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Preface

Who should read it and why? Natural and engineered materials have acquired 
an unprecedented role in the history of human civilisation. Entire eras have been 
named after predominant materials, such, as the stone age, bronze age, and iron age 
to mention a few. Composite materials are the defining advanced materials in the 
current era with the exceptional promise of applicability in a number of high-end 
areas such as aerospace, marine, automotive, construction and defence sectors. 
Composite materials convincingly demonstrate that their mechanical properties 
can be tailored to specific engineering demands and therefore perform superiorly 
compared to conventional metallic materials. From a design perspective, this 
advantage arises through a fundamental mathematical fact that the mechanical 
properties of composite materials are functions of significantly more parameters 
compared to their metallic counterparts. However, the advantages of composite 
materials come at a cost that the designers and analysts have to deal with many 
parameters. This gives rise to two major problems. Firstly, considering many 
parameters simultaneously makes the design process computationally more 
expensive. Secondly, perhaps more importantly, the increase in the number of 
parameters leads to an unavoidable escalation of uncertainty associated with these 
parameters. One way to address both of these problems simultaneously is to use 
metamodels which effectively ‘replace’ the original physics-based computationally 
expensive model with a data-based computationally inexpensive model. The aim 
of this book is to introduce predominant techniques in this direction. 

This book is the first comprehensive text on the treatment of uncertainties in 
the modelling and analysis of composite materials. The authors have drawn on their 
considerable research experience to produce this book. The text is written from 
an engineering standpoint, comprising fundamental and complex theories that are 
relevant across a wide range of metamodeling techniques. The book introduces 
faculties, researchers and students about the confluence of composite structure 
theory, uncertainty modelling and propagation and metamodeling approaches. 
The pedagogical objective of this book is to systematically present the latest 
developments in the metamodeling techniques and explain how they can be used 
in conjunction with composite structures. The focus has been on the mathematical 
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and computational aspects. This book will be relevant to aerospace, mechanical 
and civil engineering disciplines and various sub-disciplines within them. The 
intended readers of this book include senior undergraduate students and graduate 
students doing projects or doctoral research in the field of composite structures. 
Researchers, Professors and practicing engineers working in the field of composite 
structures will also find this book useful. 

Existing works and the need for this book: There are some excellent books which 
already exist in the field of composite materials. For example, the book by Reddy 
(2003) covers essential details on analytical techniques and physics-based modelling 
of laminated composites. Uncertainty quantification has gained immense attention 
from the research community in the recent years. Extensive works from different 
disciplines such as mathematics, statistics, engineering and applied sciences have 
led to some excellent books on uncertainty quantification. As an example, the 
book by Smith (2014) gives a comprehensive account of uncertainty quantification 
approaches from a general multidisciplinary point of view. Meta-modelling is a 
classical topic which has seen a significant explosion over the past two decades due 
to the increasing demand for inexpensive computational tools. As a result, there 
are excellent books available to the readers on this topic. We refer to the books 
by Myers et al. (2016) and Forrester and Keane (2008) for a detailed exposure on 
statistical and mathematical aspects underpinning the metamodeling techniques for 
computational models. Although there are outstanding books available separately 
on the topics of composite structures, uncertainty quantification and metamodeling, 
to date there is no book which comprehensively discusses the role of metamodeling 
techniques for efficient uncertainty quantification and sensitivity analysis of 
composite structures in a unified manner. This book was conceived by us to fill this 
essential gap in the literature. We hope that this text will be an invaluable reference 
for next-generation engineers and researchers working in the area of design, analysis 
and manufacturing of composite materials for a wide range of practical applications. 
As significant research works have gone into uncertainty quantification in composite 
structures recently and many seminal papers have been published, the book also 
covers some of these latest developments with the introduction of fundamentals 
in a concise way. The attention in the book is mainly focussed on theoretical and 
computational aspects, although some reference to experimental works is given. 
Using this book, engineering and applied science graduate students and researchers 
will be able to implement and develop metamodels for applications in composite 
structural mechanics. 

What will you find in this book? This book covers the essential fundamentals, 
applications and important references related to different metamodeling approaches 
specifically applicable to the aspect of uncertainty quantification in composite 
structures. Chapter 1 gives a general introduction to the need for considering 
uncertainty in engineering. The Chapter 2 of this book gives an overview of 
uncertainty quantification and a general review of the literature related to uncertainty 
quantification in composite structures. Chapter 3 presents a bottom-up approach 



to analyse the effect of stochasticity in material and structural parameters of a 
composite plate on the dynamic responses based on high dimensional model 
representation technique. Chapter 4 and 5 deals with the stochastic dynamic 
analysis of singly curved and doubly curved composite shells respectively. Chapter 
6 deals with an environmental effect (thermal uncertainty) on the stochastic 
dynamic analysis of composite laminates, while chapter 7 addresses one of the 
crucial aspects of mechanical structures arising during the operational conditions 
(rotational uncertainty). Often application-specific requirements are needed to be 
met in engineering structures such as cutouts in plate and shells. Chapter 8 deals with 
the stochastic dynamics of composite laminates with cutouts. Chapter 9 presents 
a stochastic dynamic stability analysis of composite shells with uncertain material 
and geometric properties. Chapter 10 presents the stochastic dynamics and stability 
analysis of sandwich panels. Probabilistic approaches of uncertainty quantification 
are followed in Chapter 3 to 10. A metamodel based non-probabilistic uncertainty 
propagation scheme for composites is presented in Chapter 11. Different metamodel 
based uncertainty propagation schemes are discussed in Chapter 3 to 11, while the 
comparative performance of the metamodels for analysing composite structures 
is presented in Chapter 12 and 13. The scope of this book includes the aspect of 
uncertainty modelling as well as critical evaluation of the efficient metamodel-based 
uncertainty propagation approaches for composite structures. 

