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Abstract

Uncertainty quantification is becoming an integral part in model validation of complex engineering
structures. In the companion paper [1] an experiment with 12 masses placed at random locations on
a fixed-fixed beam is described with the objective of quantifying uncertainty in a simple dynamical
model. From the modeling point of view, this experiment simulates random mass distribution. In this
paper an experiment involving a cantilever plate with 10 randomly placed spring-mass oscillators.
The oscillating mass of each of the 10 oscillators about 1% of the mass of the plate. This experiment
is aimed at simulating the problem of ‘unmodelled dynamics’, which in turn results in randomness
in both mass and stiffness matrices. One hundred nominally identical dynamical systems are created
and individually tested. The probabilistic characteristics of the frequency response functions are
discussed in the low, medium and high frequency ranges. The variability in the amplitude and phase
of the measured frequency response functions is compared with numerical Monte Carlo simulation
results. The data obtained here may be useful for the validation of uncertainty quantification and
propagation methods in structural dynamics.
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1 Introduction

In the modelling of complex dynamical systems for engineering applications, high-resolution

finite element models are generally adopted as predictive tools for reliable numerical simula-

tions. The ensuing large scale linear system is tackled using domain decomposition methods

(substructuring). The implicit assumption inherent to such approach is that the constitutive

properties, geometric configurations and boundary conditions in the underlying boundary

value problem is prescribed with sufficient accuracy. An analyst attempts to eliminate the

primary source of error in the numerical approximation due to the discretization errors by

increasing spatial mesh resolution and decreasing the stepsize in the time marching scheme.

In practice however the predictions even from such high resolution numerical models may

sometimes exhibit significant differences with the results from physical experiments. Such

discrepancy, in part, arises from the uncertainty in the data and model itself adopted for

numerical representation of the boundary value problem. When substantial statistical infor-

mation exists, the theory of probability and stochastic processes offer a rich mathematical
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framework to represent such uncertainties. In a probabilistic setting, the data uncertainty

associated with the system parameters such as the geometric properties and constitutive re-

lations (i.e. Young’s modulus, mass density, Poisson’s ratio, damping coefficients etc.) can be

modeled as random variables or stochastic processes using the so-called parametric approach.

Numerous uncertainty analysis techniques are reported in the literatures to propagate the data

uncertainty through numerical models, or example, using the stochastic finite element method

[2–10]. The companion paper addressed this issue experimentally where one hundred realiza-

tions of a beam with random mass distribution is created and tested. Recently, the uncertainty

due to modeling error has received attention as this is crucial for model validation [11–19]. The

model uncertainty poses serious challenges as the parameters contributing to modeling errors

are not available a priori and therefore precludes the application of parametric approach to

address such issues.

In modelling complex engineering structures such as ships, submarines and helicopter, the

lack of complete knowledge of the system contributes to model uncertainty. The substructures

attached to the primary structures may contribute to the modeling uncertainty significantly

influencing the dynamics of the system in the mid- and high-frequency regimes. In many

cases, the dynamical characteristic of subsystems such the cargo, piping, fuel, control cables,

electronics and avionics systems in typical marine and aerospace vehicles may be known with

sufficient accuracy. Therefore, such systems may not be practicable to conventional finite

element modelling in a reliable manner. In general, such modeling uncertainty arising from

the subsystems may stem from, but not limited to: (a) incomplete and imprecise constitutive

and geometric properties, (b) the lack knowledge of the existence of the subsystems, (c)

imprecise locations of their attachment points with the primary structures and their coupling

characteristics, (d) incompatible physical laws and geometric scales which govern the dynamics

of the subsystems demanding multiphysics and multiscale modeling.

