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Abstract 

With the continuous development of life sciences and metagenomics, the 

research on microbial communities is also continuously strengthened. The 

new generation of genome sequencing technology has brought about new 

changes in the analysis of microbial communities. These new technologies can 

quickly and accurately analyze and sequence the genomes of microbial 

communities. RNA sequencing (also called RNA-Seq) is the one of these 

technologies, which uses high throughput techniques to transcript the 

sequences. In the traditional data analysis process, these techniques are 

divided into multiple steps by the researcher. The researcher wrote a script 

for each step to connect. There is a lot of repetitive work in this process, which 

is not only time-consuming, but also may produce wrong results due to errors 

between the steps. The workflow based on Snakemake can greatly improve 

the efficiency of data analysis, reduce repetitive labor, and make analysis data 

easier to manage. The essence of Snakemake workflow is a python script that 

can be written. Snakemake compiles each analysis step into a corresponding 

rule, and uses shell commands for input and output. This project used 24 

samples of fecal which was provided by Dr. Umer. 
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Abbreviations and Definitions 

 

NGS = Next Generation Sequencing 

PCR = Polymerase chain reaction 

OTU = Operational Taxonomic Unit 

RNA = Ribonucleic Acid 

SD = Shine-Dalgarno sequence 

IDE = Integrated Development Environment 

dNTP = deoxynucleoside triphosphate 

ddNTP = dideoxynucleoside triphosphate 
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1. Introduction 

Metagenomics is a new method of studying microbial diversity which is 

developed on the basis of genomics [1]. Metagenomics directly extracts the 

DNA of all microorganisms from the ecological environment and constructs a 

metagenomic database to study the genetic information composition and 

microbial community structure of all microorganisms contained in the sample 

environment. 

Microbial community refers to a structural unit formed by various 

microorganisms in a specific ecological environment. Microbial communities 

are widely present in ecosystems, and they are an important part of 

ecosystems. Different populations in the microbial community can co-exist in 

an orderly manner [2]. In a sense, it can be said that the development of 

microbial communities led to the development of organisms. 

Most of current research on microbial communities is based on traditional 

microbiology subjects. These subjects contain biochemistry, molecular 

biology, and genetics. Some studies have shown that the number of cultured 

microorganisms may be less than 1% of the total number of microorganisms 

in nature environment, which means that the study of microbial communities 

has full prospects. 

Traditional microbial research methods are mainly based on selective 

cultivation or identification and classification based on metabolic 

characteristics, morphological characteristics and antigen characteristics [3]. 

The disadvantage of this method is that some bacteria are small in number 

and difficult to cultivate, or the existing medium and culture technology are 

not suitable for microbial cultivation, or some bacteria grow extremely slowly. 

Unknown bacteria cannot be identified also is the disadvantage. These 
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disadvantages will cause the number and diversity of the normal flora to be 

greatly underestimated.  

First generation sequencing, also called Sanger sequencing, is a sequencing 

technology that uses DNA polymerase synthesis reactions [4]. Under stable 

and appropriate situation, DNA polymerase can catalyze the synthesis of DNA 

strands. This process requires DNA templates, primers and deoxynucleoside 

triphosphates(dNTP). ddNTP is a dideoxynucleoside triphosphate. In this 

dideoxynucleoside triphosphate the C3 position is connected to a hydroxyl 

group after deoxygenation [5]. In general, the -OH on the C3 position is used 

as the next dNTP connection site. Therefore, the ddNTP that has lost its oxygen 

atom cannot be connected to the next dNTP, thereby terminating the DNA 

strand extension. Label the dideoxynucleoside triphosphate with a 

radioisotope and add the marked dideoxynucleoside triphosphate to the 

regular PCR reaction. When dideoxynucleoside triphosphate binds, DNA 

synthesis will be aborted. After dozens of periods, DNA with different lengths 

and one base difference in length will be obtained [6]. The obtained products 

are divided into four lanes for polyacrylamide gel electrophoresis. Finally, 

DNA sequence is deduced backward based on the band positions of the four 

bases. 

