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Introduction

Equation of motion of viscously damped
systems:

Mÿ(t) + Cẏ(t) + Ky(t) = f(t)

Proportional damping (Rayleigh 1877)

C = α1M + α2K

Classical normal modes
Simplifies analysis methods
Identification of damping becomes easier
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Models of damping

Non-proportional viscous damping

Non-viscous damping models: fractional
derivative model, GHM model

Non-linear damping models

In general, the use of these damping models will re-

sult in complex modes
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Complex modes and damping

If natural frequencies (Ω ∈ R
n×n), damping ratios

(ζ ∈ R
n×n) and complex modes (Z ∈ R

m×n) are
known, then the damping matrix can be identified a:

U = ℜ (Z) , V = ℑ (Z)

B = U+V

C′ =
[
Ω2B − BΩ2

]
Ω−1 + ζ

C = U+T

C′U+

aAdhikari and Woodhouse, J.of Sound & Vibration, 243[1] (2001) 43-61
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Difficulties with complex modes

the expected ‘shapes’ of complex modes are
not clear

(complex) scaling of complex modes can
change their geometric appearances

the imaginary parts of the complex modes are
usually very small compared to the real parts –
makes it difficult to reliably extract complex
modes
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Difficulties with complex modes

the phases of complex modes are highly
sensitive to experimental errors, ambient
conditions and measurement noise and often
not repeatable in a satisfactory manner
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Difficulties with complex modes

Damped free-free beam:
L = 1m, width = 39.0 mm
thickness = 5.93 mm

Generalized Proportional Damping – p.8/29



IMAC XXIII

Difficulties with complex modes

0 0.5 1
−0.01

−0.005

0

0.005

0.01

 ℑ  (u
1
)

0 0.5 1
−0.01

−0.005

0

0.005

0.01

 ℑ  (u
2
)

0 0.5 1
−0.01

−0.005

0

0.005

0.01

 ℑ  (u
3
)

0 0.5 1
−0.01

−0.005

0

0.005

0.01

 ℑ  (u
4
)

0 0.5 1
−0.01

−0.005

0

0.005

0.01

 ℑ  (u
5
)

0 0.5 1
−0.01

−0.005

0

0.005

0.01

 ℑ  (u
6
)

0 0.5 1
−0.01

−0.005

0

0.005

0.01

 ℑ  (u
7
)

0 0.5 1
−0.01

−0.005

0

0.005

0.01

 ℑ  (u
8
)

0 0.5 1
−0.01

−0.005

0

0.005

0.01

 ℑ  (u
9
)

0 0.5 1
−0.01

−0.005

0

0.005

0.01

 ℑ  (u
10

)

0 0.5 1

−0.02

−0.01

0

0.01

0.02

 ℑ  (u
11

)

set1
set2
set3

Imaginary parts of the identified complex modes

Generalized Proportional Damping – p.9/29



IMAC XXIII

Proportional damping

Avoids most of the problems associated with
complex modes

Can accurately reproduce transfer functions for
systems with light damping
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Transfer function
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Limitations of proportional
damping

The modal damping factors:

ζj =
1

2

(
α1

ωj
+ α2ωj

)

Not all forms of variation can be captured

Generalized Proportional Damping – p.12/29



IMAC XXIII

Damping factors
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Conditions for proportional
damping

Theorem 1 A viscously damped linear system can
possess classical normal modes if and only if at
least one of the following conditions is satisfied:
(a) KM−1C = CM−1K, (b) MK−1C = CK−1M, (c)
MC−1K = KC−1M.

This can be easily proved by following Caughey and
O’Kelly’s (1965) approach and interchanging M, K
and C successively.
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Caughey series

Caughey series:

C = M

N−1∑

j=0

αj

(
M−1K

)j

The modal damping factors:

ζj =
1

2

(
α1

ωj
+ α2ωj + α3ω

3
j + · · ·

)

More general than Rayleigh’s version of
proportional damping
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Generalized proportional
damping

Premultiply condition (a) of the theorem by M−1:
(
M−1K

) (
M−1C

)
=

(
M−1C

) (
M−1K

)

Since M−1K and M−1C are commutative
matrices

M−1C = f1(M
−1K)

Therefore, we can express the damping matrix
as

C = Mf1(M
−1K)
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Generalized proportional
damping

Premultiply condition (b) of the theorem by K−1:
(
K−1M

) (
K−1C

)
=

(
K−1C

) (
K−1M

)

Since K−1M and K−1C are commutative
matrices

K−1C = f2(K
−1M)

