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Preface

Among the various ingredients of structural dynamics, damping remains one of the least understood topics. The
main reason is that unlike the stiffness and inertia forces, the damping forces cannot be always obtained from ‘first
principles’. The past two decades have seen significant developments in the modelling and analysis of damping
in the context of engineering dynamic systems. Developments in composite materials including nanocomposites
and their applications in advanced structures, such as new generation of aircrafts and large wind-turbines, have
lead to the need for understanding damping in a superior manner. Additionally, the rise of vibration energy har-
vesting technology using piezoelectric and electromagnetic principles further enhanced the importance of looking
at damping more rigorously. The aim of this book is to systematically present the latest developments in the area
modelling and analysis of damping in the context of general linear dynamic systems with multiple degrees of free-
dom. The focus has been on the mathematical and computational aspects. This book will be relevant to aerospace,
mechanical and civil engineering disciplines and various sub-disciplines within them. The intended readers of this
book include senior undergraduate students and graduate students doing projects or doctoral research in the filed of
damped vibration. Researchers, Professors and and practicing engineers working in the field of advanced vibration
will find this book useful. This book will also be useful for researchers working in the fields of aeroelasticity and
hydroelasticity, where complex eigenvalue problems routinely arise due to fluid-structure interactions.

There are some excellent books which already exist in the filed of damped vibration. The book by Nashif et
al. [NAS 85] covers various material damping models and their applications in the design and analysis of dynamic
systems. A valuable reference on dynamic analysis of damped structures is the book by Sun and Lu [SUN 95].
The book by Beards [BEA 96] takes a pedagogical approach towards structural vibration of damped systems.
The handbook by Jones [JON 01] focuses on viscoelastic damping and analysis of structures with such damping
models. These books represent the sate-of-the art at the time of their publications. Since these publications
significant research works have gone into the dynamics of damped systems. The aim of this book is to cover some
of these latest developments. The attention is mainly limited to theoretical and computational aspects, although
some reference to experimental works are given.

One of the key feature of this book is the consideration of general nonviscous damping and how such general
models can be seamlessly integrated into the framework of conventional structural dynamic analysis. New re-
sults are illustrated by numerical examples and wherever possible connections were made to well-known concepts
of viscously damped systems. The book is divided into two volumes. The first volume deals with analysis of
linear systems with general damping models. The second volume deals with identification and quantification of
damping. There are ten chapters and one appendix in the book - covering analysis and identification of dynamic
systems with viscous and nonviscous damping. Chapter 1 gives an introduction to the various damping models.
Dynamics of viscously damped systems are discussed in chapter 2. Chapter 3 considers dynamics of nonviscously
damped single-degree-of-freedom systems in details. Chapter 4 discusses nonviscously damped multiple-degree-
of-freedom systems. Linear systems with general nonviscous damping are studied in Chapter 5. Chapter 6 pro-
poses reduced computational methods for damped systems. Chapter 7 describes parametric sensitivity of damped
systems. Chapter 8 takes up the problem of identification of viscous damping. The identification of nonviscous

xi
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damping is detailed in Chapter 9. Chapter 10 gives some tools for the quantification of damping. A method to deal
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G(s) nonviscous damping function matrix in the Laplace domain
G0 the matrix G(s) at s→ 0
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ẑj j-th measured complex mode
I identity matrix
K stiffness matrix
M mass matrix
Oij a null matrix of dimension i× j

Ω diagonal matrix containing the natural frequencies
p parameter vector (in ??)
Pj a diagonal matrix for the expansion of j-th complex mode
ϕj eigenvectors in the state-space
ψj left eigenvectors in the state-space
q(t) displacement response in the time-domain
q0 vector of initial displacements
Qj an off-diagonal matrix for the expansion of j-th complex mode
r(t) forcing function in the state-space
Rk rectangular transformation matrices (in chapter 4)
Rk residue matrix associated with pole sk
S a diagonal matrix containing eigenvalues sj
T a temporary matrix, T =

√
M−1K (??)

Tk Moore-Penrose generalised inverse of Rk

Tk a transformation matrix for the optimal normalisation of the k-th complex mode
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γR, γI weights for the normalisation of the real and imaginary parts of a complex mode
θ̂(ω) Frequency dependent estimated characteristic time constant
θ̂j Estimated characteristic time constant for j-th mode
t̂ an arbitrary independent time variable
κj real part of the complex optimal normalisation constant for the j-th mode
λ complex eigenvalue corresponding to the oscillating mode (in chapter 3)
λj complex frequencies MDOF systems
Mr moment of the damping function
D dissipation energy
G(t) nonviscous damping kernel function in a SDOF system
T kinetic energy
U potential energy
µ relaxation parameter
µk relaxation parameters associated with coefficient matrix Ck in the exponential nonviscous damping

model
ν real eigenvalue corresponding to the overdamped mode
νk(s) eigenvalues of the dynamic stiffness matrix
ω driving frequency
ωd damped natural frequency of SDOF systems
ωj undamped natural frequencies of MDOF systems, j = 1, 2, · · · , N
ωn undamped natural frequency of SDOF systems
ωmax frequency corresponding to the maximum amplitude of the response function
ωdj damped natural frequency of MDOF systems
ρ mass density
i unit imaginary number, i =

√
−1

τ dummy time variable
θj characteristic time constant for j-th nonviscous model
f̃(t) forcing function in the modal domain
ω̃ normalised frequency ω/ωn

ςj imaginary part of the complex optimal normalisation constant for the j-th mode
ϑ phase angle of the response of SDOF systems
ϑj phase angle of the modal response
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Chapter 1

Introduction to Damping Models and Analysis Methods

It is true that the grasping of truth is not possible without empirical basis. However, the deeper we
penetrate and the more extensive and embracing our theories become, the less empirical knowledge is
needed to determine those theories.

Albert Einstein, December 1952.

Problems involving vibration occur in many areas of mechanical, civil and aerospace engineering: wave load-
ing of offshore platforms, cabin noise in aircrafts, earthquake and wind loading of cable stayed bridges and high
rise buildings, performance of machine tools – to pick only few random examples. Quite often vibration is not
desirable and the interest lies in reducing it by dissipation of vibration energy or damping. Characterisation of
damping forces in a vibrating structure has long been an active area of research in structural dynamics. Since
the publication of Lord Rayleigh’s classic monograph ‘Theory of Sound (1877)’, a large body of literature can be
found on damping. Although the topic of damping is an age old problem, the demands of modern engineering
have led to a steady increase of interest in recent years. Studies of damping have a major role in vibration isolation
in automobiles under random loading due to surface irregularities and buildings subjected to earthquake loadings.
The developments in the fields of robotics and active structures have provided impetus towards developing pro-
cedures for dealing with general dissipative forces in the context of structural dynamics. Beside these, in the last
few decades, the sophistication of modern design methods together with the development of improved composite
structural materials instilled a trend towards lighter structures. At the same time, there is also a constant demand
for larger structures, capable of carrying more loads at higher speeds with minimum noise and vibration level
as the safety/workability and environmental criteria become more stringent. Examples include very large wind
turbines, which are being used increasingly for superior energy generation. Unfortunately, these two demands
are conflicting and the problem cannot be solved without proper understanding of energy dissipation or damping
behaviour. Recent advances in vibration energy harvesting [ERT 11, ELV 13] demands further understanding of
damping [LES 04, ALI 13] as it is crucial for the quantification of harvested energy. It is the aim of this book is to
provide fundamental techniques for the analysis and identification of damped structural systems.