The dynamics of the subsystem may be adequately modelled by a set of added-masses

to investigate the low frequency (modal) response of the structures. In the mid-frequency

range however sprung-mass model of the subsystems is required for accurate estimation of

the frequency response functions, the latter being significant to capture the wave-propagation

effects. Adhikari and Sarkar [20] conducted an numerical investigation to study the effect of

model uncertainty emerging from a set of randomly distributed sprung-masses attached to

a homogeneous thin plate. In this paper the issue of modeling uncertainty is investigated

experimentally. The scarce experimental studies on random system conducted so far [21–23]

do not explicitly consider model-form uncertainty. This is perhaps the first serious attempt

to consider modeling uncertainty experimentally. The experiments reported here attempt to

simulate the influence of uncertain secondary systems on the dynamics of a thin plate (i.e. the
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primary structure). A cantilever steel plate with 10 spring-mass oscillators is considered. The

spatial attachment locations and the natural frequencies of the sprung-mass oscillators are

assumed to be random. The tests are closely controlled and the uncertainty can be considered

to be ‘known’ for all practical purposes. This allows one to model uncertainty, propagate it

through dynamical models and compare the results with this experimentally obtained data.

One hundred nominally identical dynamical systems are created and individually tested in the

Bristol Laboratory for Advanced Dynamic Engineering (BLADE). The model of the cantilever

plate and experimental setup are described in section 2. The experimental method to test one

hundred nominally identical structures are discussed in section 3. In section 4 the probabilistic

characteristics of the amplitude and phase of the measured frequency response functions are

discussed in the low, medium and high frequency ranges. In section 5 the experimental system

with random mass distribution is numerically simulated using the thin plate theory and Monte

Carlo simulation. In section 6 the mean and standard deviation of the amplitude and phase

of the experimentally measured frequency response functions are compared with Monte Carlo

simulation results. The key results and the contributions of this work are discussed in section 7.

The data presented here are available on the world wide web for research purposes. The web

address is http://engweb.swan.ac.uk/∼adhikaris/uq/. This data may be used as a benchmark

dataset to validate different uncertainty quantification, propagation and model validation

methods in structural dynamics and other theoretical developments.

2 System Model and Experimental Setup

The aim of this experiment is to simulate uncertain unmodelled dynamics. The uncertain

dynamics is realized by 10 spring-mass oscillators with randomly distributed stiffness proper-

ties attached at random locations. This test rig, like the previous experiment described in the

companion paper [1], has been designed for simplicity and ease of replication and modelling.

The overall arrangement of the test-rig is shown in Figure 1. rectangular steel plate with

uniform thickness is used for the experiment. The physical and geometrical properties of the

steel plate are shown in Table 1. The plate is clamped along one edge using a clamping device.

The clamping device is attached on the top of a heavy concrete block and the whole assembly

is placed on a steel table. The plate has a mass of approximately 12.47 kg and special care

has been taken to ensure its stability and to minimize vibration transmission. The plate is

‘divided’ into 375 elements (25 along the length and 15 along the width). Taking one corner of

the cantilevered edge as the origin, co-ordinates have been assigned to all of the nodes. Oscil-

lators and accelerometers are attached to these nodes. This approach allows easy correlation

to a finite element model, where the oscillators are attached and the measurements are made
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Plate Properties Numerical values

Length (Lx) 998 mm

Width (Ly) 530 mm

Thickness (th) 3.0 mm

Mass density (ρ) 7860 kg/m3

Young’s modulus (E) 2.0× 105 MPa

Poissons ratio (µ) 0.3

Total weight 12.47 kg
Table 1
Material and geometric properties of the cantilever plate considered for the experiment

Oscillator
Number

Spring stiffness
(×104 N/m)

Natural Frequency
(Hz)

1 1.6800 59.2060

2 0.9100 43.5744

3 1.7030 59.6099

4 2.4000 70.7647

5 1.5670 57.1801

6 2.2880 69.0938

7 1.7030 59.6099

8 2.2880 69.0938

9 2.1360 66.7592

10 1.9800 64.2752
Table 2
Stiffness of the springs and natural frequency of the oscillators used to simulate unmodelled dynamics
(the mass of the each oscillator is 121.4g).
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(a) Front view of the experimental setup

(b) Side view of the experimental setup

Fig. 1. The test rig for the cantilever beam plate.
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Fig. 2. Grid numbering strategy on the bottom surface of the plate to attach the oscillators.

