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0.2 List of abbreviations/ acronyms

OTU: Operational Taxonomical Unit.

PERMANOVA: Permutational Analysis of Variance.

ANOVA: Analysis of Variance.

PCoA: Principle Coordinate Analysis.

NMDS: Non-metric Multidimensional Scaling.

FSO: Fuzzy Set Ordination.

LCBD: Local Contribution to Beta Diversity.

KMDA: Kernel-based Metabolite Differential Analysis.

MDA: Mean Decrease in Accuracy.

lfc: log fold Change.

3



0.3 Summary

microbiomeSeq is an R package developed to enhance the available statistical analysis pro-

cedures for microbial communities data obtained from 16S ribosomal RNA sequencing and

to provide more informative visualisation of the results. It mainly focuses on community di-

versity within and across samples, differential expression analysis of taxa between conditions,

co-occurrence patterns analysis at community level and the relationships between and environ-

mental traits with community structure. Main features of the package include the following:

Alpha diversity: Taxa distribution within samples is measured using common diversity indices

and then compared amongst specified groups or conditions by analysis of variance.

Beta-diversity: Taxa distribution across samples is explored using multivariate analysis tech-

niques. samples are ordered such that similar samples are closer to each other than dissimilar

ones, variability of diversity amongst multiple conditions is explored using permutation anal-

ysis of variance. In addition, homogeneity of variance between conditions or groups in the

samples is explored.

Differential expression analysis: Abundance of each feature is compared between or among

conditions to identify up and down regulated features using Kruskal-Wallis test and DESeq

package. Features are assigned importance using random forest classifier. In addition, kernel

based differential analysis is used to group taxa into sets basing on correlation that must exist

between or among features that belong to the same set. Then, these sets are tested for differen-

tial expression using a distance based score test.

Co-occurrence pattern analysis: This is used to identify co-occurring taxa at community

level under specified environmental conditions. Co-occurrence is measured as positive correla-

tion whose threshold is specified. Amongst these features, pairwise co-occurrences which are

outstanding within sub communities are detected. Taxa are assigned roles depending on their

linkage within respective sub communities and the entire network.

Relationships between microbial community and environmental traits: Two procedures

are implemented, the first one directly correlates taxa abundance and environmental variables

and the other uses fuzzy set ordination to test effects of perturbation in environmental variables

to community structure.

We use a dataset which was generated by 16S ribosomal RNA sequencing of various latrines

from Tanzania and Vietnam at different depths.
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0.4 Introduction

Microbial communty studies have increasingly gained popularity given the high importance of

microbiodiversity to human and environmental health [Morgan and Huttenhower, 2012]. This

calls for approaches to efficiently identify, characterize and evaluate microbial communities.

Generally microbial community refers to a group of different populations of micro-organisms

co existing under certain environmental conditions [Oulas et al., 2015]. Studying microbial

communities reveals underlying characteristics of the micro organisms in a complex commu-

nity for example, microbial composition: which microbes are present and how much they are

in the community, function of different microbes within the community, relationships between

or among different microbes, and how they respond to their environment.

Tremendous advancement of high-throughput sequencing also known as next generation

sequencing has lead to great improvement in studying microbial communities [Morgan and

Huttenhower, 2012] hence the field of metagenomics whose main goal is to understand com-

position and functional diversity of microbial communities. This technology enables direct

analysis of genomes available in environmental samples as opposed to traditional techniques

which require single-cell culture where microbes are grown on solid-media [Oulas et al., 2015].

The prominent sequencing technologies used for this include: 454 pyrosequencing and Illumina

systems although the later in particular Miseq has been shown to have a better performance as

compared to other technologies[D’Amore et al., 2016].

Here we focus on the analysis based on amplification of genes of interest commonly referred

to as marker genes. These include the highly conserved 18S and 16S ribosomal RNA genes

for eukaryotes and prokaryotes respectively [Oulas et al., 2015]. Basing on a defined similarity

threshold usually 97%, sequences are clustered into operational taxonomic unit (OTU) [Morgan

and Huttenhower, 2012]. Examples of algorithms designed for this include: UPARSE [Edgar,

2013] which has been shown to report less than 1% incorrect biases USEARCH Edgar [2015]

and QIIME [Kuczynski et al., 2012] which is more established than most of these.

Alternatively, the sequence reads are directly assigned species for example using DADA2

[Callahan et al., 2016] algorithm which provides a fine scale resolution to extent of character-

izing sequences differing by a single nucleotide. This is a more informative procedure because

the fine scale resolution has been shown to be critical to ecological niches and consequently

crucial to microbiome associated phenotypes most especially in clinical studies [Eren et al.,
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2014]. For that matter, grouping similar sequences into a single unit would imply neglecting

biological variation amongst those sequences.

In both approaches, taxonomic assignment is done with reference to established databases

such as Silva, Green Genes and Ribosomal Database Project (RDP). The community is de-

scribed in terms of operational taxonomic units it contains and their phylogenetic relationships.