In spite of a large amount of research, understanding of damping mechanisms is quite basic compared to the
other aspects of modelling. A major reason for this is that, by contrast with inertia and stiffness forces, it is not
in general clear which state variables are relevant to determine the damping forces. Moreover, it seems that in a
realistic situation it is often the structural joints [SEG 06] which are more responsible for the energy dissipation
than the (solid) material. There have been detailed studies on the material damping (see, [BER 73]) and also on
energy dissipation mechanisms in the joints [EAR 66, BEA 77]. But here difficulty lies in representing all these tiny
mechanisms in different parts of the structure in a unified manner. Even in many cases these mechanisms turn out
be locally non-linear, requiring an equivalent linearisation technique for a global analysis [BAN 83]. A well-known
method to get rid of all these problems is to use the so called ‘viscous damping’. This approach was first introduced
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by Lord Rayleigh [RAY 77] via his famous ‘dissipation function’, a quadratic expression for the energy dissipation
rate with a symmetric matrix of coefficients, the ‘damping matrix’. A further idealisation, also pointed out by
Rayleigh, is to assume the damping matrix to be a linear combination of the mass and stiffness matrices. Since its
introduction this model has been used extensively and is now usually known as ‘Rayleigh damping’, ‘proportional
damping’ or ‘classical damping’. With such a damping model, the modal analysis procedure, originally developed
for undamped systems, can be used to analyse damped systems in a very similar manner.

In this chapter we review some existing works on damping and set the scene for this book. Attention of this book
is on mathematical analysis and identification of damped linear dynamic systems. We also look mainly at discrete
or discretised continuous systems. This can be done by employing conventional finite element approximation to
the original boundary value problem. This aspect is not discussed here as there already many excellent books
which the readers can refer [BAT 76, DAW 84, ZIE 91, BAT 95, FRI 95b, PET 98, HUG 00, COO 01]. Therefore,
for the purpose of this book we consider that the mass and stiffness matrices are available so that we mainly focus
on the damping aspects.

Different mathematical models of damping used in literature are discussed in section 1.1. Damping models
used for single-degree-of-freedom, multiple-degrees-of-freedom and continuous systems have been included. The
concepts of viscous and nonviscous damping are introduced. A brief review of modal analysis method for vis-
cously damped systems is given in section 1.2. The state-space method and approximate methods based on the
configuration space are reviewed. Analysis methods for nonviscously damped systems section 1.3 are discussed.
State-space based methods, time-domain based methods and approximate methods in the configuration space are
reviewed. After the review of different analysis methods, we move to review various damping identification meth-
ods.

The methods for identification of viscous damping in discussed in section 1.4. Both single and multiple-
degrees-of-freedom systems are considered. In section 1.5, the identification methods for nonviscous damping
model in linear dynamic systems have been reviewed. For successful modelling and model updating of a dy-
namic system it is necessary to know how much the eigenvalue and eigenvectors are sensitive to the parameters
[MOT 93, FRI 95b, FRI 01]. Therefore, different methods for computing parametric sensitivity of eigenvalues and
eigenvectors are reviewed in section 1.6. Sensitivity of undraped, viscously damped and nonviscously damped
systems are discussed. Based on the review of existing works, the motivation behind this book in explained in
section 1.7. Finally, in section 1.8 the scope of the book is outlined. Here a summary of the topics that are covered
in the following chapters are given.

1.1. Models of damping

Damping is the dissipation of energy from a vibrating structure. In this context, the term dissipate is used to
mean the transformation of energy into the other form of energy and, therefore, a removal of energy from the
vibrating system. The type of energy into which the mechanical energy is transformed is dependent on the system
and the physical mechanism that cause the dissipation. For most vibrating system, a significant part of the energy
is converted into heat.

The specific ways in which energy is dissipated in vibration are dependent upon the physical mechanisms active
in the structure. These physical mechanisms are complicated physical process that are not totally understood.
The types of damping that are present in the structure will depend on which mechanisms predominate in the
given situation. Thus, any mathematical representation of the physical damping mechanisms in the equation of
motion of a vibrating system will have to be a generalisation and approximation of the true physical situation. As
Scanlan [SCA 70] has observed, any mathematical damping model is really only a crutch which does not give
a detailed explanation of the underlying physics. Majority of vibration books, for example, [MEI 67, MEI 80,
PAZ 80, NEW 89, BAT 95, MEI 97, PET 98, GÉR 97, INM 03, FRI 10b], consider the classical viscous damping
model. However, there are some excellent books and papers which specifically focus on vibration damping in
engineering structures. The books by Bland [BLA 60] and Lazan [LAZ 68] give a detailed account or earlier
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works on viscoelastic damping and damped systems. The book by Nashif et al. [NAS 85] covers various material
damping models and their applications in the design and analysis of dynamic systems. A valuable reference on
dynamics analysis of damped structures is the book by Sun and Lu [SUN 95]. The book by Beards [BEA 96] takes
a pedagogical approach towards structural vibration of damped systems. The handbook by Jones [JON 01] focuses
on viscoelastic damping and analysis of structures with such damping models. The important role of damping n
the context of earthquake engineering was illustrated in the book by Liang et al. [LIA 11]. The recent book by
Veselic [VES 11] focuses on mathematical aspects of dynamics of multiple-degree-of-freedom damped systems.
The paper by Gaul [GAU 99] gives a comprehensive overview of viscoelastically damped systems. The review
paper by Mead [MEA 02] give an overview of damping modelling structural dynamics. The two linked review
papers by Vasques et al. [VAS 10a, VAS 10b] and the article by Vasques and Cardoso [VAS 11] discuss both
mathematical aspects and experimental identification of linear dynamic systems with viscoelastic damping.

For our mathematical convenience, we divide the elements that dissipate energy into three classes: (a) damping
in single degree-of-freedom (SDOF) systems, (b) damping in continuous systems, and (c) damping in multiple
degree-of-freedom (MDOF) systems. Elements such as dampers of a vehicle-suspension fall in the first class.
Dissipation within a solid body, on the other hand, falls in the second class, demands a representation which
accounts for both its intrinsic properties and its spatial distribution. Damping models for MDOF systems can be
obtained by discretisation of the equation of motion. There have been attempt to mathematically describe the
damping in SDOF, continuous and MDOF systems.