Fig. 3. Details of a typical oscillator used to simulate unmodelled dynamics. Fixed mass (magnet)
2g, oscillatory mass (the nut) 121.4g. The oscillatory mass is about 1% of the total mass of the plate.
The spring stiffness varies between 1.5 and 2.4 ×104 N/m.
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Fig. 4. Attached oscillators at random locations. The spring stiffness varies so that the oscillator
frequencies are between 43 and 70 Hz.
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Fig. 5. All 100 samples of the locations of the 10 oscillators along the length of the beam. The sample
number is shown in the Z-axis. For each sample, the 10 oscillators are placed corresponding to the
dots in the XY plane and the FRFs are measured at the six point shown before.
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at the nodes of the model. The bottom surface of the plate is marked with the node numbers

so that the oscillators can be hung at the nodal locations. The grid numbering scheme is

shown Figure 2. This scheme also reduces the uncertainly arising from the measurement of

the locations of the oscillators. discrete random number generator is used to generate the

X and Y coordinates for the attachment of the oscillators. In total 10 oscillators are used to

simulate random unmodelled dynamics. The details of a typical oscillator is shown in Figure 3.

The springs are adhesively bonded to a magnet at the top and a mass at the bottom. The

magnet at the top of the assembly allows the oscillators to be easily attached to the bottom of

the plate. It should be noted that the mass of the magnets would have the ‘fixed mass effect’

considered in the previous case study on the beam. However, since the plate is much heavier

(≈12.5 kg) than the magnets , the effect of the fixed masses (20g in total) is negligible. The

stiffness values of the 10 springs used in the experiments are given in Table 2. This table also

shows the natural frequency of the individual oscillators. The oscillating mass of each of the 10

oscillators is 121.4g, and hence the total oscillator mass is 1.214 kg, which is 9.8% of the mass

of the plate. The springs are attached to the plate at the pre-generated nodal locations using

the small magnets located at the top the oscillator assembly. The small magnets (weighting

2g) are found to be strong enough to hold the 121.4g mass attached to the spring below over

the frequency range considered. A sample realization of the attached oscillators is shown in

Figure 4. ne hundred such realizations of the oscillators are created by hanging the oscillators

at random locations and individually tested in this experiment. The variation of the locations

of the 10 oscillators are shown in Figure 5.

3 Experimental Methodology

The 32 channel LMSTM system used in the beam experiment is again employed to perform

modal analysis [24–26]. A shaker was used to provide the impulse excitation for the same

reasons as the beam experiment (the make, model no., serial no. and sensitivity are given in

the previous section). The shaker generated impulses at a pulse increment of 20s and a pulse

width of 0.01s. Figure 6 shows the arrangement of the shaker. The shaker is placed so that it

impacts at the (4,6) node of the plate. The shaker is driven by a signal from a SimulinkTM and

dSpaceTM system via a power amplifier (TPO 25 AEI 00051).

In this experiment six accelerometers are used as the response sensors. The locations of

the six sensors are selected such that they cover a broad area of the plate. The locations of

the accelerometers are shown in Figure 7. The details of the accelerometers, including their

nodal locations, are shown in Table 3. Small holes are drilled into the plate and all of the six

accelerometers are attached by bolts through the holes.
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Fig. 6. The shaker used to provide an impulse excitation using a SimulinkTMand dSpaceTM. A hard
steel tip was used and the shaker was placed at node (4,6).

Fig. 7. The positions of the accelerometers on the plate.
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Model & Serial number Coordinates LMS Channel Sensitivity

333M07 SN 25948 Point 1: (4,6) 1 98.8 mV/g

333M07 SN 26254 Point 2: (6,11) 2 96.7 mV/g

333M07 SN 26018 Point 3: (11,3) 3 101.2 mV/g

333M07 SN 25942 Point 4: (14,14) 4 97.6 mV/g

333M07 SN 26280 Point 5: (18,2) 5 101.3 mV/g

333M07 SN 26016 Point 6: (21,10) 6 100.0 mV/g
Table 3
The details of the six accelerometers attached to the top of the plate.

