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Preface

Among the various ingredients of structural dynamics, damping remains one of the least understood topics. The
main reason is that unlike the stiffness and inertia forces, the damping forces cannot be always obtained from ‘first
principles’. The past two decades have seen significant developments in the modelling and analysis of damping
in the context of engineering dynamic systems. Developments in composite materials including nanocomposites
and their applications in advanced structures, such as new generation of aircrafts and large wind-turbines, have
lead to the need for understanding damping in a superior manner. Additionally, the rise of vibration energy har-
vesting technology using piezoelectric and electromagnetic principles further enhanced the importance of looking
at damping more rigorously. The aim of this book is to systematically present the latest developments in the area
modelling and analysis of damping in the context of general linear dynamic systems with multiple degrees of free-
dom. The focus has been on the mathematical and computational aspects. This book will be relevant to aerospace,
mechanical and civil engineering disciplines and various sub-disciplines within them. The intended readers of this
book include senior undergraduate students and graduate students doing projects or doctoral research in the filed of
damped vibration. Researchers, Professors and and practicing engineers working in the field of advanced vibration
will find this book useful. This book will also be useful for researchers working in the fields of aeroelasticity and
hydroelasticity, where complex eigenvalue problems routinely arise due to fluid-structure interactions.

There are some excellent books which already exist in the filed of damped vibration. The book by Nashif et
al. [NAS 85] covers various material damping models and their applications in the design and analysis of dynamic
systems. A valuable reference on dynamic analysis of damped structures is the book by Sun and Lu [SUN 95].
The book by Beards [BEA 96] takes a pedagogical approach towards structural vibration of damped systems.
The handbook by Jones [JON 01] focuses on viscoelastic damping and analysis of structures with such damping
models. These books represent the sate-of-the art at the time of their publications. Since these publications
significant research works have gone into the dynamics of damped systems. The aim of this book is to cover some
of these latest developments. The attention is mainly limited to theoretical and computational aspects, although
some reference to experimental works are given.

One of the key feature of this book is the consideration of general nonviscous damping and how such general
models can be seamlessly integrated into the framework of conventional structural dynamic analysis. New re-
sults are illustrated by numerical examples and wherever possible connections were made to well-known concepts
of viscously damped systems. The book is divided into two volumes. The first volume deals with analysis of
linear systems with general damping models. The second volume deals with identification and quantification of
damping. There are ten chapters and one appendix in the book - covering analysis and identification of dynamic
systems with viscous and nonviscous damping. Chapter 1 gives an introduction to the various damping models.
Dynamics of viscously damped systems are discussed in chapter 2. Chapter 3 considers dynamics of nonviscously
damped single-degree-of-freedom systems in details. Chapter 4 discusses nonviscously damped multiple-degree-
of-freedom systems. Linear systems with general nonviscous damping are studied in Chapter 5. Chapter 6 pro-
poses reduced computational methods for damped systems. Chapter 7 describes parametric sensitivity of damped
systems. Chapter 8 takes up the problem of identification of viscous damping. The identification of nonviscous
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damping is detailed in Chapter 9. Chapter 10 gives some tools for the quantification of damping. A method to deal
with general asymmetric systems is described in the appendix.

This book is a result of last 15 years of research and teaching in the area of damped vibration problems. Initial
chapters started taking shape when I offered a course on advanced vibration at the University of Bristol. The later
chapters originated from research works with numerous colleagues, students, collaborators and mentors. I am
deeply indebted to all of them for numerous stimulating scientific discussions, exchanges of ideas and in many
occasions direct contributions towards the intellectual content of the book. I am grateful to my teachers Professor
C. S. Manohar (Indian Institute of Science, Bangalore), Professor R. S. Langley (University of Cambridge) and in
particular Professor J. Woodhouse (University of Cambridge), who was heavily involved with the works reported
in chapters 8-10. I am very thankful to my colleague Professor M. I. Friswell with whom I have a long-standing
collaboration. Some joint works are directly related to the content of this book (chapter 7 in particular). I would
also like to thank Professor D. J. Inman (University of Michigan) for various scientific discussions during his visits
to Swansea. I am thankful to Professor A. Sarkar (Carleton University) and his doctoral student M. Khalil for joint
research works. I am deeply grateful to Dr A. S. Phani (University of British Columbia) for various discussions
related to damping identification and contributions towards chapters 2, 5 and 8. Particular thanks to Dr N. Wagner
(Intes GmbH, Stuttgart) for joint works on nonviscously damped systems and contributions in chapter 4. I am
also grateful to Professor F. Papai for involving me on research works on damping identification. My former PhD
students B Pascual (contributed in chapter 6), J. L. du Bois, F. A. Diaz De la O deserves particular thanks for
various contributions throughout their time with me ad putting up with my busy schedules. I am grateful to Dr Y.
Lei (University of Defence Technology, Changsha) for carrying out joint research with me on nonviscously damped
continuous systems. I am grateful to Professor A. W. Lees (Swansea University), Professor N. Lieven, Professor
F. Scarpa (University of Bristol), Professor D. J. Wagg (University of Sheffield), Professor S. Narayanan (IIT
Madras), Professor G. Litak (Lublin University), E. Jacquelin (Université Lyon), Dr A. Palmeri (Loughborough
University), Professor S. Bhattacharya (University of Surrey), Dr S. F. Ali (IIT Madras), Dr R. Chowdhury (IIT
Roorkee), Dr P. Duffour (University College London) and Dr P. Higino, Dr G. Caprio & Dr A. Prado (Embraer
Aircraft) for their intellectual contributions and discussions at different times. Beside the names taken here, I am
thankful to many colleagues, fellow researchers and students working in this field of research around the world,
whose name cannot be listed here for page limitations. The lack of explicit mentions by no means implies that
their contributions are any less. The opinions presented in the book are entirely mine, and none of my colleagues,
students, collaborators and mentors has any responsibility for any shortcomings.

I have been fortunate to receive grants from various companies, charities and government organisations includ-
ing an Advanced Research Fellowship from UK Engineering and Physical Sciences Research Council (EPSRC),
the Wolfson research merit award from The Royal Society and the Philip Leverhulme Prize from The Leverhulme
Trust. Without these finding it would be impossible to conduct the works leading to this book. Finally I want thank
my colleagues at the College of Engineering in Swansea University. Their support proved to be a key factor in
materialising the idea of writing this book.

Last, but by no means least, I wish to thank my wife Sonia and my parents for their constant support, encour-
agements and putting up with my ever so increasing long periods of ‘non-engagement’ with them.

Sondipon Adhikari
August, 2013, Swansea, UK



Nomenclature

C ′
jj diagonal element of the modal damping matrix

α
(j)
k terms in the expansion of approximate complex modes
α1, α2 proportional damping constants
αj coefficients in Caughey series, j = 0, 1, 2 · · ·
0j a vector of j zeros
A state-space system matrix
aj a coefficient vector for the expansion of j-th complex mode
α a vector containing the constants in Caughey series
h̄(iω) frequency response function of a SDOF system
B state-space system matrix
bj a vector for the expansion of j-th complex mode
f̄(s) forcing vector in the Laplace domain
f̄
′
(s) modal forcing function in the Laplace domain

p̄(s) effective forcing vector in the Laplace domain
q̄(s) response vector in the Laplace domain
ū(s) Laplace transform of the state-vector of the first-order system
ȳ(s) modal coordinates in the Laplace domain
ȳk Laplace transform of the internal variable yk(t)
R+ positive real line
C viscous damping matrix
C′ modal damping matrix
C0 viscous damping matrix (with a nonviscous model)
Ck coefficient matrices in the exponential model for k = 0, ..., n, where n is the number of kernels
G(t) nonviscous damping function matrix in the time domain
∆K error in the stiffness matrix
∆M error in the mass matrix
β nonviscous damping factor
βc critical value of β for oscillatory motion, βc = 1

3
√
3

βi(•) proportional damping functions (of a matrix)
βk(s) Coefficients in the state-space modal expansion
βmU the value of β above which the frequency response function always has a maximum
F linear matrix pencil with time step in state-space, F = B − h

2 A
F1,F2 linear matrix pencils with time step in the configuration space
Fj Regular linear matrix pencil for the j-th mode
f′(t) forcing function in the modal coordinates
f(t) forcing function
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G(s) nonviscous damping function matrix in the Laplace domain
G0 the matrix G(s) at s→ 0

G∞ the matrix G(s) at s→ ∞
H(s) frequency response function matrix
ûj Real part of ẑj
v̂j Imaginary part of ẑj
ẑj j-th measured complex mode
I identity matrix
K stiffness matrix
M mass matrix
Oij a null matrix of dimension i× j

Ω diagonal matrix containing the natural frequencies
p parameter vector (in chapter 1)
Pj a diagonal matrix for the expansion of j-th complex mode
ϕj eigenvectors in the state-space
ψj left eigenvectors in the state-space
q(t) displacement response in the time-domain
q0 vector of initial displacements
Qj an off-diagonal matrix for the expansion of j-th complex mode
r(t) forcing function in the state-space
Rk rectangular transformation matrices (in ??)
Rk residue matrix associated with pole sk
S a diagonal matrix containing eigenvalues sj
T a temporary matrix, T =

√
M−1K (chapter 2)

Tk Moore-Penrose generalised inverse of Rk

Tk a transformation matrix for the optimal normalisation of the k-th complex mode
Θ Normalisation matrix
u(t) the state-vector of the first-order system
u0 vector of initial conditions in the state-space
uj displacement at the time step j
v(t) velocity vector v(t) = q̇(t)
vj a vector of the j-modal derivative in Nelson’s methods (in chapter 1)
vj velocity at the time step j
εj Error vector associated with j-th complex mode
φk(s) eigenvectors of the dynamic stiffness matrix
W coefficient matrix associated with the constants in Caughey series
X matrix containing the undamped normal modes xj
xj undamped eigenvectors, j = 1, 2, · · · , N
y(t) modal coordinate vector (in ??)
yk(t) vector of internal variables, k = 1, 2, · · ·n
yk,j internal variable yk at the time step j
Z matrix containing the complex eigenvectors zj
zj complex eigenvectors in the configuration space
ζ diagonal matrix containing the modal damping factors
ζv a vector containing the modal damping factors
χ merit function of a complex mode for optimal normalisation
χR, χI merit functions for real and imaginary parts of a complex mode
∆ perturbation in the real eigenvalues
δ perturbation in complex conjugate eigenvalues
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q̇0 initial velocity (SDOF systems)
ϵ small error
η ratio between the real and imaginary parts of a complex mode
F dissipation function
γ Non-dimensional characteristic time constant
γj complex mode normalisation constant
γR, γI weights for the normalisation of the real and imaginary parts of a complex mode
θ̂(ω) Frequency dependent estimated characteristic time constant
θ̂j Estimated characteristic time constant for j-th mode
t̂ an arbitrary independent time variable
κj real part of the complex optimal normalisation constant for the j-th mode
λ complex eigenvalue corresponding to the oscillating mode (in ??)
λj complex frequencies MDOF systems
Mr moment of the damping function
D dissipation energy
G(t) nonviscous damping kernel function in a SDOF system
T kinetic energy
U potential energy
µ relaxation parameter
µk relaxation parameters associated with coefficient matrix Ck in the exponential nonviscous damping

model
ν real eigenvalue corresponding to the overdamped mode
νk(s) eigenvalues of the dynamic stiffness matrix
ω driving frequency
ωd damped natural frequency of SDOF systems
ωj undamped natural frequencies of MDOF systems, j = 1, 2, · · · , N
ωn undamped natural frequency of SDOF systems
ωmax frequency corresponding to the maximum amplitude of the response function
ωdj damped natural frequency of MDOF systems
ρ mass density
i unit imaginary number, i =