Brief history and acknowledgements: This book on uncertainty quantification in 
laminated composites is a result of last ten years of research by the authors in the 
area of probabilistic engineering mechanics. The book’s initial chapters began taking 
shape when Dr Dey, an expert in composite mechanics, joined Swansea University 
as a postdoctoral research fellow to work on uncertainty propagation in large 
composite structures. During this time, Dr Dey collaborated with Dr Mukhopadhyay, 
who had experience in metamodeling methods and computational mechanics. 
The inception of this book emerged from the fusion of three key technical areas 
which were historically disconnected in nature, namely, uncertainty modelling and 
propagation (Prof Adhikari), composite structures (Dr Dey) and metamodeling 
for multi-parameter systems and computational mechanics (Dr Mukhopadhyay). 
Without the timely merger of such complementary expertise, this book would have 
never taken the shape. 

In this context, it could be noted that Dr Dey and Dr Mukhopadhyay have 
contributed equally in this book.

The authors are deeply indebted to numerous colleagues, students, collaborators 
and mentors. We are genuinely thankful to all of them for numerous stimulating 
scientific discussions, exchanges of ideas and on many occasions direct contributions 
towards the intellectual content of the book. Support and encouragement from 
colleagues within Swansea University’s Zienkiewicz Centre for Computational 
Engineering, such as Professor M. I. Friswell, Professor P. Nithiarasu,  
Dr H. H. Khodaparast is greatly acknowledged. Particular thanks to Dr P. Higino,  
Dr G. Caprio and Dr A. Prado from Embraer (Brazil) for their intellectual 
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contributions and discussions at different times. The authors are grateful to Professor 
J. E. Cooper (University of Bristol, UK), Dr R. Chowdhury (IIT Roorkee, India), 
Dr A. Chakrabari (IIT Roorkee, India), Dr S. Chakraborty (University of Notre 
Dame, USA), Professor S. K. Sahu (NIT Rourkela, India), Dr. G. Li (Princeton 
University, USA), Professor H. Rabitz (Princeton University, USA), Professor  
E. Carrera and Dr A. Pagani (Politecnico di Torino, Italy), Dr C. Scarth (University 
of Bath, UK) and Professor R. Banerjee (City University London, UK) for 
many stimulating discussions contributing towards the intellectual content of 
this book. The authors would like to gratefully acknowledge the contribution of  
Dr S. Naskar (University of Aberdeen, UK) in preparing the initial two chapters of 
this book. Beside the names taken here, we are thankful to many colleagues, fellow 
researchers and students working in this field of research around the world, whose 
name cannot be listed here for page limitations. The lack of explicit mentions by 
no means implies that their contributions are any less. The opinions presented in 
the book are entirely ours, and none of our colleagues, students, collaborators and 
mentors has any responsibility for any shortcomings.

We have been fortunate to receive grants from various companies, charities 
and government organisations including an Advanced Research Fellowship from 
UK Engineering and Physical Sciences Research Council (EPSRC), the Wolfson 
research merit award from The Royal Society, the Philip Leverhulme Prize from The 
Leverhulme Trust, research grants from Embraer, NRN Wales and a Zienkiewicz 
Scholarship from Swansea University. Without these funding, it would have been 
impossible to conduct the works leading to this book. 

Sudip Dey
Tanmoy Mukhopadhyay

Sondipon Adhikari
February 2018
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 Introduction

“Uncertainty is the only certainty there is, and knowing how to live 
with insecurity is the only security”.

― John Allen Paulos

If we think deeply, sun-rise or sun-set never ever occurs. In reality, there is no new 
year or end of year and thus there is no century. Actually, all of us have framed 
everything as per our convenience. We always try to formulate our surroundings 
in the form of a theory-law-hypothesis or an equation or algorithm. The perpetuity 
of these deterministic frameworks based on the model of certainty does not exist in 
the universal-continuum of time scale. The Sun and earth rotate to their own tune 
of rotation. In many of the cases, we cannot even identify the variability/change 
in pattern due to the unimaginable vastness of such systems both in terms of space 
and time. Since the dawn of civilization all models introduced are meant for some 
specific purposes, such as the solar model initially proposed by Pythagoras and 
Aristotle (500 BC) was meant for the purpose of assessment of weather needed 
for crop production. Later on, Ptolemy (300 BC) proposed a new solar model 
which claimed to have corrected the previous solar model. Even though the earlier 
models served the intended purpose to some extent, both the models are found to be 
wrong as compared to the present solar model (refer to Fig. 1.1). Thus there exists 
a deficiency in the accuracy of our understanding of the physical systems in many 
cases. We human beings have formulated all the uncertain facts and transformed 
them into the cage of certainty for our convenience. Hence, many of the theories, 
laws, hypothesis, and formulae (from Aristotle to Hawking) become questionable 
if we change its domain, assumptions and boundary conditions. 

