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ABSTRACT 

 

 Nitrifying bacteria, organisms that take part in the process of nitrification, are found in 

various environmental and engineering systems, such as wastewater treatment plants, soil, and 

freshwater supply. These nitrifying bacteria are mainly divided into ammonia-oxidizing 

bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB). 

AOB and AOA serve as ammonia oxidizers in the nitrification process whilst NOB are the 

nitrite oxidizers. 

 The aim of this research project is to analyse the genome sequences of nitrifying 

bacteria using whole genome analysis (pangenome analysis). The analysis is performed for the 

respective genera included in the nitrifying bacteria. The whole analysis process is 

implemented within a Linux environment on the Orion server hosted by Dr Umer Ijaz. While 

implementing the whole genome analysis technique, different software tools with respective 

functions are used. Prokka is used for genome annotation, Roary is used for generating pan-

genome and METABOLIC is used for metabolic analysis in genomes. The pan-genome plots 

and the presence and absence of the genes, which are output from the analysis, are studied, and 

investigated with pan-genome visualisation tools. The functional genes from the nitrogen cycle, 

particularly the nitrification process, are looked for in the genome sequences of the nitrifying 

bacteria. According to the presence and absence of the functional genes, the effectiveness and 

functional process of the nitrifying bacterial species are studied. 

 In my study, I observed that most of the AOB genomes contain amoA, amoB, amoC, 

nirK, norB and norC so they are functional only in ammonia oxidation, nitrite reduction to 

ammonia and nitric oxide reduction. Nitrosomonas europaea is considered the most efficient 

AOB due to the genes presenting in its genomes. Only a few functional genes involved in 

nitrification, nirK, nosZ, nrfA and nxrA are present in the AOA genomes. Therefore, I conclude 

that AOB have increased capacity as ammonia oxidizers than AOA, according to the genes 

existing in their genome sequencing. NOB species present several functional genes such as 

narG, narH, nirB, nirD, nirK, nxrA, nxrB, nrfH, nrfA and norC, so they are efficient in 

operating reduction of nitrates, nitrites, or nitrous oxide as well as nitrite oxidation. Nitrospira 

defluvii, Nitrobacter hamburgensis and Nitrobacter vulgaris are the most effective nitrite 

oxidizers among the NOB species.  

 

Key words: whole genome analysis, nitrifying bacteria, AOB, AOA, NOB 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

 

 Nitrogen is present widely in the environment and the nitrogen cycle provides the 

organisms in the ecosystem with extensive nutrients and energy. Conversely, environment 

modification has dramatically changed the nitrogen cycle, which has a great impact on soil, 

water and atmosphere, the fundamental resources in civil engineering. In the case of water, 

additional nitrogenous compounds released in water sources from wastewater consequences 

overstimulation of the growth of algae, lowering the concentration of dissolved oxygen and 

creating the environmental pollution. Therefore, the nutrient levels in wastewater treatment 

plants must be decreased by nitrification to prevent that pollution and maintain the ecosystem. 

Nitrification is an important two-step biological oxidation process in the nitrogen cycle as 

shown in figure 1. It has an essential role in governing the proportions of inorganic nitrogen 

species in various environments, not only wastewater treatment plants but also drinking water 

and aquatic engineering systems (Peng and Zhu, 2006). 

 

 
Figure 1: Nitrification (Stein, 2015) 

 

 Nitrifying bacteria are chemolithotrophic organisms that take part in the process of 

nitrification. They are found in a variety of environmental groups and are most abundant where 
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there is a high concentration of ammonia. Due to high ammonia concentration, nitrifying 

bacteria grow in bodies of water, with large inputs and outputs of sewage and wastewater, as 

well as freshwater (Belser, 1979). Types include the ammonia-oxidizing bacteria (AOB) and 

ammonia-oxidizing archaea (AOA), which perform the first stage of nitrification, converting 

ammonium (NH4) to nitrite (NO2), and the nitrite-oxidizing bacteria (NOB), which 

accomplishes the second stage, converting nitrite (NO2) to nitrate (NO3).  

 

1.2 Ammonia-oxidizing bacteria (AOB) 

 

 The ammonia-oxidizing bacteria (AOB) are microorganisms known as ammonia 

oxidizers that produce energy primarily by converting ammonia to nitrite. A limited quantity 

of energy is produced in this stage, leading to low microbe rates of growth, and making 

isolation challenging. Winogradsky identified the first AOB in the late nineteenth century 

Dworkin and Gutnick, 2012). Various microbiological groups cultivated and classified AOB 

from a range of settings in the mid-twentieth century, including marine waters, coastal systems, 

soils, and wastewater treatment systems. At ammonium concentrations that were usually much 

higher than those found in the environment, most of these isolations were carried out. DNA-

based technologies are used to define the isolated AOB in a phylogenetic way (Bollmann, 

French and Laanbroek, 2011). 

 The ammonia-oxidizing bacteria (AOB) are represented by the members of 

Betaproteobacteria and Gammaproteobacteria. The majority of AOB belongs to 

Betaproteobacteria, on the other hand, only a few marine AOB are members of the 

Gammaproteobacteria. AOB are classified into three categories, each with its own set of eco-

physiological characteristics and favoured environments. The first is the Nitrosomonas genus, 

which is divided into six lineages. The first lineage includes four species: Nitrosomonas 

europaea, Nitrosomonas eutropha, Nitrosomonas halophila, and Nitrosomonas mobilis, which 

are distinguished by their moderate salt necessity, negative oxygen diffusion, and can be 

separated from wastewater treatment plants, eutrophic freshwater, and activated sludge. The 

second Nitrosomonas lineage contains Nitrosomonas communis, which has no salt 

requirements, no water solubility and can be found in non-acidic soils. Additionally, the third 

lineage, which includes Nitrosomonas nitrosa species, has no salt need but does have positive 

water solubility and is often found in polluted freshwater resources. Furthermore, the fourth 

Nitrosomonas lineage, that includes two species: Nitrosomonas ureae and Nitrosomonas 
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oligotropha, with no salt necessity, positive water solubility and prefers anaerobic fresh water 

and organic salts as its favoured environments. Finally, the fifth and sixth lineages, which 

include Nitrosomonas marina, Nitrosomonas aestuarii, and Nitrosomonas cryotolerans, are 

both obligate halophilic, have positive water solubility, and are commonly found in marine 

environments (Soliman and Eldyasti, 2018). 

 Nitrosospira genera: Nitrosospira briensis, Nitrosospira lacus and Nitrosospira 

multiformis are among the second group of AOBs. They are mainly found in soils, rocks, and 

freshwater, and have the similar eco-physiological features of no salt requirement, positive or 

negative oxygen diffusion. The last category of AOBs includes Nitrosococcus genus:  

Nitrosococcus oceani, Nitrosococcus halophilus, Nitrosococcus wardiae and Nitrosococcus 

watsonii, all are obligate halophilic and found in marine environments, with the former having 

positive water solubility but the latter having negative water solubility (Soliman and Eldyasti, 

2018). 

 

1.3 Ammonia-oxidizing archaea (AOA) 

 

 The ammonia-oxidizing archaea (AOA) were found by the finding of ammonia-

oxidizing genes in the Archaea domain at the beginning of the twenty-first century, when 

previously the existence of amoA genes were confined to bacteria only, according to a 

microbiome investigation of soil and marine samples. Nitrosopumilus maritimus, which is the 

first AOA, was obtained from a marine environment in Seattle (Bollmann, French and 

Laanbroek, 2011). AOAs have been found to contribute considerably to the global nitrogen 

cycle as the major nitrifiers in the marine and different soils. Since they can oxidise ammonia 

at considerably lower substrate concentrations than AOBs, they are likely to prevail in 

oligotrophic environments. 