√
−1

τ dummy time variable
θj characteristic time constant for j-th nonviscous model
f̃(t) forcing function in the modal domain
ω̃ normalised frequency ω/ωn

ςj imaginary part of the complex optimal normalisation constant for the j-th mode
ϑ phase angle of the response of SDOF systems
ϑj phase angle of the modal response
ψ a trail complex eigenvector (in ??)
Â asymmetric state-space system matrix
Ĉ fitted damping matrix
f̂(ωj) fitted generalised proportional damping function (in chapter 2)
Ã state-space system matrix for rank deficient systems
B̃ state-space system matrix for rank deficient systems
ĩr integration of the forcing function in the state-space for rank deficient systems
ĩr integration of the forcing function in the state-space
Φ̃ matrix containing the state-space eigenvectors for rank deficient systems
ϕ̃j eigenvectors in the state-space for rank deficient systems
r̃(t) forcing function in the state-space for rank deficient systems



xiv Dynamic Analysis with Generalised Damping Models

ũ(t) the state vector for rank deficient systems
ỹk(t) vector of internal variables for rank deficient systems, k = 1, 2, · · ·n
ỹk,j internal variable yk at the time step j for rank deficient systems
ỹyykj

jth eigenvector corresponding to the k-th the internal variable for rank deficient systems
ξ a function of ζ defined in equation [??]
ζ viscous damping factor
ζc critical value of ζ for oscillatory motion, ζc = 4

3
√
3

ζj modal damping factors
ζL lower critical damping factor
ζn equivalent viscous damping factor
ζU upper critical damping factor
ζmL the value of ζ below which the frequency response function always has a maximum
ak, bk nonviscous damping parameters in the exponential model
B response amplitude of SDOF systems
Bj modal response amplitude
c viscous damping constant of a SDOF system
ck coefficients of exponential damping in a SDOF system
ccr critical damping factor
dj a constant of the j-modal derivative in Nelson’s methods
E Young’s modulus
f(t) forcing function (SDOF systems)
fd(t) nonviscous damping force
G(iω) non-dimensional frequency response function
G(s) nonviscous damping kernel function in the Laplace domain (SDOF systems)
g(i) scalar damping functions, i = 1, 2, · · ·
h constant time step
h(t) impulse response function of SDOF systems
h(t) impulse response function
Ik non-proportionally indices, k1 = 1, 2, 3, 4

k spring stiffness of a SDOF system
L length of the rod
le length of an element
m dimension of the state-space for nonviscously damped MDOF systems
m mass of a SDOF system
N number of degrees of freedom
n number of exponential kernels
nd number of divisions in the time axis
p any element in the parameter vector p (in chapter 1)
q(t) displacement in the time domain
q0 initial displacement (SDOF systems)
Qnck non-conservative forces
R(x) Rayleigh quotient for a trail vector x
R1, R2, R3 three new Rayleigh quotients
rj normalised eigenvalues of nonviscously damped SDOF systems (in ??)
rk rank of Ck matrices
s Laplace domain parameter
sj eigenvalues of dynamic systems
t time
Tn natural time period of an undamped SDOF system
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Tmin Minimum time period for the system
varrhoj complex optimal normalisation constant for the j-th mode
x normalised frequency-squared, x = ω2/ω2

n (in ??)
yj modal coordinates (in ??)
f̄(s) forcing function in the Laplace domain
q̄(s) displacement in the Laplace domain
Û Matrix containing ûj

V̂ Matrix containing v̂j

Φ matrix containing the eigenvectors ϕj

q̇0 vector of initial velocities
Fi(•, •) nonviscous proportional damping functions (of a matrix)
YYY k a matrix of internal eigenvectors
yyykj jth eigenvector corresponding to the k-th the internal variable
PSD Power spectral density
0 a vector of zeros
L Lagrangian (in ??)
δ(t) Dirac-delta function
δjk Kroneker-delta function
Γ(•) Gamma function
γ Lagrange multiplier (in ??)
(•)∗ complex conjugate of (•)
(•)T matrix transpose
(•)−1 matrix inverse
(•)−T matrix inverse transpose
(•)H Hermitian transpose of (•)
(•)e elastic modes
(•)nv nonviscous modes
(•̇) derivative with respect to time
C space of complex numbers
R space of real numbers
⊥ orthogonal to
L(•) Laplace transform operator
L−1(•) inverse Laplace transform operator
det(•) determinant of (•)
diag [•] a diagonal matrix
∀ for all
ℑ(•) imaginary part of (•)
∈ belongs to
/∈ does not belong to
⊗ Kronecker product
(•) Laplace transform of (•)
ℜ(•) real part of (•)
vec vector operation of a matrix
O(•) in the order of
ADF Anelastic Displacement Field model
adj(•) adjoint matrix of (•)
GHM Golla, McTavish and Hughes model
MDOF multiple-degree-of-freedom
SDOF single-degree-of-freedom
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Chapter 1

Parametric Sensitivity of Damped Systems

Changes of the eigenvalues and eigenvectors of a linear vibrating system due to changes in system parameters
are of wide practical interest. Motivation for this kind of study arises, on one hand, from the need to come up with
effective structural designs without performing repeated dynamic analysis, and, on the other hand, from the desire
to visualise the changes in the dynamic response with respect to system parameters. Besides, this kind of sensitivity
analysis of eigenvalues and eigenvectors has an important role to play in the area of fault detection of structures
and modal updating methods. Sensitivity of eigenvalues and eigenvectors are useful in the study of bladed disks of
turbomachinery where blade masses and stiffness are nearly the same, or deliberately somewhat altered (mistuned),
and one investigates the modal sensitivities due to this slight alteration. Eigensolution derivatives also constitute
a central role in the analysis of stochastically perturbed dynamical systems. Possibly, the earliest work on the
sensitivity of the eigenvalues was carried out by Rayleigh [RAY 77]. In his classic monograph he derived the
changes in natural frequencies due to small changes in system parameters. Fox and Kapoor [FOX 68] have given
exact expressions for the sensitivity of eigenvalues and eigenvectors with respect to any design variables. Their
results were obtained in terms of changes in the system property matrices and the eigensolutions of the structure in
its current state, and have been used extensively in a wide range of application areas of structural dynamics. Nelson
[NEL 76] proposed an efficient method to calculate eigenvector derivative which requires only the eigenvalue and
eigenvector under consideration. A comprehensive review of research on this kind of sensitivity analysis can
be obtained in Adelman and Haftka [ADE 86]. A brief review of some of the existing methods for calculating
sensitivity of the eigenvalues and eigenvectors are given in ??.

The purpose of this chapter is to consider parametric sensitivity of the eigensolutions of damped systems. We
first start with undamped systems in section 1.1. Parametric sensitivity of viscously damped systems is discussed
in section 1.2. In section 1.3 we discuss the sensitivity of eigensolutions of general nonviscously damped systems.
In section 1.4 a summary of the techniques introduced in this chapter is provided.

1.1. Parametric sensitivity of undamped systems

The eigenvalue problem of undamped or proportionally damped systems can be expressed by

K(p)xj = λjM(p)xj [1.1]

Here λj and xj are the eigenvalues and the eigenvectors of the dynamic system. M(p) : Rm 7→ RN×N and K(p) :
Rm 7→ RN×N , the mass and stiffness matrices, are assumed to be smooth, continuous and differentiable functions
of a parameter vector p ∈ Rm. Note that λj = ω2

j where ωj is the j-th undamped natural frequency. The vector p
may consist of material properties, e.g., mass density, Poisson’s ratio, Young’s modulus; geometric properties, e.g.,
length, thickness, and boundary conditions. The eigenvalues and eigenvectors are smooth differentiable functions
of the parameter vector p.

1
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1.1.1. Sensitivity of the eigenvalues

We rewrite the eigenvalue equation as

[K − λjM] xj = 0 [1.2]

or xTj [K − λjM] [1.3]

The functional dependence of p is removed for notational convenience. Differentiating the eigenvalue equation
[1.2] with respect to the element p of the parameter vector we have[

∂K
∂p

− ∂λj
∂p

M − λj
∂M
∂p

]
xj + [K − λjM]

∂xj
∂p

= 0 [1.4]

Premultiplying by xTj we have

xTj

[
∂K
∂p

− ∂λj
∂p

M − λj
∂M
∂p

]
xj + xTj [K − λjM]

∂xj
∂p

= 0 [1.5]

Using the identity in [1.3] we have

xTj

[
∂K
∂p

− ∂λj
∂p

M − λj
∂M
∂p

]
xj = 0 [1.6]

or
∂λj
∂p

=

xTj

[
∂K
∂p

− λj
∂M
∂p

]
xj

xTj Mxj
[1.7]

Note that when the modes are mass normalised xTj Mxj = 1. Equation [1.7] shows that the derivative of a given
eigenvalue depends only eigensolutions corresponding to that particular eigensolutions only. Next we show that
this fact is not true when we consider the derivative of the eigenvectors.