The convenient simplified models have their limitations in accurate predictions 
and often differ from the true values. For centuries, researchers have been abiding 
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by and spending their valuable time either to demonstrate or to validate those certain 
(/deterministic) models, which are actually uncertain in the domain of space and 
time. However, uncertainty being an inevitable characteristics of this universe, it is 
almost impossible to model a system accurately in a deterministic manner. Rather, 
it is a rational idea to try to quantify the effect of such uncertainty by considering it 
as an integral part of the model and deal with the consequences. This approach of 
modelling physical systems equips us to be prepared for the possible combination of 
outcomes by providing a detailed account of the variation from deterministic values 
of responses (i.e., the output quantity of interest). In case of engineering systems, 
if the design is carried out by considering the effect of source-uncertainties and 
prospective service-life conditions (such as environmental effects and damages) 
instead of blatantly avoiding them, the possibility of failure can be minimized (/
controlled) based on a strong scientific foundation.

Let us take a simple example to understand the influence of source-uncertainty. 
When we flip a fair coin, the probability of getting head or tail is 50%; but what 
happens if there is a soft muddy floor. It may lead to some possibilities wherein 
the coin will fall neither head nor tail, i.e., the coin may fall vertical. In such 
cases, it will not be 50% probability of getting either head or tail. Moreover, due 
to manufacturing uncertainties the coin may not be perfectly unbiased. This may 
also deviate the outcome from the general expectation. Likewise, the probability 
of getting one in dice having six faces is 1/6. But if the similar conditions (such 
as soft muddy surface, manufacturing uncertainty of the dice) are imposed here, 
there can be some possibilities wherein the dice will not show any specific face, or 
the probability of different outcomes would vary. Hence, the exact probability of 
getting one in those cases can’t be predicted. In a similar fashion, all the physical 
or mathematical models are formulated based on certain boundary conditions and 
assumptions, which are often not strictly valid. 

Fig. 1.1 Solar models.

a b

c
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1.1 Source-uncertainty in engineering systems 

If we think in a scale of time, the observations (/realizations) at a present time are 
precise and unique; while the sparsity of impreciseness (/uncertainty in prediction) 
increases as we go away from the present moment towards the direction of past 
or future (refer to Fig. 1.2). Various practical issues of life should be able to 
cope with the uncertainties that may originate from different aspects of design, 
implementation and operational conditions. The past, present and future are the 
unidirectional horizon of time, wherein plenty of areas can be cited to illustrate 
the scope of quantifying the hidden uncertainty, such as:

 • Forecasting of weather in a particular place over a common span of time.
 • Gain or loss on investment in financial markets, e.g., stock markets.
 • Measurement error implicitly influencing the accuracy of machines or 

instruments.
 • Response of structural systems related to various fields of engineering, such 

as aerospace, mechanical and civil.
 • Validation and verification of material modelling in engineering. 
 • Success of new product, services, firms or person in the time-scale of future.
 • Winning in games or gambling. 
 • Occurrences of events, incidents, births, deaths, accidents.
 • Day to day activities like walking, sleeping, sitting, reading, writing, eating. 
 • Movement of particles such as atoms, molecules from Dalton’s atomic theory 

to modern quantum mechanics.
 • Actions, reactions and reflex in any biological systems. 
 • Human behaviour and activities.

In particular, the areas of engineering, which are most susceptible to different 
forms of uncertainty, are listed below:
 q Design of Machine elements or components (linear and non-linear model)
 • Design of joints (Any fasteners subjected to random load).
  • Power transmission unit design (Shaft coupling for torque transmission).

Fig. 1.2 Past-present-future domain with respect to time scale.

Time 



4 Uncertainty Quantification in Laminated Composites: A Meta-Model Approach

 •  Bearing design (Journal/Ball/Roller bearing).
 •  Vehicles Dynamics (Tire Technology).
 • Pressure vessel design subjected to uncertain load.
 q Biomedical or Bioengineering 
  • Human glucose metabolism/Diabetic Model. 
  º Model for inflow of insulin by injection. 
  º Model for inflow of glucose from ingested food.
 • Molecular/Cellular/Organisms/Communities and Ecosystems.
 • HIV model, Ebola virus model, Polio model, etc.
 • Human Blood Pressure model.
 q Control Engineering for robust design
  • Temperature–Moisture Controller for air-conditioner.
 •  Speed: Fuel consumption Controller for automobiles.
 •  Speed: Cleanliness (dirt-removal) Controller for washing machine.
 •  Illumination: Power Controller for Light emitting diode (LED) light.
 q Aerospace and Structural Engineering 
 •  Bending Characteristics. 
 •  Vibration analysis (Free/Forced).
 •  Inverse Problem/Design Optimization.
 •  Structural Health Monitoring.
 •  Reliability Analysis.
 q Environmental Engineering
 •  Weather Model (rain/snowfall/humidity/temperature).
 •  Earthquake Model.
 •  Atmospheric climate (Layerwise) Model.
 q Coastal/Marine Engineering
 • Tide/Flood control.
 • Marine traffic control.
 q Geo-technical Engineering
 • Contamination migration problem (by uncertain diffusion process).
 • Sedimentation of clay/silt due to uncertain hydraulic transportation.
 • Inaccurate measurement of the properties of soil and their spatially varying 

characteristics.