 The Thaumarchaeota (or) Thaumarchaea are the ammonia-oxidizing archaea (AOA), 

which are the most common prokaryotes in nature, with a wide range of habitats including 

aquatic, land and geothermal (Konneke et al., 2014). This distinct and deep-branching phylum 

within the Archaea, which was formerly categorised as “mesophilic Crenarchaeota”, was 

constituted from genetic testing. This new phylum contains not only all identified archaeal 

ammonia oxidizers, but also many groups of environmental genomes indicating bacteria with 

unknown metabolic processes, as observed from DNA sequencing of the 16S rRNA gene. 

Ecophysiological investigations of ammonia-oxidizing Thaumarchaeota indicate that they have 
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adapted to low ammonia levels and have an autotrophic or perhaps mixotrophic existence 

(Pester, Schleper and Wagner, 2011). Their high abundance in the ocean (up to 20% of all 

bacteria and archaea) and relatively low total ammonium substrate threshold focus on 

providing conclusive proof for their role as powerful ammonia oxidizers in the environment, 

in which their autotrophic (or potentially partially heterotrophic) lifestyle also contributes to 

primary production. Low Km values (an index of the affinity of enzyme) for ammonia oxidation 

in unfertilized soils and wastewater might indicate that some AOA ecotypes contribute to 

nitrogen removal, especially when ammonia is limited. Nonetheless, it's feasible that certain 

Thaumarchaeota utilise additional substrates for energy production, or that they can just 

convert to ammonia oxidation only under specific environmental conditions (Pester, Schleper 

and Wagner, 2011). Additionally, the Nitrosopumilus genus is a significant AOA consists of 

Nitrosopumilus maritimus, Nitrosopumilus adriaticus, Nitrosopumilus cobalaminigenes, 

Nitrosopumilus oxyclinae, Nitrosopumilus piranensis and Nitrosopumilus ureiphilus. 

 Despite extensive cultivation efforts and knowledge of complete genome sequences, 

the role of AOB and AOA in the environment remains restricted. It is still hard to differentiate 

between AOB and AOA as the bacteria responsible for ammonia oxidation in the environment. 

More research must be mandatory in the future for the microbiologists to examine the reactions 

of well-characterized pure and enrichment behaviours of AOA and AOB to environmental 

circumstances to fully understand the task of these nitrifying bacteria in their natural habitats 

(Bollmann, French and Laanbroek, 2011). 

 

1.4 Nitrite-oxidizing bacteria (NOB) 

 

 The nitrite-oxidizing bacteria (NOB), which are gram-negative bacteria, acquire their 

energy requirements by means of converting nitrite to nitrate. NOB are represented by the 

members of Alphaproteobacteria, Gammaproteobacteria and Deltaproteobacteria. Regarding 

their physiology, two main genera is considered for the NOB, which is the Nitrobacter genus 

and the Nitrospira genus. There are also other rare NOB genera, such as Nitrococcus and 

Nitrospina. Apart from the main source of nitrite, all members of the Nitrobacter genus, which 

include Nitrobacter hamburgensis, Nitrobacter vulgaris and Nitrobacter winogradskyi, may 

utilise organic energy sources. Nitrospira is a genus that involves both obligately halophilic 

and non-halophilic species. Nitrospira defluvii, Nitrospira japonica, Nitrospira lenta and 

Nitrospira moscoviensis are included in Nitrospira genus. Even though certain strains were 
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discovered from coastal areas or lakes, no obligatory salt necessity has been identified in 

Nitrobacter isolates. While members of the Nitrobacter genus appear to be free-living cells in 

their native habitats, Nitrospira has been found connected to flocs or biofilms on several 

occasions (Koops and Pommerening-Röser, 2001). 

 Usually, NOB are relatively easy to handle due to the fact that they can adapt to high 

substrate concentrations. The cultures of Nitrobacter and Nitrococcus reach turbidity visible to 

the naked eye, which is hard to figure out for another group, i.e., Nitrospira and Nitrospina. 

These groups of nitrifying bacteria grow solely under nitrite limitation. On top of that, as the 

members of the Nitrospira genus possess a high tendency for aggregation and growth, they are 

also accompanied by the formation of microcolonies which are noticeable as flocs (Spieck and 

Lipski, 2011). The grouping correlates with the fact that Nitrobacter consists of 

intracytoplasmic membranes which anchor the key catabolic enzyme, namely nitrite 

oxidoreductase (NXR), on the cytoplasmic side of the ICM. In accordance, a putative 

nitrite/nitrate antiport system is encoded in all sequenced Nitrobacter genomes. As in 

comparison, the NXR of the genomes Nitrospira and Nitrospina, which are more nitrite 

sensitive genera of NOB, which does not have ICM, can be found on the periplasmic side of 

the cytoplasmic membrane (Watson et al., 1989). With that being the case, the necessity of 

nitrite transport systems is not required. Consequently, the periplasmic orientation of NXR 

helps the latterly described genera to grow effectively in measures like lower concentrations of 

nitrite, comparatively better than Nitrobacter and Nitrococcus. In some situations, the 

inhibitory effects, caused by high nitrite concentrations on the growing process of those three 

genera, are sometimes a result of the external orientations. Due to the basis of the recently 

obtained genome sequence, the presence of two gene copies encoding a sub-unit of the NXR 

in candidate Nitrospira defluvii which are regulated could explain the high nitrite tolerance of 

the Nitrospira genus (Daims et al., 2010).  When NOB cultures start to consume nitrite, they 

must replenish on a regular basis for the purpose of maintaining a sufficient number of cells 

for further analyses. For some specific strains like Nitrospira marina, when organic compounds 

are introduced to inorganic nutrient media, biomass development rises even more. In the case 

of Nitrobacter, it has the ability for heterogenic trophic growth, when the majority of other 

NOB do not assimilate carbon from organic substances (Spieck and Lipski, 2011). 

 NOB thrive in a variety of environments (terrestrial, marine, acidic) and have a variety 

of existences (autotrophic, mixotrophic, and heterotrophic) therefore different media 

compositions are needed to equivalent their specific growth needs in the lab. Consumption of 

high nitrite concentrations can generate a significant number of cells from Nitrobacter and 
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Nitrococcus, but the accumulation of cells from Nitrospira and Nitrospina needs extended 

nutrition processes. Planktonic cells can be isolated using dilution series or plating procedures, 

however microcolony-forming strains, such as Nitrospira, are more difficult to isolate. 

Physiological experiments, such as determining the temperature or pH-optimum, is carried out 

using active laboratory cultures of NOB, although achieving reference values such as cell 

protein content or cell counts may be difficult due to formations of floc and poor cell density 

(Spieck and Lipski, 2011). 

 Another significant observation is that NOB can survive several years even though 

they're starved from energy and reductant. On the other hand, it takes weeks to months for 

NOB to reactivate their metabolic processes and resume growth. During the exponential phase 

of growth, some NOB grow relatively swiftly with minimal generation times of 8h for 

Nitrobacter winogradskyi or 12h for Nitrospira moscoviensis (Watson et al., 1989). 

 

1.5 Related research on nitrifying bacteria in construction and built environment 

 

 According to related resources, the studies relevant to the nitrifying bacteria, 

construction, and the built environment that they are found mainly include wastewater 

treatment plants, soil, freshwater as well as other engineering systems. Engineers and 

microbiologists have been studying the relationship between nitrification efficiency and the 

organisation of the nitrifying bacteria species for over a decade.  