The signal from the force transducer is amplified using a Kistler type 5134 amplifier

(with settings Gain: 100, Filter: 10K and Bias: Off) while the signals from the accelerometers

are directly input into the LMS system. For data acquisition and processing, LMS Test Lab

5.0 is used. In the Impact Scope, the bandwidth was set to 8192 Hz with 8192 spectral lines

(i.e., 1.00 Hz resolution). Five averages are taken for each FRF measurement. The steel tip

used in the experiment only gives clean data up to approximately 4500 Hz. As a result 4000

Hz was used as the upper limit of the frequency in the measured frequency response functions.

The data logged beyond 4000 Hz should be ignored for this experiment.

4 Results and Discussions

4.1 Amplitude spectra

In this paper we will discuss results corresponding to point 1 (the driving-point FRF) and

point 2 (a cross FRF) only. Results for the other points are not shown to save space but

can be obtained from the uploaded data file. Figure 8 shows the amplitude of the frequency

response function (FRF) at point 1 (see Table 3 for the location) of the plate without any

oscillators (the baseline model). In the same figure 100 samples of the amplitude of the FRF

are shown together with the ensemble mean, 5% and 95% probability lines. In figures 8(b)-

(d) we have separately shown the low, medium and high-frequency response, obtained by

zooming around the appropriate frequency ranges in Figure 8(a). There are of course no fixed

and definite boundaries between the low, medium and high-frequency ranges. Here we have

selected 0 − 1.0kHz as the low-frequency vibration, 1.0 − 2.5kHz as the medium-frequency

vibration and 2.5 − 4kHz as the high-frequency vibration. These frequency boundaries are

selected on the basis of the qualitative nature of the response and devised purely for the

presentation of the results. The experimental approach discussed here is independent on these

selections. The measured FRF data up to 4.0 KHz as shown here is significantly noise-free,
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 8. Experimentally measured amplitude of the driving-point FRF of the plate at point 1 (nodal
coordinate: (4,6)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean,
5% and 95% probability points are shown.

since the hard steel tip used was able to excite the whole frequency range. The experimental

data shown throughout the paper is the ‘raw data’ (that is, without any filtering) obtained

directly from the LMS system. The ensemble mean follows the result of the baseline system

closely except in the low frequency range. The relative variance of the amplitude of the FRF

remains more or less constant in the mid and high frequency range. Equivalent results for the

cross FRF at point 2 (see Table 3 for the locations) are shown in Figure 9. The general trend

of the results is similar to that of point 1 except that the response variability is slightly more.

Note that most of the variability in the FRFs is concentrated at the low frequency region.

This is because the frequency of the attached oscillators at random locations are below 70 Hz.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 9. Experimentally measured amplitude of the cross-FRF of the plate at point 2 (nodal coordinate:
(6,11)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.

Adhikari et al 14 10 June 2007



(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 10. Experimentally measured amplitude of the cross-FRF of the plate at point 3 (nodal coordi-
nate: (11,3)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5%
and 95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 11. Experimentally measured amplitude of the cross-FRF of the plate at point 4 (nodal coordi-
nate: (14,14)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5%
and 95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 12. Experimentally measured amplitude of the cross-FRF of the plate at point 5 (nodal coordi-
nate: (18,2)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5%
and 95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 13. Experimentally measured amplitude of the cross-FRF of the plate at point 6 (nodal coordi-
nate: (21,10)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5%
and 95% probability points are shown.
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(a) Phase across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 14. Experimentally measured phase of the driving-point FRF of the plate at point 1 (nodal
coordinate: (4,6)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean,
5% and 95% probability points are shown.
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4.2 Phase spectra

Figure 14 shows the phase of the frequency response function (FRF) at point 1 (the

driving-point FRF, see Table 3 for the location) of the plate without any oscillators (the

baseline model). In the same figure 100 samples of the phase of the FRF are shown together

with the ensemble mean, 5% and 95% probability lines. igures 14(b)-(d) show the phase in

low, medium and high-frequency separately, obtained by zooming around the appropriate

frequency ranges in Figure 14(a). The ensemble mean follows the result of the baseline system

closely except in the low frequency range. This is again due to the fact that the frequency of

the attached oscillators at random locations are below 70 Hz.