This book is focused on the aspect of source-uncertainties in advanced 
lightweight structures such as composites and efficient approaches to quantify their 
effects on global responses for a safe, yet economic design. A brief overview of 
the uncertainty quantification of composites following an efficient metamodeling 
approach is provided in the following sections of this chapter.
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1.2 Importance of uncertainty quantification in composite 
structures

Composite structures are extensively used in modern aerospace, marine, 
construction and automobile applications due to their high strength, stiffness, 
lightweight and tailorable properties. Even though laminated composite structures 
have the advantage of modulating large number of design parameters to achieve 
various application-specific requirements, this concurrently brings the challenge 
of manufacturing the structure according to exact design specifications. Large-
scale production of such structures according to the requirements of industry 
is always subjected to significant variability due to unavoidable manufacturing 
imperfections (such as intra-laminate voids, incomplete curing of resin and excess 
resin between plies, porosity, excess matrix voids, variations in ply thickness and 
fibre parameters), lack of experiences and complexity of the structural configuration. 
The issue aggravates further due to uncertain operational and environmental factors 
and the possibility of incurring different forms of damages and defects during the 
service life. 

In general, an additional factor of safety (FOS) is incorporated by the designer 
to account for such unpredictable global responses, which may lead to either an 
ultraconservative or an unsafe design. A river and bridge model (refer to Fig. 1.3) 
is introduced to explain this further. Due to the presence of different forms of 
uncertainties (referred as the river of uncertainty in a collective form), the designed 
outcome and the real outcome differ for an engineering system. For a particular 
value of FOS, if the design is more conservative the real outcome would be less 
prone to failure (refer to Fig. 1.3a) and vice versa (refer to Fig. 1.3b). However 
a high value of FOS would be required if the design is less conservative, yet the 
system is required to be less prone to failure (refer to Fig. 1.3c). The above three 
cases normally lead to either an unsafe or uneconomic design because of the fact 
that the river of uncertainty is not adequately explored in this approach of analysis. 
An economic, yet safe design requires the in-depth analysis of the uncertainty 
associated with the system, as shown in Fig. 1.3d. If the level of uncertainty for 
a system is appropriately quantified, then the value of FOS can be adopted based 
on the importance of the system in a more robust manner. Moreover, probabilistic 
description for the response of the system could be obtained for the adopted value 
of FOS. As laminated composites are often used in various functionally important 
structures (such as aircrafts), it is important to quantify the uncertainties associated 
with the responses of the structure. If the actual outcome of an engineering system 
is considered, there could be four distinct situations in terms of attaining the design 
specification and variability from the target (refer to Fig. 1.4). The objective is 
to achieve a design outcome which is on target and has low variability. As the 
variability cannot be nil in case of real-life engineering systems, the objective 
becomes to minimize it and subsequently quantify the effect of such variability  
(/uncertainty) following a strong mathematical stochastic paradigm.
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Fig. 1.3 River and bridge model of uncertainty.

Fig. 1.4 Realistic design aim of engineering structures.

In general, uncertainties are classified into three categories, namely aleatoric 
(because of variability in the structural system parameters), epistemic (because of 
lack of information of the structural system) and prejudicial (because of the absence 
of variability characterization of the structural system). A detail description of 
different categories of uncertainty is provided in Chapter 2. Composite structures 
being susceptible to multiple forms of uncertainties, damages and environmental 
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variations, the structural performances are often subjected to a significant element 
of risk. Thus it is of prime importance in case of composite structures to quantify 
the effect of source-uncertainties so that an inclusive design paradigm could be 
adopted to avoid any compromise in the aspects of safety and serviceability. The 
whole context of uncertainty quantification in various global responses of composite 
structures, which are increasingly being used in different industries, is summarized 
in Fig. 1.5. A concise discussion of the most prominent approaches for uncertainty 
quantification in composite structures is furnished in the next paragraph.

Following several decades of deterministic studies related to the static 
and dynamic responses of laminated composite structures (Reddy 2003, 
Chakrabarti et al. 2013, Mandal et al. 2017), the aspect of considering the 
effect of uncertainty in material and structural attributes have recently started 
receiving due attention from the scientific community. Both probabilistic (Sakata 
et al. 2008, Goyal and Kapania 2008, Manan and Cooper 2009) as well as  
non-probabilistic (Pawar et al. 2012) approaches have been investigated to analyse 
the effect of variability in the material and structural properties of composite 
structures. Plenty of researches have been reported based on intrusive methods to 
quantify the uncertainty of composite structures (Lal and Singh 2010, Scarth and 
Adhikari 2017); wherein the major drawback can be identified as the requirement of 
intensive analytical derivation and lack of the ability to obtain complete probabilistic 
description of the response quantities for systems with spatially varying attributes. 
Moreover, many of these approaches are valid only for a low degree of stochasticity 
in the input parameters. A non-intrusive method based on Monte Carlo simulation, 

Fig. 1.5 Uncertainty quantification in various global responses of composite structures.
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as adopted by many researchers (Dey et al. 2015a), can obtain comprehensive 
probabilistic descriptions for the response quantities of composite structures and 
these methods can account for much higher degree of stochasticity in the input 
parameters. A brief description of the Monte Carlo simulation method is provided 
in the next section.

