoresis. Finally,

DNA sequence is deduced backward based on the band positions of the four

bases.

Figure 1: Diagram of Sanger sequencing

8

With the continuous development of Metagenomics, the first generation

sequencing technology gradually cannot meet the huge number of sequencing

needs. Second generation sequencing technology, which is also called as high

throughput sequencing technology [7]. It solves the defect that the first-

generation sequencing can only measure one sequence. With the continuous

deepening of scientific research, researchers began to analyze all sequence

information in a species or sample. At this time, the method of first-generation

sequencing cannot meet the sequencing needs. The second-generation

sequencing technology was born under such circumstances. It is called high-

throughput sequencing because it can measure many sequences at the same

time. Researchers randomly break the DNA into countless small fragments by

using some physical or chemical methods. Then they enrich these DNA

fragments by constructing a reference base [8]. In the Illumina sequencing

platform, this enrichment process is bridge amplification.

Bridge PCR uses the adapter fixed on the surface of the Flowcell as a template

for bridge amplification. After continuous cycles of amplification and

denaturation, each DNA fragment will eventually be concentrated into a

bundle at its own location, and each bundle contains many copies of a single

DNA template. Next, put the completed library into a sequencer for

sequencing. The sequencing machine has a unique area in which DNA

fragments can be attached together. Each fragment has an independent

connection space, so the sequencer can simultaneously detect all additional

DNA sequence information. Finally, by using bioinformatics analysis

technology, small pieces of fragments are spliced into larger pieces [9].

9

Figure 2: Bridge amplification

This thesis studied how the Snakemake workflow was used for metagenomics,

and useed 16S RNA sequences as a sample to illustrate the workflow. 16S

ribosomal rRNA, or 16S RNA, is a part of the 30S small subunit of prokaryotic

ribosomes and binds to Shine-Dalgarno (SD) sequence, which has

approximately 1500 bases [10]. 16S RNA is widely distributed in prokaryotes,

which can provide sufficient information and has a relatively slow

evolutionary process. The 16S rRNA gene region contains both conserved

sequences and variable sequences. While reflecting the genetic relationship of

biological species, it also reveals the characteristic accounting sequence of

biological species [11]. Therefore, it is used to identify the species of

prokaryotes. This thesis useed the sequences supported by Dr.Umer Zeeshan

Ijaz from cluster MScBioinf@becker.eng.gla.ac.uk.

In the traditional transcriptome data analysis process, the analysis is

generally divided into multiple steps, and each step contains one or more

analysis software. Researchers need to connect various steps through

programming scripts, and there will be a large number of repetitive data

10

analysis operations during the analysis process, which not only requires

certain computer skills for researchers, but also consumes a lot of time and

energy in repetitive. At present, the amount of sequencing data is growing

rapidly. In the era of big data, more powerful transcriptome data analysis tools

are needed [12]. Therefore, some sequencing tools such as QIIME and

VSEARCH workflow have been developed. However, these tools are not

without their shortcomings. Most of them require frequent user intervention

(manually enter the command line to control the analysis process). In order

to reduce repetitive work and improve the efficiency and automation of data

analysis, an analysis framework based on Snakemake was developed.

11

2. Analysis

2.1 Environment

Snakemake is a process management tool written based on Python.

Snakemake simplifies each step into a rule. It uses shell commands or Python

code to input and output files. It can also use Python language to manage the

software running process. Using Snakemake to build transcriptome analysis

can improve the efficiency of transcription component data analysis.

Snakemake workflow can greatly improve the efficiency of transcriptome data

analysis, and is easy to use, providing convenience for researchers with non-

computer background [13]. The program of Snakemake workflow in the thesis

is based on python version Python 2.6.6.

In order to run Snakemake correctly, the first thing is to confirm the operating

system. If using Linux or MacOS X operating, there is no need to change

operating system. If the operating system is Windows, users need to set up a

Linux virtual machine (VM). The programming of this thesis was all done

using MobaXterm under Windows environment. In the process of building the

Snakemake framework, users needed to install a lot of software related to

transcriptome analysis. This framework used Conda to automatically

download and install the required software, avoiding the time-consuming

manual download and installation of the software, and the software version

error. Conda can also configure related dependencies to complete a series of

operations such as creating, saving, loading and switching the operating

environment in the local computer system. In terms of framework parameters,

software parameters, file paths and other settings, the framework is uniformly

set through the configuration file config.yaml, and there is no need to

repeatedly set the same parameters. At the same time, users can also set up

and manage the framework through the configuration file, and customize the

12

transcriptome analysis mode. In terms of software selection, the relevant

software for transcriptome analysis was studied and compared, and

mainstream software with better performance, wide application, and strong

stability was selected to be used in the framework.