1.1.2. Sensitivity of the eigenvectors

Different methods have been developed to calculate the derivatives of the eigenvectors. One way to express the
derivative of an eigenvector is by a linear combination of all the eigenvectors

∂xj

∂p
=

N∑
r=1

αjrxr [1.8]

This can be always done as xr, r = 1, 2, · · · , N forms a complete basis. It is necessary to find expressions for the
constant αjr for all r = 1, 2, · · ·N . Substituting this in equation [1.4] we have[

∂K
∂p

− ∂λj
∂p

M − λj
∂M
∂p

]
xj +

N∑
r=1

[K − λjM]αjrxr = 0 [1.9]

Premultiplying by xTk we have

xTk

[
∂K
∂p

− ∂λj
∂p

M − λj
∂M
∂p

]
xj +

N∑
r=1

xTk [K − λjM]αjrxr = 0 [1.10]

We consider r = k and the orthogonality of the eigenvectors

xTk Kxr = λkδkr and xTk Mxr = δkr [1.11]
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Using these we have

xTk

[
∂K
∂p

− λj
∂M
∂p

]
xj + (λk − λj)αjik = 0 [1.12]

From this we obtain

αjik = −
xTk

[
∂K
∂p

− λj
∂M
∂p

]
xj

λk − λj
, ∀ k ̸= j [1.13]

To obtain the j-th term αjj we differentiate the mass orthogonality relationship in [1.11] as

∂(xTj Mxj)
∂p

= 0 or
∂xTj
∂p

Mxj + xTj
∂M
∂p

xj + xTj M
∂xj
∂p

= 0 [1.14]

Considering the symmetry of the mass matrix and using the expansion of the eigenvector derivative we have

xTj
∂M
∂p

xj + 2xTj M
∂xj
∂p

= 0 or
N∑
r=1

2xT
j Mαjrxr = −xTj

∂M
∂p

xj [1.15]

Utilising the othonormality of the mode shapes we have

αjj = −1

2
xTj
∂M
∂p

xj [1.16]

The complete eigenvector derivative is therefore given by

∂xj

∂p
= −1

2

(
xTj
∂M
∂p

xj
)

xj +
N∑

k=1̸=j

xT
k

[
∂K
∂p

− λj
∂M
∂p

]
xj

λj − λk
xk [1.17]

From equation [1.17] it can be observed that when two eigenvalues are close, the modal sensitivity will be higher
as the denominator of the right hand term will be very small. Unlike the derivative of the eigenvalues given in [1.7],
the derivative of an eigenvector requires all the other eigensolutions. This can be computationally demanding for
large systems. The method proposed by Nelson [NEL 76] can address this problem. We will discuss Nelson’s
method in the context of damped system in the next sections.

1.2. Parametric sensitivity of viscously damped systems

The analytical method in the preceding section is for undamped systems. For damped systems, unless the
system is proportionally damped (see ??), the mode shapes of the system will not coincide with the undamped
mode shapes. In the presence of general non-proportional viscous damping, the equation of motion in the modal
coordinates will be coupled through the off-diagonal terms of the modal damping matrix, and the mode shapes and
natural frequencies of the structure will in general be complex. The solution procedures for such non-proportionally
damped systems follow mainly two routes: the state space method and approximate methods in the configuration
space, as discussed in ?? and ??. The state-space method, see [NEW 89, GÉR 97] for example, although exact
in nature requires significant numerical effort for obtaining the eigensolutions as the size of the problem doubles.
Moreover, this method also lacks some of the intuitive simplicity of traditional modal analysis. For these reasons
there has been considerable research effort to analyse non-proportionally damped structures in the configuration
space. Most of these methods either seek an optimal decoupling of the equation of motion or simply neglect the off-
diagonal terms of the modal damping matrix. It may be noted that following such methodologies the mode shapes
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of the structure will still be real. The accuracy of these methods, other than the light damping assumption, depends
upon various factors, for example, frequency separation between the modes and driving frequency [PAR 92a,
GAW 97] and the references therein for discussions on these topics. A convenient way to avoid the problems
which arise due to the use of real normal modes is to incorporate complex modes in the analysis. Apart from the
mathematical consistency, conducting experimental modal analysis also one often identifies complex modes: as
Sestieri and Ibrahim [SES 94] have put it ‘ ... it is ironic that the real modes are in fact not real at all, in that in
practice they do not exist, while complex modes are those practically identifiable from experimental tests. This
implies that real modes are pure abstraction, in contrast with complex modes that are, therefore, the only reality!’
But surprisingly in most of the current application areas of structural dynamics which utilise the eigensolution
derivatives, e.g. modal updating, damage detection, design optimisation and stochastic finite element methods,
do not use complex modes in the analysis but rely on the real undamped modes only. This is partly because of
the problem of considering appropriate damping model in the structure and partly because of the unavailability
of complex eigensolution sensitivities. Although, there has been considerable research efforts towards damping
models, sensitivity of complex eigenvalues and eigenvectors with respect to system parameters appear to have
received less attention.

In this section we determine the sensitivity of complex natural frequencies and mode shapes with respect to
some set of design variables in non-proportionally damped discrete linear systems. It is assumed that the system
does not posses repeated eigenvalues. In ??, mathematical background on linear multiple-degree-of-freedom dis-
crete systems needed for further derivations was already discussed. Sensitivity of complex eigenvalues is derived in
subsection 1.2.1 in terms of complex modes, natural frequencies and changes in the system property matrices. The
approach taken here avoids the use of state-space formulation. In subsection 1.2.2, sensitivity of complex eigen-
vectors is derived. The derivation method uses state-space representation of equation of motion for intermediate
calculations and then relates the eigenvector sensitivities to the complex eigenvectors of the second-order system
and to the changes in the system property matrices. In subsubsection 1.2.2.3, a two-degree-of-freedom system
which shows the ‘curve-veering’ phenomenon has been considered to illustrate the application of the expression
for rates of changes of complex eigenvalues and eigenvectors. The results are carefully analysed and compared
with presently available sensitivity expressions of undamped real modes.

1.2.1. Sensitivity of the eigenvalues

The equation of motion for free vibration of a linear damped discrete system with N degrees of freedom can
be written as

Mq̈(t) + Cq̇(t) + Kq(t) = 0 [1.18]

where M, C and K ∈ RN×N are mass, damping and stiffness matrices, q(t) ∈ RN is the vector of the generalised
coordinates and t ∈ R+ denotes time. The eigenvalue problem associated with equation [1.18] is given by

s2jMzj + sjCzj + Kzj = 0, ∀ j = 1, 2, · · · 2N. [1.19]

Here zj are the mode shapes and the natural frequencies sj are defined by sj = iλj . Unless system [1.18]
is proportionally damped, i.e. C is simultaneously diagonalisable with M and K (conditions were derived by
Caughey and O’Kelly [CAU 65], in general sj and zj will be complex in nature. The calculation of complex
modes and natural frequencies are discussed in details in ?? and ??.

Complex modes and frequencies can be exactly obtained by the state space (first-order) formalisms. Trans-
forming equation [1.18] into state space form we obtain

u̇(t) = Au(t) [1.20]

where A ∈ R2N×2N is the system matrix and u(t) ∈ R2N response vector in the state-space given by

A =

[
O I

−M−1K −M−1C

]
; u(t) =

{
q(t)
q̇(t)

}
. [1.21]
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In the above equation O ∈ RN×N is the null matrix and I ∈ RN×N is the identity matrix. The eigenvalue problem
associated with the above equation is now in term of an asymmetric matrix and can be expressed as

Aϕj = sjϕj , ∀j = 1, · · · , 2N [1.22]

where sj is the j−th eigenvalue and ϕj ∈ C2N is the j−th right eigenvector which is related to the eigenvector of
the second-order system as

ϕj =

{
zj
sjzj

}
. [1.23]

The left eigenvector ψj ∈ C2N associated with sj is defined by the equation

ψT
j A = sjψ

T
j [1.24]

where (•)T denotes matrix transpose. For distinct eigenvalues it is easy to show that the right and left eigenvectors
satisfy an orthogonality relationship, that is

ψT
j ϕk = 0; ∀j ̸= k [1.25]

and we may also normalise the eigenvectors so that

ψT
j ϕj = 1. [1.26]

The above two equations imply that the dynamic system defined by equation [1.20] posses a set of biorthonormal
eigenvectors. As a special case, when all eigenvalues are distinct, this set forms a complete set. Henceforth in our
discussion it will be assumed that all the system eigenvalues are distinct.

Suppose the structural system matrices appearing in [1.18] is a function of a parameter p. This parameter can
be an element of a larger parameter vector. This can denote a material property (such as Young’s modulus) or a
geometric parameter (such as thickness). We wish to find the sensitivity of the eigenvalues and eigenvectors with
respect to this general parameter. We aim to derive expressions of derivative of eigenvalues and eigenvectors with
respect to p without going into the state space.

For the j-th set, equation [1.19] can be rewritten as

Fjzj = 0 [1.27]

where the regular matrix pencil

Fj = s2jM + sjC + K. [1.28]

Note that complex frequencies can be obtained by substituting sj = iλj . Premultiplication of equation [1.27] by
zTj yields

zTj Fjzj = 0. [1.29]

Differentiating the above equation with respect to pj one obtains

∂zj
∂p

T

Fjzj + zTj
∂Fj

∂p
zj + zTj Fj

∂zj
∂p

= 0 [1.30]

where ∂Fj

∂p stands for ∂Fj

∂pj
, and can be obtained by differentiating equation [1.28] as

∂Fj

∂p
=

[
∂sj
∂p

(2sjM + C) + s2j
∂M
∂p

+ sj
∂C
∂p

+
∂K
∂p

]
. [1.31]
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Now taking the transpose of equation [1.27] and using the symmetry property of Fj it can shown that the first and
third terms of the equation [1.30] are zero. Therefore we have

zTj
∂Fj

∂p
zj = 0 [1.32]

Substituting ∂Fj

∂p from equation [1.31] into the above equation one writes

−∂sj
∂p

zTj (2sjM + C) zj = zTj

[
s2j
∂M
∂p

+ sj
∂C
∂p

+
∂K
∂p

]
zj [1.33]

From this we have

∂sj
∂p

= −
zTj
[
s2j

∂M
∂p + sj

∂C
∂p + ∂K

∂p

]
zj

zTj (2sjM + C) zj
[1.34]

which is the derivative of the j-th complex eigenvalue. For the undamped case, when C = 0, sj → iωj and
zj → xj (ωj and xj are undamped natural frequencies and modes satisfying Kxj = ω2

jMxj), with usual mass
normalisation the denominator → 2iωj , and we obtain

−i
∂ωj

∂p
=

xT
j

[
∂K
∂p − ω2

j
∂M
∂p

]
xj

2iωj
or

∂ω2
j

∂p
= xT

j

[
∂K
∂p

− ω2
j

∂M
∂p

]
xj . [1.35]

This is exactly the well-known relationship derived by Fox and Kapoor [FOX 68] for the undamped eigenvalue
problem. Thus, equation [1.34] can be viewed as a generalisation of the familiar expression of the sensitivity of
undamped eigenvalues to the damped case. Following observations may be noted from this result

– The derivative of a given eigenvalue requires the knowledge of only the corresponding eigenvalue and eigen-
vector under consideration, and thus a complete solution of the eigenproblem, or from the experimental point of
view, eigensolution determination for all the modes is not required.

– Changes in mass and/or stiffness introduce more change in the real part of the eigenvalues whereas changes
in the damping introduce more change in the imaginary part.

Since ∂sj
∂p is complex in equation [1.34], it can be effectively used to determine the sensitivity of the modal damping

factors with respect to the system parameters. For small damping, the modal damping factor for the j-th mode can
be expressed in terms of complex frequencies as ζj = ℑ(λj)/ℜ(λj), with ℜ(•) and ℑ(•) denoting real and
imaginary parts respectively. Consequently the derivative can be evaluated from

∂ζj
∂p

=
∂ℑ(λj)/ℜ(λj)

∂p
=

[
ℑ(∂λj

∂p )ℜ(λj)−ℑ(λj)ℜ(∂λj

∂p )

ℜ(λj)2

]
. [1.36]

This expression may turn out to be useful since we often directly measure the damping factors from experiment.