1.1.1. Single degree-of-freedom systems

s Free oscillation of an undamped SDOF system never die out and the simplest approach to introduce dissipation
is to incorporate an ideal viscous dashpot in the model. The damping force (Fd) is assumed to be proportional to
the instantaneous velocity, that is

Fd(t) = c q̇(t) [1.1]

and the coefficient of proportionality, c is known as the dashpot-constant or viscous damping constant. The loss
factor, which is the energy dissipation per radian to the peak potential energy in the cycle, is widely accepted as a
basic measure of the damping. For a SDOF system this loss factor can be given by

η =
c|ω|
k

[1.2]

where k is the stiffness. The expression similar to this equation have been discussed in Ungar and Kerwin
[UNG 62] in the context of viscoelastic systems. Equation [1.2] shows a linear dependence of the loss factor
on the driving frequency. This dependence has been discussed by Crandall [CRA 70] where it has been pointed
out that the frequency dependence, observed in practice, is usually not of this form. In such cases one often re-
sorts to an equivalent ideal dashpot. Theoretical objections to the approximately constant value of damping over a
range of frequency, as observed in aeroelasticity problems, have been raised by Naylor [NAY 70]. On the lines of
equation [1.2] one is tempted to define the frequency-dependent dashpot as

c(ω) =
kη(ω)

|ω|
. [1.3]

This representation, however has some serious physical limitations. In references [CRA 70, CRA 91, NEW 89,
SCA 70] it has been pointed out that such a representation violates causality, a principle which asserts that the
states of a system at a given point of time can be affected only by the events in the past and not by those of the
future.

Now for the SDOF system, the frequency domain description of the equation of motion can be given by[
−mω2 + iωc(ω) + k

]
q̄(iω) = f̄(iω) [1.4]
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where q̄(iω) and f̄(iω) are the response and excitation respectively, represented in the frequency domain. Note
that the dashpot is now allowed to have frequency dependence. Inserting equation [1.3] into [1.4] we obtain[

−mω2 + k {1 + iη(ω)sgn(ω)}
]
q̄(iω) = f̄(iω) [1.5]

where sgn(•) represents the sign function. The ‘time-domain’ representations of equations [1.4] and [1.5] are often
taken as

mq̈ + c(ω)q̇ + kq = f [1.6]

and

mq̈ + kq {1 + iη(ω)sgn(ω)} = f [1.7]

respectively. It has been pointed out by Crandall [CRA 70] that these are not the correct Fourier inverses of
equations [1.4] and [1.5]. The reason is that the inertia, the stiffness and the forcing function are inverted properly,
while the damping terms in equations [1.6] and [1.7] are obtained by mixing the frequency-domain and time-
domain operations. Crandall [CRA 70] calls [1.6] and [1.7] the ‘non-equations’ in time domain. It has been
pointed out by Newland [NEW 89] that only certain forms of frequency dependence for η(ω) are allowed in order
to to satisfy causality. Crandall [CRA 70] has shown that the impulse response function for the ideal hysteretic
dashpot (η independent of frequency), is given by

h(t) =
1

πkη0
.
1

t
, −∞ < t <∞. [1.8]

This response function is clearly non-causal since it states that the system responds before the excitation (or the
cause) takes place. This non-physical behaviour of the hysteretic damping model is a flaw, and further attempts
have been made to cure this problem. Bishop and Price [BIS 86] introduced the band limited hysteretic damper
and suggested that it might satisfy the causality requirement. However, Crandall [CRA 91] has further shown that
the band-limited hysteretic dashpot is also non-causal. In view of this discussion it can be said that the most of the
hysteretic damping model fails to satisfy the casualty condition. Based on the analyticity of the transfer function,
Makris [MAK 99] has shown that for causal hysteretic damping the real and imaginary parts of the dynamic
stiffness matrix must form a Hilbert transform pair. The Hilbert transform relation is also known as Kramers-
Kronig result. He has shown that the causal hysteretic damping model is the limiting case of a linear viscoelastic
model with nearly frequency-independent dissipation that was proposed by Biot [BIO 58]. It was also shown that
there is a continuous transition from the linear viscoelastic model to the ideally hysteretic damping model. More
recently Chen and Zhang [CHE 08] showed that ideal linear hysteretic damper possesses a non-causal impulse
response precursor.

The physical mechanisms of damping, including various types of external friction, fluid viscosity, and internal
material friction, have been studied rather extensively in some detail and are complicated physical phenomena.
However, a certain simplified mathematical formulation of damping forces and energy dissipation can be associated
with a class of physical phenomenon. Coulomb damping, for example is used to represent dry friction present in
sliding surfaces, such as structural joints. For this kind of damping, the force resisting the motion is assumed to be
proportional to the normal force between the sliding surfaces and independent of the velocity except for the sign.
The damping force is thus

Fd =
q̇

|q̇|
Fr = sgn(q̇)Fr [1.9]

where Fr is the frictional force. In the context of finding an equivalent viscous damping, Bandstra [BAN 83] has
reported several mathematical models of physical damping mechanisms in SDOF systems. For example, velocity
squared damping, which is present when a mass vibrates in a fluid or when fluid is forced rapidly through an
orifice. The damping force in this case is

Fd = sgn(q̇)aq̇2; or, more generally Fd = cq̇|q̇|n−1 [1.10]
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where c is the damping proportionality constant. Viscous damping is a special case of this type of damping. If the
fluid flow is relatively slow, i.e. laminar, then by letting n = 1 the above equation reduces to the case of viscous
damping [1.1].

In the context of viscoelastically damped SDOF systems, there are several studies which analyse the dynamics
in details. Free and forced vibration of viscoelastic systems were considered in [MUR 98b, MUR 98a]. Muller
[MUL 05] and Adhikari [ADH 05] considered the conditions of oscillatory motion for a viscoelastically damped
SDOF system. Sieber et al. [SIE 08] considered exponential nonviscous damping with weak nonlinearities in a
Duffing oscillator. Equation of motion of such a system can be given by

m
d2q
dt̂2

+ c

∫ τ̂=t̂

τ̂=0

µe−µ(t̂−τ̂) dq
dτ̂

dτ̂ + kq + αkq3 = A cos(Ωt̂), [1.11]

Both hardening and softening type of nonlinearities were considered and the stability of the system were discussed.
In reference [ADH 08], the dynamic response characteristics of a nonviscously damped oscillator was discussed in
details. Genta and Amati10 [GEN 10] considered dynamics of nonviscously damped SDOF system and proposed
a general state-space approach. In [ADH 09a] some approximate methods (non state-space approach) for the
calculation of eigenvalues of nonviscously damped SDOF system were proposed. Palmeri and Giuseppe [PAL 11b]
proposed a Laguerre’s polynomial approximation (LPA) technique for time-domain analysis of an oscillator with
the generalised Maxwell’s model. Some of the techniques can be extended to continuous and multiple-degree-of-
freedom systems as discussed next.

1.1.2. Continuous systems

Construction of damping models becomes more difficult for continuous systems. Inman [INM 89] applied the
GHM approach to simple beams and used the separation of variables approach in conjunction with modal analysis.
Banks and Inman [BAN 91] have considered four different damping models for a composite beam. These models
of damping are:

1) Viscous air damping: For this model the damping operator in the Euler-Bernoulli equation for beam vibra-
tion becomes

L1 = γ
∂

∂t
[1.12]

where γ is the viscous damping constant.
2) Kelvin-Voigt damping: For this model the damping operator becomes

L1 = cdI
∂5

∂x4∂t
[1.13]

where I is the moment of inertia and cd is the strain-rate dependent damping coefficient. A similar damping model
was also used in [MAN 98, ADH 99c] in the context of randomly parametered Euler-Bernoulli beams.