Main information that is output by above algorithms include: OTU or species abundance ta-

ble which is a matrix type usually with samples in rows and OTUs as columns, corresponding

taxonomic classification tables, OTUs as rows and taxonomic levels as columns and or phy-

logenetic tree mainly in NEWICK format. These can then be associated with corresponding

environmental data mainly referred to as meta data which is also usually a matrix object with

samples as rows and environmental variables in columns.

Statistical methods are used to evaluate and analyse the community data so that it can be

turned into further biological insights. Various tools have been developed for this purpose but to

the best of our knowledge, the analysis procedures and visualisation options can be improved.

Therefore, rather than re-inventing the wheel, we choose to build upon existing packages such

as such as vegan [Oksanen et al., 2007], phyloseq [McMurdie and Holmes, 2013], DESeq2

[Love et al., 2014] to enhance analysis procedure by extending some of the available functions

and creating more informative plots with on-figure results but with less clutter. It is mainly

aimed at measuring taxonomic distribution within and across samples that is alpha and beta

diversity respectively, identifying up and down regulated taxa under a given pair or group of

conditions, exploring co-occurrence patterns within communities and relationships between

community composition and environmental traits.
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0.5 Methods and dependencies

In this section, we describe statistical methods to evaluate and analyse the community data so

that it can be turned into further biological insights.

Alpha diversity: This is the distribution of features within samples. Different diversity indices

are used for this measure. Simpson index which accounts for the number of species present

and their relative abundance in the community, Shannon which is a commonly used index to

characterise species diversity, Pielou’s evenness which measures the closeness of each species,

Fisher alpha is a parametric index of diversity that models species as logseries distribution.

These measures provide useful information the community composition in terms of rar-

ity and commonness of species in the community. Analysis of variance (ANOVA) is used to

compare these diversity measures between pairs of groups. The generated p-values are used to

assess the significance of differences between groups. The function diversity of vegan package

vegan [Oksanen et al., 2007] is used for calculating diversity and aov function for analysis of

variance.

Beta diversity: This is a measure of features distribution across samples. It is measured by

using multi variate statistics procedures such as ordination. This is the ordering of samples

such that those with similar diversity are closer to each than those with dissimilar diversity. The

different methods of ordination aim to provide a low dimension representation of the samples

though different procedure is followed for a particular method. The similarity or dissimilarity

is based on distance between samples.

Distance measures used include: Bray Curtis, which takes into account abundance of

species, Unifracs which use phylogenetic distance between the branch lengths of features.

Weighted Unifrac is weighted by features abundance and UnWeighted Unifrac does not con-

sider abundances of features. We use phyloseq [McMurdie and Holmes, 2013] package to

calculate the distances. Below are the ordination methods that we have used.

Non multi dimensional scaling (NMDS) aims at representing pairwise dissimilarity be-

tween samples in low dimension space. The distance between samples is calculated using a

selected distance measure or dissimilarity coefficient. Monotonic regression is then used to

compare the ranked distances and the original dissimilarity matrix by optimizing a stress func-

tion which measures how similar the ranked distances are to the original distance on a scale of
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[0,1]. Function metaMDS of the vegan package is used for NMDS ordination.

Another ordination method is principle coordinate analysis which seeks to represent the

data in the lowest possible dimensions without much loss of information. Similar to NMDS, it

also takes a dissimilarity object of samples and generates a low dimension representation with

eigenvalues for each resultant dimension. The eigenvalues represent the amount of variation in

the dataset explained by a particular dimension. This is implemented using a function capscale

of the vegan package [Oksanen et al., 2007].

We use permutation analysis of variance to test whether the variance between samples for

multiple conditions is the same or not. This is implemented using adonis function of vegan

package. permutation analysis of variance is a non parametric method that performs distance

based multivariate analysis of variance of objects between or among groups. It involves calcu-

lating within group and between group dissimilarities using a selected dissimilarity coefficient

or distance measure. Then, within and between group variances are compared using F-test. Sig-

nificance of the result is based on comparing F-test result and random permutations of samples

between conditions.

To test whether spread of diversity between samples under multiple conditions or groups is

the same or not, we use betadisper function of vegan package which tests for homogeneity of

variances. Non-euclidean distance measure such as Bray Curtis and Unifracs are used to com-

pute distance between samples and group centroids. These distances are reduced to principal

coordinates and subjected to ANOVA to test whether they are different or not. The significance

of the result is based on comparing generated p-values to a user defined threshold. A significant

result implies that, the spread of diversity under a particular pair of conditions is different and

vice versa. The implementation is as proposed by [Anderson et al., 2006] using an specified

dissimilarity measures.

Differential expression analysis:

We explore features which are up or down regulated under given conditions. This is worth

exploring because it reveals difference in expression among groups which could be directly

linked to observed characteristics in the groups. For example, in case of case-control studies,

the observed phenotypes can be attributed to features that are either down and up regulated in

one group with respect to the other . In other words, differential expression analysis helps us to

identify individual features which may be most linked or responsible for differences observed
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among or between studied groups. The tools used for this purpose include DESeq2 [Love et al.,

2014] package and Kruskal-Wallis test as explained below.