1.2.2. Sensitivity of the eigenvectors

1.2.2.1. Modal approach

We use the state-space eigenvectors to calculate the derivative of the eigenvectors in the configuration space.

Since zj is the first N rows of ϕj (see equation [1.23]) we first try to derive
∂ϕj

∂p and subsequently obtain ∂zj

∂p
using their relationships.

Differentiating [1.22] with respect to pj one obtains

(A − sj)
∂ϕj

∂p
= −

(
∂A
∂p

− ∂sj
∂p

)
ϕj . [1.37]
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Since it has been assumed that A has distinct eigenvalues the right eigenvectors, ϕj , forms a complete set of

vectors. Therefore we can expand
∂ϕj

∂p as

∂ϕj

∂p
=

2N∑
l=1

ajlϕl [1.38]

where ajl, ∀l = 1, · · · 2N are set of complex constants to be determined. Substituting
∂ϕj

∂p in equation [1.37] and
premultiplying by the left eigenvector ψT

k one obtains the scalar equation

2N∑
l=1

(ψT
k Aϕl − sjψ

T
kϕl) ajl = −ψT

k

∂A
∂p
ϕj +

∂sj
∂p
ψT

kϕj . [1.39]

Using the orthogonality relationship of left and right eigenvectors from the above equation we obtain

ajk =
ψT

k
∂A
∂p ϕj

sj − sk
; ∀k = 1, · · · , 2N ; ̸= j [1.40]

The ajk as expressed above is not very useful since it is in terms of the left and right eigenvectors of the first-order
system. In order to obtain a relationship with the eigenvectors of second-order system we assume

ψj =

{
ψ1j

ψ2j

}
[1.41]

where ψ1j ,ψ2j ∈ CN . Substituting ψj in equation [1.24] and taking transpose one obtains

sjψ1j = −KM−1ψ2j

sjψ2j = ψ1j − CM−1ψ2j

or ψ1j =
[
sjI + CM−1

]
ψ2j .

[1.42]

Elimination of ψ1j from the above two equation yields

sj

(
sjψ2j + CM−1ψ2j

)
= −KM−1ψ2j

or
[
s2jM + sjC + K

] (
M−1ψ2j

)
= 0.

[1.43]

By comparison of this equation with equation [1.19] it can be seen that the vector M−1ψ2j is parallel to zj ; that
is, there exist a non-zero βj ∈ C such that

M−1ψ2j = βjzj or ψ2j = βjMzj . [1.44]

Now substituting ψ1j , ψ2j and using the definition of ϕj from equation [1.23] into the normalisation condition
[1.26] the scalar constant βj can be obtained as

βj =
1

zTj [2sjM + C] zj
. [1.45]

Using ψ2j from equation [1.44] into the second equation of [1.42] we obtain

ψj = βjPjϕj ; where Pj =

[
sjM+C O

O M
sj

]
∈ C2N×2N . [1.46]
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The above equation along with the definition of ϕj in [1.23] completely relates the left and right eigenvectors of
the first-order system to the eigenvectors of the second-order system.

The derivative of the system matrix A can be expressed as

∂A
∂p

=

[
O O

∂M−1K
∂p

∂M−1C
∂p

]

=

[
O O

−M−2 ∂M
∂p K + M−1 ∂K

∂p −M−2 ∂M
∂p C + M−1 ∂C

∂p

] [1.47]

from which after some simplifications the numerator of the right hand side of equation [1.40] can be obtained as

ψT
k

∂A
∂p
ϕj = −βkzTk

{
−M−1 ∂M

∂p
[K + sjC] +

∂C
∂p

+
∂K
∂p

}
zj . [1.48]

Since I = MM−1, ∂I
∂p = ∂M

∂p M−1 + M
[
−M−2 ∂M

∂p

]
= O or ∂M

∂p M−1 = M−1 ∂M
∂p , that is M−1 and ∂M

∂p

commute in product. Using this property and also from [1.19] noting that s2jzj = −M−1 [sjC+K] zj we finally
obtain

ajk = −βk
zk
[
s2j

∂M
∂p + sj

∂C
∂p + ∂K

∂p

]
zj

sj − sk
; ∀k = 1, · · · , 2N ; ̸= j. [1.49]

This equation relates the ajk with the complex modes of the second-order system.

To obtain ajj we begin with differentiation of the normalisation condition [1.26] with respect to p and obtain
the relationship

∂ψj

∂p

T

ϕj +ψ
T
j

∂ϕj

∂p
= 0. [1.50]

Substitution of ψj from equation [1.46] further leads to

βj

{
∂ϕj

∂p

T

PT
j ϕj + ϕ

T
j

∂Pj

∂p

T

ϕj + ϕ
T
j PT

j

∂ϕj

∂p

}
= 0 [1.51]

where ∂Pj

∂p can be derived from equation [1.46] as

∂Pj

∂p
=

 ∂sj
∂p M + sj

∂M
∂p + ∂C

∂p O

O −M
s2j

∂sj
∂p +

∂M
∂p

sj

 . [1.52]

Since Pj is a symmetric matrix, equation [1.51] can be rearranged as

2
(
βjϕ

T
j Pj

) ∂ϕj

∂p
= −βjϕT

j

∂Pj

∂p
ϕj . [1.53]

Note that the term within the bracket is ψT
j (see equation [1.46]). Using the assumed expansion of

∂ϕj

∂p from
[1.40] this equation reads

2ψT
j

2N∑
l=1

ajlϕl = −βjϕT
j

∂Pj

∂p
ϕj . [1.54]



Parametric Sensitivity of Damped Systems 9

The left hand side of the above equation can be further simplified

ϕT
j

∂Pj

∂p
ϕj =zTj

[
∂sj
∂p

M + sj
∂M
∂p

+
∂C
∂p

]
zj+

zTj sj

−M
s2j

∂sj
∂p

+

∂M
∂p

sj

 sjzj = zTj

[
2sj

∂M
∂p

+
∂C
∂p

]
zj .

[1.55]

Finally using the orthogonality property of left and right eigenvectors, from equation [1.54] we obtain

ajj = −1

2

zTj
[
2sj

∂M
∂p + ∂C

∂p

]
zj

zTj [2sjM + C] zj
. [1.56]

In the above equation ajj is expressed in terms of the complex modes of the second-order system. Now recalling
the definition of ϕj in [1.23], from the first N rows of equation [1.38] one can write

∂zj
∂p

= ajjzj +
2N∑
k ̸=j

ajkzk = −1

2

zTj
[
2sj

∂M
∂p + ∂C

∂p

]
zj

zTj [2sjM + C] zj
zj

−
2N∑
k ̸=j

βk
zk
[
s2j

∂M
∂p + sj

∂C
∂p + ∂K

∂p

]
zj

sj − sk
zk.

[1.57]

We know that for any real symmetric system first-order eigenvalues and eigenvectors appear in complex conjugate
pairs. Using usual definition of natural frequency, that is, sk = iλk and consequently s∗k = −iλ∗k, where (•)∗
denotes complex conjugate, the above equation can be rewritten in a more convenient form as

∂zj
∂p

= −1

2

zTj
[
∂M
∂p − i∂C

∂p /2λj

]
zj

zTj [M − iC/2λj ] zj
zj

+
N∑

k ̸=j

αk(zTk
∂
˜F

∂p zj)zk
λj − λk

−
α∗
k(z∗

T

k
∂
˜F

∂p

∗
z∗j )z∗k

λj + λ∗k


[1.58]

where

∂F̃
∂p

=

[
∂K
∂p

− λ2j
∂M
∂p

+ iλj
∂C
∂p

]
and αk = iβk =

1

zTk [2λkM − iC] zk
.

This result is a generalisation of the known expression of the sensitivity of real undamped eigenvectors to complex
eigenvectors. The following observations can be made from this result

– Unlike the eigenvalue derivative, the derivative of a given complex eigenvector requires the knowledge of all
the other complex eigenvalues and eigenvectors.

– The sensitivity depends very much on the modes whose frequency is close to that of the considered mode.
– Like eigenvalue derivative, changes in mass and/or stiffness introduce more changes in the real part of the

eigenvector whereas changes in damping introduce more changes in the imaginary part.

From equation [1.58], it is easy to see that in the undamped limit C → 0, and consequently λk, λ
∗
k → ωk;

zk, z∗k → xk; ∂
˜F

∂p ,
∂
˜F

∂p

∗
→
[
∂K
∂p − ω2

j
∂M
∂p

]
and also with usual mass normalisation of the undamped modes

αk, α
∗
k → 1

2ωk
reduces the above equation exactly to the corresponding well known expression derived by Fox and

Kapoor [FOX 68] for derivative of undamped modes.
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1.2.2.2. Nelson’s method

The method outlined in the previous subsection obtained the eigenvector derivative as a linear combination of
all the eigenvectors. For large scale structures, with many degrees of freedom, obtaining all the eigenvectors is a
computationally expensive task. Nelson [NEL 76] introduced the approach, extended here, where only the eigen-
vector of interest was required. Lee et. al. [LEE 99a] calculated the eigenvector derivatives of self-adjoint systems
using a similar approach to Nelson. This subsection extends Nelson’s method to non-proportionally damped sys-
tems with complex modes. This method has the great advantage that only the eigenvector of interest is required.

Since the eigenvectors are not unique, in the sense that any scalar (complex) multiple of an eigenvector is also
an eigenvector. As a result their derivatives are also not unique. It is necessary to normalise the eiegnvector for
further mathematical derivations. There are numerous ways of introducing a normalisation to ensure uniqueness.
For undamped systems mass normalisation is the most common. A useful normalisation for damped systems
follows from equation [??] is

zTj [sjM + (1/sj)K] zj = zTj [2sjM + C] zj = 1. [1.59]

Differentiating the equation governing the eigenvalues [1.19] with respect to the parameter p, gives[
s2j
∂M
∂p

+ sj
∂C
∂p

+
∂K
∂p

]
uj + [2sjM + C] uj

∂sj
∂p

+
[
s2j M + sj C + K

] ∂uj
∂p

= 0. [1.60]

Rewriting this, we see that the eigenvector derivative satisfies[
s2j M + sj C + K

] ∂uj

∂p
= hj [1.61]

where the vector hj consists of the first two terms in equation [1.60], and all these quantities are now known.
Equation [1.61] cannot be solved to obtain the eigenvector derivative because the matrix is singular. For distinct
eigenvalues this matrix has a null space of dimension 1. Following Nelson’s approach the eigenvector derivative is
written as

∂uj

∂p
= vj + djuj [1.62]

where vj and dj have to be determined. These quantities are not unique since any multiple of the eigenvector
may be added to vj . A convenient choice is to identify the element of maximum magnitude in uj and make the
corresponding element in vj equal to zero. Although other elements of vj could be set to zero, this choice is most
likely to produce a numerically well-conditioned problem. Substituting equation [1.62] into equation [1.61], gives

[
s2j M + sj C + K

]
vj = Fj vj = hj . [1.63]

This may be solved, including the constraint on the zero element of vj , by solving the equivalent problem, Fj11 0 Fj13

0 1 0
Fj31 0 Fj33

 vj1
xj2 (= 0)

vj3

 =

 hj1

0
hj3

 . [1.64]

where the Fj is defined in equation [1.63], and has the row and column corresponding to the zeroed element of
vj replaced with the corresponding row and column of the identity matrix. This approach maintains the banded
nature of the structural matrices, and hence is computationally efficient.