2.2 Tools

Vim

The program was coded in Vim on Dr.Umer’s cluster. Vim is a lightweight text

editor. It has a wealth of functions to meet the needs of developers, such as

code completion, compilation and error prompts. It is widely used among

programmers. Compared with other common IDEs (such as pycharm, vscode),

Vim has a steeper learning curve. However, as a lightweight text editor, Vim

has many advantages. Vim can adapt well to various hardware environments,

can automate and script tasks, can remotely debug and modify code, can

quickly support new languages, and can quickly adopt new development

models.

sickle

Sickle is a kind of sequence quality trimming tool. Sickle uses a sliding

window and quality and length thresholds to determine where to trim the

reads. When the sickle starts to get the quality value, the window starts to

slide, and the length is 0.1 times the reads. If the length of reads is less than 1,

the sliding window is set to the length of reads. Otherwise, this window slides

along the quality value until it rises above the threshold and trims at that

position. When the quality drops below the threshold, trim again at that

position. Finally, the sequence after quality trimming is obtained [14].

13

Sickle can be regarded as a filter, generating high-quality reads for use by

other downstream analysis tools. According to sickle documentation

https://github.com/najoshi/sickle, sickle supports three types of quality

values: Illumina, Solexa and Sanger.

Figure 3: Diagram of Sickle

SPAdes

Due to the complexity of the natural environment and the diversity of biology,

a large part of bacteria is difficult to clone and cultivate in the laboratory,

making it impossible to sequence these bacteria using existing technologies.

SPAdes is a useful open-source assembler program, it has several kinds of

assembly pipeline toolkits. SPAdes can be used for single bacteria data and

multiple bacteria data to generate easy-to-operate compilation bacteria data.

SPAdes can run in a Linux environment and cooperate with the

BayesHammer module to perform only error correction. After using SPAdes

assembler program the system will create a corrected folder for each

sequence. These folders will contain the error-corrected reads of each paired-

https://github.com/najoshi/sickle

14

end sequence [15].

VSEARCH

VSEARCH is an open source and free multi-threaded 64-bit assembly tool.

VSEARCH is widely used in metagenomics, genomics and population

genomics to process nucleotide sequence data [16]. The VSEARCH program

adopts a complete dynamic programming strategy and uses multi-threaded

parallel computing to improve the speed and accuracy of identifying similar

nucleotide sequences. VSEARCH has a variety of methods for processing

nucleotide sequences, such as precision-based search, paired alignment,

arrangement supplementation, sorting sampling and normalization

processing. The VSEARCH version used in this project was vsearch

v2.10.4_linux_x86_64.

PANDAseq

The simplest method of sequencing is single-end sequencing, that is, there is

only one sequencing primer, so that PCR can only be performed along the

direction of this primer, and all reads can only be read in one direction.

However, this sequencing method has some limitations. Taking Illumina as an

example, the quality of sequencing will decrease with the progress of

sequencing, so the reads will be less accurate in the future. The solution that

researchers came up with was paired-end sequencing. For a 500 bp sequence,

the downstream quality of single-end sequencing will be poor [17]. But by

measuring 250 bp-300 bp from two directions and then splicing them

together, the accuracy of sequencing can be greatly improved.

15

PANDseq can be used to do the paired-end sequencing. The linker sequence

of paired-end sequencing is more complicated than single-end sequencing.

First, in order to perform sequencing in two directions separately, two

sequencing primers in different directions are required. Secondly, in order to

distinguish the reads in the two directions, a small index sequence is added in

front of one of the sequencing primers to mark. The length of each read in

paired-end sequencing is more than half of the entire sequence, so it can be

spliced according to the overlapping part of the two Reads.