Figure 1: Diagram of Sanger sequencing 
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With the continuous development of Metagenomics, the first generation 

sequencing technology gradually cannot meet the huge number of sequencing 

needs. Second generation sequencing technology, which is also called as high 

throughput sequencing technology [7]. It solves the defect that the first-

generation sequencing can only measure one sequence. With the continuous 

deepening of scientific research, researchers began to analyze all sequence 

information in a species or sample. At this time, the method of first-generation 

sequencing cannot meet the sequencing needs. The second-generation 

sequencing technology was born under such circumstances. It is called high-

throughput sequencing because it can measure many sequences at the same 

time. Researchers randomly break the DNA into countless small fragments by 

using some physical or chemical methods. Then they enrich these DNA 

fragments by constructing a reference base [8]. In the Illumina sequencing 

platform, this enrichment process is bridge amplification.  

Bridge PCR uses the adapter fixed on the surface of the Flowcell as a template 

for bridge amplification. After continuous cycles of amplification and 

denaturation, each DNA fragment will eventually be concentrated into a 

bundle at its own location, and each bundle contains many copies of a single 

DNA template. Next, put the completed library into a sequencer for 

sequencing. The sequencing machine has a unique area in which DNA 

fragments can be attached together. Each fragment has an independent 

connection space, so the sequencer can simultaneously detect all additional 

DNA sequence information. Finally, by using bioinformatics analysis 

technology, small pieces of fragments are spliced into larger pieces [9]. 
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Figure 2: Bridge amplification 

This thesis studied how the Snakemake workflow was used for metagenomics, 

and useed 16S RNA sequences as a sample to illustrate the workflow. 16S 

ribosomal rRNA, or 16S RNA, is a part of the 30S small subunit of prokaryotic 

ribosomes and binds to Shine-Dalgarno (SD) sequence, which has 

approximately 1500 bases [10]. 16S RNA is widely distributed in prokaryotes, 

which can provide sufficient information and has a relatively slow 

evolutionary process. The 16S rRNA gene region contains both conserved 

sequences and variable sequences. While reflecting the genetic relationship of 

biological species, it also reveals the characteristic accounting sequence of 

biological species [11]. Therefore, it is used to identify the species of 

prokaryotes. This thesis useed the sequences supported by Dr.Umer Zeeshan 

Ijaz from cluster MScBioinf@becker.eng.gla.ac.uk. 

In the traditional transcriptome data analysis process, the analysis is 

generally divided into multiple steps, and each step contains one or more 

analysis software. Researchers need to connect various steps through 

programming scripts, and there will be a large number of repetitive data 
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analysis operations during the analysis process, which not only requires 

certain computer skills for researchers, but also consumes a lot of time and 

energy in repetitive. At present, the amount of sequencing data is growing 

rapidly. In the era of big data, more powerful transcriptome data analysis tools 

are needed [12]. Therefore, some sequencing tools such as QIIME and 

VSEARCH workflow have been developed. However, these tools are not 

without their shortcomings. Most of them require frequent user intervention 

(manually enter the command line to control the analysis process). In order 

to reduce repetitive work and improve the efficiency and automation of data 

analysis, an analysis framework based on Snakemake was developed. 
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2. Analysis 

2.1 Environment 

Snakemake is a process management tool written based on Python. 

Snakemake simplifies each step into a rule. It uses shell commands or Python 

code to input and output files. It can also use Python language to manage the 

software running process. Using Snakemake to build transcriptome analysis 

can improve the efficiency of transcription component data analysis. 

Snakemake workflow can greatly improve the efficiency of transcriptome data 

analysis, and is easy to use, providing convenience for researchers with non-

computer background [13]. The program of Snakemake workflow in the thesis 

is based on python version Python 2.6.6. 

In order to run Snakemake correctly, the first thing is to confirm the operating 

system. If using Linux or MacOS X operating, there is no need to change 

operating system. If the operating system is Windows, users need to set up a 

Linux virtual machine (VM). The programming of this thesis was all done 

using MobaXterm under Windows environment. In the process of building the 

Snakemake framework, users needed to install a lot of software related to 

transcriptome analysis. This framework used Conda to automatically 

download and install the required software, avoiding the time-consuming 

manual download and installation of the software, and the software version 

error. Conda can also configure related dependencies to complete a series of 

operations such as creating, saving, loading and switching the operating 

environment in the local computer system. In terms of framework parameters, 

software parameters, file paths and other settings, the framework is uniformly 

set through the configuration file config.yaml, and there is no need to 

repeatedly set the same parameters. At the same time, users can also set up 

and manage the framework through the configuration file, and customize the 
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transcriptome analysis mode. In terms of software selection, the relevant 

software for transcriptome analysis was studied and compared, and 

mainstream software with better performance, wide application, and strong 

stability was selected to be used in the framework. 