It only remains to compute the scalar constant dj to obtain the eigenvector derivative. For this the normalisation
equation must be used. Differentiating equation [1.59], substituting equation [1.62] and rearranging produces

dj = −uT
j [2sjM + C] vj −

1

2
uT
j

[
2M

∂sj
∂p

+ 2sj
∂M
∂p

+
∂C
∂p

]
uj . [1.65]
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1.2.2.3. Example: Two-degree-of-freedom system

Sensitivity of complex frequencies
A two degree-of-freedom system has been considered to illustrate a possible use of the expressions developed

so far. Figure 1.1 shows the example taken together with the numerical values. When eigenvalues are plotted
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Figure 1.1: Two degree-of-system shows veering, m = 1 kg, k1 = 1000 N/m, c = 4.0 Ns/m

versus a system parameter they create family of ‘root loci’. When two loci approach together they may cross or
rapidly diverge. The later case is called ‘curve veering’. The veering of the real part of the complex frequencies
for the system considered is shown in Figure 1.2. During veering, rapid changes take place in the eigensolutions,
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Figure 1.2: Real part of the complex frequencies of the two modes as a function of k2 showing the veering
phenomenon
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as Leissa [LEI 74] pointed out ‘ ... the (eigenfunctions) must undergo violent change − figuratively speaking, a
dragonfly one instant, a butterfly the next, and something indescribable in between’. Thus this is an interesting
problem for applying the general results derived in this section.

Figure 1.3 shows the imaginary part (normalised by dividing with
√
k1/m) of the derivative of first natural

frequency with respect to the damping parameter ‘c’ over a parameter variation of k2 and s. This plot was obtained
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Figure 1.3: Imaginary part of the derivative of the first natural frequency, λ1, with respect to the damping parameter,
c

by programming of equation [1.34] in Matlab™ with substituting sj = iλj . The imaginary part has been chosen
to be plotted here because a change in damping is expected to contribute a significant change in the imaginary part.
The sharp rise of the rate in the low-value region of k2 and s could be intuitively guessed because there the damper
becomes the only ‘connecting element’ between the two masses and so any change made there is expected to have
a strong effect. As we move near to the veering range (k2 ≈ k1 and s ≈ 0) the story becomes quite different.
In the first mode, the two masses move in the same direction, in fact in the limit the motion approaches a ‘rigid
body mode’. Here, the change is no longer remains sensitive to the changes in connecting the element (i.e., only
the damper since s ≈ 0) as hardly any force transmission takes place between the two masses. For this reason
we expect a sharp fall in the derivative as can be noticed along the s ≈ 0 region of the figure. For the region
when s is large, we also observe a lower value of derivative, but the reason there is different. The stiffness element
‘s’ shares most of the force being transmitted between the two masses and hence does not depend much on the
change of the value of the damper. A similar plot has been shown in Figure 1.4 for the second natural frequency.
Unlike the previous case, here the derivative increases in the veering range. For the second mode the masses move
in the opposite direction and in the veering range the difference between them becomes maximal. Since s ≈ 0,
only the damper is being stretched and as a result of this, a small change there produces a large effect. Thus, the
use of equation [1.34] can provide good physical insight into the problem and can effectively be used in modal



Parametric Sensitivity of Damped Systems 13

0
1

2
3 0

0.2
0.4

0.6
0.8

2

4

6

8

10

x 10
−4

s/k
1k

2
/k

1

D
er

iv
at

iv
e 

of
 n

or
m

al
is

ed
 λ 2

Figure 1.4: Imaginary part of the derivative of the second natural frequency, λ2, with respect to the damping
parameter, c

updating, damage detection and for design purposes by taking the damping matrix together with the mass and
stiffness matrices improving the current practice of using the mass and stiffness matrices only.

Sensitivity of eigenvectors

Sensitivity of eigenvectors for the problem shown in Figure 1.1 can be directly obtained from equation [1.58].
Here we have focused our attention to calculate the sensitivity of eigenvectors with respect to the parameter

k2. Figure 1.5 shows the real part of the sensitivity of the first eigenvector normalised by its L2 norm (that is
ℜ
{

dz1

dk2

}
/ ∥ z1 ∥) plotted over a variation of k2/k1 from 0 to 3 for both the coordinates. The value of the spring

constant for the connecting spring is kept fixed at s = 100 N/m. The real part of the sensitivity of complex
eigenvectors has been chosen mainly for two reasons:(a) any change in stiffness is expected to have made more
changes in the real part; and (b) to compare it with the corresponding changes of the real undamped modes.
Derivative of the first eigenvector (normalised by its L2 norm) with respect to k2 corresponding to the undamped
system (i.e., removing the damper) is also shown in the same figure (see the figure legend for details). This is
calculated from the expression derived by Fox and Kapoor [FOX 68]. Similar plots for the second eigenvector are
shown in Figure 1.6. Both of these figures reveal a common feature: around the veering range i.e. 0.5 < k2/k1 <
1.5, the damped and the undamped sensitivities show considerable differences while outside this region they almost
traces each other. A physical explanation of this phenomenon can be given. For the problem considered here the
damper acts as an additional ‘connecting element’ between the two masses together with the spring ‘s’. As a result
it ‘prevents’ the system to be close to show a ‘strong’ veering effect (i.e. when k2 = k1 and the force transmission
between the masses is close to zero) and thus reduces the sensitivity of both the modes. However, for the first
mode both masses move in the same direction and the damper has less effect compared to second mode where the
masses move in the opposite directions and have much greater effect on the sensitivities.
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Figure 1.5: Real part of the derivative of the first eigenvector with respect to the stiffness parameter k2

To analyse the results from quantitative point of view at this point it is interesting to look at the variation of
the modal damping factors shown in Figure 1.7. For the first mode the damping factor is quite low (in the order
of ≈ 10−4 near the veering range but still the sensitivities of the undamped mode and that of the real part of
the complex mode for both coordinates are quite different. Again, away from the veering range, k2/k1 > 2, the
damping factor is high but the sensitivities of the undamped mode and that of real part of the complex mode are
quite similar. This is opposite to what we normally expect, as the common belief is that, when the damping factors
are low, the undamped modes and the real part of complex modes should behave similarly and vice versa. For
the second mode the damping factor does not change very much due to a variation of k2 except becomes slightly
higher in the vicinity of the veering range. But the difference between the sensitivities of the undamped mode
and that of real part of the complex mode for both coordinates changes much more significantly than the damping
factor. This demonstrates that even when the damping factors are similar, the sensitivity of the undamped modes
and that of the real part of the complex modes can be significantly different. Thus, the use of the expression for
the derivatives of undamped mode shapes can lead to a significant error even when the damping is very low. The
expressions derived in this section should be used for any kind of study involving such a sensitivity analysis.

Since the expression in equation [1.34] and [1.58] has been derived exactly, the numerical results obtained here
are also exact within the precision of the arithmetic used for the calculations. The only instance for arriving at an
approximate result is when approximate complex frequencies and modes are used in the analysis. However, for this
example it was verified that the use of approximate methods to obtain complex eigensolutions in the configuration
space discussed in chapters ?? and ?? and the exact ones obtained from the state space method produce negligible
discrepancy. Since in most engineering applications we normally do not encounter very high value of damping one
can use approximate methods to obtain eigensolusions in the configuration space in conjunction with the sensitivity
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Figure 1.6: Real part of the derivative of the second eigenvector with respect to the stiffness parameter k2

expressions derived here. This will allow the analyst to study the sensitivity of eigenvalues and eigenvectors of
non-classically damped systems in a similar way to those of undamped systems.

1.3. Parametric sensitivity of nonviscously damped systems

The studies so far consider only viscous damping model. However, it is well known that the viscous damping
is not the only damping model within the scope of linear analysis, examples are: damping in composite materials
[BAB 94], energy dissipation in structural joints [EAR 66, BEA 77], damping mechanism in composite beams
[BAN 91], to mention only a few. We consider a class of nonviscous damping models in which the damping forces
depend on the past history of motion via convolution integrals over some kernel functions (see chapters ?? and ??).
The equation of motion describing free vibration of a N -degree-of-freedom linear system with such damping can
be expressed by

Mq̈(t) +
∫ t

−∞
G(t− τ) q̇(τ) dτ + Kq(t) = 0. [1.66]

Here M and K ∈ RN×N are the mass and stiffness matrices, G(t) ∈ RN×N is the matrix of kernel functions
and 0 is an N × 1 vector of zeros. In the special case when G(t − τ) = C δ(t − τ), equation [1.66] reduces to
the case of viscously damped systems. The damping model of this kind is a further generalisation of the familiar
viscous damping. The central aim of this section is to extend the eigensensitivity analysis to nonviscously damped
systems of the form [1.66]. In the subsequent subsections the derivative of eigenvalues and eigenvectors are
derived. Unlike viscously damped systems, the conversion of equation [1.66] into the state-space form may not be
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Figure 1.7: Modal damping factors for both the modes

advantageous because the eigenvalue problem in the state-space cannot be casted in the form of the conventional
matrix eigenvalue problem involving constant matrices. For this reason the approach adopted here does not employ
the state-space formulation of the equation of motion. An application of the derived expressions for the derivative
of eigensolutions is illustrated by considering a two-degree-of-freedom system with nonviscous damping.

The determination of eigenvalues and eigenvectors of general nonviscously damped systems has been discussed
in ??. Taking the Laplace transform of equation [1.66] we have

s2Mq̄(s) + sG(s)q̄(s) + Kq̄(s) = 0 or D(s)q̄(s) = 0 [1.67]

where the dynamic stiffness matrix

D(s) = s2M + sG(s) + K ∈ CN×N . [1.68]

Here q̄(s) = L [q(t)] ∈ CN , G(s) = L [G(t)] ∈ CN×N and L [•] denotes the Laplace transform. In the context
of structural dynamics, s = iω, where ω ∈ R+ denotes the frequency. We consider the damping to be ‘non-
proportional’ (conditions for proportionality of nonviscous damping were derived in ??), that is, the mass and
stiffness matrices as well as the matrix of kernel functions cannot be simultaneously diagonalised by any linear
transformation. However, it is assumed that M−1 exist and G(s) is such that the motion is dissipative. Conditions
which G(s) must satisfy in order to produce dissipative motion were given by Golla and Hughes [GOL 85].