1.3 Monte Carlo simulation

Uncertainty quantification is part of modern structural analysis problems. Practical 
structural systems are faced with uncertainty, ambiguity, and variability constantly, 
as discussed in the preceding sections. Even though one might have unprecedented 
access to information due to the recent improvement in various technologies, it is 
impossible to accurately predict future structural behaviour during its service life. 
Monte Carlo simulation, a computerized mathematical technique, lets us realize all 
the possible outcomes of a structural system leading to better and robust designs for 
the intended performances. The technique was first used by scientists working on 
the atom bomb; it was named after Monte Carlo, the Monaco resort town renowned 
for its casinos. Since its introduction in World War II, this technique has been used 
to model a variety of physical and conceptual systems across different fields such 
as engineering, finance, project management, energy, manufacturing, research and 
development, insurance, oil and gas, transportation and environment.

Monte Carlo simulation furnishes a range of prospective outcomes along 
with their respective probability of occurrence (refer to Fig. 1.6). This technique 
performs uncertainty quantification by forming probabilistic models of all possible 
results accounting for a range of values from the probability distributions of any 
factor that has inherent uncertainty. It simulates the outputs over and over, each 
time using a different set of random values from the probability distribution of 
stochastic input parameters. Depending upon the nature of stochasticity, a Monte 
Carlo simulation could involve thousands or tens of thousands of recalculations 
before it can provide a converged result depicting the distributions of possible 
outcome values of the response quantities of interest. Each set of samples is called 
an iteration or realization, and the resulting outcome from that sample is recorded.  
In this way, Monte Carlo simulation provides not only a comprehensive view of 
what could happen, but how likely it is to happen, i.e., the probability of occurrence.

Fig. 1.6 Schematic representation for Monte Carlo simulation based analysis of a stochastic system 
with three input parameters (xi, i = 1, 2, 3) and one output parameter (y). Here w– represents the 

stochastic character of a parameter. 

x1(ro) 
x2(ro) 

x3(ro) ... Stocbastic 
system 

y(ro) 

(\ ~utput probability ... J \_stribution 
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The mean or expected value of a function f(x) of an n dimensional random 
variable vector can be expressed as

 f = E[f(x)] =
Ω
 f (x) (x)dx (1.1)

Similarly the variance of the random function f(x) is given by the integral below,

 f
2 = Var [f (x)] =

Ω
 ( f (x) – f)

2 (x)dx  (1.2)

The above multidimensional integrals, as shown in equations (1.1) and (1.2) 
are diffi cult to evaluate analytically for many types of joint density functions and 
the integrand function f(x) may not be available in analytical form for the problem 
under consideration. Thus the only alternative way is to calculate it numerically. The 
above integral can be evaluated using MCS approach, wherein N sample points are 
generated using a suitable sampling scheme in the n-dimensional random variable 
space. The N samples drawn from a dataset must follow the distribution specifi ed 
by (x). Having the N samples for x, the function in the integrand f(x) is evaluated 
at each of the N-sampling points xi of the sample set  1,............, Nx x  . Thus, the 
integral for the expected value takes the form of averaging operator as shown below

    
1

1 N

f i
i

E f x f x
N




      (1.3)

Similarly, using sampled values of MCS, the equation (1.2) leads to

     22

1

1
1

N

f i f
i

Var f x f x
N

 


         (1.4)

Thus the statistical moments can be obtained using a brute force Monte Carlo 
simulation based approach, which is often computationally very intensive due 
the evaluation of function f(xi) corresponding to the N-sampling points xi, where 
N ~ 104. The noteworthy fact in this context is the adoption of a metamodel 
based Monte Carlo simulation approach that reduces the computational burden 
of traditional (i.e., brute force) Monte Carlo simulation to a signifi cant extent, as 
discussed in the next section.