Deseq [Love et al., 2014] procedure which was originally developed for differential expres-

sion analysis of RNA-seq data is used. In this case, abundance of a feature in a given sample

is modelled as a negative binomial distribution, whose mean depends on sample specific size

factor and concentration of that feature in a sample. Wald test is used to test significance of co-

efficients based on sample estimates. A feature is described as differentially expressed between

the conditions by a threshold p-value and log2 fold change.

Kruskal-Wallis is a non parametric method for testing whether samples originate from the

same distribution. Unlike DESeq2, this method does not assume any particular distribution of

taxa abundance. The abundance of each is tested between/among specified conditions. Since

the the same test is performed multiple times on the same dataset, the p-values values generated

are corrected for multiple testing using family wise error rate. Depending a p-value threshold

specified by the user, a given feature is described as significantly differentially expressed or

not.

The procedure above only identifies up and down regulated features but does not reveal

which features are actually more important than others in the community. Therefore, we

need a procedure which can attach a measure of relevance to these features. By that, we

can point out with more confidence individual features which are most probably responsible

for observed differences in phenotypes or any other difference being investigated between the

groups/conditions.

Differentially expressed features are classified using random forest classifier implemented

by the importance function of randomForest package [Liaw and Wiener, 2002] to find most

important features. The measure used in this case is Mean Descrease in Accuracy. This is ob-

tained by removing the relationship of a feature and measuring increase in error. Consequently,

the feature with high mean decrease in accuracy is considered most important.

To explore differential analysis at group level, we use set level differential analysis. This

provides information about groups of features that respond more or less the same way in a com-

munity under a given pair of conditions. A set of features is generated depending on a threshold

correlation that must exist among features of a certain group. we use a kernel based metabolite

differential analysis (KMDA) [Zhan and Ghosh, 2015] package which allows set-level differ-

ential analysis strictly under a specified pair of conditions. sets of features are generated using
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group.pearson and to test whether these sets are differentially expressed under the specified

conditions, we use functions dscore and sscore . Similar analysis is implemented for numerical

variables of the sample data.

Co-occurence pattern analysis:

Co-occurrence patterns are useful since they reflect processes that maintain the co existence

of different micro organisms within a given microbial community. Co-occurring species share

similar ecological characteristics and as such, they may consequently be involved in common

biological processes and may be depending on each other in one way or another. Applying

this to microbial community analysis can identify traits of co-occurring taxa and interactions

between taxa within the community.

This is used to identify co-occurring features at community level under specified environ-

mental conditions.This implementation follows the procedure presented by [Williams et al.,

2014]. Sub community of co-occurring features within the community and then identify pair-

wise co-occurrences within sub communities based on correlation between a given pair of

features. p-values generated during pairwise correlations tests are adjusted for multiple com-

parisons by false discovery rate.

Co-occurrence is measured as positive correlation whose threshold is specified. Negative

correlation is indicative of competition between a given pair of features or non overlapping

niches. The correlation and associated p-values are calculated by functions corAndPvalue and

bicorAndPvalue of WGCNA [Langfelder and Horvath, 2012] package. A network showing

co-occurrence is generated with features as nodes and edges as correlation between the corre-

sponding pair of features. The network statistics used to assign importance to features include

betweenness, closeness and eigenvector. Packages used for to implement this include: igraph

package [Csardi and Nepusz, 2006] which provides functions to calculate network statistics.

Topological roles of taxa: Taxa in identified sub communities are assigned roles in the net-

work using a procedure provided by [Guimera and Amaral, 2005]. Two metrics used for this

purpose. First is within-module degree z-score which measures how well a particular feature is

connected to others in the same subcommunity. It is given by Equation (1)

zi =
kim − k̄m
σkm

, (1)

where kim is the number of links of taxon i in sub community m, k̄m and σkm are the respective
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mean and standard deviation of number of links for sub community m.

The second metric is the among-module connectivity which measures how a feature is linked

to other modules in the network also refered to as participation coeffiecient is given by Equa-

tion (2).

pi = 1−
Nm∑
h=1

(
kih
ki

)2

, (2)

where ki is the number of links of taxon i in the entire network and kih is the number of links

of taxon i to sub community h.

Features are assigned roles depending on where they lie in the z-p space as given by [Guimera

and Amaral, 2005]. A taxon is a module hub if z ≥ 2.5 and a non hub if z < 2.5. Non hubs

classified into four groups that is ultra peripherals (p ≤ 0.05), peripherals (p ∈ (0.05, 0.62]),

connectors (p ∈ (0.62, 0.80]), kinless (p > 0.8). Module hubs are classified as provincial

(p ≤ 0.30), connector (p ∈ (0.30, 0.75]) and kinless (p > 0.75).

Other packages used include: ggplot2 package [Wickham, 2016] is designed for generating

visualisations. The tools provided are used to generate plots for the analysis results with support

from other packages including gtable and gridExtra [Auguie, 2016].
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0.6 Product Design

This section entails the functional aspects available for this package using the methods de-

scribed in Section 0.5 and visualisations which are produced by ggplot [Wickham, 2016]. The

input data is required as phyloseq object containing taxa abundance, sample data, taxonomy

assignment and associated tree. Components of these may not be necessary depending on the

aspect being investigated, phyloseq has functions to manipulate the data and that makes it very

useful in this package.