 Numerous AOB 16S rRNA gene sequences are being documented throughout multiple 

configurations, allowing the development of rRNA-based methods for the characterisation of 

AOB species composition in wastewater treatment plants. Additionally, the whole genome 

sequencing of the Nitrosomonas europaea species, coding for a subunit of ammonia 

monooxygenase (amoA), provides a new way to identify the AOB (McTavish et al., 1993). 

The development of the Nitrosospira genus can be enhanced under certain circumstances 

(usually low pH and low temperature) and/or in industrial wastewater treatment facilities 

(Siripong and Rittmann, 2007). According to the research, just one or two AOB species are 

generally detected in a wastewater treatment plant, however other systems might have a greater 

diversity of AOB species. Fluorescence in situ hybridization (FISH) has also been used to 

accurately measure AOB in activated sludge flocs and biofilms. Although FISH is a useful 

technique, it might be difficult to see stained cells in materials with a lot of autofluorescence 

(e.g., industrial wastewater). Since accurate counts necessitate a 103–104 cells/ml minimum 
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concentration, FISH also provides a very high detection limit. The abundance of AOB has 

recently been measured utilising quantitative polymerase chain reaction (qPCR) to quantify 

16S rRNA or amoA gene copies (Bellucci and Curtis, 2011). This technique is a reliable, 

accurate, and quick quantitative technique that is a viable alternative to FISH, however, it is 

restricted by DNA extraction rate and PCR biases (Martin-Laurent et al., 2001).  

 In some situations, the members of the Nitrospira genus, which are retrieved from 

highly nitrogen loaded environments such as wastewater treatment plants or a marine biofilter, 

are observed with specifically high tolerance towards nitrite (Off et al., 2010). A new bacteria 

known as the Anammox (anaerobic ammonium oxidation) bacterium has been found in 

activated sludge, which is a prevalent biological operation for wastewater treatment (Whang, 

Chien, Yuan and Wu, 2009). 

 Pinto et al. (2016) present metagenomic evidence for the existence of a Nitrospira-like 

bacterium in a drinking water system that has the metabolic capacity to serve as an ammonia 

oxidizer. This genome was shown to be linked to Nitrospira-like NOB based on ribosomal 

proteins, 16S rRNA, and the nxrA gene. The presence of the whole ammonia oxidation gene 

family, including amoA and HAO, on a single structure inside this metagenome group, implies 

the existence of the previously identified comammox capability. The establishment of this 

structure inside the Nitrospira metagenome group is supported by studies focusing on coverage 

usage of two distinct genome binning methods, and nucleic acid and protein similarity studies. 

The amoA gene discovered in this metagenome group differs from traditional ammonia 

oxidizers and its clusters with the unique amoA gene of comammox Nitrospira. This discovery, 

which has a big impact on nitrogen conversions in both built and natural systems, implies that 

previously observed differences in the abundances of nitrifying bacteria might be explained by 

Nitrospira-like species' ability to fully oxidise ammonia. 

  Whang et al. (2009) stated that the physiological characteristics of nitrifying 

bacteria are reflected in the distribution of various nitrifying bacteria species in their 

surroundings. Ammonium and nitrite concentrations particularly are thought to be key 

determinants in the selection of different Nitrifying bacteria species. Species of the 

Nitrosospira genus and Nitrosomonas oligotropha species are the dominating AOB in low-

ammonium environments, but perhaps the Nitrosomonas europaea cluster is prevalent in high-

ammonium environments. Recent findings, supported by genetic analysis tools, show that 

Nitrosospira coexists alongside well-known Nitrosomonas and that Nitrospira is frequently the 

dominating NOB in activated sludge systems. 
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 A recirculating aquaculture system is developed based on the utilization of wastewater 

using nitrifying bacteria as a technique for decreasing nitrogenous wastes in the production 

system. The formation of hazardous nitrogenous compounds resulting from excess and 

excrement is the major problem in intensive aquaculture. The use of AOB in the biofiltration 

process allows these nitrogen metabolites to be removed (Khangembam, Sharma and 

Chakrabarti, 2017). The Shedd Aquarium's nitrifying filtration unit yielded Nitrosopumilus 

maritimus, a marine AOA strain (Könneke et al., 2005). The biofilters must function 

consistently and reliably for a recirculating system to be successful. 

 Rather than correlation studies, recent investigations of grown ammonia-oxidizers and 

analytical designs give a more reliable method for assessing niche specialisation. The concept 

of niche specialisation makes an implicit assumption regarding environmental adaptation and 

the resulting connection among physiological and environmental variables. Microbial 

cultures of AOB and AOA are notoriously difficult to obtain. According to the implemented 

biological studies in soil, the cultivation is successful on various AOB species and only four 

AOA species. Nitrososphaera viennensis is the only purified species (Tourna, M. et al., 2011). 

 If the isolates are indicative of their belonging phylogenetic groups, as well as 

ecologically relevant communities, cultures provide quantitative kinetics study and give solid 

evidence of function and connections between function and particular genes. Genome 

sequencing becomes easier if cultivation is implemented and Prosser proved that by sequencing 

the genomes of two soil AOB (Nitrosomonas europaea and Nitrosospira multiformis) and one 

soil AOA (Nitrosoarchaeum koreensis) (Prosser and Nicol, 2012). 

 Anammox applications, partial nitrification, and long-term reliability are all important 

factors in minimizing energy consumption in conventional wastewater. This is especially 

important for household wastewater with a low COD ratio. Most quick start-up PN methods 

now have a negative impact on NOB and only a minor negative impact on AOB. "Selective 

elimination" refers to the technique that results in variations in particular growth rates between 

the different nitrifying bacteria groups (Li et al., 2021). 

 In most investigations, it is therefore unavoidable to lower both AOB and NOB 

apparent growth rates, however, this would result in more significant reductions in NOB 

growth rates (Larriba et al., 2020). The method of "simultaneous elimination and selective 

enrichment" for achieving or recovering PN has been developed. According to the study, 

establishing the optimal FNA levels is difficult, and treatment with a moderate FNA level 

inhibited nitrifying bacteria. Then, in order to attain PN, higher DO levels and a longer aeration 

time was employed (Wang et al., 2020). 
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 Another research by Liu et al. (2017) states that during the first 7 days of aerobic 

deprivation, nitrifying bacteria gradually degraded, consequently, a slower selective recovery 

potential of NOB than AOB, allowing PN to recover more quickly. The bioactivities of 

heterotrophic organisms (OHOs) were reduced at the same time in the aerobic phase when DO 

was limited (Li et al., 2021). At the early aerobic phase, OHOs require a surge of oxygen, while 

concurrently inhibiting nitrifying bacteria. This restriction, however, is only temporary and can 

be removed. OHOs are hindered in the absence of COD, resulting in flourishing nitrification 

with enough oxygen (Li et al., 2017). 

 In a study in China, related to nitrifying bacteria in wastewater treatment, a 285-day run 

of a lab-scale SBR filled with residential wastewater was used to examine nitrogen removal 

and nitrite formation, as well as the potential of attaining PN quickly by adjusting aeration 

time. To further validate the primary processes for attaining PN, the abundance and distribution 

of nitrifying bacteria were evaluated. The alterations of core bacteria in the genomic structure 

were evaluated using moderate genome sequencing analysis, and the potential in the residential 

wastewater anammox treatment process was investigated (Li et al., 2021). 