16

3. Program Design

This Snakemake workflow project referred to Dr. Umer's tutorial on VSEARCH

workflow. Figure 4 showed the overview of the Snakemake pipeline. Before

designing the program, configure the environment of Snakemake, and entered

the command source activate snakemake to activate the working

environment. Then entered the calling commands of various tools such as

Sickle, VSEARCH and PANDAseq to ensure these tools could be used

normally on the system. The next step was creating a Snakemake workflow

configuration file by entering touch Snakefile. The path where this

Snakefile located was the directory where the workflow program generated

output files. Then created a folder to store the original input files under the

current path. The folder created in this project was named samples, which was

used to store 24 pairs sequences. Every pair of the sequence contained a

forward read sequence and a reverse read sequence.

Figure 4: Snakemake workflow overview

First, the input and output of the program needed to be determined. According

17

to the requirements of the project, the input of the program was the nucleotide

sequences in FASTQ format, and the output is the integrated OTU (operational

taxonomic unit) FASTQ file and OTU table. In this project all the nucleotide

sequences in FASTQ format were support by Dr.Umer’s cluster

MScBioinf@becker.eng.gla.ac.uk [18]. Since Snakemake has an

advantage that it can process multiple data in batches and user do not need to

set parameters multiple times, wildcards can be used as input. The most basic

and important file in microbial diversity analysis is OTU table. Almost all

subsequent analyses, such as alpha diversity analysis, beta diversity analysis,

difference analysis, etc., were based on OTU table. The OTU table contains the

OTU types and sequence numbers of all samples. The information of all OTUs’

species annotation can also be found in OUT table.

Figure 5: Wildcard and OTU table

The FASTQ file is a kind of file based on text-based format which is used to

record nucleotide sequences and corresponding quality scores. The FASTQ

file usually consists of 4 lines of ASCII characters to indicate the information

of the sequence, of which the fourth line records the quality score of the

sequence.

Since the input is a FASTQ file, each sequence has a specific quality score. The

quality score can be considered as the correct rate of calling sequences during

the sequencing process. The quality score is usually adapted form 0 to 40.

mailto:MScBioinf@becker.eng.gla.ac.uk

18

Table 1 indicated the mapping relationship between quality score and

probability of incorrect base call [19].

QUALITY
SCORE

PROBABILITY OF
INCORRECT
BASE CALL

BASE CALL
ACCURACY

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.9%

40 1 in 10000 99.99%

50 1 in 100000 99.999%

60 1 in 1000000 99.9999%

Table 1: mapping relationship between quality score and probability of incorrect

base call.

The following formula shows how to determine the quality value of the base:

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(𝑞𝑞) = −10 log 10

Equation: The formula of calculating quality score

The quality of reads produced by most sequencing programs might drop at

the 3'and 5'ends. If these sequences were not trimmed, the bases may be

paired in the wrong place. This might lead to errors in downstream analysis.

After inputting all the sequences as FASTQ file, quality trimming should be

19

performed by using sickle. A sickle command called sickle pe has been

used in this program. This command could take both forward and reverse

paired-end FASTQ files as input like “sample.fastq”, and then outputted

two trimmed paired-end FASTQ files like “sample_trim.fastq” and a

single read file like “sample_singlet.fastq”. This step was shown as

figure 6.

Figure 6: Sickle

In this rule, the command sickle pe meant using paired-end trimming

technology, -f meant the one input of this rule is forward reads FASTQ file, -

r meant the other input is reverse reads FASTQ file. -o and -p indicated the

output of this rule were trimmed paired-end FASTQ file. -s represented the

other output is singleton FASTQ file. -q represented the quality threshold and

-l represented the length threshold.

After quality trimming by sickle, the trimmed FASTQ files were transferred to

SPAdes. The rule of SPAdes was shown as figure 7. SPAdes program

cooperated with the BayesHammer module to perform only error correction

and generate a folder named corrected for each sequence. This folder

20

contained the error corrected FASTQ files and unpaired FASTQ files.

Figure 7: Rule SPAdes

The next step was to use PANDAseq to compare all the sequences in the

corrected folder and reconstruct an overlapping sequence. A schematic

diagram of PANDseq reconstructing overlapping sequences was shown in

Figure 8. First, it aligned forward reads and reverse reads, then identified the

best overlap, and finally reconstructed the complete overlap sequence. This

part could be design as a rule shown in figure 9.