0.6.1 Alpha diversity

Given a phyloseq object, vector of indices’ methods and a variable specifying groups in the

dataset, diversity measures are computed and compared amongst groups by pairwise ANOVA.

A visualisation showing the results is generated where groups that show significant variance in

diversity measure are annotated with significance labels. The significance is based on compar-

ing ANOVA p-values and a user set threshold.

0.6.2 Beta diversity

Given a phyloseq object, ordination method and grouping variable, an ordination is performed

and samples are grouped for different groups. Mean ordination value is calculated and spread

of points are drawn as ellipses.

Pairwise dispersion between groups in the samples are calculated and significance is assessed

using p-values whose threshold is specified by the user. PERMANOVA of taxa abundance

amongst conditions is performed and results are reported. The resulting p-value is compared to

the user-set threshold to assume significance.

A plot of the first two dimensions of ordination is produced and the most significantly dis-

persed groups are annotated on the plot with corresponding significance labels. In case the

PERMANOVA results are significant according to pre-set p-value threshold, then p-value and

r2 are also annotated on the ordination plot. For case of NMDS, the value of STRESS function

is also annotated and for PCoA, the axes have percentage values which correspond to variance

explained by respective axes in the dataset.

Local contribution to beta diversity (LCBD) is calculated and most abundant features are de-

12



tected by taking sums of observed abundance values for each feature in all samples. The number

of most abundant taxa to be used in this calculation can be specified.

The results are visualised in a plot which has points at the bottom whose diameter corresponds

to magnitude of LCBD value of a particular sample and bars which correspond to taxa that are

most abundant with the top taxa sharing a bigger portion of the bar for each sample.

0.6.3 Differential Expression Analysis

Abundance of each feature is compared between or among conditions to identify up and down

regulated features. In case of Kruskal-Wallis test, the p-values generated are corrected for

multiple comparisons by family wise error rate. Similarly, DESeq is also used to identify dif-

ferentially expressed features. These features are then assigned importance using random forest

classifier.

A filename can be specified to which the significant features and corresponding log2 fold

change, basemean, p-values and group where they are upregulated can be written. This is

important for reproducibility and further inference. Plots produced include:

Significant features plot: It shows box plots of taxa abundance distribution in groups

annotated with names and p-values of the taxa and corresponding ranks of importance.

MA plot: A plot of log2 fold change against mean abundance of most significant fea-

tures with an option to label the taxa or not. This reduces clutter in case of very many

significant features.

lfc plot: This plot shows down and up regulated features with base mean values annotated

on top of bars. Size of the bars corresponds to magnitude of log fold and sign orientation

refers to up or down regulation.

MDA plot: This is a standalone visualisation of mean decrease in accuracy measure for

each of the significant features. Bigger values of mean decrease in accuracy (MDA)

represent higher importance.

Plot of multi testing corrections only for Kruskal-Wallis test.

Kernel differential analysis: Taxa is grouped into sets basing on correlation threshold(s) that

must exist between or among features that belong to the same set. Then, these sets are tested
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for differential expression using a distance based score test. A file is generated containing taxa

and corresponding score statistics. The results are visualised in a plot showing sets of taxa with

adjusted p-values and significant labels annotated.

0.6.4 Correlation between abundance and environmental traits.

The relationship between most abundant taxa and numerical environmental variables are based

on correlation. A user selected correlation coefficient is used to compute correlation between

abundance of each taxon and selected environmental variables. A correlation test is performed

and p-values adjusted for multiple comparisons using Benjamin-Hochberg method. Signifi-

cance of correlation is specified by a user defined p-value which is compared adjusted p-values.

A plot is generated to visualise the results in heat map where taxa are in rows, environmental

variables are in columns and correlation with significance labels annotated in the cells.

0.6.5 ANOVA of environmental variables

Selected environmental traits are compared between or among specified groups using ANOVA.

The results are visualised as plots the distribution of variables annotated with significance of

variation in specified groups. A user defined threshold p-value is compared to ANOVA p-value

in order to assess significance.

0.6.6 Co-occurrence analysis

Generating the network and sub communities: Co-occurrence pattern analysis is used to

identify co-occurring taxa in community under specified environmental conditions. Co-occurrence

is measured as positive correlation whose threshold(s) can be specified as by the user via ar-

guments. Amongst these features, pairwise co-occurrence which are outstanding within sub

communities are detected. p-values generated during pairwise correlations are adjusted for

multiple comparisons by false discovery rate. The network statistics used to assign importance

of taxa include betweenness, closeness, and eigenvector centrality.