2.2 Tools 

Vim 

The program was coded in Vim on Dr.Umer’s cluster. Vim is a lightweight text 

editor. It has a wealth of functions to meet the needs of developers, such as 

code completion, compilation and error prompts. It is widely used among 

programmers. Compared with other common IDEs (such as pycharm, vscode), 

Vim has a steeper learning curve. However, as a lightweight text editor, Vim 

has many advantages. Vim can adapt well to various hardware environments, 

can automate and script tasks, can remotely debug and modify code, can 

quickly support new languages, and can quickly adopt new development 

models. 

 

sickle 

Sickle is a kind of sequence quality trimming tool. Sickle uses a sliding 

window and quality and length thresholds to determine where to trim the 

reads. When the sickle starts to get the quality value, the window starts to 

slide, and the length is 0.1 times the reads. If the length of reads is less than 1, 

the sliding window is set to the length of reads. Otherwise, this window slides 

along the quality value until it rises above the threshold and trims at that 

position. When the quality drops below the threshold, trim again at that 

position. Finally, the sequence after quality trimming is obtained [14]. 
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Sickle can be regarded as a filter, generating high-quality reads for use by 

other downstream analysis tools. According to sickle documentation 

https://github.com/najoshi/sickle, sickle supports three types of quality 

values: Illumina, Solexa and Sanger. 

Figure 3: Diagram of Sickle 

SPAdes 

Due to the complexity of the natural environment and the diversity of biology, 

a large part of bacteria is difficult to clone and cultivate in the laboratory, 

making it impossible to sequence these bacteria using existing technologies. 

SPAdes is a useful open-source assembler program, it has several kinds of 

assembly pipeline toolkits. SPAdes can be used for single bacteria data and 

multiple bacteria data to generate easy-to-operate compilation bacteria data. 

SPAdes can run in a Linux environment and cooperate with the 

BayesHammer module to perform only error correction. After using SPAdes 

assembler program the system will create a corrected folder for each 

sequence. These folders will contain the error-corrected reads of each paired-

https://github.com/najoshi/sickle
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end sequence [15]. 

 

VSEARCH 

VSEARCH is an open source and free multi-threaded 64-bit assembly tool. 

VSEARCH is widely used in metagenomics, genomics and population 

genomics to process nucleotide sequence data [16]. The VSEARCH program 

adopts a complete dynamic programming strategy and uses multi-threaded 

parallel computing to improve the speed and accuracy of identifying similar 

nucleotide sequences. VSEARCH has a variety of methods for processing 

nucleotide sequences, such as precision-based search, paired alignment, 

arrangement supplementation, sorting sampling and normalization 

processing. The VSEARCH version used in this project was vsearch 

v2.10.4_linux_x86_64. 

 

PANDAseq 

The simplest method of sequencing is single-end sequencing, that is, there is 

only one sequencing primer, so that PCR can only be performed along the 

direction of this primer, and all reads can only be read in one direction. 

However, this sequencing method has some limitations. Taking Illumina as an 

example, the quality of sequencing will decrease with the progress of 

sequencing, so the reads will be less accurate in the future. The solution that 

researchers came up with was paired-end sequencing. For a 500 bp sequence, 

the downstream quality of single-end sequencing will be poor [17]. But by 

measuring 250 bp-300 bp from two directions and then splicing them 

together, the accuracy of sequencing can be greatly improved. 
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PANDseq can be used to do the paired-end sequencing. The linker sequence 

of paired-end sequencing is more complicated than single-end sequencing. 

First, in order to perform sequencing in two directions separately, two 

sequencing primers in different directions are required. Secondly, in order to 

distinguish the reads in the two directions, a small index sequence is added in 

front of one of the sequencing primers to mark. The length of each read in 

paired-end sequencing is more than half of the entire sequence, so it can be 

spliced according to the overlapping part of the two Reads. 
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3. Program Design 

This Snakemake workflow project referred to Dr. Umer's tutorial on VSEARCH 

workflow. Figure 4 showed the overview of the Snakemake pipeline. Before 

designing the program, configure the environment of Snakemake, and entered 

the command source activate snakemake to activate the working 

environment. Then entered the calling commands of various tools such as 

Sickle, VSEARCH and PANDAseq to ensure these tools could be used 

normally on the system. The next step was creating a Snakemake workflow 

configuration file by entering touch Snakefile. The path where this 

Snakefile located was the directory where the workflow program generated 

output files. Then created a folder to store the original input files under the 

current path. The folder created in this project was named samples, which was 

used to store 24 pairs sequences. Every pair of the sequence contained a 

forward read sequence and a reverse read sequence. 