The relative variability of the phase of the FRF remains more or less constant in the

mid and high frequency ranges. Equivalent results for point 2 (a cross-FRF, see Table 3 for

the location) are shown in Figure 15. Because this is the phase of a cross-FRF, its general

characteristics is different from the driving-point FRF shown in Figure 14. The variability is

also observed to be slightly higher compared to the phase of the driving-point FRF.

5 Numerical Simulation

In this section we aim to numerically simulate the experimental system discussed in sec-

tion 2. The objective here is to see whether the pattern of uncertainty in the response observed

in the experiment can be observed using the standard Monte Carlo simulation approach of-

ten used in probabilistic mechanics. A steel cantilever plate with homogeneous geometric (i.e.

uniform thickness) and constitutive properties (i.e. uniform Young’s modulus and Poisson’s

ratio) is considered. The numerical values of the material properties are given in Table 1.

This uniform plate simulates the baseline system shown in Figure 1. The diagram of the

plate together with the numerical values assumed for the system parameters are shown in

Figure 20. The plate is excited by an unit harmonic force and the responses are calculated

at the points shown in the diagram. he input node corresponds to the location of the shake

shown in Figure 6 and the output nodes correspond to the locations of the accelerometers

shown in Figure 7. The baseline model is perturbed by a set of sprung-mass oscillators, each

having natural frequency according to Table 2 and attached randomly along the plate. The

one hundred sets of coordinates of the ten oscillators employed in the experiment (as shown

in Figure 5) is again used here.

In the numerical calculations 375 elements are used and the resulting finite element model

has 1200 degrees-of-freedom. Only first 720 modes are used in the calculation of the frequency

response functions. Figure 21 shows the mean and standard deviation of the natural frequen-

cies of the beam obtained using Monte Carlo simulation. rom Figure 21 observe that the
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 15. Experimentally measured phase of the cross-FRF of the plate at point 2 (nodal coordinate:
(6,11)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 16. Experimentally measured phase of the cross-FRF of the plate at point 3 (nodal coordinate:
(11,3)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 17. Experimentally measured phase of the cross-FRF of the plate at point 4 (nodal coordinate:
(14,14)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 18. Experimentally measured phase of the cross-FRF of the plate at point 5 (nodal coordinate:
(18,2)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.

Adhikari et al 24 10 June 2007



(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 19. Experimentally measured phase of the cross-FRF of the plate at point 6 (nodal coordinate:
(21,10)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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standard deviation of the natural frequencies are quite small compared to the mean values.

The slight variations of the natural frequencies at the lower frequencies correspond to the

natural frequencies of the attached oscillators. Natural frequencies and model shapes of the

baseline model together with the mean and standard deviation of the first six natural frequen-

cies are shown in Figure 22. ote that the natural frequencies of the baseline model is lower that

the mean natural frequencies of the plate with randomly placed oscillators. This is because if

the fact the baseline system has lower mass compared to the plate with oscillators.

5.1 Amplitude spectra

For the frequency response function calculation, a modal damping factor of 0.7% is assumed

for all of the modes. Figure 23 shows the amplitude of the frequency response function (FRF)

at point 1 (the driving-point FRF, see Table 3 for the location) of the plate without any

oscillators (the baseline model). In the same figure 100 samples of the amplitude of the FRF

are shown together with the ensemble mean, 5% and 95% probability lines. n figures 23(b)-(d)

we have separately shown the low, medium and high-frequency response, obtained by zooming

around the appropriate frequency ranges in Figure 23(a). The ensemble mean does not follow

the result of the baseline system closely in any frequency range. The relative variance of the

amplitude of the FRF remains more or less constant in the mid and high frequency range.

Equivalent results for the cross FRF at point 2 (see Table 3 for the locations) are shown in

Figure 24. he general statistical trend of the results is similar to that of point 1 except that

the response variability is slightly more. Significant variability in the FRFs can be seen at

the low frequency region. This is because the frequency of the attached oscillators at random

locations are below 70 Hz.