 

1.6 Aims and Objectives 

 

 The main aim of the study is to investigate the genomes and the presence of genes in 

nitrifying bacteria using whole genome analysis. The analysis will be accomplished for each 

genus of the nitrifying bacteria individually. From determining the presence of the genes in the 

nitrifying bacteria, the genes in the species affecting the nitrification process that occurred in 

engineering systems such as soil, wastewater and freshwater will be indicated. 

 

 The objectives of this study are as follows: 

§ To annotate the genomes using Prokka.  

§ To conduct pangenome analysis using Roary for 

a. AOB: Nitrosomonas genus, Nitrosospira genus, Nitrosococcus genus, 

b. AOA: Thaumarchaea, Nitrosopumilus genus, 

c.  NOB: Nitrobacter genus, Nitrospira genus. 

§ To generate metabolic profiles and biogeochemical cycling diagrams using 

METABOLIC.  

§ To compare the functional capabilities within each genus. 
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CHAPTER 2 

METHODOLOGY 

 

 The whole genome analysis, which is also called whole genome sequencing (WGS) is 

a technique being used to determine the complete deoxyribonucleic acid (DNA) sequence of 

an organism’s genome at once. This requires sequencing all the individual's chromosomal 

DNA, as well as mitochondrial DNA. Full genome sequencing, complete genome sequencing, 

and entire genome sequencing are all approaches for sequencing the entire genome. WGS has 

mostly been utilised for scientific purposes. WGS data will be an essential tool to assist medical 

intervention in the future of new treatments. The method of single nucleotide polymorphisms 

(SNP) level gene sequencing is also used to locate operational variations from prospective 

studies and enhance the knowledge accessible to evolutionary biologists and environmental 

biotechnologists, perhaps laying the groundwork for bioinformatics studies. WGS is not the 

same as DNA profiling, since it identifies not only the possibility that genetic material comes 

from a specific individual or group but also the supplementary information of genetic 

connections. Furthermore, thousands of genomes have been wholly or partially sequenced in 

the present (Kamran, 2018). 

 The research and analysis procedure of this project is carried out by means of the whole 

genome sequencing technique. The following methodology is applied for this project. 

1) The determination of the names of the prokaryotes (bacteria and archaea) from the 

literature review of related studies concerning the nitrifying bacteria 

2) The acquisition of the genomes from the selected species of the genus for the analysis 

3) The annotation process of the downloaded genomes with the use of relevant software 

and database 

4) The analysis of the annotated genomes to obtain pan-genome datasets using the 

appropriate pipeline 

5) The analysis of the metabolic competencies of the genomes utilizing the related 

software 

6) The investigation and discussion of the results obtained from the whole genome 

analysis workflow 

 All related workflows and tutorials were provided by Dr Umer Zeeshan Ijaz 

(http://userweb.eng.gla.ac.uk/umer.ijaz/), at the University of Glasgow.  
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 The whole genome analysis workflow was carried out on the Orion Cluster, which is 

a bioinformatics high-performance computing facility hosted and developed by Dr Umer’s 

Environmental’Omics lab. Orion is a bioinformatics cluster with over 500 tools and workflows 

for metagenomics innovations including those developed by Dr Umer’s lab and is specially 

designed for projects with big data analytics. (http://userweb.eng.gla.ac.uk/umer.ijaz/#orion) 

To be able to get access to the Orion Cluster, the ‘terminal’ program from MacOS is used as 

the SSH client.  

 

2.1 Initial preparation on genomes 

  

 The genomes needed for the research were downloaded by each species from the NCBI 

database, which is maintained by the National Centre for Biotechnology Information. The 

remote cluster was used to store all the downloaded data. During this procedure, relevant 

genomic data files including details of gene sequences, which were retrieved from a database, 

were stored in directories corresponding to their species names under their genus names. 

 Even though all the genomes of the species under the entire AOB, NOB and AOA 

groups were downloaded initially, before doing the continuing analysis, the genus which only 

has one species, and one genome were eliminated due to the requirement of the research. The 

following table 1 is the selected species under the corresponding genus with the number of 

genomes.  

 

Table 1: Selected species of the nitrifying bacteria 

Group Genus 
Total 

genomes 
Species 

Number of 

genomes 

AOB Nitrosomonas 43 

Nitrosomonas europaea 5 

Nitrosomonas eutropha 8 

Nitrosomonas halophila 1 

Nitrosomonas mobilis 1 

Nitrosomonas communis 4 

Nitrosomonas nitrosa 5 

Nitrosomonas oligotropha 5 

Nitrosomonas ureae 8 



 12 

Nitrosomonas marina 2 

Nitrosomonas aestuarii 2 

Nitrosomonas cryotolerans 2 

Nitrosospira 18 

Nitrosospira briensis 3 

Nitrosospira lacus 1 

Nitrosospira multiformis 14 

Nitrosococcus 8 

Nitrosococcus halophilus 1 

Nitrosococcus oceani 5 

Nitrosococcus wardiae 1 

Nitrosococcus watsonii 1 

NOB 

Nitrobacter 4 

Nitrobacter hamburgensis 1 

Nitrobacter vulgaris 1 

Nitrobacter winogradskyi 2 

Nitrospira 10 

Nitrospira defluvii 7 

Nitrospira japonica 1 

Nitrospira lenta 1 

Nitrospira moscoviensis 1 

AOA 

Thaumarchaea 116 

Nitrososphaeria archaeon 46 

Nitrososphaerales archaeon 11 

Nitrososphaeraceae archaeon 13 

Nitrosopumilaceae archaeon 46 

Nitrosopumilus 6 

Nitrosopumilus maritimus 1 

Nitrosopumilus adriaticus 1 

Nitrosopumilus cobalaminigenes 1 

Nitrosopumilus oxyclinae 1 

Nitrosopumilus piranensis 1 

Nitrosopumilus ureiphilus 1 

 

Note: Thaumarchaea is not a genus, it is a phylum and classifications under Thaumarchaea 

are archaeon. 
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2.2 Primary analysis of genomes 

 

 Following the downloading and systematic categorization process of genomic data, as 

described above, three software programmes were used to complete the genome analysis 

process: the Prokka workflow, the Roary workflow, and the METABOLIC workflow. The 

detailed command lines that are used for the workflows of Prokka, Roary and METABOLIC 

are shown in the APPENDIX section. 

 

2.2.1 Prokka workflow 

 

 Prokka is a software tool used for rapid prokaryotic genome annotation, the process of 

determining characteristics of interest in a set of genomic DNA sequences and identifying those 

with relevant information. This programme allows users to annotate the genomes of bacteria, 

archaea, and viruses efficiently in a short period of time, then generate standards-compliant 

output files containing sequences and annotations (Seemann, 2014). 

 In this Prokka workflow, the downloaded genomic FASTA files with FNA extensions 

are used as input files and twelve separate files are produced for each genome as output files, 

which include a master annotation in GFF3 format, standard Genbank file in GBK format and 

multiple FASTA files. 

 

2.2.2 Roary workflow 

 

 Roary is a high-speed pan-genome pipeline, that generates the pan-genome using 

annotated assemblies in GFF3 format. It can implement the analysis of data statistics with 

thousands of samples, something that is practically impossible with conventional approaches, 

without degrading the quality of the results, by using only a typical computer. Roary can 

perform the analysis containing 128 samples in less than an hour with 1 GB of RAM and a 

single CPU, while other techniques would require weeks and hundreds of GB of RAM to 

complete that analysis (Page et al., 2015). 

 The GFF3 files obtained from the Prokka workflow was used as input files for this 

analysis. The GFF3 files of an entire genus were put into a new directory since Roary had to 

be executed for each genus separately. A spreadsheet list that shows the presence and absence 

of the genes in the genomes is obtained as the main output for further results visualisations. 