Figure 4: Snakemake workflow overview 

First, the input and output of the program needed to be determined. According 
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to the requirements of the project, the input of the program was the nucleotide 

sequences in FASTQ format, and the output is the integrated OTU (operational 

taxonomic unit) FASTQ file and OTU table. In this project all the nucleotide 

sequences in FASTQ format were support by Dr.Umer’s cluster 

MScBioinf@becker.eng.gla.ac.uk [18]. Since Snakemake has an 

advantage that it can process multiple data in batches and user do not need to 

set parameters multiple times, wildcards can be used as input. The most basic 

and important file in microbial diversity analysis is OTU table. Almost all 

subsequent analyses, such as alpha diversity analysis, beta diversity analysis, 

difference analysis, etc., were based on OTU table. The OTU table contains the 

OTU types and sequence numbers of all samples. The information of all OTUs’ 

species annotation can also be found in OUT table.  

Figure 5: Wildcard and OTU table 

The FASTQ file is a kind of file based on text-based format which is used to 

record nucleotide sequences and corresponding quality scores. The FASTQ 

file usually consists of 4 lines of ASCII characters to indicate the information 

of the sequence, of which the fourth line records the quality score of the 

sequence. 

Since the input is a FASTQ file, each sequence has a specific quality score. The 

quality score can be considered as the correct rate of calling sequences during 

the sequencing process. The quality score is usually adapted form 0 to 40. 

mailto:MScBioinf@becker.eng.gla.ac.uk
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Table 1 indicated the mapping relationship between quality score and 

probability of incorrect base call [19].  

QUALITY 
SCORE 

PROBABILITY OF 
INCORRECT 
BASE CALL 

BASE CALL 
ACCURACY 

10 1 in 10 90% 

20 1 in 100 99% 

30 1 in 1000 99.9% 

40 1 in 10000 99.99% 

50 1 in 100000 99.999% 

60 1 in 1000000 99.9999% 

Table 1: mapping relationship between quality score and probability of incorrect 

base call. 

The following formula shows how to determine the quality value of the base: 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(𝑞𝑞) =  −10 log 10 

Equation: The formula of calculating quality score 

The quality of reads produced by most sequencing programs might drop at 

the 3'and 5'ends. If these sequences were not trimmed, the bases may be 

paired in the wrong place. This might lead to errors in downstream analysis. 

After inputting all the sequences as FASTQ file, quality trimming should be 
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performed by using sickle. A sickle command called sickle pe has been 

used in this program. This command could take both forward and reverse 

paired-end FASTQ files as input like “sample.fastq”, and then outputted 

two trimmed paired-end FASTQ files like “sample_trim.fastq” and a 

single read file like “sample_singlet.fastq”. This step was shown as 

figure 6. 

Figure 6: Sickle 

In this rule, the command sickle pe meant using paired-end trimming 

technology, -f meant the one input of this rule is forward reads FASTQ file, -

r meant the other input is reverse reads FASTQ file. -o and -p indicated the 

output of this rule were trimmed paired-end FASTQ file. -s represented the 

other output is singleton FASTQ file. -q represented the quality threshold and 

-l represented the length threshold.  

After quality trimming by sickle, the trimmed FASTQ files were transferred to 

SPAdes. The rule of SPAdes was shown as figure 7. SPAdes program 

cooperated with the BayesHammer module to perform only error correction 

and generate a folder named corrected for each sequence. This folder 
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contained the error corrected FASTQ files and unpaired FASTQ files. 

 
Figure 7: Rule SPAdes 

The next step was to use PANDAseq to compare all the sequences in the 

corrected folder and reconstruct an overlapping sequence. A schematic 

diagram of PANDseq reconstructing overlapping sequences was shown in 

Figure 8. First, it aligned forward reads and reverse reads, then identified the 

best overlap, and finally reconstructed the complete overlap sequence. This 

part could be design as a rule shown in figure 9. 