5.2 Phase spectra

Figure 29 shows the phase of the frequency response function (FRF) at point 1 (see Table 3

for the location) of the plate without any oscillators (the baseline model). In the same figure

100 samples of the phase of the FRF are shown together with the ensemble mean, 5% and

95% probability lines. igures 29(b)-(d) show the phase in low, medium and high-frequency

separately, obtained by zooming around the appropriate frequency ranges in Figure 29(a).

In general the ensemble mean does not follow the result of the baseline system. The relative

variability of the phase of the FRF remains more or less constant in the mid and high frequency

ranges. Equivalent results for point 2 (a cross-FRF, see Table 3 for the location) are shown

in Figure 15. Because this is the phase of a cross-FRF, its general characteristics is different

from the driving-point FRF shown in Figure 14. The variability is also observed to be slightly
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 23. Numerically calculated amplitude of the driving-point FRF of the plate at point 1 (nodal
coordinate: (4,6)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean,
5% and 95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 24. Numerically calculated amplitude of the cross-FRF of the plate at point 2 (nodal coordinate:
(6,11)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 25. Numerically calculated amplitude of the cross-FRF of the plate at point 3 (nodal coordinate:
(11,3)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 26. Numerically calculated amplitude of the cross-FRF of the plate at point 4 (nodal coordinate:
(14,14)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 27. Numerically calculated amplitude of the cross-FRF of the plate at point 5 (nodal coordinate:
(18,2)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 28. Numerically calculated amplitude of the cross-FRF of the plate at point 6 (nodal coordinate:
(21,10)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 29. Numerically calculated phase of the driving-point FRF of the plate at point 1 (nodal coor-
dinate: (4,6)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5%
and 95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 30. Numerically calculated phase of the cross-FRF of the plate at point 2 (nodal coordinate:
(6,11)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 31. Numerically calculated phase of the cross-FRF of the plate at point 3 (nodal coordinate:
(11,3)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 32. Numerically calculated phase of the cross-FRF of the plate at point 4 (nodal coordinate:
(14,14)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 33. Numerically calculated phase of the cross-FRF of the plate at point 5 (nodal coordinate:
(18,2)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 34. Numerically calculated phase of the cross-FRF of the plate at point 6 (nodal coordinate:
(21,10)) with 10 randomly placed oscillators. 100 FRFs, together with the ensemble mean, 5% and
95% probability points are shown.
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higher compared to the phase of the driving-point FRF. Overall, the numerical results show

reasonably similar trend to the experiential results.

6 Comparisons between numerical and experimental results

6.1 Amplitude spectra

It is useful to compare the experimental results with the Monte Carlo simulation results.

Figure 35 compares the ensemble mean and standard deviation of the amplitude of the driving-

point frequency response function (FRF) at point 1 obtained from the experiment and Monte

Carlo simulation. Figures 35(b)-(d) show the low, medium and high-frequency response sep-

arately, obtained by zooming around the appropriate frequency ranges in Figure 35(a). To

the best of the authors knowledge, this is perhaps the first time where direct comparison be-

tween experimental and analytical (simulation) results for stochastic dynamical systems have

been reported. The standard deviation of the amplitude of the FRF reaches a peak at the

system natural frequencies, which is also predicted by the numerical simulation. Qualitatively

the simulation results agree well with the experimental results. The main reason for the dis-

crepancies, especially in the low frequency regions, is probably due to the incorrect value of

the damping factors. In the simulation study a constant damping factor of 0.7% is assumed

for all of the modes. Ideally one should measure modal damping factors from experimental

measurements for all of the samples and for as many modes as possible and perhaps take an

average across the samples for every mode. quivalent comparisons for point 2 (a cross FRF)

are shown in Figure 36. For both points, the experimental mean and standard deviation in the

low frequency range is quite high compared to numerical results. This can again be attributed

to the wrong values of modal damping factors in the analytical model since the pattern of

the peaks are strikingly similar but they are separated in ‘height’. This is a clear indication

that the damping values are incorrect in the simulation model. Therefore, one of the key out-

comes of this experimental study is that wrong values of the modal damping factors can lead

to significant errors in the response variance prediction even if everything else is performed

correctly.