The eigenvalue problem associated with equation [1.66] can be defined from [1.67] as[
s2jM + sj G(sj) + K

]
zj = 0 or D(sj)zj = 0, ∀j = 1, · · · ,m [1.69]
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where zj ∈ CN is the j-th eigenvector. The eigenvalues, sj , are roots of the characteristic equation

det
[
s2M + sG(s) + K

]
= 0. [1.70]

We consider that the order of the characteristic equation is m. Following ?? one may group the eigenvectors
as (a) elastic modes (corresponding to N complex conjugate pairs of eigenvalues), and (b) nonviscous modes
(corresponding to the ‘additional’m−2N eigenvalues). The elastic modes are related to theN modes of vibration
of structural systems. We assume that all m eigenvalues are distinct. Following ?? the eigenvectors can be
normalised as

zTj
∂D(s)

∂s
|s=sj zj = γj

or zTj

[
2sjM + G(sj) + sj

∂G(s)

∂s
|s=sj

]
zj = γj , ∀j = 1, · · · ,m

[1.71]

where γj ∈ C is some non-zero constant. Note that equation [1.71] reduces to the corresponding normalisation
relationship for viscously damped systems (see [VIG 86, SES 94] for example) when G(s) is constant with respect
to s. Numerical values of γj can be selected in various ways, see the discussions in ??.

1.3.1. Sensitivity of the eigenvalues

Suppose the system matrices in equation [1.66] are functions of some design parameter p. In this subsection
we intend to obtain an expression of the derivative of the j-th eigenvalue with respect to the design parameter p.
Differentiating equation [1.69] with respect to p one obtains[

2sj
∂sj
∂p

M + s2j
∂M
∂p

+
∂sj
∂p

G(sj) + sj
∂ [G(sj)]

∂p
+
∂K
∂p

]
zj

+
[
s2jM + sj G(sj) + K

] ∂zj
∂p

= 0.

[1.72]

The term
∂[G(sj)]

∂p appearing in the above equation can be expressed as

∂ [G(sj)]

∂p
=
∂sj
∂p

∂G(s)

∂s
|s=sj +

∂G(s)

∂p
|s=sj . [1.73]

Premultiplying equation [1.72] by zTj and using the symmetry property of the system matrices it may be observed
that the second term of the equation vanishes due to [1.69]. Substituting [1.73] into equation [1.72] we obtain

zTj

[
s2j
∂M
∂p

+ sj
∂G(s)

∂p
|s=sj +

∂K
∂p

]
zj+

zTj

[
2sj

∂sj
∂p

M ++
∂sj
∂p

G(sj) + sj
∂sj
∂p

∂G(s)

∂s
|s=sj

]
zj = 0.

[1.74]

Rearranging the preceding equation, the derivative of eigenvalues can be obtained as

∂sj
∂p

= −
zTj
[
s2j

∂M
∂p + sj

∂G(s)
∂p |s=sj +

∂K
∂p

]
zj

zTj
[
2sjM + G(sj) + sj

∂G(s)
∂s |s=sj

]
zj
. [1.75]

Note that the denominator of equation [1.75] is exactly the normalisation relationship given by equation [1.71]. In
view of this, equation [1.75] can be expressed in a concise form as

∂sj
∂p

= −
zTj

∂D(s)
∂p |s=sj zj

zTj
∂D(s)
∂s |s=sj zj

or
∂sj
∂p

= − 1

γj

(
zTj
∂D(s)

∂p
|s=sj zj

)
.

[1.76]
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This is the most general expression for the derivative of eigenvalues of linear dynamic systems. Equation [1.76]
can be used to derive the derivative of eigenvalues for various special cases:

1) Undamped systems (section 1.1): In this case G(s) = 0 results

D(s) = s2M + K

and γj = 2sjzTj Mzj .
[1.77]

Assuming sj = iωj where ωj ∈ R is the j-th undamped natural frequency from equation [1.76] one obtains

−2iωj i
∂ωj

∂p
=
∂ω2

j

∂p
=

zTj
[
∂K
∂p − ω2

j
∂M
∂p

]
zj

zTj Mzj
, [1.78]

which is a well known result.
2) Viscously damped systems (section 1.2): In this case G(s) = C, a constant matrix with respect to s. This

results

D(s) = s2M + sC + K

and γj = zTj [2sjM + C] zj .
[1.79]

Using these, from equation [1.76] one obtains

∂sj
∂p

= −
zTj
[
s2j

∂M
∂p + sj

∂C
∂p + ∂K

∂p

]
zj

zTj [2sjM + C] zj
. [1.80]

Thus, the result obtained in equation [1.76] generalise earlier expressions of the derivative of eigenvalues. The
derivative of associated eigenvectors are considered in the next subsection.

1.3.2. Sensitivity of the eigenvectors

1.3.2.1. Modal approach

The various methods of calculating the derivative of eigenvectors can be divided into three main categories
[MUR 88]: (a) adjoint method or modal method, (b) direct method, and (c) iterative method. We adopt the modal
method where the derivative of each eigenvector is expanded in the space of the complete set of eigenvectors. The
main difficulty in applying available methodologies for the modal method to nonviscously damped systems is that
the eigenvectors do not satisfy any familiar orthogonality relationship. We propose an approach to calculate the
derivative of eigenvector without using the orthogonality relationship.

It turns out that the eigenvalue problem of the dynamic stiffness matrix (given by equation [1.68]) plays an
important role. For any given s ∈ C, the eigenvalue problem associated with the dynamic stiffness matrix can be
expressed by equation [??] given in ??. The eigenvalues and eigenvectors of the dynamic stiffness matrix are given
by νk(s) and φk(s) respectively. It is assumed that all the eigenvalues are distinct for any fixed value of s. The
symbols νk(s) and φk(s) indicate functional dependence of these quantities on the complex parameter s. Such
a continuous dependence is expected whenever D(s) is a sufficiently smooth matrix function of s. It should be
noted that because D(s) is aN×N complex matrix for a fixed s, the number of eigenvalues (and consequently the
eigenvectors) must be N . Further, it can be shown that, for distinct eigenvalues,φk(s) also satisfy an orthogonality
relationship although zk do not enjoy any such simple relationship. We normalise φk(s) as in equation [??] .

It is possible to establish the relationships between the original eigenvalue problem of the system defined by
equation [1.69] and that by equation [??]. Consider the case when the parameter s approaches any one of the
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system eigenvalues, say sj . Since all the νk(s) are assumed to be distinct, for nontrivial eigenvectors, comparing
equations [1.69] and [??] we can conclude that one and only one of the νk(s) must be zero when s → sj . Further
discussion is given in ??. Considering the r-th set, equation [??] can be rewritten as

Zr(s)φr(s) = 0 [1.81]

where

Zr(s) = D(s)− νr(s)I ∈ CN×N . [1.82]

In view of [??], from the preceding equation it is clear that

lim
s→sj

Zr(s) = D(s)|s=sj . [1.83]

From this equation together with [??] we conclude that in the limit s → sj the eigenvalue problem given by
equation [1.81] approaches to the original eigenvalue problem given by [1.69].

Differentiating [1.81] with respect to the design parameter p one has

∂Zr(s)

∂p
φr(s) + Zr(s)

∂φr(s)

∂p
= 0

or Zr(s)
∂φr(s)

∂p
= −∂Zr(s)

∂p
φr(s).

[1.84]

Premultiplying the preceding equation by D−1(s) and using [1.82] we have

[
I − D−1(s)νr(s)

] ∂φr(s)

∂p
= −D−1(s)

∂Zr(s)

∂p
φr(s). [1.85]

The derivative of eigenvector of the original system with respect to the design parameter p, that is ∂zj

∂p should be
obtained from equation [1.85] by taking the limit s→ sj . Because lims→sj D(s) is at the most of rank (N − 1), it
is not possible to obtain ∂zj

∂p directly from equation [1.85]. We avoid this difficulty by expanding D−1(s) in terms
of the poles and their associated residues. From equation [??] the inverse of the dynamic stiffness matrix can be
expressed as

D−1(s) =
m∑
j=1

Rj

s− sj
[1.86]

where

Rj =
zjzTj
γj

. [1.87]

Substituting D−1(s) from equation [1.86] into equation [1.85], using [??] and [1.87], and taking the limit as
s→ sj one obtains

∂zj
∂p

= − lim
s→sj

m∑
k=1

zkzTk
γj(s− sk)

∂Zr(s)

∂p
φr(s)

= ajjzj −
m∑

k=1
k ̸=j

zTk
∂D(s)
∂p |s=sj zj

γk(sj − sk)
zk

[1.88]
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where

ajj = − lim
s→sj

zTj
∂Zr(s)

∂p φr(s)

γj(s− sj)
. [1.89]

In deriving equation [1.88] we have also made use of the relationships [??] and [1.83]. Note that the limiting value
of ajj , the coefficient associated with zj , cannot be obtained from [1.89] because the denominator approaches to
zero in the limit. A different approach is presented below to bypass this difficulty.

For a fixed value of s, φk(s), ∀ k = 1, · · · , N form a complete basis. For this reason ∂φr(s)

∂p ∈ CN can be
expanded uniquely in terms of all φk(s), that is, one can write

∂φr(s)

∂p
=

N∑
k=1

α
(r)
k (s)φk(s), [1.90]

where α(r)
k (s) ∈ C are non-zero constants. The normalisation relationship for the r-th mode can be expressed

from equation [??] as

φT
r (s)D(s)φr(s) = νr(s). [1.91]

Differentiating this equation with respect to the design parameter p we obtain

∂φT
r (s)

∂p
D(s)φr(s) +φ

T
r (s)

∂D(s)

∂p
φr(s)

+φT
r (s)D(s)

∂φr(s)

∂p
=
∂νr(s)

∂p
.

[1.92]

Using the symmetry property of D(s) and [1.82] the above equation can be rearranged as

2φT
r (s)D(s)

∂φr(s)

∂p
= −φT

r (s)
∂Zr(s)

∂p
φr(s). [1.93]

Substituting ∂φr(s)

∂p from equation [1.90] and using the orthogonality relationship given by [??] from the above
equation one obtains

α(r)
r (s) = −

φT
r (s)

∂Zr(s)
∂p φr(s)

2νr(s)
. [1.94]

Now, taking the limit s→ sj on equation [1.90] and using [??] we have

lim
s→sj

∂φr(s)

∂p
= lim

s→sj

N∑
k=1

α
(r)
k (s)φk(s)

or
∂zj
∂p

=

(
lim
s→sj

α(r)
r (s)

)
zj + lim

s→sj

N∑
k=1
k ̸=r

α
(r)
k (s)φk(s).

[1.95]

Because it is assumed that all the eigenvalues are distinct, the associated eigenvectors are also distinct. Thus,
lims→sj φk(s) ̸= zj , ∀k = 1, · · · , N ; ̸= r. So, comparing the coefficient of zj in equations [1.88] and [1.95] it is
clear that

ajj = lim
s→sj

α(r)
r (s)

= − lim
s→sj

φT
r (s)

∂Zr(s)
∂p φr(s)

2νr(s)
(from [1.94]).