Figure 8: Diagram of PANDseq

21

Figure 9: Rule PANDseq

Then users can integrate all the overlapped sequences to generate a

multiplexed FASTQ file. Figure 10 shows the rule design of multiplexed.

Figure 10: Rule Multiplexed

This multiplexed FASTQ file contains all overlap sequences, which makes the

sequence information easier to distinguish. For example, figure 11 shows a

part of multiplexed file. In this example the sequence comes from the second

sequence of “109-2_S109_L001_overlap.fasta”.

Figure 11: Partial multiplexed sequence

In order to make sure the downstream VSEARCH program can run normally,

22

multiplexed file needs to be linearized, dereplicated and sorted. Then use

singleton to remove any sequence that the size is 1. These processes can be

designed as figure 12.

Figure 12: Rule VSEARCH

The next step is to cluster the generated sequences at 97% by the VSEARCH

program. Clustering at 97% is to facilitate the analysis of the similarity of

sequences. Researchers usually set the same signs for various classifications

(such as strains, groups, genus, and groups). The sequence is usually divided

into different OTUs according to a similarity threshold of 97%, and each OTU

is usually considered as coming from one microbial species [20]. If the

similarity is less than 97%, it can be regarded as coming from different species,

and if the resemblance is less than 95%, it can be regarded as a different genus.

The program of this step can be designed as shown in figure 13.

23

Figure 13: Rule Cluster at 97%

The next purpose was using denovo to get rid of chimera. Denovo assembly

is a method of sequencing from the head of the genome. This method can be

used for transcription without a reference genome [21]. Since upstream

sequences may produce sequences with repetitive fragments when they

overlap, devono is used to eliminate these chimeras. The sequences

processed by denovo will get better used in the downstream identification

process. Chimera referred to a sequence reconstructed from different

sequence shown as figure 14. Then we could use a database supported by

Dr.Umer to remove the low bacteria.

Figure 14: The example of removing chimera

24

Figure 15: Rule denovo

The final step was generating the OTU table. First, the user renamed all

sequences to be prefixed with "OTU_" and gives an integer identifier. Then the

users could use the OTUs as reference to search the original multiplexed

sequences. Finally, the OTU table could be created in a tab-delimited format.

Figure 16: Rule OTU table

OTU table can be regarded as the most basic and important document in

25

microbial diversity analysis. OTU table is a reference table obtained after all

OTUs are clustered and annotated. Calculate the distance measurement or

similarity between two different sequences through a certain distance

measurement method, and then compare with the OTU table to determine the

biological characteristics of a specific OTU.

26

4. Discussion

In order to visualize the process, users could use a command snakemake -

-dag | dot -Tsvg> dag.svg to output the entire process. Due to the

excessive number of the input FASTQ files, only some sequences were

intercepted and displayed as samples, as shown in Figure 17. It can be seen

from this DAG diagram that the tasks in Snakemake workflow can be executed

independently of each other.

Figure 17: DAG for the example Snakemake Workflow

27

In order to check whether the sequences are processed correctly in each step,

user can check the reads after each step to verify. By using bioawk -cfastx

'END{print NR}' command, these reads could be counted. Table 2

recorded the original reads of each sequence, trimmed reads after quality

trimming, and overlapped reads after integration.