1.4 Meta-modelling approach for uncertainty quantification

Uncertainty quantifi cation based on Monte Carlo simulation is a popular approach 
because of its ability to obtain a comprehensive probabilistic description of the 
response quantities. However, the major lacuna of this approach is that a Monte 
Carlo simulation requires thousands of expensive model evaluations to be carried 
out corresponding to the random realizations. Thus, in case of the systems where the 
model evaluations are expensive (such as fi nite element simulation), direct Monte 
Carlo simulation has limited practical use because of its computational intensiveness. 
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In general for complex composite structures, the performance function is not 
available as an explicit function of the random design variables unlike various other 
engineering problems with closed-form solutions (Mukhopadhyay and Adhikari 
2017a, Mukhopadhyay et al. 2017b, 2017e, 2018c). The performance functions 
or responses (such as natural frequencies, buckling loads, etc.) of the composite 
structure can only be evaluated numerically at the end of a structural analysis 
procedure such as the finite element method, which is often time-consuming and 
computationally expensive. To mitigate this lacuna, a meta-modelling approach can 
be adopted, wherein the uncertainty propagation is realized following an efficient 
mathematical medium. The metamodel based uncertainty propagation strategy can 
develop a predictive and representative mathematical model relating each response 
quantity of interest to a number of input variables. These metamodel equations are 
used to determine the global response characteristics corresponding to given values 
of input variables, instead of having to repeatedly run the time-consuming original 
simulation model (such as finite element analysis). The metamodel thus represents 
the result (or output) of the structural analyses encompassing (in theory) every 
reasonable combination of all input variables. From this, thousands of combinations 
of all design variables can be created (via simulation) and a pseudo analysis for each 
variable set can be performed by simply adopting the corresponding metamodel.

In general, the metamodels are employed to reduce the number of function 
evaluations based on actual simulation/experimental models in a Monte Carlo 
simulation, which needs large number of realizations corresponding to random 
set of input parameters (Metya et al. 2017, Mukhopadhyay et al. 2016f, Mahata 
et al. 2016). Metamodels are also quite popular in the area of optimization and 
inverse problems that involves multiple function evaluations (Mukhopadhyay 
et al. 2015b, 2016d). The development of metamodels is performed in three 
typical steps: selection of the representative sample points (which are able 
to collect all information of the whole design space in an optimal way) to 
construct a surrogate of the original simulation model, evaluation of responses 
(i.e., output) corresponding to each sample point and formulation of the 
mathematical or statistical model to obtain input-output relationship based on 
the sample set (containing a set of input parameters and corresponding output 
parameters). The performance of a metamodel (i.e., accuracy in prediction and 
computational efficiency) depends on various factors such as: dimension of the 
input parameter space (i.e., number of input parameters), number and quality of 
sample points for metamodel formation, degree of nonlinearity involved with the 
system and different forms of errors involved in metamodel formation (refer to  
Fig. 1.7). This book follows a metamodel based approach to quantify the effect of 
uncertainty in various global responses of composite structures.
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1.5 Motivation and scope of the book

Uncertainty quantification in composite materials and structures, initiated from 
industrial needs due to inevitable variation in global responses of such structures 
from the deterministic predictions, has gained immense attention from the 
research community over the last few decades. This book aims to present an 
efficient uncertainty quantification scheme for laminated composite structures 
following meta-model based approaches for stochasticity in material and geometric 
parameters. Several meta-models are studied for this purpose and comparative 
results are presented for different global responses of composite structures including 
the effect of various environmental (such as temperature) and operational (such as 
rotation) conditions. Stochastic response of composite structures with application-
specific design requirements such as cutouts is presented following the metamodel 
based approach. Both probabilistic and non-probabilistic approaches are discussed. 
Results for sensitivity analyses are presented to provide a complete understanding 
of the relative importance of different material and geometric parameters in global 
responses of the structure. To account for the effect of different forms of errors and 
uncertainty in metamodel formation, a collective effect of noise is presented in the 
metamodel based uncertainty quantification algorithms for composite structures. 

Motivated by the influence of inevitable source-uncertainties in composite 
structures and the computational challenges involved therein, as outlined in the 

Fig. 1.7 Metamodel based analysis of stochastic systems. (Here x(w– ) and y(x(w– )) are the symbolic 
representation of stochastic input parameters and output responses respectively. w– denotes the 

stochasticity of parameters.)
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preceding sections, this book is written to address both the aspects of modeling 
different forms of uncertainties in composites as well as efficient computational 
approaches for uncertainty propagation. After providing a general overview 
of uncertainty quantification and stochastic analysis of composite structures in 
Chapters 1–2, rest of the chapters in this book are concentrated on various specific 
aspects related to uncertainty analysis of laminated composites and metamodel 
based algorithms for uncertainty quantification. The Chapters 3–10 of this book 
are focused on probabilistic approach of uncertainty quantification in composite 
laminates and sandwich structures, while the Chapter 11 deals with a non-
probabilistic approach of uncertainty quantification in composites. The aspects of 
uncertainty and sensitivity of the material, geometric, environmental and operational 
factors for different responses of composite structures are analyzed in the Chapters 
3–11. Various application-specific requirements (such as cutouts, twist and skewed 
geometry) in modern high-performance structural systems are analyzed. The effect 
of noise is analyzed in surrogate based uncertainty quantification algorithms for 
composites. Chapter 12 provides a critical assessment of different kriging model 
variants for the uncertainty quantification of composite structures. Different meta-
models are used for formulating the uncertainty quantification schemes in various 
chapters of this book. Finally, comparative assessment of these meta-models is 
presented in Chapter 13. A concise summary explaining the contributions of each 
of the chapters in this book is given below.