[1.96]
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The above limit cannot be evaluated directly because from [??] lims→sj νr(s) = 0. Now, differentiate equation
[1.81] with respect to p to obtain

∂Zr(s)

∂p
φr(s) + Zr(s)

∂φr(s)

∂p
= 0. [1.97]

Premultiplying the above equation by φT
r (s) one obtains

φT
r (s)

∂Zr(s)

∂p
φr(s) +φ

T
r (s)Zr(s)

∂φr(s)

∂p
= 0. [1.98]

Taking transpose of equation [1.81] and considering the symmetry property of Zr(s) it follows that the second
term of the left-hand side of the above equation is zero. Thus, equation [1.98] reduces to

φT
r (s)

∂Zr(s)

∂p
φr(s) = 0. [1.99]

The above equation shows that in the limit the left hand side of equation [1.96] has a ‘0 by 0’ form. So, applying
l’Hôspital’s rule, using [??], [1.83] and [??] in ??, from equation [1.96] one obtains

ajj = −
zTj

∂2[D(s)]
∂s ∂p |s=sj zj

2∂νr(s)
∂s |s=sj

= −
zTj

∂2[D(s)]
∂s ∂p |s=sj zj

2
(

zTj
∂D(s)
∂s |s=sj zj

) . [1.100]

This expression can now be used to obtain the derivative of zj in equation [1.88].

The denominator in the above equation can be related to the normalisation constant γj given by equation [1.71].

The term ∂2[D(s)]
∂s ∂p |s=sj appearing in the numerator may be obtained by differentiating equation [1.68] as

∂2[D(s)]

∂s ∂p
|s=sj = 2sj

∂M
∂p

+
∂G(s)

∂p
|s=sj + sj

∂2[G(s)]

∂s ∂p
|s=sj [1.101]

From equations [1.88] and [1.101] the derivative of zj is obtained as

∂zj
∂p

= − 1

2γj

(
zTj
∂2[D(s)]

∂s ∂p
|s=sj zj

)
zj −

m∑
k=1
k ̸=j

zTk
∂D(s)
∂p |s=sj zj

γk(sj − sk)
zk. [1.102]

This is the most general expression for the derivative of eigenvectors of linear dynamic systems. Equation [1.102]
can be applied directly to derive the derivative of eigenvectors for various special cases:

1) Undamped systems (section 1.1): In this case G(s) = 0 results the order of the characteristic polynomial
m = 2N ; sj is purely imaginary so that sj = iωj . Using [1.77], equation [1.101] results

∂2[D(s)]

∂s ∂p
|s=sj = 2sj

∂M
∂p

. [1.103]

Recalling that the eigenvalues appear in complex conjugate pairs and all zj are real, from [1.102] one obtains

∂zj
∂p

= −1

2

(
2iωjzTj

∂M
∂p zj

)
2iωj

(
zTj Mzj

) zj−

N∑
k=1
k ̸=j

zTk
[
∂K
∂p − ω2

j
∂M
∂p

]
zj

2iωk

(
zTk Mzk

) [
1

iωj − iωk
− 1

iωj + iωk

]
zk

[1.104]
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Considering the unity mass normalisation, that is, zTk Mzk = 1, ∀k = 1, · · · , N the preceding equation can be
rewritten as

∂zj
∂p

= −1

2

(
zTj
∂M
∂p

zj
)

zj +
N∑

k=1
k ̸=j

zTk
[
∂K
∂p − ω2

j
∂M
∂p

]
zj

(ω2
j − ω2

k)
zk [1.105]

which is a well known result.
2) Viscously damped systems (section 1.2): In this case G(s) = C, a constant matrix with respect to s and

m = 2N . Using [1.79], equation [1.101] results

∂2[D(s)]

∂s ∂p
|s=sj = 2sj

∂M
∂p

+
∂C
∂p

. [1.106]

Recalling that the eigenvalues and eigenvectors appear in complex conjugate pairs, from [1.102] one obtains

∂zj
∂p

= − 1

2γj

(
zTj

[
2sj

∂M
∂p

+
∂C
∂p

]
zj
)

zj−

1

γ∗j 2iℑ(sj)

(
z∗

T

j

∂D(s)

∂p
|s=sj zj

)
z∗j−

N∑
k=1
k ̸=j

zTk
∂D(s)
∂p |s=sj zj

γk (sj − sk)
zk +

z∗
T

k
∂D(s)
∂p |s=sj zj

γ∗k (sj − s∗k)
z∗k

 .
[1.107]

Thus, the result obtained in equation [1.102] generalise earlier expressions of the derivative of eigenvectors.

1.3.2.2. Numerical example: A two-degree-of-freedom system

We consider a two-degree-of-freedom system shown in Figure 1.8 to illustrate a possible use of the expressions
derived so far. The system considered here is similar to the one used in subsubsection 1.2.2.3 except that the

km m

k2

1 2

g(t)k1

3

Figure 1.8: A two degrees-of-freedom spring-mass system with nonviscous damping, m = 1 Kg, k1 = 1000 N/m,
k3 = 100 N/m, g(t) = c (µ1e

−µ1t + µ2e
−µ2t), c = 4.0 Ns/m, µ1 = 10.0 s−1, µ2 = 2.0 s−1

dissipative element connected between the two masses is not a simple viscous dashpot but a nonviscous damper.
The equation of motion describing the free vibration of the system can be expressed by [1.66], with

M =

[
m 0
0 m

]
, K =

[
k1 + k3 −k3
−k3 k2 + k3

]
[1.108]

and

G(t) = g(t)Î, where Î =
[

1 −1
−1 1

]
. [1.109]
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The damping function g(t) is assumed to be the GHM model [GOL 85, MCT 93] so that

g(t) = c
(
µ1e

−µ1t + µ2e
−µ2t

)
; c, µ1, µ2 ≥ 0, [1.110]

where c is a constant and µ1 and µ2 are known as the relaxation parameters. In equation [1.110] if the function
associated with cwas a delta-function, cwould serve the purpose of the familiar viscous damping constant. Taking
the Laplace transform of [1.109] one obtains

G(s) = G(s)Î,

where G(s) = L [g(t)] = c

(
µ1

s+ µ1
+

µ2

s+ µ2

)
.

[1.111]

Substituting [1.108] and [1.111] in equation [1.70] it may be shown that the system has six eigenvalues – four of
which correspond to the two elastic modes (together with corresponding complex conjugate pairs) and the rest two
correspond to two nonviscous modes. For convenience arrange the eigenvalues as

se1 , se2 , s
∗
e1 , s

∗
e2 , snv1 , snv1 [1.112]

where (•)e denotes elastic modes and (•)nv denotes nonviscous modes.

We consider the derivative of eigenvalues with respect to the relaxation parameter µ1. The derivative of the
system matrices with respect to this parameter may be obtained as

∂M
∂µ1

= O,
∂G(s)

∂µ1
= Î

c s

(s+ µ1)
2 and

∂K
∂µ1

= O. [1.113]

Further, from equation [1.111] one also obtains

∂G(s)

∂s
= −Îc

{
µ1

(s+ µ1)
2 +

µ2

(s+ µ2)
2

}
∂2[G(s)]

∂s ∂µ1
= −Îc

s− µ1

(s+ µ1)
3 .

[1.114]

Using equations [1.113] and [1.114] the terms γj , ∂D(s)
∂p and ∂2[D(s)]

∂s ∂µ1
appearing in equations [1.76] and [1.102]

can be evaluated.

Figures 1.9 and 1.10 show the real part of the derivative of first and second eigenvalue with respect to µ1 over a
parameter variation of k2 and k3. These results are obtained by direct application of equation [1.76]. The system
considered here shows the so called ‘veering’ [BOI 11, BOI 09] when the eigenvalues are plotted versus a system
parameter. In the veering range (that is when k2 ≈ k1 and k3 ≈ 0) rapid changes take place in the eigensolutions.
From Figures 1.9 and 1.10 it may be noted that around the veering range the first eigenvalue is not very sensitive
to µ1 while the second eigenvalue is very sensitive in this region. In the first mode both the blocks move in the
same direction and consequently the damper is not stretched, resulting insensitiveness to the relaxation parameter
µ1. In the second mode the blocks move away from each other. This results stretching of the damping block and
increases sensitiveness to the relaxation parameter µ1.

It is useful to understand the effect of different parameters on the eigenvalues. Figures 1.11 and 1.12 show the
imaginary part of the derivative of first and second eigenvalue with respect to the damping parameters c, µ1 and
µ2 over a parameter variation of k2. The value of k3 is fixed at k3 = 100. These plots show that the damping
parameters not only affect the real part of the eigenvalues but also affect the imaginary part. Again, observe that
in the veering range the first eigenvalue is insensitive to the damping parameters while the second eigenvalue is
sensitive to them.
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Figure 1.9: Real part of the derivative of the first eigenvalue with respect to the relaxation parameter µ1

Now we turn our attention to the derivative of eigenvectors. Figures 1.13 and 1.14 show the real part of the
derivative of first and second eigenvector with respect to k2 over a parameter variation of k2. It is useful to
compare these results with the corresponding results by considering the damping mechanism to be viscous, that is,
when g(t) given by equation [1.110] has the form g(t) = c δ(t). In Figures 1.13 and 1.14 the derivative of both
eigenvectors for the corresponding viscously damped system is also plotted. Observe that around the veering range
the derivatives of both eigenvectors are different for viscously and nonviscously damped systems. This illustrates
that the nature of damping affects the parameter sensitivity of the real part of complex modes.

1.3.2.3. Nelson’s method

For large scale structures with nonviscous damping, obtaining all of the eigenvectors is a computationally
expensive task because the number of eigenvectors of a nonviscously damped system is much larger, in general,
than the number for a viscously damped system. This motivates the extension of Nelson’s method to calculate the
derivatives of eigenvectors of nonviscously damped systems.

Differentiating equation [1.69] with respect to the design parameter p we have

D(sj)
∂zj
∂p

= hj [1.115]

where

hj = −∂D(sj)

∂p
zj = −

[
2sj

∂sj
∂p

M + s2j
∂M
∂p

+
∂sj
∂p

G(sj) + sj
∂ [G(sj)]

∂p
+
∂K
∂p

]
zj [1.116]
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Figure 1.10: Real part of the derivative of the second eigenvalue with respect to the relaxation parameter µ1

is known. For unique results we need to normalise the eigenvectors. There are many approaches to the normalisa-
tion of the eigenvectors. A convenient approach (see ??) is to normalise zj such that

zTj
∂D(s)

∂s
|s=sj zj = γj [1.117]

or zTj D
′(sj)zj = γj , ∀j = 1, · · · ,m [1.118]

where

D′(s) =
∂D(s)

∂s
= [2sM + G(s) + sG′(s)] ∈ CN×N [1.119]

and γj ∈ C is some non-zero constant.