 

Figure 8: Diagram of PANDseq 
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Figure 9: Rule PANDseq 

Then users can integrate all the overlapped sequences to generate a 

multiplexed FASTQ file. Figure 10 shows the rule design of multiplexed. 

 
Figure 10: Rule Multiplexed 

This multiplexed FASTQ file contains all overlap sequences, which makes the 

sequence information easier to distinguish. For example, figure 11 shows a 

part of multiplexed file. In this example the sequence comes from the second 

sequence of “109-2_S109_L001_overlap.fasta”. 

Figure 11: Partial multiplexed sequence 

In order to make sure the downstream VSEARCH program can run normally, 
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multiplexed file needs to be linearized, dereplicated and sorted. Then use 

singleton to remove any sequence that the size is 1. These processes can be 

designed as figure 12. 

 
Figure 12: Rule VSEARCH 

The next step is to cluster the generated sequences at 97% by the VSEARCH 

program. Clustering at 97% is to facilitate the analysis of the similarity of 

sequences. Researchers usually set the same signs for various classifications 

(such as strains, groups, genus, and groups). The sequence is usually divided 

into different OTUs according to a similarity threshold of 97%, and each OTU 

is usually considered as coming from one microbial species [20]. If the 

similarity is less than 97%, it can be regarded as coming from different species, 

and if the resemblance is less than 95%, it can be regarded as a different genus. 

The program of this step can be designed as shown in figure 13. 
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Figure 13: Rule Cluster at 97% 

The next purpose was using denovo to get rid of chimera. Denovo assembly 

is a method of sequencing from the head of the genome. This method can be 

used for transcription without a reference genome [21]. Since upstream 

sequences may produce sequences with repetitive fragments when they 

overlap, devono is used to eliminate these chimeras. The sequences 

processed by denovo will get better used in the downstream identification 

process. Chimera referred to a sequence reconstructed from different 

sequence shown as figure 14. Then we could use a database supported by 

Dr.Umer to remove the low bacteria. 

 
Figure 14: The example of removing chimera 
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Figure 15: Rule denovo 

The final step was generating the OTU table. First, the user renamed all 

sequences to be prefixed with "OTU_" and gives an integer identifier. Then the 

users could use the OTUs as reference to search the original multiplexed 

sequences. Finally, the OTU table could be created in a tab-delimited format. 

 
Figure 16: Rule OTU table 

OTU table can be regarded as the most basic and important document in 
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microbial diversity analysis. OTU table is a reference table obtained after all 

OTUs are clustered and annotated. Calculate the distance measurement or 

similarity between two different sequences through a certain distance 

measurement method, and then compare with the OTU table to determine the 

biological characteristics of a specific OTU. 
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4. Discussion 

In order to visualize the process, users could use a command snakemake -

-dag | dot -Tsvg> dag.svg to output the entire process. Due to the 

excessive number of the input FASTQ files, only some sequences were 

intercepted and displayed as samples, as shown in Figure 17. It can be seen 

from this DAG diagram that the tasks in Snakemake workflow can be executed 

independently of each other. 

 
Figure 17: DAG for the example Snakemake Workflow 
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In order to check whether the sequences are processed correctly in each step, 

user can check the reads after each step to verify. By using bioawk -cfastx 

'END{print NR}' command, these reads could be counted. Table 2 

recorded the original reads of each sequence, trimmed reads after quality 

trimming, and overlapped reads after integration.  

 Original Reads Trimmed Reads Overlapped Reads 

109-2 5382 5368 5270 

110-2 3745 3731 3659 

113-2 1907 1904 1868 

114-2 7536 7518 7427 

115-2 5585 5564 5480 

117-2 206085 205750 203582 

119-2 13616 13561 13393 

1-1 21165 21085 20723 

120-2 9784 9744 9606 

126-2 1689 1675 1640 

128-2 27086 27023 26760 

130-2 13728 13217 13061 

13-1 32388 32323 31915 

132-2 13130 13100 13013 

20-1 55596 55493 54944 

27-1 23450 23410 22981 

32-1 4586 4566 4468 

38-1 10527 10499 10367 

45-1 5007 4992 4874 

51-1 35597 35463 35066 

56-1 33292 33199 32869 

62-1 7538 7331 7163 

68-1 17025 16986 16672 

7-1 1 1 1 

Table 2: The sequences reads of every step 

 