Output includes a network with subcommittees and plots of betweenness versus eigenvector

centrality for a selected correlation thresholds. These can be further used to detect roles of each

taxa in the network and also to study response of sub community to environmental traits.
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Assigning roles in sub communities: Features identified in sub communities are assigned

roles using two metrics which include: within-module degree score (Z) which measures how

well a particular feature is connected to others in the same sub community and among-module

connectivity (P) which measures how a feature is linked to other modules in the network. Fea-

tures are classified as ultra peripherals, peripherals, provincial, connectors, kinless, module

hubs, or non hubs depending on where they lie in the Z-P space.

Correlation of taxa with environmental traits: In a given sub community, a feature with the

highest betweenness centrality is the very influential and is therefore a good representation of

the sub community. The correlation of such a feature with environmental variables shows the

response of a corresponding sub community to the environmental traits. A file of the correlation

results and a visualisation. The plot is annotated with correlation significance labels.
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0.7 Evaluation

In this section, we test the functionality of implemented tools using a pitlatrine dataset which

was generated by 16S ribosomal RNA sequencing of various latrines from Tanzania and Viet-

nam at different depths during a study aimed at assessing the influence of intrinsic environ-

mental and geographical factors on the bacterial ecology of pit latrines [Torondel et al., 2016].

The two countries are chosen in order to have a contrasting set of different pit latrines systems.

The selection of latrines was based construction materials, design characteristics and number

of individuals using it. Faecal material was collected at 20 cm intervals from top to bottom in

each pit latrine. Therefore the samples in the dataset are categorically classified by country,

latrine number and depth at which the material was derived.

The dataset comprises of an abundance table of 8883 OTUs in 81 samples, taxonomy assign-

ment of 8883 OTUs at 6 levels that is Kingdom, phylum, order, family, class and genus, corre-

sponding phylogenetic tree in NEWICK format and Meta data which comprises of eleven nu-

merical variables including Total Solids (TS), Volatile Solids (VS), Volatile Fatty acids (VFA),

Protein (Prot), Ammonia (NH4), Temperature (Temp), Carbohydrates (Carbo), total Chemical

Oxygen Demand (CODt), soluble chemical oxygen demand (CODs) and percentage of CODt

converted to CODs (perCODsbyt) and three categorical variables specifying latrine, depth and

country from which a particular sample was generated.

Details of how to reproduce these results and using the package as well for similar datasets are

available in a tutorial document attached to this project on a portable disk and the tutorial is

available at microbiomeSeq tutorial.

ANOVA Alpha diversity

Within sample diversity was investigated using three diversity indices that is Richness, Simpson

and Shannon and compared between countries at a threshold p-value of 5%. Figure 1 shows

the distribution of diversity between Tanzania and Vietnam for the three diversity indices. It

is quite evident that the mean diversity is higher in Vietnam than Tanzania for all measures.

Moreover, there is significant different in microbe distribution between the two countries as il-

lustrated by significance labels annotated on the plots. This suggests that geographical location

is critical to microbes distribution in the community.
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Figure 1: ANOVA diversity between Tanzania and Vietnam

Ordination and beta dispersion

We tested the combination of ordination and beta-dispersion using two techniques that is NMDS

and PCoA using Depth as the grouping variable. Results were visualised as shown in Figure 3

and Figure 2 respectively. Threshold p-value for significance was set to 5% for both beta-

dispersion and PERMANOVA. The first and second dimension of PCoA explain 2.99% and

3.51% of the variance in sample diversity of microbes across samples.

PERMANOVA results show that diversity varies significantly amongst the different depths at

which samples are obtained with a p-value of 0.01 and that depth explains 15.4% of the vari-

ance in diversity across samples. BETA-DISPERSION results show that depth 06 seems to

have a different variance in diversity as compared to other depths. In case of NMDS the stress

function value is 0.151 which is more near to 0 than 1. This implies that the ordination is not a

good representation of original dataset.

17



Figure 2: PCoA, PERMANOVA and beta-dispersion results.

Figure 3: NMDS, PERMANOVA and beta-dispersion results.
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Canonical correspondence analysis was used to identify environmental traits that best describe

community structure of the two countries at a p-value threshold of 5%. As shown in Figure 4,

proteins, carbohydrates, temperature and total solid are the best environmental variables. pro-

teins, carbohydrates, temperature are mostly influential to the Tanzania community as Total

solids to the Vietnam community.

Figure 4: Canonical correspondence analysis results plot. Blue and red are for Vietnam and

Tanzania respectively. The arrows show
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We investigated the effects of small changes in environmental traits to community structure.

Figure 5 shows a fuzzy set ordination result of community data between countries Tanzania

and Vietnam for environmental variable Temp. As annotated, the correlation between the fuzzy

set and original abundance is 0.62 and significant as indicated by the significance label. This

is a moderate positive correlation, therefore it suggests that small changes in temperature may

lead to moderate changes the community structure.

Figure 5: Fuzzy set ordination of samples between countries. Red and Blue are for Tanzania

(T) and Vietnam (V).

Generally, a low correlation value is indicative of huge difference between fuzzy sets and orig-

inal values and a high value shows a smaller difference between fuzzy sets and original values.