 Original Reads Trimmed Reads Overlapped Reads

109-2 5382 5368 5270

110-2 3745 3731 3659

113-2 1907 1904 1868

114-2 7536 7518 7427

115-2 5585 5564 5480

117-2 206085 205750 203582

119-2 13616 13561 13393

1-1 21165 21085 20723

120-2 9784 9744 9606

126-2 1689 1675 1640

128-2 27086 27023 26760

130-2 13728 13217 13061

13-1 32388 32323 31915

132-2 13130 13100 13013

20-1 55596 55493 54944

27-1 23450 23410 22981

32-1 4586 4566 4468

38-1 10527 10499 10367

45-1 5007 4992 4874

51-1 35597 35463 35066

56-1 33292 33199 32869

62-1 7538 7331 7163

68-1 17025 16986 16672

7-1 1 1 1

Table 2: The sequences reads of every step

28

Original Reads Trimmed Reads Overlap Reads

109-2 1 0.997398737 0.979189892

110-2 1 0.996261682 0.977036048

113-2 1 0.998426848 0.97954903

114-2 1 0.997611465 0.985536093

115-2 1 0.996239928 0.981199642

117-2 1 0.998374457 0.987854526

119-2 1 0.995960635 0.983622209

1-1 1 0.996220175 0.979116466

120-2 1 0.995911693 0.981807032

126-2 1 0.991711072 0.970988751

128-2 1 0.997674075 0.987964262

130-2 1 0.962776807 0.95141317

13-1 1 0.997993084 0.985395826

132-2 1 0.997715156 0.991089109

20-1 1 0.998147349 0.988272538

27-1 1 0.998294243 0.98

32-1 1 0.995638901 0.974269516

38-1 1 0.997340173 0.984800988

45-1 1 0.997004194 0.973437188

51-1 1 0.996235638 0.985083013

56-1 1 0.997206536 0.987294245

62-1 1 0.972539135 0.950252056

68-1 1 0.997709251 0.979265786

7-7 1 1 1

Table 3: Normalized Reads

Since the length of each sequence is different, in order to show the changes of

reads in each step more clearly, users can standardize all reads. Table 3 is the

value of each read after normalization processing.

29

Figure 18: Reads of analysis steps

This graph showed how the reads of every analysis step changed. The x axis

meaned steps of analysis and the y axis meaned normalized reads. It could be

seen that most of all sequences remain over 97% reads after overlapped

except “130-2” and “62-1”.

As mentioned in the above section, the Snakemake Workflow finally

generated 3 files: all.clustered.uc, all.otus.fasta and a OTU

table.

all.otus.fasta file contained all of the OTU sequences and a part of OTU

sequences was shown as figure 19.

109-2 110-2 113-2 114-2 115-2 117-2

119-2 1-1 120-2 126-2 128-2 130-2

13-1 132-2 20-1 27-1 32-1 38-1

45-1 51-1 56-1 62-1 68-1 7-7

30

Figure 19: Partial OTU FASTQ file

There were thousands of 16S sequences obtained by high-throughput

sequencing. If each sequence is to be annotated with species, it would be a lot

of work and time-consuming. Moreover, errors in the process of 16S

amplification and sequencing would reduce the accuracy of the results. OTU

was introduced into 16S sequencing for analysis. First, users could cluster

similar sequences, divided them into a small number of taxa, and annotated

species based on taxa. This not only simplified the workload and improved the

analysis efficiency, but also removed some sequencing errors during the

clustering process, which improves the accuracy of the analysis [22]. If users

wanted to check whether the OTU sequence exists or correct, it could be

matched on the website https://blast.ncbi.nlm.nih.gov/Blast.cgi. In order to

prove the effectiveness of the program, OTU_1 was chosen as a sample for

https://blast.ncbi.nlm.nih.gov/Blast.cgi

31

matching. The matching result was shown as figure 20, it indicated the OTU_1

was partial sequence of bifidobacterium faecale strain 2731 16S ribosomal

RNA gene.

Figure 20: OTU_1 matched result

After clustering the OTUs and classifying species annotations, an OTU table

could be generated [23]. This OTU_table generated by Snakemake workflow

in the project contained the OTU type and sequence number of each sample.

Due to the denovo method of clustering, OTU_table retained the maximum

species sequences in the sample. If the amount of sequencing in a sample was

larger (the sequencing technology cannot guarantee the absolute consistency

of the sequencing amount of each sample), the number of sequences of various

microorganisms in the sample would be more than other samples, and the

amount of sequences for every OTU increased accordingly. Therefore, the

sequence number of OTU could not be directly compared between samples.

32

Instead, it was necessary to convert the number of sequences into a ratio,

which was the relative abundance (the amount of sequences divided by the

total amount of sample). Then used this ratio for horizontal comparison. Due

to the large size of OTU table file, the partial diagram was shown in Figure 21.

Figure 21: Partial diagram of OTU table

33

5. Conclusion

The main goal of this project is to build a pipeline for automated processing of

metagenomics data. This goal could be accomplished by creating a Snakemake

workflow program. By using this pipeline, users could automatically perform

sequencing by inputting the specified file at the initial stage when analyzing

metagenomics data. This design ensured the stability and repeatability of the

program.