 14 

The output files include three figures as Roary plots. The first plot shows a tree that is compared 

to a matrix with the presence and absence of core and accessory genes. The second one is a 

graph illustrating the proportion of genes vs the number of genomes. Finally, a pie chart 

depicting the distribution of genes and the number of isolates in which they are found is 

included.  

 

2.2.3 METABOLIC workflow 

 

 METABOLIC (Metabolic and Biogeochemistry Analyses in Microbes) is a scalable 

programme that analyses genomes at the level of individual organisms and/or microbial groups 

to enhance microbial ecology and biogeochemistry. Annotation of microbial genomes, 

sequence identification of biochemically verified invariant protein molecules, determination of 

metabolism indicators, metabolic pathway studies, and contribution to specific biogeochemical 

alterations and cycles are all part of the genome-scale procedure. The input genomes for 

METABOLIC are normally isolates, metagenome-assembled genomes, or single-cell 

genomes. The community-scale process adds to genetic code analytics by calculating microbial 

community contributions to biogeochemical cycles, determining genome abundance in the 

group, and identifying possible microbial metabolic handoffs and exchange. METABOLIC 

perform better than any other competing software and servers in terms of accuracy, resilience, 

and consistency, according to the evaluations. A variety of metagenomic datasets from the 

terrestrial subsurface, marine subsurface, soil, wastewater plants, freshwater lakes, and even 

human gut are capable to be analysed on the METABOLIC workflow. METABOLIC is 

available in two versions: METABOLIC-G and METABOLIC-C. METABOLIC-G.pl does 

not require the input of sequencing data to generate metabolic profiles and biogeochemical 

cycle diagrams for input genomes. METABOLIC-C.pl produces the same results as 

METABOLIC-G.pl, but it also creates assistance in terms of metabolism since it accepts 

metagenomic read files and figures out how much of the genome is covered (Zhou et al., 2019). 

 METABOLIC-G.pl is used for the workflow of this project. Since the input genomic 

data for the METABOLIC workflow must be in FASTA file format, the format of FNA files 

is transformed to FASTA file format. The output results include the METABOLIC result in 

the form of spreadsheets for metabolism as well as a range of visualisations such as 

biogeochemical cycle potential, presentation of consecutive metabolic transformations, and 

nutrient cycling diagrams. 
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2.3 Visualisation of the results 

 

 The output data can be interactively visualised using additional software tools. For this 

whole genome analysis project, the results are visualised by running Coinfinder on Orion 

Cluster and producing pan-genome plots via RStudio. 

 

2.3.1 Coinfinder 

 

 Coinfinder is a software tool used to determine the association or dissociation condition 

of the groups of genes (gene families) in pan-genomes from one another more frequently than 

would be anticipated by coincidental (Whelan, Rusilowicz and McInerney, 2020). Coinfinder 

is implemented with Python programming language on Orion Cluster provided by Dr Umer. 

The Roary output data: gene_presence_absence.csv and core-gps_fasttree.newick are used as 

input files together with the Coinfinder manuscript, which is downloaded using the git clone 

command into the respective directory on the cluster. The output data generated from 

Coinfinder are coincidence heatmap and genes network. 

 

2.3.2 RStudio 

 

 Another result visualisation process was operated on the RStudio platform, an 

integrated development environment for the R programming language that includes a terminal, 

a syntax-highlighting editor and the features for visualising plots, mapping, troubleshooting 

and workspace management (RStudio | Open source & professional software for data science 

teams, 2021). 

 The pan-genome plots are produced via RStudio using R packages: vegan and ggplot2. 

Vegan is a package for environmental scientists, which includes tools for diversity analysis, 

coordination techniques, and dissimilarity analysis (Oksanen, 2020). ggplot2 is a free data 

visualisation tool for the R statistical programming language based on ‘the Grammar of 

Graphics’ (Wickham and Grolemund, 2010). It may be used to declare a graphic's source data 

frame and to establish a set of plot aesthetics that will be shared by all successive layers. 

 The detailed command lines that are used for the workflows of Coinfinder and RStudio 

are shown in the APPENDIX section. 
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2.4 Description of the functional genes in the results 

 

 While focusing on the presence and absence of the genes in the genomes or concerning 

the chemical reactions in the genomes, there are important genes to be emphasised. Since all 

the analyses of this research are about nitrifying bacteria, the genes that are focused on will be 

the genes that are functional in nitrogen cycling. The important genes to look for in the results 

are shown in table 2 with their corresponding functions and abbreviations. 

 

Table 2: Functional genes in the nitrogen cycle 

Genes Gene Names Functions 

amoA, amoB, amoC ammonia monooxygenase Ammonia oxidation 

anfD, anfK, anfG nitrogenase iron-iron protein 

Nitrogen fixation 
nifD, nifK nitrogenase molybdenum-iron protein 

vnfD, vnfK, vnfG nitrogenase vanadium-iron protein 

nifH nitrogenase iron protein 

nxrA, nxrB nitrite oxidoreductase Nitrite oxidation 

napA, napB periplasmic nitrate reductase 
Nitrate reduction 

narG, narH nitrite oxidoreductase 

nrfH, nrfA, nrfD cytochrome c nitrite reductase Nitrite reduction to 

Ammonia nirB, nirD, nirK nitrite reductase 

nirS hydroxylamine reductase Nitrite reduction 

norB, norC nitric oxide reductase Nitric oxide reduction 

nosD, nosZ nitrous-oxide reductase Nitrous oxide reduction 

 

Note: The alphabets at the end of the gene abbreviations belong to the sub-unit of that gene, 

e.g., subunit A, subunit B, alpha subunit, beta subunit, etc. 
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CHAPTER 3 

RESULTS 

 

 The findings of this project's whole genome analysis are primarily split into three parts 

for AOB, NOB and AOA respectively. In each part, the results are described for an individual 

genus using visualisations such as figures and charts. 

 The presence and absence of genes in the genomes are discussed widely in this chapter. 

For each genus, a summary of statistics such as the number of total genes found in the whole 

genus, the core genes which are found in all the genomes in the genus, the soft-core genes 

which are found in almost every genome in the genus, is presented. The metabolic chemical 

reactions discovered in the genomes are also discussed with relevant justifications. 

 

3.1 Results of ammonia-oxidizing bacteria (AOB) 

 

 While discussing the outcomes obtained from whole genome analysis in AOB, results 

for each genus is presented initially. Then, the overall genomes for AOB are discussed with 

the use of a pan-genome plot. 

 

3.1.1 Results of Nitrosomonas genus 

 

 The whole genome analysis of the Nitrosomonas genus includes 43 genomes in total. 

The statistical result of genes from the Roary workflow is shown in table 3. 

 

Table 3: Summary statistics of genes for Nitrosomonas genus 

Core genes (99% £ strains £ 100%) 1 

Soft-core genes (95% £ strains < 99%) 3 

Shell genes (15% £ strains < 95%) 2328 

Cloud genes (0% £ strains < 15%) 51231 

Total genes (0% £ strains £ 100%) 53563 
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 The only core gene that is found in all Nitrosomonas genus is atpH, an ATP sub-unit. 

Soft-core genes are a cold shock-like protein named cspD, the ribosomal proteins S10 and S12, 

rpsJ and rspL respectively. 

 

 
Figure 2: Pan-genome frequency and pan-genome pie of Nitrosomonas genus 

 The Roary plots are shown in figures 2 and 3 describing the pan-genome frequency, 

pan-genome pie, and pan-genome matrix respectively. 