Therefore, we can express the damping matrix
as

C = Kf1(K
−1M)
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Generalized proportional
damping

Combining the previous two cases

C = M β1

(
M−1K

)
+ K β2

(
K−1M

)

Similarly, postmultiplying condition (a) of
Theorem 1 by M−1 and (b) by K−1 we have

C = β3

(
KM−1

)
M + β4

(
MK−1

)
K

Special case: βi(•) = αiI → Rayleigh damping.
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Generalized proportional
damping

Theorem 2 A viscously damped positive definite
linear system possesses classical normal modes if
and only if C can be represented by
(a) C = M β1

(
M−1K

)
+ K β2

(
K−1M

)
, or

(b) C = β3

(
KM−1

)
M + β4

(
MK−1

)
K

for any βi(•), i = 1, · · · , 4.
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Example 1

Equation of motion:

Mq̈+

[
Me

−

�

M
−1

K

�2

/2
sinh(K−1M ln(M−1K)2/3)

+ K cos2(K−1M)
4

√
K−1M tan−1

√
M−1K

π

]
q̇ + Kq = 0

It can be shown that the system has real modes and

2ξjωj = e−ω4

j /2 sinh

(
1

ω2
j

ln
4

3
ωj

)
+ ω2

j cos2

(
1

ω2
j

)
1

√
ωj

tan−1 ωj

π
.
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Damping identification method

To simplify the identification procedure, express the
damping matrix by

C = Mf
(
M−1K

)

Using this simplified expression, the modal damping
factors can be obtained as

2ζjωj = f
(
ω2

j

)

or ζj =
1

2ωj
f

(
ω2

j

)
= f̂(ωj) (say)
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Damping identification method

The function f̂(•) can be obtained by fitting a
continuous function representing the variation
of the measured modal damping factors with
respect to the frequency

With the fitted function f̂(•), the damping matrix
can be identified as

2ζjωj = 2ωj f̂(ωj)

or Ĉ = 2M
√

M−1K f̂
(√

M−1K
)
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Example 2

Consider a 3DOF system with mass and stiffness
matrices

M =




1.0 1.0 1.0

1.0 2.0 2.0

1.0 2.0 3.0



 , K =




2 −1 0.5

−1 1.2 0.4

0.5 0.4 1.8
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Example 2

0 1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Frequency (ω), rad/sec

M
od

al
 d

am
pi

ng
 fa

ct
or

original
recalculated

Damping factors

Generalized Proportional Damping – p.24/29



IMAC XXIII

Example 2

Here this (continuous) curve was simulated using
the equation

f̂(ω) =
1

15

(
e−2.0ω − e−3.5ω

) (
1 + 1.25 sin

ω

7π

) (
1 + 0.75ω3

From the above equation, the modal damping
factors in terms of the discrete natural frequencies,
can be obtained by

2ξjωj =
2ωj

15

(
e−2.0ωj − e−3.5ωj

) (
1 + 1.25 sin

ωj

7π

) (
1 + 0.75ω3

j

)
.
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Example 2

To obtain the damping matrix, consider the
preceding equation as a function of ω2

j and replace
ω2

j by M−1K and any constant terms by that
constant times I. Therefore:

C =M
2

15

√
M−1K

[
e−2.0

√
M

−1

K − e−3.5

√
M

−1

K
]

×
[
I + 1.25 sin

(
1

7π

√
M−1K

)] [
I + 0.75(M−1K)3/

Generalized Proportional Damping – p.26/29



IMAC XXIII

Summary

1. Measure a suitable transfer function Hij(ω)

2. Obtain the undamped natural frequencies ωj

and modal damping factors ζj

3. Fit a function ζ = f̂(ω) which represents the
variation of ζj with respect to ωj for the range of
frequency considered in the study

4. Calculate the matrix T =
√

M−1K

5. Obtain the damping matrix using
Ĉ = 2 M T f̂ (T)
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Conclusions(1)

Rayleigh s proportional damping is generalized

The generalized proportional damping
expresses the damping matrix in terms of any
non-linear function involving specially arranged
mass and stiffness matrices so that the system
still posses classical normal modes

This enables one to model practically any type
of variations in the modal damping factors with
respect to the frequency
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Conclusions(2)

Once a scalar function is fitted to model such
variations, the damping matrix can be identified
very easily using the proposed method

The method is very simple and requires the
measurement of damping factors and natural
frequencies only (that is, the measurements of
the mode shapes are not necessary)

The proposed method is applicable to any
linear structures as long as one have validated
mass and stiffness matrix models which can
predict the natural frequencies accurately and
modes are not significantly complex
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