The sequencing framework built on Snakemake reduces the requirements of

the process for data format conversion and script writing, and could process

transcript data simply, efficiently and conveniently. In this thesis, a workflow

for metagenomics analysis was initially established. Using this workflow, a set

of sequencing data analysis processes could be efficiently completed, and

corresponding data and visualization results could be obtained. Based on this

Snakemake workflow, sequencing analysis could be made easier to perform,

which provided convenience for researchers with a non-computer

background to perform transcriptome analysis. The construction of a

sequencing data analysis workflow based on Snakemake could provide a

reference for the construction of subsequent related analysis frameworks.

The research of microbiome largely depends on the level of technology and

methods of microbiome. With the development of microbiome, new

algorithms and computing platforms are constantly being developed.

However, different omics techniques have their own advantages and

disadvantages. Therefore, in addition to developing new technologies and

methods to cope with the continuously generated microbial data, it is also

necessary to focus on the integration and complementarity of various

methods to improve accuracy and complementarity. In terms of data analysis,

microbiology research involves the acquisition of large amounts of data,

34

statistical analysis and modeling. Therefore, the development of

bioinformatics is particularly important. Only by further improving analysis

technology, developing appropriate algorithms and software, and organically

combining analysis technology, data processing, multivariate statistical

analysis and visualization, can we better promote microbiology research.

Microbiology data analysis will be transformed into microbiology data science.

The collection, storage, function mining and development and utilization of

big data of microbiome are the core issues that restrict the development of

microbiome. In terms of data collection, a standardized analysis process

should be developed and implemented to ensure that the data is reproducible,

robust, reproducible and universal. In the process of data analysis, relevant

reference databases should be further enriched. In recent years, as the cost of

sequencing has decreased, microbiome data has increased dramatically. But

most of the data is used once. Therefore, how to fully excavate and use the

existing massive sequencing data is another important challenge facing

microbiology research. In the process of microbiome research and

development, we should strongly support the development of microbiome

data science, formulate effective data standards and achieve interoperability,

and establish a microbiome data centre that compares data, analyses data,

integrates data and achieves data standardization.

In the process of building Snakemake workflow, improving the universality of

related functions is a difficult problem, which required continuous debugging.

In terms of workflow functions, this project had only carried out basic

development, and some specific functions required more profound

knowledge in other fields. This had led to the lack of richness of the workflow

functions. I hope to enrich its functions in the later stage. On the other hand,

the operability of workflow needed to be enhanced, and user steps should be

optimized as much as possible. In terms of software selection for workflow,

35

this project had selected open source projects as much as possible, which was

convenient to call at any time. In the follow-up work, I will continue to

improve the pipeline content and parameter configuration to adapt to more

different RNA sequences.

36

6. References

[1]. Wooley, J. C., Godzik, A. and Friedberg, I. (2010) ‘A primer on

metagenomics’, PLoS Computational Biology, 6(2).

[2]. Hilty, M. et al. (2010) ‘Disordered microbial communities in asthmatic

airways’, PLoS ONE, 5(1).

[3]. Chen, L., Fu, C. and Wang, G. (2017) ‘Microbial diversity associated with

ascidians: a review of research methods and application’, Symbiosis.

Symbiosis, 71(1), pp. 19–26.

[4]. Yang, Y. and Smith, S. A. (2013) ‘Optimizing de novo assembly of short-

read RNA-seq data for phylogenomics.’, BMC genomics, 14.

[5]. Sikkema-Raddatz, B. et al. (2013) ‘Targeted Next-Generation Sequencing

can Replace Sanger Sequencing in Clinical Diagnostics’, Human Mutation,

34(7), pp. 1035–1042.

[6]. Marchant, J. et al. (2014) ‘Comparative evaluation of the new FDA

approved THxIDTM-BRAF test with high resolution melting and sanger

sequencing’, BMC Cancer, 14(1), pp. 1–9.

[7]. Metzker, M. L. (2010) ‘Sequencing technologies the next generation’,

Nature Reviews Genetics. Nature Publishing Group, 11(1), pp. 31–46.