This implies that the community is very sensitive to variables with a low correlation value and

vice versa.
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Local Contribution to Beta diversity

We calculated LCBD by each of the samples at phylum taxonomic level and considered 20 top

most taxa for visualisation as shown in Figure 6. Prior to that, abundance data was normalised

by relative tansformation to obtain proportions accross samples.

Phyla Firmicutes, Bacteriodes, Proteobacteria and Actinobateria show high abundance and

consequently contribute highly to LCBD in all the samples from Tanzania and Vietnam. We

note that, the proportion of these phyla are clearly different for the two countries. In fact, phyla

Proteobacteria, Actinobateria , Deinococcus.Thermus show high proportion of abundance in

Vietnam and phyla Firmicutes, Synergistes whereas Proteobacteria show high relative abun-

dance in Tanzania.

Figure 6: Most abundant taxa and local contribution to beta diversity for Tanzania (T) and

Vietnam (V). Black points at the bottom whose diameter corresponds to magnitude of LCBD

value coresponding to a particular sample, the bars correspond to taxa that are most abundant

with the top taxa sharing a bigger portion of the bar for each sample.
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Differential expression analysis

Differential expression of taxa at phylum taxonomic level was investigated between Tanzania

(T) and Vietnam (V) using DESeq. Significance of differential expression was based on p-value

threshold of 5% and zero log2 fold change which are the defaults. The results are visualised

in Figure 7. Amongst the significantly up or down regulated phyla,Synergistes are the most

important, followed by Proteobacteria, Fibrobacteres, Actinobacterial among others. The p-

values and rank of importance are annotated on the figure.

Figure 7: Significantly differentially expressed phyla between Tanzania and Vietnam: The

black bars correspond to importance of a corresponding feature and on top of which the ranks

based on mean decrese accuracy are indicated. The data was log relative normalised for pur-

poses of output. The middle section of the plot indicates phyla description and corresponding

adjusted p-value.
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Figure 8 shows the relationship between log2 fold change and mean abundance of the phyla that

are differentially expressed between the two countries. The significance depicted here is only

as per log2 fold change and not based on p-value. Synergistes (mean abundance 145.9) and

Deinococcus-Thermus (mean abundance 40.5) are respectively the most down and regulated

phyla with 6 fold between the two countries.

An alternative visualisation is as shown in Figure 9. Abundance of each phyla is annotated on

extremes of log2 fold bars.

Figure 8: Mean abundance plot: Red and black points respectively correspond to phyla which

shows significant differential expression between countries and those that do not.

Figure 9: log2 fold change plot: Red and blue shows down and up regulated phyla respectively.

Values annotated on bars are mean abundances for corresponding phyla.
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Figure 10 shows mean decrease in accuracy for significantly expressed phyla between Tanzania

and Vietnam. Synergistes are the most important with a mean decrease accuracy of 45 followed

by Proteobacteria at 25 and TM7 is least important with close to 5 mean decrease in accuracy.

The ranking of phyla depicted in Figure 7 is based on this measure.

Figure 10: Mean decrease in accuracy of each of the significantly differentially expressed phyla.

Table 1 shows qualitatively the characteristics of differentially expressed features as visualised

in the figures above showing the country in which a particular phyla is up regulated.

Table 1: DESeq differential expression results

Phyla Base Mean Log2 Fold Change P-value Adjusted-pvalue Country

Synergistetes 40.480500 -4.9153857 2.844673e-31 8.534020e-30 T

Deinococcus-

Thermus

145.904957 4.7731870 1.112263e-23 1.668394e-22 V

Planctomycetes 22.530003 4.2313944 9.471601e-19 9.471601e-18 V

Verrucomicrobia 9.793022 3.4771679 7.261986e-16 5.446490e-15 V

Fusobacteria 12.441201 3.5526292 3.849406e-12 2.309644e-11 V

Tenericutes 42.907190 2.7828493 3.147201e-10 1.573600e-09 V

Fibrobacteres 1.983949 -1.5982656 8.252045e-08 3.536591e-07 T

TM7 2.617610 1.4901325 8.363945e-05 3.136480e-04 V
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Similarly, we used kruskal Wallis to test differential expresion of phyla between Tanzania and

Vietnam. Prior to testing, taxa abundance was normalised by log relative transformation. Cor-

responding plots similar to Figure 7 and Figure 10 were produced. Table 2 shows most signifi-

cantly differentially expressed phyla with associated statistics.

Table 2: Kruskal-Wallis test results

Phyla p-value E-value FWER q-value

Synergistetes 7.436027e-11 2.230808e-09 2.230808e-09 2.230808e-09

Spirochaetes 3.524440e-07 1.057332e-05 1.057327e-05 5.286660e-06

Deinococcus-Thermus 3.524440e-07 1.057332e-05 1.057327e-05 3.524440e-06

Fibrobacteres 4.935991e-05 1.480797e-03 1.479738e-03 3.701993e-04

Proteobacteria 2.477304e-04 7.431913e-03 7.405278e-03 1.486383e-03

Bacteroidetes 3.762102e-04 1.128631e-02 1.122495e-02 1.881051e-03

Actinobacteria 3.762102e-04 1.128631e-02 1.122495e-02 1.612329e-03

Synergistetes, Deinococcus-Thermus, Fibrobacteres are among the phyla that are detected by

both methods to be highly differentially expressed between countries. Therefore in case of a

particular intervention towards decomposition of material would be directed to these in respec-

tive countries of up regulation.