 

 
Figure 3: Pan-genome matrix of Nitrosomonas genus 

 From the METABOLIC results, amoA, amoB, amoC, nirK, norB, norC are the only 

significant genes that are present in the Nitrosomonas genus. So, only ammonia oxidation, 

nitrite reduction to ammonia and nitric oxide reduction occurs in this genus. The genomes of 

Nitrosomonas europaea, Nitrosomonas cryotolerans and Nitrosomonas mobilis have all the 

above genes so they are considered as the best ammonia oxidizers in this genus. Nitrosomonas 

marina and Nitrosomonas aestuarii absent amoC gene in their genomic sequence. 
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Nitrosomonas eutropha has alternative gene absence in their genomes, whereas most 

Nitrosomonas ureae absent nor genes. Nitrosomonas nitrosa is considered to have the least 

performance in nitrification since they are missing almost every gene in the nitrogen cycle and 

two of its genomes present no genes from that cycle. 

 

3.1.2 Results of Nitrosospira genus 

 

 In total, 18 genomes from the Nitrosospira genus have been analysed. The genes result 

from the Roary workflow is shown in table 4. 

 

Table 4: Summary statistics of genes for Nitrosospira genus 

Core genes (99% £ strains £ 100%) 31 

Soft-core genes (95% £ strains < 99%) 0 

Shell genes (15% £ strains < 95%) 4133 

Cloud genes (0% £ strains < 15%) 19734 

Total genes (0% £ strains £ 100%) 23898 

 

 The core genes commonly presented in the Nitrosospira genus include subunits of 

ribosomal proteins, ATP synthases and proteases, NADH-quinone oxidoreductases and other 

genes. Anaerobic nitric oxide reductase is a significant gene that is found in almost every 

genome.  

 
Figure 4: Pan-genome frequency and pan-genome pie of Nitrosospira genus 



 20 

 Figures 4 and 5 illustrate the pan-genome frequency, pan-genome pie, and pan-genome 

matrix, which are output plots from Roary. 

 

 
Figure 5: Pan-genome matrix of Nitrosospira genus 

 The presence of important genes in Nitrosospira multiformis is nearly the same as with 

Nitrosomonas genus since all subunits of amo, nirK, norB and norC are present in all of the 

genomes. The genomes of Nitrosospira briensis and Nitrosospira lacus present all the amo 

subunits and nirK as other Nitrosospira genomes but nitric oxide reductase (nor) genes are 

absent in them. All the remaining genes from the nitrogen cycle are absent in the Nitrosospira 

genus. 

 

3.1.3 Results of Nitrosococcus genus 

 

 The whole genome analysis of the Nitrosococcus genus includes 8 genomes. The 

following table 5 is the statistical outcome of genes from the Roary process. 

 

Table 5: Summary statistics of genes for Nitrosococcus genus 

Core genes (99% £ strains £ 100%) 26 

Soft-core genes (95% £ strains < 99%) 0 

Shell genes (15% £ strains < 95%) 4245 

Cloud genes (0% £ strains < 15%) 9054 

Total genes (0% £ strains £ 100%) 13325 
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 Generally, the core genes presented in the Nitrosococcus genus are like those in the 

Nitrosospira genus since they are also subunits of ribosomal proteins, ATP synthases and 

proteases and NADH-quinone oxidoreductases. 

 

 
Figure 6: Pan-genome frequency and pan-genome pie of Nitrosococcus genus 

 Figures 6 and 7 represent the pan-genome frequency, pan-genome pie, and pan-genome 

matrix, correspondingly, using Roary plots. 

 

 
Figure 7: Pan-genome matrix of Nitrosococcus genus 

 As common in other AOB species, amoA, amoB, amoC, nirK, norB and norC are the 

significant genes found and other remaining genes from the nitrogen cycle are absent in the 

Nitrosococcus genus. However, amoA and amoC do not exist in all the genomes of 

Nitrosococcus halophilus, Nitrosococcus wardiae and some genomes of Nitrosococcus oceani. 
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The genomic sequence of Nitrosococcus watsonii presents all the above genes and additionally, 

it also presents nitrite reductase, nrfA. 

 

3.1.4 Pan-genome plot of AOB  

 

 The differentiation of AOB genomes depending on the genes’ presence and absence is 

plotted using the RStudio. As shown in figure 8, the AOB genomes have similar sequences 

since they all are at the same side of the plot. 

 

 
Figure 8: Pan-genome plot of AOB 
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 Moreover, Nitrosospira genomes and Nitrococcus genomes are more similar in their 

genomic sequences. GCA 003051045, a genome of Nitrosomonas nitrosa is the only genome 

that is a lot more alternative from the other AOB genomes. 

 

3.2 Results of ammonia-oxidizing archaea (AOA) 

 

 In the genome analysis of AOA, instead of analysing each archaeon including in the 

AOA of nitrifying bacteria, the whole phylum Thaumarchaea is considered as a single analysis. 

However, the Nitrosopumilus genus, the most significant genus in Thaumarchaeota, has been 

analysed separately. 

 

3.2.1 Results of Thaumarchaea 

 

 The whole genome analysis of the Thaumarchaea phylum includes 116 genomes in 

total. The statistical result of genes from the Roary workflow is presented in table 6. 

 

Table 6: Summary statistics of genes for Thaumarchaea 

Core genes (99% £ strains £ 100%) 0 

Soft-core genes (95% £ strains < 99%) 0 

Shell genes (15% £ strains < 95%) 25 

Cloud genes (0% £ strains < 15%) 101709 

Total genes (0% £ strains £ 100%) 101734 

 

 The significance of this phylum Thaumarchaea is that there are neither core genes nor 

soft-core genes. Therefore, the shell genes of the genomes of this phylum are investigated and 

most of them are hypothetical proteins, ribosomal proteins, and DNA-directed RNA 

polymerase subunits. 
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Figure 9: Pan-genome frequency and pan-genome pie of Thaumarchaea 

 The Roary plots are shown in figures 9 and 10 describing the pan-genome frequency, 

pan-genome pie, and pan-genome matrix respectively. 

 

 
Figure 10: Pan-genome matrix of Thaumarchaea 

 Only a few genes from the nitrogen cycle, nirK, nosZ and nrfA are present in the 

genomes of Nitrososphaeria archaeon. Only one genome from Nitrososphaerales archaeon 

presents nitrite oxidoreductase subunit (nxrA), a gene from the nitrogen cycle. 

Nitrososphaeraceae archaeon and Nitrosopumilaceae archaeon present none of the genes 

from the nitrogen cycle. Generally, Thaumarchaea genomes do not involve many nitrogen 

cycling processes in their metabolism. Apart from that, they have some chemical reactions such 

as amino acid utilization, metabolism of organic sulfur and sulfur oxidation. 
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3.2.2 Results of Nitrosopumilus genus 

  

 Totally, the whole genome analysis of  the Nitrosopumilus genus includes 6 genomes. 

The following table 7 is the statistical outcome of genes from the Roary process.  

 

Table 7: Summary statistics of Nitrosopumilus genus 

Core genes (99% £ strains £ 100%) 63 

Soft-core genes (95% £ strains < 99%) 0 

Shell genes (15% £ strains < 95%) 11175 

Cloud genes (0% £ strains < 15%) 0 

Total genes (0% £ strains £ 100%) 11238 

 

 The core genes that are mostly found in the Nitrosopumilus genus are hypothetical 

protein groups. Other core genes existed in Nitrosopumilus genomes are DNA-directed RNA 

polymerase subunits, NADH quinone oxidoreductase subunits, hydroxy pyruvate reductases, 

cold shock-like proteins, ribonucleases etc. The following figures 11 and 12 demonstrate the 

pan-genome frequency, pan-genome pie, and pan-genome matrix, correspondingly, using 

Roary plots. 