 

 



28 
 

 
Original Reads Trimmed Reads Overlap Reads 

109-2 1 0.997398737 0.979189892 

110-2 1 0.996261682 0.977036048 

113-2 1 0.998426848 0.97954903 

114-2 1 0.997611465 0.985536093 

115-2 1 0.996239928 0.981199642 

117-2 1 0.998374457 0.987854526 

119-2 1 0.995960635 0.983622209 

1-1 1 0.996220175 0.979116466 

120-2 1 0.995911693 0.981807032 

126-2 1 0.991711072 0.970988751 

128-2 1 0.997674075 0.987964262 

130-2 1 0.962776807 0.95141317 

13-1 1 0.997993084 0.985395826 

132-2 1 0.997715156 0.991089109 

20-1 1 0.998147349 0.988272538 

27-1 1 0.998294243 0.98 

32-1 1 0.995638901 0.974269516 

38-1 1 0.997340173 0.984800988 

45-1 1 0.997004194 0.973437188 

51-1 1 0.996235638 0.985083013 

56-1 1 0.997206536 0.987294245 

62-1 1 0.972539135 0.950252056 

68-1 1 0.997709251 0.979265786 

7-7 1 1 1 

Table 3: Normalized Reads 
 

Since the length of each sequence is different, in order to show the changes of 

reads in each step more clearly, users can standardize all reads. Table 3 is the 

value of each read after normalization processing. 
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Figure 18: Reads of analysis steps 

This graph showed how the reads of every analysis step changed. The x axis 

meaned steps of analysis and the y axis meaned normalized reads. It could be 

seen that most of all sequences remain over 97% reads after overlapped 

except “130-2” and “62-1”. 

As mentioned in the above section, the Snakemake Workflow finally 

generated 3 files: all.clustered.uc, all.otus.fasta and a OTU 

table. 

all.otus.fasta file contained all of the OTU sequences and a part of OTU 

sequences was shown as figure 19.  

109-2 110-2 113-2 114-2 115-2 117-2

119-2 1-1 120-2 126-2 128-2 130-2

13-1 132-2 20-1 27-1 32-1 38-1

45-1 51-1 56-1 62-1 68-1 7-7
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Figure 19: Partial OTU FASTQ file 

There were thousands of 16S sequences obtained by high-throughput 

sequencing. If each sequence is to be annotated with species, it would be a lot 

of work and time-consuming. Moreover, errors in the process of 16S 

amplification and sequencing would reduce the accuracy of the results. OTU 

was introduced into 16S sequencing for analysis. First, users could cluster 

similar sequences, divided them into a small number of taxa, and annotated 

species based on taxa. This not only simplified the workload and improved the 

analysis efficiency, but also removed some sequencing errors during the 

clustering process, which improves the accuracy of the analysis [22]. If users 

wanted to check whether the OTU sequence exists or correct, it could be 

matched on the website https://blast.ncbi.nlm.nih.gov/Blast.cgi. In order to 

prove the effectiveness of the program, OTU_1 was chosen as a sample for 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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matching. The matching result was shown as figure 20, it indicated the OTU_1 

was partial sequence of bifidobacterium faecale strain 2731 16S ribosomal 

RNA gene. 

 

Figure 20: OTU_1 matched result 

After clustering the OTUs and classifying species annotations, an OTU table 

could be generated [23]. This OTU_table generated by Snakemake workflow 

in the project contained the OTU type and sequence number of each sample. 

Due to the denovo method of clustering, OTU_table retained the maximum 

species sequences in the sample. If the amount of sequencing in a sample was 

larger (the sequencing technology cannot guarantee the absolute consistency 

of the sequencing amount of each sample), the number of sequences of various 

microorganisms in the sample would be more than other samples, and the 

amount of sequences for every OTU increased accordingly. Therefore, the 

sequence number of OTU could not be directly compared between samples. 
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Instead, it was necessary to convert the number of sequences into a ratio, 

which was the relative abundance (the amount of sequences divided by the 

total amount of sample). Then used this ratio for horizontal comparison. Due 

to the large size of OTU table file, the partial diagram was shown in Figure 21. 