[8]. Franzosa, E. A. et al. (2015) ‘Sequencing and beyond: Integrating

molecular “omics” for microbial community profiling’, Nature Reviews

Microbiology. Nature Publishing Group, 13(6), pp. 360–372.

37

[9]. Illumina Inc. (2017) ‘Illumina sequencing introduction’, Illumina

sequencing introduction, (October), pp. 1–8. doi:

http://www.illumina.com/content/dam/illumina-

marketing/documents/products/illumina_sequencing_introduction.pdf.

[10]. Yang, Y. et al. (2018) ‘Application Progress of 16s rRNA High-

Throughput Sequencing Technology on Human Medicine’, pp. 16–18.

[11]. Klindworth, A. et al. (2013) ‘Evaluation of general 16S ribosomal RNA

gene PCR primers for classical and next-generation sequencing-based

diversity studies’, Nucleic Acids Research, 41(1), pp. 1–11.

[12]. Sharma, C. M. and Konrad, U. F. (2014) ‘BIOINFORMATICS

APPLICATIONS NOTE READemption — a tool for the computational analysis

of deep-sequencing – based transcriptome data’, 30(23), pp. 3421–3423.

[13]. Köster, J. and Rahmann, S. (2012) ‘Snakemake-a scalable bioinformatics

workflow engine’, Bioinformatics, 28(19), pp. 2520–2522.

[14]. D’Amore, R. et al. (2016) ‘A comprehensive benchmarking study of

protocols and sequencing platforms for 16S rRNA community profiling’, BMC

Genomics. BMC Genomics, 17(1).

[15]. Bankevich, A. et al. (2012) ‘SPAdes: A new genome assembly algorithm

and its applications to single-cell sequencing’, Journal of Computational

Biology, 19(5), pp. 455–477.

[16]. Rognes, T. et al. (2016) ‘VSEARCH: A versatile open source tool for

metagenomics’, PeerJ, 2016(10), pp. 1–22.

[17]. Masella, A. P. et al. (2012) ‘PANDAseq: Paired-end assembler for

illumina sequences’, BMC Bioinformatics, 13(1), pp. 1–7.

38

[18]. Quince, C. et al. (2015) ‘Extensive modulation of the fecal metagenome

in children with Crohn’s disease during exclusive enteral nutrition’, American

Journal of Gastroenterology, 110(12), pp. 1718–1729.

[19]. George, B. et al. (2017) ‘Transcriptome Sequencing for Precise and

Accurate Measurement of Transcripts and Accessibility of TCGA for Cancer

Datasets and Analysis’, Applications of RNA-Seq and Omics Strategies - From

Microorganisms to Human Health.

[20]. Wu, C. et al. (2019) ‘A Markov-based model for predicting the

development trend of soil microbial communities in saline-alkali land in

Wudi County’, Concurrency Computation , 31(10), pp. 1–8.

[21]. Wang, Z. et al. (2012) ‘The genome of flax (Linum usitatissimum)

assembled de novo from short shotgun sequence reads’, Plant Journal, 72(3),

pp. 461–473.

[22]. Edgar, R. C. (2013) ‘UPARSE: Highly accurate OTU sequences from

microbial amplicon reads’, Nature Methods, 10(10), pp. 996–998.

[23]. Olesen, S. W., Duvallet, C. and Alm, E. J. (2017) ‘DbOTU3: A new

implementation of distribution-based OTU calling’, PLoS ONE, 12(5), pp. 1–

13.

39

Appendices

Source code:

#This is adopted from
#http://pedagogix-tagc.univ-
mrs.fr/courses/ABD/practical/snakemake/snake_intro.html

#---##
A set of functions
##---##
import sys
def message(mes):
 sys.stderr.write("|--- " + mes + "\n")

##---
-----------------##
The list of samples to be processed
##---
-----------------##
SAMPLES, = glob_wildcards("samples/{sample}_R1_001.fastq")
NB_SAMPLES = len(SAMPLES)

for smp in SAMPLES:
 message("Sample " + smp + " will be processed")

rule final:
 input:
 "all.otutab.txt"

rule sickle:
 input:
 forward="samples/{sample}_R1_001.fastq",
 reverse="samples/{sample}_R2_001.fastq"
 output:
 forward_trim="samples/{sample}_R1_001_trim.fastq",
 reverse_trim="samples/{sample}_R2_001_trim.fastq",
 singlet="samples/{sample}_R2_001_singlet.fastq"
 shell:
 """sickle pe -f {input.forward} \
 -r {input.reverse} \
 -t 'sanger' \
 -o {output.forward_trim} \