A plot for multiple comparison corrections is produced from Kruskal-Wallis test is shown in

Figure 11.

Figure 11: Multiple testing corrections: Red line shows the threshold q-value for significance.
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Kernel based differential expression was explored between Tanzania and Vietnam at pyla tax-

onomic level. Taxa abundance was log-relative transformed prior to analysis, this is because

the method is designed for fractional data. The results are visualised as shown in Figure 12.

Threshold value for correlation and adjusted p-value were set to 0.99 and 5% respectively. P-

values were adjusted by Benjamin- Hochberg method which is also the default.

At this correlation threshold, Eukaryota, Thermotogue, Chlamydiae and Armatinonadetes is a

group of phyla found to be differentially expressed between Tanzania and Vietnam with ad-

justed p-value of 0.08. This suggests that this set of phyla is also partly responsible for the

difference between the microbial communities of the two countries. In addition, it also verifies

the results obtained by using DESeq and Kruskal-Wallis, since the top most detected above

are also found significantly differentially expressed by this method. Examples include: Syn-

ergistetes (p-value=2.19e-229), Deinococcus-Thermus (p-value=1.34e-47) and Fibrobacteres

(p-value=4.88e-28).

Figure 12: Sets of differentially expressed phyla between Tanzania (T) and Vietnam (V).
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Similarly, kernel differential analysis was applied to the numerical environmental variables.

The aim of this is to identify groups of environmental traits that are differentially correlated

between the two countries at a correlation threshold of 0.09. We scale normalised the meta data

prior to analysis. The results show that individual variables are correlated differently between

the countries. In other words, all traits have relationships amongst them and these relationships

are different for both countries. However, there is no evidence for any groups of variables

showing difference in correlation between the two countries as visualised in Figure 13.

Figure 13: Sets of differentially correlated environmental variables between Tanzania (T) and

Vietnam (V).
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Co-occurrence pattern analysis

Co-occurrence within ecosystems is explored between given conditions. In this case, we gener-

ated a co-occurrence network for Vietnam at correlation threshold of 0.35 and threshold q-value

of 5% at genus taxonomic level. Nodes are coloured as per corresponding sub community. The

entire network is shown in Figure 14.

Figure 14: Network showing sub communities. The size of the nodes is proportional to its own

total degree. The width of the edges is proportional to the correlation between the two nodes to

which it corresponds. Positive and negative correlations between taxa(nodes) are indicated by

blue and red colour of the edges respectively.
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Figure 15 is a plot of betweenness versus eigenvector centrality at 0.35 correlation threshold

for Vietnam. As noted earlier, these are measures of importance of taxa in the network. Be-

tweenness of taxa in this case is a measure of taxa’s control in the network. High betweenness

centrality implies that a corresponding node has more influence in the network and vice versa.

Eigenvector centrality measures taxa’s linkage to others in the network taking into account how

connected they are.Therefore, taxa with high eigenvector centrality is linked to highly linked

taxa. The different colours correspond to a sub community (module) to which a particular taxon

belongs.

Figure 15: Relationship among network statistics: Betweenness, eigenvector centrality and

degree.

Using the network obtained above, we assigned roles to each genus as shown in Figure 16.

Most of the genera are identified as being non hub modules specifically being in ultra peripheral
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and peripheral zone. This indicates that these genera are most probably involved in processes

restricted to corresponding sub communities than across sub communities. There a few non

hub connectors and these are ones that link own sub communities to others. This indicates that

these genera are might have a wider range of habitat and or resource usage in the community. In

addition, they might be involved in essential biochemical processes that cut across neighbour-

ing sub communities. Non Hub connector genera include: Sub community #2 Herbaspirillum

and Geminicoccus, sub community #8 unclassified-Prevotellaceae, Lactobacillus and Lacto-

coccus, sub community #3 unclassified-Propionibacteriaceae and Paludibacter. Single genus

unclassified-Synergistaceae of module #3 is the only connector hub.

Figure 16: Topological roles of taxa: Based on within module degree (y-axis) and among

participation coefficient (x-axis). Different regions correspond to different topological roles as

shown in key. Each point is representative of a taxon and its colour signifies the sub community

(labelled as module in key) to which it belongs.

In this case, most of the taxa non module hubs. Amongst these, most are ultra peripherals and

peripherals with a few non-hub connectors. Therefore most of the taxa are are restricted to
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their own sub communities with exception of a few that are in the provincial zone. This is also

quite evident from the network as shown in Figure 14, there are not many connections between

individual sub communities. We explored the sub communities’ response to environmental

traits by the correlation between keystone features in each sub community with environmental

traits. The results are visualised in Figure 17. This was obtained using Pearson correlation

method. Correlation test p-values were adjusted for multiple comparisons using Benjamin-

Hochberg method and significance assessed at p-value threshold of 5%.