The Chapter 2 of this book gives an overview of uncertainty quantification and 
a general review of the literature related to uncertainty quantification in composite 
structures. Different probabilistic and non-probabilistic methods of stochastic 
structural analysis are briefly presented in this chapter. After providing a concise 
review of the deterministic models for analyzing composite structures, the recent 
works on the aspect of uncertainty quantification in composite structures are 
discussed. The present standing of research in this area is assessed critically and the 
contribution of this book is justified in that context. Even though a comprehensive 
literature review is presented in Chapter 2, Chapters 3–13 also cite relevant studies 
specific to the topic of a particular chapter.

The effect of material and geometric uncertainty on the dynamic responses 
of composite plates is investigated in Chapter 3. A bottom up surrogate based 
approach is employed to quantify the variability in free vibration responses of 
composite cantilever plates due to uncertainty in ply orientation angle, elastic 
modulus and mass density. The finite element method is employed incorporating 
effects of transverse shear deformation based on Mindlin’s theory in conjunction 
with a random variable approach. Parametric studies are carried out to determine 
the stochastic frequency response functions (SFRF) along with stochastic natural 
frequencies and modeshapes. In this study, a surrogate based approach using General 
High Dimensional Model Representations (GHDMR) is employed for achieving 
computational efficiency in quantifying uncertainty. This chapter also presents 
an uncertainty quantification scheme using commercial finite element software 
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(ANSYS) and thereby comparative results of stochastic natural frequencies are 
furnished for UQ using GHDMR approach and ANSYS.

In Chapter 4, we have concentrated on the stochastic dynamic responses of 
singly curved composite shells including the effect of twist angle in the geometry. 
The effect of transverse shear deformation is incorporated in the probabilistic finite 
element analysis considering an eight noded isoparametric quadratic element with 
five degrees of freedom at each node. The finite element model is coupled with 
the response surface method based on D-optimal design to achieve computational 
efficiency. A sensitivity analysis is carried out to address the influence of different 
input parameters on the output natural frequencies. The fibre orientation angle, 
twist angle and material properties are randomly varied to obtain the stochastic 
natural frequencies.

Chapter 5 presents an efficient stochastic free vibration analysis of composite 
doubly curved shells. The stochastic finite element formulation is carried out 
considering rotary inertia and transverse shear deformation based on Mindlin’s 
theory. The sampling size and computational cost in the probabilistic analysis is 
reduced by employing a Kriging model based approach compared to direct Monte 
Carlo simulation. Besides detail investigation on the stochastic natural frequencies 
corresponding to low frequency vibration modes, the stochastic mode shapes and 
frequency response functions are also presented for a typical laminate configuration. 
The effect of noise on the kriging based uncertainty propagation algorithm is 
addressed. Results are presented for different levels of noise in a probabilistic 
framework to provide a comprehensive idea about stochastic structural responses 
under the influence of simulated noise.

Chapter 6 investigates the effect of rotational uncertainty under operating 
condition in the dynamic responses of composite shells. A response surface 
method based on central composite design algorithm is used for the quantification 
of rotational and ply-level uncertainties. The stochastic eigenvalue problem is 
solved by using QR iteration algorithm. An eight noded isoparametric quadratic 
element with five degrees of freedom at each node is considered in the finite 
element formulation. Sensitivity analysis is carried out to address the influence of 
different input parameters on the output natural frequencies. The sampling size and 
computational cost is reduced by employing the present surrogate based approach 
compared to direct Monte Carlo simulation. The stochastic mode shapes are also 
depicted for a typical laminate configuration.

Chapter 7 deals with the uncertainty caused by inevitable random variation 
of environmental factors such as temperature. The propagation of thermal 
uncertainty in composite structures has significant computational challenges. 
This chapter presents the thermal, ply-level and material uncertainty propagation 
in frequency responses of laminated composite plates by employing a surrogate 
model which is capable of dealing with both correlated and uncorrelated input 
parameters. In the present generalized high dimensional model representation 
(GHDMR) based approach, diffeomorphic modulation under observable response 
preserving homotopy (D-MORPH) regression is utilized to ensure the hierarchical 
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orthogonality of high dimensional model representation component functions. The 
stochastic range of thermal field includes elevated temperatures up to 375 K and 
sub-zero temperatures up to cryogenic range of 125 K.

The aspect of an application-specific design requirement in engineering 
structures (cutouts) is illustrated in Chapter 8. This chapter deals with the effect 
of cutout on stochastic dynamic responses of composite laminates. Support vector 
regression (SVR) model in conjunction with Latin hypercube sampling is used 
in this investigation as a surrogate of the actual finite element model to achieve 
computational efficiency. The convergence of the present algorithm for laminated 
composite curved panels with cutout is validated with original finite element 
(FE) analysis along with traditional Monte Carlo simulation (MCS). Variations 
of input parameters (both individual and combined cases) are studied to portray 
their relative effect on the output quantity of interest. The layer-wise variability of 
structural and material properties is included considering the effect of twist angle, 
cutout sizes and different geometries (such as cylindrical, spherical, hyperbolic 
paraboloid and plate). The sensitivities of input parameters in terms of coefficient 
of variation are enumerated to project the relative importance of different random 
inputs on natural frequencies. Subsequently, the noise induced effects on SVR 
based computational algorithm are presented to map the inevitable variability in 
practical field of applications.