3) Time hysteresis damping: For this model the damping operator is assumed as

L1 =

∫ t

−∞
g(τ)qxx(x, t+ τ)dτ where g(τ) =

α√
−τ

exp(βτ) [1.14]

where α and β are constants. Later, this model will be discussed in detail.
4) Spatial hysteresis damping:

L1 =
∂

∂x

[∫ L

0

h(x, ξ){qxx(x, t)− qxt(ξ, t)}dξ

]
[1.15]
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The kernel function h(x, ξ) is defined as

h(x, ξ) =
a

b
√
π
exp[−(x− ξ)2/2b2] [1.16]

where b is some constant.

It was observed by them that the spatial hysteresis model combined with a viscous air damping model results in the
best quantitative agreement with the experimental time histories. Again, in the context of Euler-Bernoulli beams,
Bandstra [BAN 83] has considered two damping models where the damping term is assumed to be of the forms
{sgn qt(x, t)} b1q2(x, t) and {sgn qt(x, t)} b2|q(x, t)|.

Lesieutre [LES 92] considered the dynamics of uniaxial rods with frequency dependent material properties. Lei
et al. [LEI 06] proposed a Galerkin method for dynamics of beam with distributed nonviscous damping. Friswell
et al. [FRI 07a, FRI 07b] considered dynamics of Euler-Bernoulli beams with nonlocal and nonviscous damping.
They considered the following integro-partial-differential equation as the equation of motion for the beam

∂2

∂x2

(
EI(x)

∂2q(x, t)

∂x2

)
+ ρA(x)

∂2q(x, t)

∂t2
+QN (x, t) = f (x, t) [1.17]

with the damping force QN (x, t) is given by

QN (x, t) =
∂2

∂x2

(∫ L

0

∫ t

−∞
C (x, ξ, t− τ)

∂2q̇(ξ, τ)

∂ξ2
dτdξ

)
[1.18]

Dynamic analysis of beams with general nonlocal and nonviscous damping [1.18] has been considered by several
authors [ADH 07b, DIP 13, FAI 13, GON 12, DIP 11, CHE 11, TSA 09, CHI 09, PAN 13, POT 13, ABU 12].
Yuksel and Dalli [YUK 05] considered longitudinally vibrating elastic rods with locally and non-locally reacting
viscous dampers. Cortes and Elejabarrieta [COR 06b] considered longitudinal vibration of a rod with exponential
nonviscous damping model. They obtained expressions for complex natural frequencies and mode shapes. Damped
vibration of spatially curved one dimensional structures was considered by Otrin and Boltezar [OTR 07b, OTR 07a,
OTR 09a]. Xue-chuan et al. [XUE 08] studied axial vibration of nonlocal viscoelastic Kelvin bars in-tension.
Cortes et al. [COR 08] proposed a frequency-domain approach for the axial vibration problem of a uniform elastic
rod with a viscoelastic end damper. They derived an analytical solution for the frequency response functions.
Calim [CAL 09] analysed the dynamic behaviour of Timoshenko beams on Pasternak-type viscoelastic foundation
subjected to time-dependent loads. A Galerkin-type state-space approach for transverse vibrations of slender
double-beam systems with viscoelastic inner layer was proposed by Palmeri and Adhikari [PAL 11a]. Calim
and Akkurt [CAL 11] considered free vibration analysis of straight and circular Timoshenko beams on elastic
foundation. Garcia-Barruetabena et al. [GAR 12] proposed both analytical solution and finite element approach
for axial vibration of rods with exponential nonviscous damping. A rotating Timoshenko beam with Maxwell-
Weichert viscoelastic damping model is used in [SKA 12]. Lei et al. [LEI 13b, LEI 13a] studied free vibration
of nonlocal Euler-Bernoulli and Timoshenko beams with nonviscous damping. A generalised one-dimensional
elastoplastic model based on fractional calculus is presented in [MEN 12a]. Recently, Wang and Inman [WAN 13]
considered (Golla, McTavish and Hughes) GHM and Anelastic Displacement Field (ADF) models of viscoelastic
damping for the dynamics of constrained layer sandwich beams. Finite element approach and an experimental
validation have been reported by the authors.

1.1.3. Multiple degrees-of-freedom systems

The most popular approach to model damping in the context of multiple degrees-of-freedom (MDOF) systems
is to assume viscous damping. This approach was first introduced by Lord Rayleigh [RAY 77]. By analogy with
the potential energy and the kinetic energy, Rayleigh assumed the dissipation function, given by

F (q) =
1

2

N∑
j=1

N∑
k=1

Cjkq̇j q̇k =
1

2
q̇T Cq̇. [1.19]
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In the above expression C ∈ RN×N is a non-negative definite symmetric matrix, known as the viscous damping
matrix. It should be noted that not all forms of the viscous damping matrix can be handled within the scope of
classical modal analysis. Based on the solution method, viscous damping matrices can be further divided into
classical and non-classical damping. Further discussions on viscous damping will follow in section 1.2.

It is important to avoid the widespread misconception that viscous damping is the only linear model of vibra-
tion damping in the context of MDOF systems. Any causal model which makes the energy dissipation functional
non-negative is a possible candidate for a damping model. There have been several efforts to incorporate nonvis-
cous damping models in MDOF systems. References [BAG 83, TOR 87, GAU 91, MAI 98] considered damping
modelling in terms of fractional derivatives of the displacements. Following Maia et al. [MAI 98], the damping
force using such models can be expressed by

Fd =

l∑
j=1

gjD
νj [q(t)]. [1.20]

Here gj are complex constant matrices and the fractional derivative operator

Dνj [q(t)] =
dνj q(t)
dtνj

=
1

Γ(1− νj)

d

dt

∫ t

0

q(t)
(t− τ)νj

dτ [1.21]

where νj is a fraction and Γ(•) is the Gamma function. The familiar viscous damping appears as a special case
when νj = 1. We refer the readers to the review papers [SLA 93, ROS 97, GAU 99] for further discussions on this
topic. The physical justification for such models, however, may not be always very clear for engineering problems.

Possibly the most general way to model damping within the linear range is to consider nonviscous damping
models which depend on the past history of motion via convolution integrals over some kernel functions. A
modified dissipation function for such damping model can be defined as

F (q) =
1

2

N∑
j=1

N∑
k=1

q̇k

∫ t

0

Gjk(t− τ)q̇j(τ)dτ =
1

2
q̇T

∫ t

0

G(t− τ)q̇(τ)dτ. [1.22]

Here G(t) ∈ RN×N is a symmetric matrix of the damping kernel functions, Gjk(t). The kernel functions, or
others closely related to them, are described under many different names in the literature of different subjects:
for example, retardation functions, heredity functions, after-effect functions, relaxation functions. In the special
case when G(t − τ) = C δ(t − τ), where δ(t) is the Dirac-delta function, equation [1.22] reduces to the case of
viscous damping as in equation [1.19]. The damping model of this kind is a further generalisation of the familiar
viscous damping. By choosing suitable kernel functions, it can also be shown that the fractional derivative model
discussed before is also a special case of this damping model. Thus, as pointed by Woodhouse [WOO 98], this
damping model is the most general damping model within the scope of a linear analysis.