 

Figure 21: Partial diagram of OTU table 
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5. Conclusion 

The main goal of this project is to build a pipeline for automated processing of 

metagenomics data. This goal could be accomplished by creating a Snakemake 

workflow program. By using this pipeline, users could automatically perform 

sequencing by inputting the specified file at the initial stage when analyzing 

metagenomics data. This design ensured the stability and repeatability of the 

program. 

The sequencing framework built on Snakemake reduces the requirements of 

the process for data format conversion and script writing, and could process 

transcript data simply, efficiently and conveniently. In this thesis, a workflow 

for metagenomics analysis was initially established. Using this workflow, a set 

of sequencing data analysis processes could be efficiently completed, and 

corresponding data and visualization results could be obtained. Based on this 

Snakemake workflow, sequencing analysis could be made easier to perform, 

which provided convenience for researchers with a non-computer 

background to perform transcriptome analysis. The construction of a 

sequencing data analysis workflow based on Snakemake could provide a 

reference for the construction of subsequent related analysis frameworks. 

The research of microbiome largely depends on the level of technology and 

methods of microbiome. With the development of microbiome, new 

algorithms and computing platforms are constantly being developed. 

However, different omics techniques have their own advantages and 

disadvantages. Therefore, in addition to developing new technologies and 

methods to cope with the continuously generated microbial data, it is also 

necessary to focus on the integration and complementarity of various 

methods to improve accuracy and complementarity. In terms of data analysis, 

microbiology research involves the acquisition of large amounts of data, 
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statistical analysis and modeling. Therefore, the development of 

bioinformatics is particularly important. Only by further improving analysis 

technology, developing appropriate algorithms and software, and organically 

combining analysis technology, data processing, multivariate statistical 

analysis and visualization, can we better promote microbiology research. 

Microbiology data analysis will be transformed into microbiology data science. 

The collection, storage, function mining and development and utilization of 

big data of microbiome are the core issues that restrict the development of 

microbiome. In terms of data collection, a standardized analysis process 

should be developed and implemented to ensure that the data is reproducible, 

robust, reproducible and universal. In the process of data analysis, relevant 

reference databases should be further enriched. In recent years, as the cost of 

sequencing has decreased, microbiome data has increased dramatically. But 

most of the data is used once. Therefore, how to fully excavate and use the 

existing massive sequencing data is another important challenge facing 

microbiology research. In the process of microbiome research and 

development, we should strongly support the development of microbiome 

data science, formulate effective data standards and achieve interoperability, 

and establish a microbiome data centre that compares data, analyses data, 

integrates data and achieves data standardization. 

In the process of building Snakemake workflow, improving the universality of 

related functions is a difficult problem, which required continuous debugging. 

In terms of workflow functions, this project had only carried out basic 

development, and some specific functions required more profound 

knowledge in other fields. This had led to the lack of richness of the workflow 

functions. I hope to enrich its functions in the later stage. On the other hand, 

the operability of workflow needed to be enhanced, and user steps should be 

optimized as much as possible. In terms of software selection for workflow, 
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this project had selected open source projects as much as possible, which was 

convenient to call at any time. In the follow-up work, I will continue to 

improve the pipeline content and parameter configuration to adapt to more 

different RNA sequences. 
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Appendices 

Source code: 

#This is adopted from  
#http://pedagogix-tagc.univ-
mrs.fr/courses/ABD/practical/snakemake/snake_intro.html 
 
#-----------------------------------------------## 
## A set of functions 
##-----------------------------------------------## 
import sys 
def message(mes): 
    sys.stderr.write("|--- " + mes + "\n") 
 
##---------------------------------------------------------------------
-----------------## 
## The list of samples to be processed 
##---------------------------------------------------------------------
-----------------## 
SAMPLES, = glob_wildcards("samples/{sample}_R1_001.fastq") 
NB_SAMPLES = len(SAMPLES) 
 
for smp in SAMPLES: 
    message("Sample " + smp + " will be processed") 
 
rule final: 
    input: 
         "all.otutab.txt" 
 
rule sickle: 
    input: 
        forward="samples/{sample}_R1_001.fastq", 
        reverse="samples/{sample}_R2_001.fastq" 
    output: 
        forward_trim="samples/{sample}_R1_001_trim.fastq", 
        reverse_trim="samples/{sample}_R2_001_trim.fastq", 
        singlet="samples/{sample}_R2_001_singlet.fastq" 
    shell: 
        """sickle pe -f {input.forward} \ 
        -r {input.reverse} \ 
        -t 'sanger' \ 
        -o {output.forward_trim} \ 
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        -p {output.reverse_trim} \ 
        -s {output.singlet} \ 
        -q 20 -l 10 
        """ 
 