Equation [1.115] cannot be solved to obtain the eigenvector derivative because the matrix is singular. For
distinct eigenvalues this matrix has a null space of dimension 1. Following Nelson’s approach the eigenvector
derivative is written as

∂zj
∂p

= vj + djzj [1.120]

where vj and dj have to be determined. These quantities are not unique since any multiple of the eigenvector
may be added to vj . A convenient choice is to identify the element of maximum magnitude in zj and make the
corresponding element in vj equal to zero. Although other elements of vj could be set to zero, this choice is
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Figure 1.11: Imaginary part of the derivative of the first eigenvalue with respect to the damping parameters c, µ1

and µ2

most likely to produce a numerically well-conditioned problem. Because D(sj)zj = 0 due to equation [1.69],
substituting equation [1.120] into equation [1.115], gives

Djvj = hj [1.121]

where

Dj = D(sj) =
[
s2jM + sj G(sj) + K

]
∈ CN×N . [1.122]

This may be solved, including the constraint on the zero element of vj , by solving the equivalent problem,Dj11 0 Dj31

0 1 0
Dj31 0 Dj33

 vj1
xj2 (= 0)

vj3

 =

hj1

0
hj3

 [1.123]

where the Dj is defined in equation [1.122], and has the row and column corresponding to the zeroed element of
vj replaced with the corresponding row and column of the identity matrix. This approach maintains the banded
nature of the structural matrices, and hence is computationally efficient.

It only remains to compute the scalar constant, dj , to obtain the eigenvector derivative. For this the normali-
sation equation [1.118] must be used. Differentiating equation [1.118] and using the symmetry property of D′(s)
we have

zTj
∂D′(sj)

∂p
zj + 2zTj D

′(sj)
∂zj
∂p

= 0. [1.124]
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Figure 1.12: Imaginary part of the derivative of the second eigenvalue with respect to the damping parameters c,
µ1 and µ2

Substituting ∂zj

∂p from equation [1.120] one has

1

2
zTj
∂D′(sj)

∂p
zj + vTj D

′(sj)zj + djzTj D
′(sj)zj = 0. [1.125]

Noticing that the coefficient associated with dj is the normalisation constant given by equation [1.118], we have

dj = − 1

γj

{
1

2
zTj
∂D′(sj)

∂p
zj + zTj D

′(sj)vj
}
. [1.126]

The first term in the right-hand side can be obtained by substituting s = sj into equation [1.119] and differentiating

∂D′(sj)

∂p
= 2

∂sj
∂p

M + 2sj
∂M
∂p

+
∂ [G(sj)]

∂p
+
∂sj
∂p

G′(sj) + sj
∂ [G′(sj)]

∂p
[1.127]

where
∂[G(sj)]

∂p is given in equation [1.73] and

∂ [G′(sj)]

∂p
=
∂sj
∂p

∂G′(s)

∂s
|s=sj +

∂G′(s)

∂p
|s=sj

=
∂sj
∂p

∂2G(s)

∂s2
|s=sj +

∂2G(s)

∂p ∂s
|s=sj .

[1.128]

Equation [1.120], combined with vj obtained by solving equation [1.123] and dj obtained from equation [1.126]
completely defines the derivative of the eigenvectors.
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Figure 1.13: Real part of the derivative of the first eigenvector with respect to k2

1.3.2.4. Numerical example

We consider a two-degree-of-freedom system shown in Figure 1.8 to illustrate the use of the expressions de-
rived here. Here the dissipative element connected between the two masses is not a simple viscous dashpot but
a nonviscous damper. The equation of motion describing the free vibration of the system can be expressed by
equation [1.66], with

M =

[
m 0
0 m

]
, K =

[
k1 + k3 −k3
−k3 k2 + k3

]
[1.129]

and

G(t) = g(t)Î, where Î =
[

1 −1
−1 1

]
. [1.130]

The damping function g(t) is assumed to be a ‘double exponential model’, with

g(t) = c
(
µ1e

−µ1t + µ2e
−µ2t

)
; c, µ1, µ2 ≥ 0, [1.131]

where c is a constant and µ1 and µ2 are known as the relaxation parameters. In equation [1.131] if the function
associated with c was a delta-function, c would be the familiar viscous damping constant. Taking the Laplace
transform of equation [1.130] one obtains

G(s) = cÎ
{
(1 + s/µ1)

−1
+ (1 + s/µ2)

−1
}
. [1.132]
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Figure 1.14: Real part of the derivative of the second eigenvalue with respect to k2

Table 1.1: Eigenvalues and eigenvectors for the example
Elastic Elastic Nonviscous NonviscousQuantity Mode 1 Mode 2 Mode 1 Mode 2

sj −0.0387± 38.3232i −1.5450± 97.5639i −2.8403 −5.9923

zj
{
−0.7500± 0.0043i
−0.6616∓ 0.0041i

} {
0.6622∓ 0.0035i
−0.7501± 0.0075i

} {
−0.0165
0.0083

} {
0.0055
−0.0028

}

Substituting Eqs. [1.129] and [1.132] into equation [1.70] shows that the system has six eigenvalues – four of
which occur in complex conjugate pairs and correspond to the two elastic modes. The other two eigenvalues are
real and negative and they correspond to the two nonviscous modes. The eigenvalues and the eigenvectors of the
system are shown in Table 1.1. The normalisation constants γj are selected such that γj = 2sj for the elastic
modes and γj = 1 for the nonviscous modes.

We consider the derivative of eigenvalues with respect to the stiffness parameter k1 and the relaxation parameter
µ1. The derivative of the relevant system matrices with respect to k1 may be obtained as

∂M
∂k1

= O,
∂G(s)

∂k1
|s=sj = O,

∂K
∂k1

=

[
1 0
0 0

]
[1.133]
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Table 1.2: Derivative of eigenvalues and eigenvectors with respect to the stiffness parameter k1
Elastic Elastic Nonviscous NonviscousQuantity Mode 1 Mode 2 Mode 1 Mode 2

∂sj
∂k1

0.0001± 0.0073i 0.0001± 0.0022i −2.7106× 10−4 −2.9837× 10−5

∂zj
∂k1

× 103
{
0.1130∓ 0.0066i
0.0169± 0.0041i

} {
0.0385∓ 0.0015i
0.0494∓ 0.0026i

} {
0.0072
0.0046

} {
−0.0018
−0.0018

}

Table 1.3: Derivative of eigenvalues and eigenvectors with respect to the relaxation parameter µ1

Elastic Elastic Nonviscous NonviscousQuantity Mode 1 Mode 2 Mode 1 Mode 2
∂sj
∂µ1

−0.0034± 0.0196i −0.2279± 2.0255i −0.0570 −0.4804

∂zj
∂µ1

× 103
{

0.0022± 0.0004i
−0.0021∓ 0.0003i

} {
−0.0045∓ 0.0012i
0.0098± 0.0015i

} {
−0.0002
0.0001

} {
0.0022
−0.0011

}

∂ [D(sj)]

∂k1
=
(
2sjM + G(sj)− csj Î

{
µ−1
1 (1 + sj/µ1)

−2
+ µ−1

2 (1 + sj/µ2)
−2
}) ∂sj

∂k1
+
∂K
∂k1

[1.134]

and

∂ [D′(sj)]

∂k1
=
(
2M − 2cÎ

{
µ−1
1 (1 + sj/µ1)

−3
+ µ−1

2 (1 + sj/µ2)
−3
}) ∂sj

∂k1
. [1.135]

Using these expressions, the derivative of the eigenvalues and eigenvectors are obtained from Eqs. [1.80] and
[1.120] shown in Table 1.2.

The derivatives of the eigensolutions with respect to the relaxation parameter µ1 may be obtained using similar
manner. The derivative of the relevant system matrices with respect to µ1 may be obtained as

∂M
∂µ1

= O,
∂K
∂µ1

= O,
∂G(s)

∂µ1
|s=sj = cÎ sjµ−2

1 (1 + sj/µ1)
−2
, [1.136]

∂ [D(sj)]

∂µ1
=
(
2sjM + G(sj)− csj Î

{
µ−1
1 (1 + sj/µ1)

−2
+ µ−1

2 (1 + sj/µ2)
−2
}) ∂sj

∂µ1

+ cÎs2jµ
−2
1 (1 + sj/µ1)

−2 [1.137]

and

∂ [D′(sj)]

∂µ1
=
(
2M − 2cÎ

{
µ−1
1 (1 + sj/µ1)

−3
+ µ−1

2 (1 + sj/µ2)
−3
}) ∂sj

∂µ1

+ 2cÎ sjµ−2
1 (1 + sj/µ1)

−3
. [1.138]

Using these expressions, the derivative of the eigenvalues and eigenvectors are obtained from Eqs. [1.80] and
[1.120] shown in Table 1.3.

1.4. Summary

Sensitivity of the eigenvalues and eigenvectors of linear damped discrete systems with respect to the system
parameters have been derived. In the presence of general non-proportional viscous damping, the eigenvalues and
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eigenvectors of the system become complex. The results are presented in terms of changes in the mass, damping,
stiffness matrices and complex eigensolutions of the second-order system so that the state-space representation
of equation of motion can be avoided. The expressions derived hereby generalise earlier results on derivatives
of eigenvalues and eigenvectors of undamped systems to the damped systems. It was shown through an example
problem that the use of the expression for the derivative of undamped modes can give rise to erroneous results even
when the modal damping is quite low. For non-classically damped systems the expressions for the sensitivity of
eigenvalues and eigenvectors developed in this chapter should be used. These complex eigensolution derivatives
can be useful in various application areas, for example, finite element model updating, damage detection, design
optimisation and system stochasticity analysis relaxing the present restriction to use the real undamped modes
only.

In general structural systems are expected to be nonviscously damped. The derivative of eigenvalues and
eigenvectors of nonviscously damped discrete linear systems have been derived. The assumed nonviscous damp-
ing forces depend on the past history of velocities via convolution integrals over suitable kernel functions. The
familiar viscous damping model is a special case corresponding to a ‘memory-less’ kernel. It has been assumed
that, in general, the mass and the stiffness matrices as well as the matrix of the kernel functions cannot be si-
multaneously diagonalised by any linear transformation. The analysis is, however, restricted to systems with
non-repetitive eigenvalues and non-singular mass matrices. Eigenvectors of linear dynamic systems with general
nonviscous damping do not satisfy any kind of orthogonality relationship (not even in the usual state-space). For
this reason none of the established methodologies for determination of the derivative of eigenvectors are applicable
to nonviscously damped systems. An approach is shown which utilises the eigenvalue problem of the associated
complex dynamic stiffness matrix. The original eigenvalue problem is a limiting case of this eigenvalue problem.
The expressions derived for the derivative of eigenvalues and eigenvectors (equations [1.76] and [1.102]) are very
general and also valid for undamped and viscously damped systems. This analysis opens up the possibility of
extending the conventional modal updating and parameter estimation techniques to nonviscously damped systems.

So far in this book we have discussed dynamics of damped systems with known parameters. In the next two
chapters we show how the damping parameters can be identified from structural dynamic experiments.
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