Sub community #2 is significantly positively correlated with Temp but negatively with pH.

This indicates that members of this module may be activated and inhibited by increasing levels

of temperature and pH respectively. In addition, #12 is significantly positively correlated with

all CODs related traits, Prot and VFA but negatively with pH which suggests that, members of

this sub community increase in abundance given resources but could be inhibited by increasing

levels of pH. #8 is highly positively correlated with NH4 concentration and proteins. The rest

of the sub communities are weakly correlated with the environmental traits.

Figure 17: Relationship between sub communities’ keystone features and environmental vari-

ables for Vietnam (V). Sub communities are represented by #number. Asterisks show level of

significance of correlation (*p-value< 0.05, **p-value< 0.01, ***p-value< 0.001). Red, blue

and white indicate positive, negative and no correlation respectively.
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Table 3 shows genera that are identified as keystone genera for each of the sub communi-

ties with their correlation with CODs. As explained in the methods section, these genera are

obtained on the criterion than they have the maximum betweenness relative to others in a cor-

responding sub community.

Table 3: Correlation between sub communities’ keystone genera and CODs for Vietnam (V).

Sub community Genera AdjPvalue Correlation

#1 Truepera 0.26 -0.16

# 12 Clostridium IV 0.004 0.40

# 2 Muricauda 0.38 -0.12

# 3 Gallicola 0.66 -0.06

# 4 Kangiella 0.60 -0.07

# 5 Alistipes 0.25 0.16

# 6 Alkaliflexus 0.97 -0.01

# 7 Ignatzschineria 0.55 0.08

# 8 Faecalibacterium 0.01 0.36

# 9 Patulibacter 0.67 0.06
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We investigated the relationship between 50 most abundant phyla and numerical environmental

variables based on Pearson rank coefficient in Tanzania (T) and Vietnam (V). P-values arising

from the correlation test are adjusted for multiple testing using Benjamin-Hochberg and signif-

icance based on a threshold of 5%. The visualisation of this is shown in Figure 18.

Generally, phyla abundance is negatively correlated with the environmental variables in

both countries with exception of a few instances. The observed relationship suggests that mi-

crobial biodiversity is reduced as more resources that is carbohydrates (carbo) and proteins

(prot) are available. The deviations from the general pattern include: phyla such as Firmicutes

and Fusobacteria which show a significant positive correlation between their abundance and

traits with exception of Temp, pH and VS particularly in Vietnam.

Figure 18: Relationship between most abundant phyla and environmental traits. T and V corre-

spond to Tanzania and Vietnam respectively. Asterisks show level of significance of correlation

(*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001). Red, blue and white indicate posi-

tive, negative and no correlation respectively.
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0.8 Discussion

The main goal of this project was to create functions that enhance analysis and visualisation

of Amplicons sequenced microbial community data building upon existing tools and integrated

into an R package. This was successfully accomplished and extensively tested on a real dataset.

The tools depend on a number of other packages which should be imported in order for the

functions to work well. In addition, some methods require that data is transformed to some

kind of type, this is crucial to avoiding false results.

Results are presented in form of files containing information which can be used for further

analysis and visualisations which can be further manipulated by the user. As much as the

visualisations present useful information, it can not all fit in a single figure, therefore it is worth

exploring the files generated to develop more insights about the details of analysis results.

Some of the procedures for example kernel differential analysis take some time to run most

especially when applied to abundance data, same applies to co-occurrence analysis procedures.

Therefore, depending on the size of the dataset and/or taxonomic level at which the analysis is

conducted, the execution time varies accordingly.

The evaluation of the tools on a real dataset does suggest that all parameters most especially

those that relate with user set thresholds are highly critical to results. As such it is recommended

that, these are set from an informed perspective.

It is important to note that for most of the methods implemented have a thing to do with

comparing among or between conditions. Depending on the procedure being used, the specified

groups should be having a reasonable number of observations, other wise, there may be higher

chances of crashing. For this particular iteration of the package, a few warning points have been

put in most especially for verifying input parameters. This will be improved in later releases.

The package has been entirely developed and tested on a ubuntu 16.04 system with a singe

dataset. Therefore, it is important to test it on more datasets and accross operating systems

including windows and mac to ensure that it is compatible to all the systems.
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0.9 Conclusions and future work

Having developed microbiomeSeq package with goals limited to this project, it leaves too much

room for further improvement. Currently the functions available allow exploring community

diversity within and across samples, differential expression analysis of taxa between conditions,

co-occurrence pattern analysis at community level and relationships between micro-organisms

and their environment.

Since we are talking microbial community, it would be great to implement a procedure for

analysing results from whole genome short gun sequencing such that we can explore functional

patterns within the communities in relation to their composition.

Further options can be explored and incorporated into the respective main features of the

package to allow more flexibility and also provide options for the users. In addition, since,

some of the functions require a lot of time, therefore, in future work can be done to optimize

the implementation more to allow faster computation.
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