Golla and Hughes [GOL 85] and McTavish and Hughes [MCT 93] have effecgovely used damping model of
the form [1.22] in the context of viscoelastic structures. The damping kernel functions are commonly defined in the
frequency/Laplace domain. Conditions which G(s), the Laplace transform of G(t), must satisfy in order to produce
dissipative motion were given by Golla and Hughes [GOL 85]. The approach pioneered by Lesieutre [LES 90,
LES 92, LES 95, LES 96b, LES 96a] usesd a first-order state-space method called the Anelastic Displacement
Fields (ADF) method. A selection of different damping models proposed in literature is summarised in Table 1.1.
Adhikari and Woodhouse [ADH 03b] proposed four indexes to quantify nonviscous damping when the kernel
function can have any form as given in Table 1.1.

1.1.4. Other studies

Another major source of damping in a vibrating structure is the structural joints, see [TAN 97] for a recent
review. Here, a major part of the energy loss takes place through air-pumping. The air-pumping phenomenon is
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Model num-
ber

Damping functions Author and reference

1 G(s) =
∑n

k=1
aks
s+bk

Biot [BIO 55], [BIO 58]
2 G(s) = as

∫∞
0

γ(ρ)
s+ρ dρ Buhariwala [BUH 82]

γ(ρ) =

{
1

β−α α ≤ γ ≤ β

0 otherwise

3 G(s) = E1s
α−E0bs

β

1+bsβ
Bagley and Torvik [BAG 83]

0 < α < 1, 0 < β < 1

4 sG(s) = G∞
[
1 +

∑
k αk

s2+2ξkωks
s2+2ξkωks+ω2

k

]
Golla and Hughes [GOL 85]

and McTavish and Hughes [MCT 93]
5 G(s) = 1 +

∑n
k=1

∆ks
s+βk

Lesieutre and Mingori [LES 90]

6 G(s) = c 1−e−st0

st0
Adhikari [ADH 98]

7 G(s) = c 1+2(st0/π)
2−e−st0

1+2(st0/π)2
Adhikari [ADH 98]

8 G(s) = c es
2/4µ

[
1− erf

(
s

2
√
µ

)]
Adhikari and Woodhouse [ADH 01c]

Table 1.1: Summary of damping functions in the Laplace domain

associated with damping when air is entrapped in pockets in the vicinity of a vibrating surface. In these situations,
the entrapped air is ‘squeezed out’ and ‘sucked-in’ through any available hole. Dissipation of energy takes place in
the process of air flow and coulomb-friction dominates around the joints. This damping behaviour has been studied
by many authors in some practical situations, for example by Cremer and Heckl [CRE 73]. Earls [EAR 66] has
obtained the energy dissipation in a lap joint over a cycle under different clamping pressure. Beards and Williams
[BEA 77] have noted that significant damping can be obtained by suitably choosing the fastening pressure at the
interfacial slip in joints.

Energy dissipation within the material is attributed to a variety of mechanisms such as thermoelasticity, grain-
boundary viscosity, point-defect relaxation etc, see [LAZ 59, LAZ 68, BER 73]. Such effects are in general called
material damping. In an imperfect elastic material, the stress-strain curve forms a closed hysteresis loop rather that
a single line upon a cyclic loading. Much effort has been devoted by numerous investigators to develop models
of hysteretic restoring forces and techniques to identify such systems. For a recent review on this literature we
refer the readers to [CHA 98]. Most of these studies are motivated by the observed fact that the energy dissipation
from materials is only a weak function of frequency and almost directly proportional to qn. The exponent on
displacement for the energy dissipation of material damping ranges from 2 to 3, for example 2.3 for mild steel
[BAN 83]. In this context, another large body of literature can be found on composite materials where many re-
searchers have evaluated a material’s specific damping capacity (SDC). Baburaj and Matsukai [BAB 94] and the
references therein give an account of research that has been conducted in this area.

1.2. Modal analysis of viscously damped systems

Equation of motion of a viscously damped system can be obtained from the Lagrange’s equation, see for
example [MEI 67, GÉR 97, MEI 97] for further details. Using the Rayleigh’s dissipation function given by [1.19].
The damped forces can be obtained as

Qnck = − ∂F
∂q̇k

, k = 1, · · · , N [1.23]

and consequently the equation of motion can expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t). [1.24]
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The aim is to solve this equation, together with the initial conditions, by modal analysis (to be described in details
in subsection 2.3.1). Using the modal transformation in [2.69], premultiplying equation [1.24] by the transpose of
the modal matrix XT and using the mode orthogonality relationships in [2.65] and [2.66], equation of motion of a
damped system in the modal coordinates may be obtained as

ÿ(t) + XT CXẏ(t) +Ω2y(t) = f̃(t). [1.25]

Clearly, unless XT CX is a diagonal matrix, no advantage can be gained by employing modal analysis because
the equations of motion will still be coupled. To solve this problem, it it common to assume proportional
damping, that is C is simultaneously diagonalisable with M and K. Such damping model allows to analyse
damped systems in very much the same manner as undamped systems. Later, Caughey and O’Kelly [CAU 65]
have derived the condition which the system matrices must satisfy so that viscously damped linear systems pos-
sess classical normal modes. Adhikari [ADH 06a] introduced the concept of generalised proportional damp-
ing by which the damping matrix can be expressed as matrix-functions of mass and stiffness matrices. This
can significantly help in identifying the damping matrix from measured damping factors for multiple modes
[ADH 09b, PAP 12]. Several authors have used proportional damping modelling approach in wide ranging appli-
cations [BIL 06, SUL 13, CAR 11, SUL 10, OTR 09b, LIN 09]. Phani [PHA 03] discussed the necessary and suf-
ficient conditions for the existence of classical normal modes in damped linear dynamic systems. Recently Chang
[CHA 13] investigated the performance of proportional damping in the context of nonlinear multiple-degree-of-
freedom (MDOF) systems. In chapter 2, the concept of proportional damping or classical damping will be analysed
in more details.

Modes of proportionally damped systems preserve the simplicity of the real normal modes as in the undamped
case. Unfortunately there is no physical reason why a general system should behave like this. In fact practical
experience in modal testing shows that most real-life structures do not do so, as they possess complex modes
instead of real normal modes. This implies that in general linear systems are non-classically damped. When
the system is non-classically damped, some or all of the N differential equations in [1.25] are coupled through
the XT CX term and can not be reduced to N second-order uncoupled equation. This coupling brings several
complication in the system dynamics – the eigenvalues and the eigenvectors no longer remain real and also the
eigenvectors do not satisfy the classical orthogonality relationships. The methods for solving this kind of problem
follow mainly two routes, the state-space method and the methods in configuration space or configuration space.
A brief discussion of these two approaches is taken up in the following subsections.