rule spades: 
    input: 
        r1="samples/{sample}_R1_001_trim.fastq", 
        r2="samples/{sample}_R2_001_trim.fastq" 
    output: 
        o=directory("samples/{sample}_corrected") 
    shell: 
        """ 
        spades.py -1 {input.r1} -2 {input.r2} \ 
        --only-error-correction \ 
        --careful -o {output.o} 
        """ 
 
rule pandaseq: 
    input: 
        l=directory("samples/{sample}_corrected") 
    output: 
        o="samples/{sample}_overlap.fasta" 
    shell: 
        """ 
        pandaseq -f {input.l}/corrected/*_R1*fastq.gz \ 
        -r {input.l}/corrected/*_R2*fastq.gz > {output.o} 
        """ 
 
#Help for including shell commands in snakemake:  
#https://stackoverflow.com/questions/50965417/awk-command-fails-in-
snakemake-use-singularity 
 
rule merge_all: 
    input: 
        i=expand("samples/{smp}_overlap.fasta", smp=SAMPLES) 
    output: 
        m="multiplexed.fasta" 
    shell: 
        """ 
        (for i in $(echo {input.i}); \ 
        do awk -v k=$i '/^>/{{$0=">barcodelabel="k";\ 
        S"(++i)}}1' $i; done) > multiplexed.fasta 
        """ 
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rule linearize_fasta: 
    input: 
        i="multiplexed.fasta" 
    output: 
        o="multiplexed_linearized.fasta" 
    shell: 
        """ 
        awk 'NR==1 {{print ; next}} \ 
        {{printf /^>/ ? "\\n"$0"\\n" : $1}} \ 
        END {{print}}' {input.i} > {output.o} 
        """ 
 
rule dereplicate_sort_singleton: 
    input: 
        i="multiplexed_linearized.fasta" 
    output: 
        uc="multiplexed_linearized_dereplicated_vsearch_min2.uc", 
        fasta="multiplexed_linearized_dereplicated_vsearch_min2.fasta" 
    shell: 
        """ 
        vsearch --threads 20 \ 
        --derep_fulllength {input.i} --minuniquesize 2 \ 
        --sizein --sizeout --fasta_width 0 --uc {output.uc} \ 
        --output {output.fasta} 
        """ 
 
rule precluster_97: 
    input: 
        i="multiplexed_linearized_dereplicated_vsearch_min2.fasta" 
    output: 
        uc="all.preclustered.uc", 
        centroids="all.preclustered.fasta" 
    shell: 
        """ 
        vsearch  --cluster_size {input.i} \ 
        --threads 5 --id 0.97 --strand plus --sizein \ 
        --sizeout --fasta_width 0 --uc {output.uc} \ 
        --centroids {output.centroids} 
        """ 
 
rule denovo: 
    input: 
        i="all.preclustered.fasta" 
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    output: 
        o="all.denovo.nonchimeras.fasta" 
    shell: 
        """ 
        vsearch --uchime_denovo {input.i} \ 
        --sizein --sizeout --fasta_width 0 \ 
        --nonchimeras {output} 
        """ 
 
rule ref_chimera_detection: 
    input: 
        i="all.denovo.nonchimeras.fasta" 
    output: 
        o="all.ref.nonchimeras.fasta" 
    shell: 
        """vsearch --uchime_ref {input.i} \ 
        --threads 5 --db /home/opt/vsearch_GOLD_DATABASE/gold.fasta \ 
        --sizein --sizeout --fasta_width 0 --nonchimeras {output.o} 
        """ 
 
rule OTU_table: 
    input: 
        i="all.ref.nonchimeras.fasta" 
    output: 
        o1="all.clustered.uc", 
        o2="all.otus.fasta", 
        o3="all.otutab.txt" 
    shell: 
        """ 
        vsearch --cluster_size {input.i} \ 
        --threads 5 --id 0.97 --strand plus --sizein --sizeout \ 
        --fasta_width 0 --uc {output.o1} --relabel OTU_ \ 
        --centroids {output.o2} --otutabout {output.o3} 
        """ 
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