6.2 Phase spectra

Figure 41 compares the ensemble mean and standard deviation of the phase of the driving-

point frequency response function at point 1 obtained from the experiment and Monte Carlo

simulation. Figures 41(b)-(d) show the low, medium and high-frequency response separately,

obtained by zooming around the appropriate frequency ranges in Figure 41(a). Except in

Adhikari et al 41 10 June 2007



0 500 1000 1500 2000 2500 3000 3500 4000
−40

−30

−20

−10

0

10

20

30

40

50

60

Frequency (Hz)

R
el

at
iv

e 
st

d 
of

 H (2
,1

) (
ω

)

 

 

Ensemble mean: Direct simulation

Ensemble mean: Experiment

Standard deviation: Direct simulation

Standard deviation: Experiment

(a) Response across the frequency range
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(b) Low-frequency response
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(c) Medium-frequency response
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(d) High-frequency response

Fig. 35. Comparison of the mean and standard deviation of the amplitude of the driving-point FRF
of the plate at point 1 (nodal coordinate: (4,6)) with 10 randomly placed oscillators. 100 FRFs,
together with the ensemble mean, 5% and 95% probability points are shown.
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(a) Response across the frequency range
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(b) Low-frequency response
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(c) Medium-frequency response
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(d) High-frequency response

Fig. 36. Comparison of the mean and standard deviation of the amplitude of the cross-FRF of the
plate at point 2 (nodal coordinate: (6,11)) with 10 randomly placed oscillators. 100 FRFs, together
with the ensemble mean, 5% and 95% probability points are shown.
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(a) Response across the frequency range
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(b) Low-frequency response
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(c) Medium-frequency response
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(d) High-frequency response

Fig. 37. Comparison of the mean and standard deviation of the amplitude of the cross-FRF of the
plate at point 3 (nodal coordinate: (11,3)) with 10 randomly placed oscillators. 100 FRFs, together
with the ensemble mean, 5% and 95% probability points are shown.
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(a) Response across the frequency range
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(b) Low-frequency response
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(c) Medium-frequency response
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(d) High-frequency response

Fig. 38. Comparison of the mean and standard deviation of the amplitude of the cross-FRF of the
plate at point 4 (nodal coordinate: (14,14)) with 10 randomly placed oscillators. 100 FRFs, together
with the ensemble mean, 5% and 95% probability points are shown.
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(a) Response across the frequency range
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(b) Low-frequency response
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(c) Medium-frequency response
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(d) High-frequency response

Fig. 39. Comparison of the mean and standard deviation of the amplitude of the cross-FRF of the
plate at point 5 (nodal coordinate: (18,2)) with 10 randomly placed oscillators. 100 FRFs, together
with the ensemble mean, 5% and 95% probability points are shown.
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(a) Response across the frequency range
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(b) Low-frequency response
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(c) Medium-frequency response
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(d) High-frequency response

Fig. 40. Comparison of the mean and standard deviation of the amplitude of the cross-FRF of the
plate at point 6 (nodal coordinate: (21,10)) with 10 randomly placed oscillators. 100 FRFs, together
with the ensemble mean, 5% and 95% probability points are shown.
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(a) Response across the frequency range
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(b) Low-frequency response
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(c) Medium-frequency response

2500 3000 3500 4000
−4

−3

−2

−1

0

1

2

3

4

Frequency (Hz)

P
ha

se
 o

f H
(2

,1
) (

ω
)

 

 

Ensemble mean: Direct simulation

Ensemble mean: Experiment

Standard deviation: Direct simulation

Standard deviation: Experiment

(d) High-frequency response

Fig. 41. Comparison of the mean and standard deviation of the phase of the driving-point FRF of the
plate at point 1 (nodal coordinate: (4,6)) with 10 randomly placed oscillators. 100 FRFs, together
with the ensemble mean, 5% and 95% probability points are shown.
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(a) Response across the frequency range
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(b) Low-frequency response
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(c) Medium-frequency response
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(d) High-frequency response