40

 -p {output.reverse_trim} \
 -s {output.singlet} \
 -q 20 -l 10
 """

rule spades:
 input:
 r1="samples/{sample}_R1_001_trim.fastq",
 r2="samples/{sample}_R2_001_trim.fastq"
 output:
 o=directory("samples/{sample}_corrected")
 shell:
 """
 spades.py -1 {input.r1} -2 {input.r2} \
 --only-error-correction \
 --careful -o {output.o}
 """

rule pandaseq:
 input:
 l=directory("samples/{sample}_corrected")
 output:
 o="samples/{sample}_overlap.fasta"
 shell:
 """
 pandaseq -f {input.l}/corrected/*_R1*fastq.gz \
 -r {input.l}/corrected/*_R2*fastq.gz > {output.o}
 """

#Help for including shell commands in snakemake:
#https://stackoverflow.com/questions/50965417/awk-command-fails-in-
snakemake-use-singularity

rule merge_all:
 input:
 i=expand("samples/{smp}_overlap.fasta", smp=SAMPLES)
 output:
 m="multiplexed.fasta"
 shell:
 """
 (for i in $(echo {input.i}); \
 do awk -v k=$i '/^>/{{$0=">barcodelabel="k";\
 S"(++i)}}1' $i; done) > multiplexed.fasta
 """

41

rule linearize_fasta:
 input:
 i="multiplexed.fasta"
 output:
 o="multiplexed_linearized.fasta"
 shell:
 """
 awk 'NR==1 {{print ; next}} \
 {{printf /^>/ ? "\\n"$0"\\n" : $1}} \
 END {{print}}' {input.i} > {output.o}
 """

rule dereplicate_sort_singleton:
 input:
 i="multiplexed_linearized.fasta"
 output:
 uc="multiplexed_linearized_dereplicated_vsearch_min2.uc",
 fasta="multiplexed_linearized_dereplicated_vsearch_min2.fasta"
 shell:
 """
 vsearch --threads 20 \
 --derep_fulllength {input.i} --minuniquesize 2 \
 --sizein --sizeout --fasta_width 0 --uc {output.uc} \
 --output {output.fasta}
 """

rule precluster_97:
 input:
 i="multiplexed_linearized_dereplicated_vsearch_min2.fasta"
 output:
 uc="all.preclustered.uc",
 centroids="all.preclustered.fasta"
 shell:
 """
 vsearch --cluster_size {input.i} \
 --threads 5 --id 0.97 --strand plus --sizein \
 --sizeout --fasta_width 0 --uc {output.uc} \
 --centroids {output.centroids}
 """

rule denovo:
 input:
 i="all.preclustered.fasta"

42

 output:
 o="all.denovo.nonchimeras.fasta"
 shell:
 """
 vsearch --uchime_denovo {input.i} \
 --sizein --sizeout --fasta_width 0 \
 --nonchimeras {output}
 """

rule ref_chimera_detection:
 input:
 i="all.denovo.nonchimeras.fasta"
 output:
 o="all.ref.nonchimeras.fasta"
 shell:
 """vsearch --uchime_ref {input.i} \
 --threads 5 --db /home/opt/vsearch_GOLD_DATABASE/gold.fasta \
 --sizein --sizeout --fasta_width 0 --nonchimeras {output.o}
 """

rule OTU_table:
 input:
 i="all.ref.nonchimeras.fasta"
 output:
 o1="all.clustered.uc",
 o2="all.otus.fasta",
 o3="all.otutab.txt"
 shell:
 """
 vsearch --cluster_size {input.i} \
 --threads 5 --id 0.97 --strand plus --sizein --sizeout \
 --fasta_width 0 --uc {output.o1} --relabel OTU_ \
 --centroids {output.o2} --otutabout {output.o3}
 """

	1. Introduction
	2. Analysis
	2.1 Environment
	2.2 Tools
	3. Program Design
	4. Discussion
	5. Conclusion
	6. References