1.2.1. The state-space method

The state-space method is based on transforming the N second-order coupled equations into a set of 2N first-
order coupled equations by augmenting the displacement response vectors with the velocities of the corresponding
coordinates, see [NEW 89]. Equation [1.24] can be recast as

u̇(t) = Au(t) + r(t) [1.26]

where A ∈ R2N×2N is the system matrix, r(t) ∈ R2N the force vector and u(t) ∈ R2N is the response vector in
the state-space given by

A =

[
ON IN

−M−1K −M−1C

]
, u(t) =

{
q(t)
q̇(t)

}
, and r(t) =

{
0

−M−1f(t).

}
[1.27]

In the above equation ON is the N ×N null matrix and IN is the N ×N identity matrix. The eigenvalue problem
associated with the above equation is in term of an asymmetric matrix now. Uncoupling of equations in the state-
space is again possible and has been considered by many authors, for example, [MEI 80, NEW 89, VEL 86]. This
analysis was further generalised by Newland [NEW 87] for the case of systems involving singular matrices. In the
formulation of equation [1.26] the matrix A is no longer symmetric, and so eigenvectors are no longer orthogonal
with respect to it. In fact, in this case, instead of an orthogonality relationship, one obtains a biorthogonality
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relationship, after solving the adjoint eigenvalue problem. The complete procedure for uncoupling the equations
now involves solving two eigenvalue problems, each of which is double the size of an eigenvalue problem in
the modal space. The details of the relevant algebra can be found in [MEI 80, MEI 97]. It should be noted
that these solution procedures are exact in nature. One disadvantage of such an exact method is that it requires
significant numerical effort to determine the eigensolutions. The effort required is evidently intensified by the fact
that the eigensolutions of a non-classically damped system are complex. From the analyst’s view point another
disadvantage is the lack of physical insight afforded by this method which is intrinsically numerical in nature.

Another variation of the state-space method available in the literature is through the use of ‘Duncan form’. This
approach was introduced in [FOS 58] and later several authors, for example, [BÉL 77, NEL 79, VIG 86, SUA 87,
SUA 89, SES 94, REN 97, ELB 09] have used this approach to solve a wide range of interesting problems. The
advantage of this approach is that the system matrices in the state-space retain symmetry as in the configuration
space.

1.2.2. Methods in the configuration space

It has been pointed out that the state-space approach towards the solution of equation of motion in the context
of linear structural dynamics is not only computationally expensive but also fails to provide the physical insight
which modal analysis in configuration space or configuration space offers. The eigenvalue problem associated with
equation [1.24] can be represented by the λ−matrix problem [LAN 66]

s2jMzj + sjCzj + Kzj = 0 [1.28]

where sj ∈ C is the j-th latent root (eigenvalue) and zj ∈ CN is the j-th latent vector (eigenvector). The
eigenvalues, sj , are the roots of the characteristic polynomial

det
[
s2M + sC + K

]
= 0. [1.29]

The order of the polynomial is 2N and the roots appear in complex conjugate pairs. Several authors have studied
non-classically damped linear systems by approximate methods. In this section we briefly review the existing
methods for this kind of analysis.

1.2.2.1. Approximate decoupling method

Consider the equation of motion of a general viscously damped system in the modal coordinates given by [1.25].
Earlier it has been mentioned that due to non-classical nature of the damping this set ofN differential equations are
coupled through the C′ = XT CX term. An usual approach in this case is simply to ignore the off-diagonal terms
of the modal damping matrix C′ which couple the equation of motion. This approach is termed the decoupling
approximation. For large-scale systems, the computational effort in adopting the decoupling approximation is an
order of magnitude smaller than the methods of complex modes. The solution of the decoupled equation would
be close to the exact solution of the coupled equations if the non-classical damping terms are sufficiently small.
Analysis of this question goes back to Rayleigh [RAY 77]. A preliminary discussion on this topic can be found
in [MEI 67, MEI 97]. Thomson et al. [THO 74] have studied the effect of neglecting off-diagonal entries of
the modal damping matrix through numerical experiments and have proposed a method for improved accuracy.
Warburton and Soni [WAR 77] have suggested a criterion for such a diagonalization so that the computed response
is acceptable. Using the frequency domain approach, Hasselsman [HAS 76] proposed a criterion for determining
whether the equations of motion might be considered practically decoupled if non-classical damping exists. The
criterion suggested by him was to have adequate frequency separation between the natural modes.

Using matrix norms, Shahruz and Ma [SHA 88] have tried to find an optimal diagonal matrix Cd in place
of C′. An important conclusion emerging from their study is that if C′ is diagonally dominant, then among all
approximating diagonal matrices Cd, the one that minimises the error bound is simply the diagonal matrix obtained
by omitting the off-diagonal elements of C′. Using a time-domain analysis Shahruz [SHA 90] has rigorously
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proved that if Cd is obtained form C′ by neglecting the off-diagonal elements of C′, then the error in the solution
of the approximately decoupled system will be small as long as the off-diagonal elements of C′ are not too large.
Udwadia [UDW 09] proved that for systems with non-repeated eigenvalues, the best approximation of a diagonal
modal damping matrix is simply to consider the diagonal of the C′ matrix. Mentrasti [MEN 12b] considered
complex modal analysis for a proportionally damped structure equipped with linear non-proportionally damped
viscous elements.

Ibrahimbegovic and Wilson [IBR 89] have developed a procedure for analysing non-proportionally damped
systems using a subspace with a vector basis generated from the mass and stiffness matrices. Their approach
avoids the use of complex eigensolutions. An iterative approach for solving the coupled equations is developed
in [UDW 90] based on updating the forcing term appropriately. Felszeghy [FEL 93] presented a method which
searches for another coordinate system in the neighborhood of the normal coordinate system so that in the new
coordinate system removal of coupling terms in the equations of motion produces a minimum bound on the relative
error introduced in the approximate solution. Hwang and Ma [HWA 93] have shown that the error due to the
decoupling approximation can be decomposed into an infinite series and can be summed exactly in the Laplace
domain. They also concluded that by solving a small number of additional coupled equations in an iterative fashion,
the accuracy of the approximate solution can be greatly enhanced. Felszeghy [FEL 94] developed a formulation
based on biorthonormal eigenvector for modal analysis of non-classically damped discrete systems. The analytical
procedure take advantage of simplification that arises when the modal analysis of the motion separated into a
classical and non-classical modal vector expansion.