Fig. 42. Comparison of the mean and standard deviation of the phase of the cross-FRF of the plate
at point 2 (nodal coordinate: (6,11)) with 10 randomly placed oscillators. 100 FRFs, together with
the ensemble mean, 5% and 95% probability points are shown.
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(a) Response across the frequency range
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(b) Low-frequency response
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(c) Medium-frequency response
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(d) High-frequency response

Fig. 43. Comparison of the mean and standard deviation of the phase of the cross-FRF of the plate
at point 3 (nodal coordinate: (11,3)) with 10 randomly placed oscillators. 100 FRFs, together with
the ensemble mean, 5% and 95% probability points are shown.
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(a) Response across the frequency range
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(b) Low-frequency response
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(c) Medium-frequency response
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Fig. 44. Comparison of the mean and standard deviation of the phase of the FRF of the plate at
point 4 (nodal coordinate: (14,14)) with 10 randomly placed oscillators. 100 FRFs, together with the
ensemble mean, 5% and 95% probability points are shown.
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(d) High-frequency response

Fig. 45. Comparison of the mean and standard deviation of the phase of the FRF of the plate at
point 5 (nodal coordinate: (18,2)) with 10 randomly placed oscillators. 100 FRFs, together with the
ensemble mean, 5% and 95% probability points are shown.
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Fig. 46. Comparison of the mean and standard deviation of the phase of the FRF of the plate at
point 6 (nodal coordinate: (21,10)) with 10 randomly placed oscillators. 100 FRFs, together with the
ensemble mean, 5% and 95% probability points are shown.
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the low frequency range, the standard deviation of the phase of the FRF is very small and

the experimental and simulation results agree well. The patterns of the mean results from

the experiment and simulation is very similar. The discrepancy is again primarily due to the

incorrect damping model in the numerical results. quivalent comparisons for point 2 (a cross

FRF) are shown in Figure 42. The experimental mean in the mid and high frequency range

is quite different compared to the numerical results. This is perhaps again due to the wrong

damping model and it is well known that damping has significant affect on the phase of the

frequency response functions.

7 Conclusions

An experiment on a cantilever plate that may be used to study methods to quantify

uncertainty in the dynamics of structures is described. The system is easy to model and the

results of an one hundred sample experiment with randomly placed oscillators are described

in this paper. The randomly located oscillators with randomly varying stiffness is designed

to simulate model uncertainty. Test results from one hundred nominally identical systems

are presented. Special measures have been taken so that the uncertainty in the response only

arises from the randomness in the oscillator locations and the experiments are repeatable with

minimum changes. Such novel measures include (a) the use of a shaker as an impact hammer

to ensure a consistent force and location for all of the 101 tests, (b) the use of a hard steel

tip to obtain relatively noise-free data up to 4 KHz, (c) the employment of a grid system and

nodal points to minimize the error in measuring the oscillator and hammer locations, and (d)

the use of magnets to attach the oscillators. The statistics of the frequency response function

are measured at six points (only two are shown in the paper, but others can be obtained from

the uploaded data files) on the plate for low, medium and high frequency ranges. There is more

variability in the FRF at the low frequency range compared to the high frequency range. This

is because of the fact that the natural frequencies of the randomly placed oscillators are quite

low. The experimental results are directly compared with numerical Monte Carlo simulation.

A finite element model with simple thin plate elements is used in the analytical work. The

pattern of the response mean and standard deviation obtained in the experimental analysis is

predicted. This is perhaps the first time where such a direct comparison between experimental

and analytical (simulation) results for a stochastic dynamical system with model uncertainty

have been reported in stochastic mechanics literature. The discrepancies between the two

approaches are attributed to incorrect values for damping used in the numerical model.

This data may be used for the model validation and uncertainty quantification of dynamical

systems with nonparametric uncertainty. Of course one hundred samples are not enough for a
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reliable statistical analysis. But to the best of the authors knowledge, this is perhaps the most

comprehensive set of experimentally measured response data available for dynamical systems

with model uncertainty to date.
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