In Chapter 9, a stochastic dynamic stability analysis of composite panels is 
presented considering the effect of non-uniform partial edge loading. The system 
input parameters are randomized to ascertain the stochastic first buckling load and 
zone of resonance. Considering the effects of transverse shear deformation and 
rotary inertia, first order shear deformation theory is used to model the composite 
curved panels. Moving least square method is employed as a surrogate of the 
actual finite element model to reduce the computational cost. Statistical results 
are presented to show the effects of radius of curvatures, material properties, fibre 
parameters, and non-uniform load parameters on the stability boundaries.

Chapter 10 focuses on the stochastic analysis of laminated soft-core sandwich 
panels including the effect of skewness in the geometry. An efficient multivariate 
adaptive regression splines based approach for dynamics and stability analysis 
of sandwich plates is presented considering the random system parameters. 
The propagation of uncertainty in such structures has significant computational 
challenges due to inherent structural complexity and high dimensional space of 
input parameters. The theoretical formulation is developed based on a refined C0 
stochastic finite element model and higher-order zigzag theory in conjunction with 
multivariate adaptive regression splines. A cubical function is considered for the in-
plane parameters as a combination of a linear zigzag function with different slopes 
at each layer over the entire thickness while a quadratic function is assumed for the 
out-of-plane parameters of the core and constant in the face sheets. Both individual 
and combined stochastic effect of skew angle, layer-wise thickness, and material 
properties (both core and laminate) of sandwich plates are considered. Statistical 
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analyses are carried out to illustrate the results of the first three stochastic natural 
frequencies and buckling load.

A non-probabilistic uncertainty propagation approach (fuzzy) for composites is 
presented in Chapter 11. Probabilistic descriptions of uncertain model parameters 
are not always available due to lack of data. This chapter investigates on the 
uncertainty propagation in dynamic characteristics (such as natural frequencies, 
frequency response function and mode shapes) of laminated composite plates by 
using fuzzy approach. A non-intrusive Gram–Schmidt polynomial chaos expansion 
(GPCE) method is adopted in the uncertainty propagation, wherein the parameter 
uncertainties are represented by fuzzy membership functions. A domain in the 
space of input data at zero-level of membership functions is mapped to a zone of 
output data with the parameters determined by D-optimal design. The obtained 
meta-model (GPCE) can also be used for higher α-levels of fuzzy membership 
function. The most significant input parameters such as ply orientation angle, elastic 
modulus, mass density and shear modulus are identified and then fuzzified. Fuzzy 
analysis of the first three natural frequencies is presented to illustrate the results 
and its performance. The proposed fuzzy approach is applied to the problem of 
fuzzy modal analysis for frequency response function of a simplified composite of 
cantilever plates. The fuzzy mode shapes are also depicted for a typical laminate 
configuration. The GPCE based approach is found more efficient compared to the 
conventional global optimization approach in terms of computational time and cost.

Chapter 12 presents a critical comparative assessment of Kriging model 
variants for surrogate based uncertainty propagation considering stochastic natural 
frequencies of laminated composite shells. The five Kriging model variants 
studied here are: Ordinary Kriging, Universal Kriging based on pseudo-likelihood 
estimator, Blind Kriging, Co-Kriging and Universal Kriging based on marginal 
likelihood estimator. First three stochastic natural frequencies of the composite 
shell are analysed by using a finite element model that includes the effects of 
transverse shear deformation based on Mindlin’s theory in conjunction with a 
layer-wise random variable approach. The comparative assessment is carried out 
to address the accuracy and computational efficiency of the five Kriging model 
variants. Comparative performance of different covariance functions is also 
studied. Subsequently the effect of noise in uncertainty propagation is addressed 
by using the Stochastic Kriging. Representative results are presented for both 
individual and combined stochasticity in layer-wise input parameters to address 
performance of various Kriging variants for low dimensional and relatively higher 
dimensional input parameter spaces. The error estimation and convergence studies 
are conducted with respect to original Monte Carlo Simulation to justify merit 
of the present investigation. The study reveals that Universal Kriging coupled 
with marginal likelihood estimate yields the most accurate results, followed by 
Co-Kriging and Blind Kriging. As far as computational efficiency of the Kriging 
models is concerned, it is observed that for high-dimensional problems, CPU time 
required for building the Co-Kriging model is significantly less as compared to 
other Kriging variants.
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Chapter 13 presents an exhaustive comparative investigation on different 
metamodels for critical comparative assessment of uncertainty in natural frequencies 
of composite plates on the basis of computational efficiency and accuracy. Both 
individual and combined variations of input parameters have been considered 
to account for the effect of low and high dimensional input parameter spaces in 
the surrogate based uncertainty quantification algorithms including the rate of 
convergence. Probabilistic characterization of the first three stochastic natural 
frequencies is carried out by using a finite element model that includes the effects of 
transverse shear deformation based on Mindlin’s theory in conjunction with a layer-
wise random variable approach. The results obtained by different metamodels have 
been compared with the results of direct Monte Carlo simulation (MCS) method 
for high fidelity uncertainty quantification. The crucial issue regarding influence 
of sampling techniques on the performance of metamodel based uncertainty 
quantification has been addressed as an integral part of this chapter.
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