 

 
Figure 11: Pan-genome frequency and pan-genome pie of Nitrosopumilus genus 
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 Similar to most of the Thaumarchaea genomes, every genome in the Nitrosopumilus 

genus lacks nitrogen cycling genes in their genomic sequences. 

 

 
Figure 12: Pan-genome matrix of Nitrosopumilus genus 

 

3.2.3 Pan-genome plot of AOA  

 

 The pan-genome plot shows the variation between AOA genomes upon the genes’ 

presence and absence. Nitrosopumilus genomes have similar genomic sequences to the 

Nitrosopumilaceae genomes according to figure 13. Nitrososphaeria genomes are considered 

to have the most common sequences since they are spread all over the plot like other different 

archaeon genomes. Most of the Nitrososphaerales genomes are comparable to the 

Nitrososphaeria genomes. Nitrososphaeraceae genomes and Nitrosopumilaceae genomes are 

quite similar in their genomic sequences according to the pan-genome plot. 
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Figure 13: Pan-genome plot of AOA 

 

3.3 Results of nitrite-oxidizing bacteria (NOB) 

 

 The whole genome analysis results for each genus of NOB are discussed with respective 

visualisations. After that, the evaluation of overall genome plot for NOB is developed. 
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3.3.1 Results of Nitrobacter genus 

  

 In total, 4 genomes from the Nitrobacter genus have been analysed. The genes result 

from the Roary workflow is shown in table 8. 

 

Table 8: Summary statistics of genes for Nitrobacter genus 

Core genes (99% £ strains £ 100%) 217 

Soft-core genes (95% £ strains < 99%) 0 

Shell genes (15% £ strains < 95%) 12907 

Cloud genes (0% £ strains < 15%) 0 

Total genes (0% £ strains £ 100%) 13124 

 

 From the statistics, the fact that the Nitrobacter genus has a large number of core genes 

compared to other nitrifying bacteria genera is observed. 

 

 
Figure 14: Pan-genome frequency and pan-genome pie of Nitrobacter genus 

 The above figure 14 illustrates the pan-genome frequency and pan-genome pie, whereas 

the following figure 15 shows the pan-genome matrix, which are output plots from Roary. 
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Figure 15: Pan-genome matrix of Nitrobacter genus 

 Since the Nitrobacter genus contains the species which are nitrite oxidizers, none of the 

amo genes will be present in its genomes. The genomes of Nitrobacter hamburgensis and 

Nitrobacter vulgaris involve narG, narH, nirB, nirD and nirK genes in their metabolism. All 

the genes mentioned above except narG are present in the genomes of Nitrobacter 

winogradskyi. Therefore, these genomes have efficiency in reducing nitrates or nitrites. 

 

3.3.2 Results of Nitrospira genus 

 

 The whole genome analysis of the Nitrospira genus includes 10 genomes in total. The 

statistical result of genes from the Roary workflow is shown in table 9. 

 

Table 9: Summary statistics of genes for Nitrospira genus 

Core genes (99% £ strains £ 100%) 0 

Soft-core genes (95% £ strains < 99%) 0 

Shell genes (15% £ strains < 95%) 2100 

Cloud genes (0% £ strains < 15%) 28055 

Total genes (0% £ strains £ 100%) 30155 

 

 In the Nitrospira genus, there are no core genes and soft-core genes existed in the 

genomes. The genes that are present in most genomes of this genus are transcriptional 

regulatory protein, an ATP synthase subunit, an oxalate oxidoreductase subunit hypothetical 

protein and a 30S ribosomal protein. 
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Figure 16: Pan-genome frequency and pan-genome pie of Nitrospira genus 

 The Roary plots are shown in figures 16 and 17 describing the pan-genome frequency, 

pan-genome pie, and pan-genome matrix respectively. 

 

 
Figure 17: Pan-genome matrix of Nitrospira genus 

 From the METABOLIC results, Nitrospira lenta and Nitrospira japonica contain the 

nxrA, nxrB, nirD and nirK genes from the nitrogen cycle. Nitrospira moscoviensis present 

nxrA, nxrB, nrfH and nirK genes in its genome. All the genomes of Nitrospira defluvii have 

the genes nxrA, nxrB, nirD and nirK in their sequence where one genome of Nitrospira defluvii 

presents additional nrfH, nrfA and norC. So, these Nitrospira genomes have chemical reactions 

for nitrite oxidation, nitrite reduction and nitrous oxide reduction in their metabolism. 
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3.3.3 Pan-genome plot of NOB 

 

 When observing the pan-genome plot of NOB genomes illustrated in figure 18, it is 

significant that the genomes of two NOB genera have different genomic sequences. All the 

Nitrobacter genomes are similar to each other whereas, the Nitrospira genomes have some 

alterations between their sequences. 

 

 
Figure 18: Pan-genome plot of NOB 
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3.4 Coinfinder output 

 

 The heatmap, which is an output from Coinfinder, for this whole genome analysis of 

nitrifying bacteria is shown in figure 19. 

 

 
Figure 19: Output heatmap of pan-genomes for nitrifying bacteria 
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CHAPTER 4 

DISCUSSION 

 

 In this project, the whole genome sequences of nitrifying bacteria are analysed diversely 

by several workflows. Generally, from observing the genomes sequences of different nitrifying 

bacteria genera, the differences of genes in these bacteria and archaea, metabolism occurring 

in the genomes, metabolic chemical reactions are discovered more clearly. The functional 

genes found in each nitrifying bacteria genus are listed in table 10. 

 

Table 10: Functional genes found in each nitrifying bacteria genus 

Genus Genes found 

Nitrosomonas amoA, amoB, amoC, nirK, norB, norC 

Nitrosospira amoA, amoB, amoC, nirK, norB, norC 

Nitrosococcus amoA, amoB, amoC, nirK, norB, norC 

Thaumarchaea nirK, nosZ, nxrA, nrfA 

Nitrosopumilus - 

Nitrobacter narG, narH, nirB, nirD, nirK 

Nitrospira nxrA, nxrB, nirD, nirK, nrfH, nrfA, norC 

 

 Among the functional genes responsible for nitrogen transformations, most of the AOB 

genomes contain amoA, amoB, amoC, nirK, norB and norC. Therefore, most of these AOB 

species are functional only in ammonia oxidation, nitrite reduction to ammonia and nitric oxide 

reduction. Only a few species from AOB are able to perform other nitrogen cycling processes. 

Among the AOB species, Nitrosomonas europaea is considered to be the most efficient 

ammonia-oxidizing bacteria due to the genes presenting in its genomes.  

 A remarkable finding that is found through whole genome analysis of AOA is a lot of 

Thaumarchaea genomes absent functional genes for nitrification in their genomic sequences. 

Only a few functional genes, nirK, nosZ, nrfA and nxrA are present in AOA genomes. The 

function of most AOA are nitrite reduction to ammonia and nitrous oxide reduction. According 

to the genes existing in their genome sequencing, AOB are the better option as ammonia 

oxidizers than AOA.  
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 The NOB species present several functional genes in the nitrogen cycle such as narG, 

narH, nirB, nirD, nirK, nxrA, nxrB, nrfH, nrfA and norC. Thus, these NOB species are efficient 

in operating reduction of nitrates, nitrites, or nitrous oxide, as well as nitrite oxidation. 