From the above mentioned studies it has been believed that either frequency separation between the normal
modes [HAS 76], often known as ‘Hasselsman’s criteria’, or some form of diagonal dominance [SHA 88], in the
modal damping matrix C′ is sufficient for neglecting modal coupling. In contrast to these widely accepted beliefs
[PAR 92a, PAR 92b, PAR 94] have shown using Laplace transform methods that within the practical range of
engineering applications neither the diagonal dominance of the modal damping matrix nor the frequency separation
between the normal modes would be sufficient for neglecting modal coupling. They have also given examples when
the effect of modal coupling may even increase following the previous criterion. Phani and Adhikari [PHA 08]
proposed three Rayleigh quotients for nonproportionally damped systems based on approximate complex modes.
It was shown that the stationarity can only be obtained when the modal damping matrix is diagonally dominant.

In the context of approximate decoupling, Shahruz and Srimatsya [SHA 97] considered error vectors in modal
and physical coordinates, say denoted by eN(•) and eP(•) respectively. They have shown that based on the norm
(denoted here as ∥ (•) ∥) of these error vectors three cases may arise:

1) ∥ eN(•) ∥ is small (respectively, large) and ∥ eP(•) ∥ is small (respectively, large)
2) ∥ eN(•) ∥ is large but ∥ eP(•) ∥ is small
3) ∥ eN(•) ∥ is small but ∥ eP(•) ∥ is large

From this study, especially in view of case 3, it is clear that the error norms based on the modal coordinates are
not reliable to use in the actual physical coordinates. However, they have given conditions when ∥ eN(•) ∥ will
lead to a reliable estimate of ∥ eP(•) ∥. For a flexible structure with light damping, it was shown [GAW 97] that
neglecting off-diagonal terms of the modal damping matrix in most practical cases imposes negligible errors in the
system dynamics. They also concluded that the requirement of diagonal dominance of the damping matrix is not
necessary in the case of small damping, which relaxes the criterion earlier given by [SHA 88].

In order to quantify the extent of non-proportionality, several authors have proposed ‘non-proportionality in-
dices’. References [PAR 86, NAI 86] have developed several indices based on modal phase difference, modal
polygon areas, relative magnitude of coupling terms in the modal damping matrix, system response, Nyquist plot.
Based on the idea related to the modal polygon area, Bhaskar [BHA 99] has proposed two more indices of non-
proportionality. Another index based on driving frequency and elements of the modal damping matrix is given in
[BEL 90]. Bhaskar [BHA 95] has proposed a non-proportionality index based on the error introduced by ignoring
the coupling terms in the modal damping matrix. An analytical index for the quantification of non-proportionality
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for discrete vibrating systems was developed in [TON 92, TON 94]. It has been shown that the fundamental na-
ture of non-proportionality lies in finer decompositions of the damping matrix. Shahruz [SHA 95] have shown
that the analytical index given by [TON 94] solely based on the damping matrix may lead to erroneous results
when the driving frequency lies close to a system natural frequency. They have suggested that a suitable index
for non-proportionality should include the damping matrix and natural frequencies as well as the excitation vec-
tor. Prells and Friswell [PRE 00] have shown that the (complex) modal matrix of a non-proportionally damped
system depends on an orthonormal matrix, which represents the phase between different degrees of freedom of
the system. For proportionally damped systems this matrix becomes an identity matrix and consequently they
have used this orthonormal matrix as an indicator of non-proportionality. Three indices to measure the damping
non-proportionality was proposed in [LIU 00]. The first index measures the correlation between the real and imag-
inary parts of the complex modes, the second index measures the magnitude of the imaginary parts of the complex
modes and the third index quantifies the degree of modal coupling. These indices are based on the fact that the
complex modal matrix can be decomposed to a product of a real and and complex matrix. Adhikari [ADH 04a]
proposed the optimal normalisation of complex modes and suggested a mode-by-mode non-proportionality index.
Koruk and Sanliturk [KOR 13] quantified mode shape complexity based on conservation of energy principle when
a structure is vibrating at a specific mode during a period of vibration.

In an another line of work, some researchers aimed at diagonalising a linear dynamic system exactly using
real transformations even when it is non-proportionally damped. Works by Garvey et al. [GAR 02b, GAR 02a,
GAR 04, ABU 09, PRE 09, TIS 11] proposed the structure preserving transformation and for viscously damped
systems and extended the idea to more general linear dynamical systems. In a series of papers, Ma et al. [KAW 11,
MOR 11a, MOR 11b, MA 10, MA 09, MOR 09, MOR 08b, MOR 08a, MA 04] considered the possibility of de-
coupling the equation of motion using real modes. They showed that it is possible to diagonalise the M, C, K sys-
tem using a real transformation even when these matrices are general in nature (i.e., not proportionally damped).
These works have the potential to rethink the concept of proportional damping in linear dynamic systems in a new
light.

1.2.2.2. Complex modal analysis

Other than the approximate decoupling methods, another approach towards the analysis of non-proportionally
damped linear systems is to use complex modes. Since the original contribution of Caughey and O’Kelly [CAU 65],
many papers have been written on complex modes. Several authors, for example [MIT 90, IMR 95, LAL 95], have
given reviews on this subject. Placidi et al. [PLA 91] have used a series expansion of complex eigenvectors into
the subspace of real modes, in order to identify normal modes from complex eigensolutions. In the context of
modal analysis Liang et al. [LIA 92] have proposed and analysed the question of whether the existence of complex
modes is an indicator of non-proportional damping and how a mode is influenced by damping. Analysing the
errors in the use of modal coordinates, [SES 94, IBR 95] have concluded that the complex mode shapes are not
necessarily the result of high damping. The complexity of the mode shapes is the result of particular damping
distributions in the system and depends upon the proximity of the mode shapes. Liu and Sneckenberger [LIU 94]
have developed a complex mode theory for a linear vibrating deficient system based on the assumption that it has
a complete set of eigenvectors. Complex mode superposition methods have been used by [OLI 96] in the context
of soil structure interaction problems. Balmès [BAL 97] has proposed a method to find normal modes and the
associated non-proportional damping matrix from the complex modes. He has also shown that a set of complex
modes is complete if it verifies a defined properness condition which is used to find complete approximations of
identified complex modes. Garvey et al. [GAR 95] have given a relationship between real and imaginary parts
of complex modes for general systems whose mass, stiffness and damping can be expressed by real symmetric
matrices. They have also observed that the relationship becomes most simple when all roots are complex and the
real part of all the roots have same sign. Bhaskar [BHA 99] has analysed complex modes in detail and addressed
the problem of visualising the deformed modes shapes when the motion is not synchronous.

While the above mentioned works concentrate on the properties of the complex modes, several authors have
considered the problem of determination of complex modes in the configuration space. Cronin [CRO 76] has
obtained an approximate solution for a non-classically damped system under harmonic excitation by perturbation
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techniques. Clough and Mojtahedi [CLO 76] considered several methods of treating generally damped systems,
and concluded that the proportional damping approximation may give unreliable results for many cases. Similarly,
it was shown [DUN 79] that significant errors can be incurred when dynamic analysis of a non-proportionally
damped system is based on a truncated set of modes, as is commonly done in modelling continuous systems.
Meirovitch and Ryland [MEI 85] have used a perturbation approach to obtain left and right eigenvectors of damped
gyroscopic systems. Chung and Lee [CHU 86] applied perturbation techniques to obtain the eigensolutions of
damped systems with weakly non-classical damping. Cronin [CRO 90] has developed an efficient perturbation-
based series method to solve the eigenproblem for dynamic systems having non-proportional damping matrix. To
illustrate the general applicability of this method, Peres-Da-Silva et al. [PER 95] have applied it to determine
the eigenvalues and eigenvectors of a damped gyroscopic system. In the context of non-proportionally damped
gyroscopic systems Malone et al. [MAL 97] have developed a perturbation method which uses an undamped
gyroscopic system as the unperturbed system. Based on a small damping assumption, Woodhouse [WOO 98]
has given the expression for complex natural frequencies and mode shapes of non-proportionally damped linear
discrete systems with viscous and nonviscous damping.