Nitrospira defluvii, Nitrobacter hamburgensis and Nitrobacter vulgaris are the most effective 

nitrite oxidizers among the NOB species. 
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CHAPTER 5 

CONCLUSION 

 

 Based on the analysis of whole genome sequencing, this project demonstrates the 

important role of genes and genome sequences in nitrifying bacteria in construction and the 

built environment. Bacteria and archaea species of Nitrosomonas genus, found in wastewater 

treatment systems, activated sludge, soil, and freshwater, Nitrosospira genus and Nitrospira 

genus, found in soil and water, Nitrosococcus, found in freshwater systems Nitrobacter genus, 

found in soil and freshwater systems, and Thaumarchaea found in several engineering systems 

are analysed respectively in this project.  

 In this project, I have successfully annotated the genomes of nitrifying bacteria are 

using Prokka and conducted pan-genome analysis using annotated genomes in Roary tool. The 

metabolic profiles and biogeochemical cycles are also generated using METABOLIC. The 

number of genes present in each genus and the pan-genome plots for each genus is studied.  

Moreover, the functional genes from the nitrogen cycle are discovered in these nitrifying 

bacteria. By investigating the genome sequences, strong ammonia oxidizers and nitrite 

oxidizers are also considered. This genomic study of nitrifying bacteria advance the knowledge 

on importance of genes in the metabolic activities of genomes which have direct impact on the 

corresponding system. For instance, the stronger ammonia oxidizer with more functional genes 

might develop the process of wastewater treatment plants. 

 However, there are still some genus and individual species that must be left out due to 

the limitations of the analysis of this study, especially for ammonia-oxidizing archaea. More 

detailed analysis might be required to understand more on the genome sequences of the 

nitrifying bacteria. Further analysis on more nitrifying bacteria genera for the engineering 

systems and more specific details of the species relating with genes and their functions 

impacting on the corresponding environment might advantage the role of microbial 

communities in the engineering systems. 
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APPENDIX 

 

ACCESSING ORION CLUSTER 

Step 1: Install CISCO AnyConnect Secure Mobility Client and turn on the VPN on University 

of Glasgow, next, use the Terminal software that is internally installed within MacOS to 

connect: 

ssh studentprojects@howe.eng.gla.ac.uk 

Step 2: Open own local directory for the project in the cluster to store the sequences and 

analysed data  

cd /shared5/studentprojects/Kaung 

 

DATA COLLECTION 

Step 1: On Orion cluster, enable NCBI software  

ftp ftp.ncbi.nlm.nih.gov 

 

Step 2:  Access to the location of genomes data on NCBI 

 
cd genomes/genbank/bacteria 

cd genomes/genbank/archaea 

 

Step 3: Download the genomes by species name to own local directory on cluster 

 
wgetftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/Nitrosomonas_eutropha/ 

assembly_summary.txt genomeNum=$(grep -c "." assembly_summary.txt) if [ $genomeNum -

gt 700 ]; then grep "Complete\|Chromosome" assembly_summary.txt | cut -f20 > var.txt; 

else cut -f20 assembly_summary.txt | sed '1,2d' > var.txt; fi for f in `cat var.txt`; 

do name=$(grep -w "$f" assembly_summary.txt | cut -f9 | cut -f2 -d'=' | sed 's/ /_/g' 

| sed 's/\//_/g' | sed 's/\:/_/g' | sed 's/)/_/g' | sed 's/(/_/g'); xx=$(grep -w "$f" 

assembly_summary.txt | cut -f20 | cut -f10 -d'/'); wget --tries=75 -c 

$f/$xx\_genomic.fna.gz; done 

 

gzip -d *.gz 
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PROKKA WORKFLOW 

 

Step 1: Enable minconda2 environment where all the tools are available 

 
export PATH=/home/opt/miniconda2/bin:$PATH 

 

Step 2: Activate pangenome 

 
source activate pangenome 

 

Step 3: Run Prokka for the downloaded genomes 

 
for i in $(ls *.fna); do echo "Processing $i"; prokka $i --locustag ${i%_genomic.fna} 

--outdir ${i%_genomic.fna}; done 

 

ROARY WORKFLOW 

 

Step 1: Open a new directory called Roary and copy the gff files to that directory 

 
mkdir roary 

for i in $(ls */*.gff); do cp $i roary/$(echo $i | sed 's!/.*!!').gff; done 

 

Step 2: Enable minconda2 environment 

 
export PATH=/home/opt/miniconda2/bin:$PATH 

 

Step 3.  Enable Roary 

 
source activate pangenome 

export PERL5LIB=/usr/local/lib/perl5/site_perl/5.22.0/ 

 

Step 4.  Apply Roary and put the Roary output to the Roary tree directory 

 
roary -f ./roary_tree -e -n -v ./roary/*.gff 
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Step 5.  Generate Roary plots 

 
python /home/opt/roary_scripts/roary_plots.py 

roary_tree/accessory_binary_genes.fa.newick roary_tree/gene_presence_absence.csv 

 

METABOLIC WORKFLOW 

 

Step 1. Enable minconda2 environment 

 
export PATH=/home/opt/miniconda2/bin:$PATH 

 

Step 2: Enable METABOLIC software on Orion Cluster and go to your directory: 

 
source activate metabolic  

 

Step 3: Set the path to METABOLIC repository to use the software 
export PATH=/home/opt/METABOLIC:$PATH 

 

Step 4. Open a new directory for METABOLIC 

 
mkdir METABOLIC 

 

Step 5: Copy the test genomes in own local directory 

 
cp *.fna /shared5/studentprojects/Kaung/Nitrosomonas_GENUS/METABOLIC 

 

Step 6: Change the extension to fasta format 

 
for i in $(ls *.fna); do mv $i ${i%.fna}.fasta; done 

 

Step 7: Run METABOLIC and put the output files to an output directory 

 
METABOLIC-G.pl -in-gn METABOLIC -o METABOLIC_OUTPUT 
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COINFINDER WORKFLOW 

 

Step 1. Enable minconda2 environment 

 
export PATH=/home/opt/miniconda2/bin:$PATH 

 

Step 2: Enable coinfinder on cluster 

 
source activate coinfinder-env 

 

Step 3: Open a new directory for coinfinder 

 
mkdir coinfinder-test 

cd coinfinder-test 

 

Step 4: Download the associated data to the directory 

 
git clone https://github.com/fwhelan/coinfinder-manuscript.git 

 

Step 5: Copy the required genetic files to the directory 

 
cp coinfinder-manuscript/gene_presence_absence.csv 

cp coinfinder-manuscript/core-gps_fasttree.newick 

 

Step 6: Run Coinfinder 

 
coinfinder -i gene_presence_absence.csv -I -p core-gps_fasttree.newick -o 

output 

 

RSTUDIO WORKFLOW 

 
abund_table<-read.csv("presence_absence_table.csv",header=TRUE,row.name=1) 

library(vegan) 

library(ggplot2) 

library(ggrepel)  

 

abund_table.dist<-vegdist(abund_table, method="jaccard") 
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ord<-capscale(abund_table ~ 1,distance="jaccard 

df<-as.data.frame(scores(ord, display = "sites")) 

 

df$Colours=1 

 

df["Genome3","Colours"]<-2 

df["Genome4","Colours"]<-2 

df["Genome5","Colours"]<-3 

 

pdf("myplot.pdf",height=10,width=10) 

p <- ggplot(df, aes(MDS1, MDS2)) 

p<- p+geom_point(color = 'red') 

p<-p + geom_label_repel(aes(label = rownames(df),fill=factor(Colours)),size 

= 3.5) + theme_bw() 

p<-p+guides(fill=FALSE) 

print(p) 

dev.off() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