Adhikari [ADH 99a] derived approximate expressions of complex modes using a Neumann expansion for each
mode. A general expression of the frequency response function when the system matrices are asymmetric were
derived. This is particularly useful when it is not possible to transform a asymmetric system [INM 83, AHM 87,
SHA 89, AHM 84a, ADH 00c, LIU 05] to a symmetric one. Gallina [GAL 03] discussed the effect of damping on
asymmetric systems. Liu and Zheng [LIU 10] proposed a synthesis method for transient response of nonpropor-
tionally damped structures. An iterative approach to obtain complex modes for nonproportionally damped systems
was proposed in [ADH 11a].

1.2.2.3. Response bounds and frequency response

Previously we have mainly discussed the calculation of the eigensolutions of non-classically damped systems.
Here we briefly consider the problem of obtaining dynamic response of such systems. Nicholson [NIC 87b] and
Nicholson and Baojiu [NIC 96] have reviewed the literature on stable response of non-classically damped mechan-
ical systems. Nicholson [NIC 87a] gave upper bounds for the response of non-classically damped systems under
impulsive loads and step loads. Yae and Inman [YAE 87] have obtained bound on the displacement response of
non-proportionally damped discrete systems in terms of physical parameters of the system and input. They also
have observed that the larger the deviation from proportional damping the less accurate their results become.

Bellos and Inman [BEL 90] have given a procedure for computing the transfer functions of a non-proportionally
damped discrete system. Their method was based on Laplace transformation of the equation of motion in modal
coordinates. A fairly detailed survey of the previous research is made in [BEL 90]. Yang [YAN 93] has developed
a iterative procedure for calculation of the transfer functions of non-proportionally damped systems. Bhaskar
[BHA 95] has analysed the behaviour of errors in calculating frequency response function when the off-diagonal
terms of modal damping matrix are neglected. It has been shown that the exact response can be expressed by
an infinite Taylor series and the approximation of ignoring the off-diagonal terms of modal damping matrix is
equivalent to retaining one term of the series.

Finally, it should be noted that frequency responses of viscously damped systems with non-proportional damp-
ing can be obtained exactly in terms of the complex frequencies and complex modes in the configuration space,
see for example [LAN 66] (Section 7.5) and [GÉR 97] (pp. 126-128). Similar expressions are also derived in
[FAW 76, VIG 86, WOO 98]. This in turn requires determination of complex modes in the configuration space.
This problem will be discussed in details later in this book.

1.3. Analysis of nonviscously damped systems

In subsection 1.1.3 it was pointed out that the most general way to model (nonviscous) damping within the
scope of linear theory is through the use of the modified dissipation function given by equation [1.22]. Equation
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of motion of such nonviscously damped systems can be obtained from the Lagrange’s equation (see for example
[MEI 67, GÉR 97, MEI 97]). The damping forces can be obtained as

Qnck = − ∂F
∂q̇k

= −
N∑
j=1

∫ t

0

Gjk(t− τ)q̇j(τ)dτ, k = 1, · · · , N [1.30]

and consequently the equation of motion can be expressed as

Mq̈(t) +
∫ t

0

G(t− τ)q̇(τ)dτ + Kq(t) = f(t). [1.31]

This is a set of coupled second-order integro-differential equation. The presence of the ‘integral’ term in the
equations of motion complicates the analysis. Unlike the viscously damped systems, the concept of ‘proportional
damping’ cannot easily be formulated for such systems. The question of the existence of classical normal modes
in such systems, i.e., if proportional damping can occur in such systems, will be discussed in chapter 5.

Equations similar to [1.31] occur in many different subjects. Bishop and Price [BIS 79] have considered equa-
tion of motion similar to [1.31] in the context of ship dynamics. The convolution term appeared in order to represent
the fluid forces and moments. They have discussed the eigenvalue problem associated with equation [1.31] and
presented an orthogonality relationship for the right and left eigenvectors. They have also given an expression for
the system response due to sinusoidal excitation. Their results were not very efficient because the orthogonality
relationship of the eigenvectors were not utilised due to the difficulty associated with the form of the orthogonality
equation, which itself became frequency dependent. Here we briefly discuss different numerical methods proposed
for linear dynamic systems with nonviscous damping.

1.3.1. State-space based methods

Equation of motion like [1.31] arise in the dynamics of viscoelastic structures. A method to obtain such equa-
tions using a time-domain finite-element formulation was proposed in [GOL 85, MCT 93]. Their approach (the
GHM method), which introduces additional dissipation coordinates corresponding to the internal dampers, in-
creases the size of the problem. Dynamic responses of the system were obtained by using the eigensolutions of
the augmented problem in the state-space. A method to obtain the time and frequency-domain description of the
response by introducing additional coordinates like the GHM method was proposed in [MUR 97a, MUR 98a]. To
reduce the order of the problem, [FRI 97, PAR 99, FRI 99] have proposed a state-space approach which employs a
modal truncation and uses an iterative approach to obtain the eigensolutions. State-space model reduction approach
was considered by YC Yiu [YIU 93, YIU 94] using sub-structuring techniques for linear systems with exponential
viscoelastic damping model. Trindade et al. [TRI 00] considered frequency-dependent viscoelastic material mod-
els for active-passive vibration damping and compared two widely used models. Adhikari [ADH 01a] derived the
conditions for existence of proportional damping for nonviscously damped systems. Under such conditions un-
damped normal modes can diagonalise the dynamic system. Palmeri [PAL 03] considered a state-space approach
linear dynamic systems with memory. Time domain approach for viscoelastically damped systems were consid-
ered in [MUS 05, PAL 04]. Trindade [TRI 06] proposed a reduced order approach for viscoelastically damped
beams through projection of the dissipative modes onto the structural modes. Wagner and Adhikari [WAG 03]
proposed a symmetric extended state-space approach for exponentially damped systems using internal dissipation
coordinates. Adhikari and Wagner [ADH 03a] considered general asymmetric nonviscously damped systems and
explained the structures of the left and right eigenvectors. Zhang and Zheng [ZHA 07a] proposed a state-space
approach for general linear dynamic system with Biot viscoelastic model. Vasques et al. [VAS 06] considered
finite element modelling and experimental validation of a beam with frequency dependent viscoelastic damping.
Vasques et al. [VAS 10a] discussed computational methods for viscoelastically damped systems using reduced ap-
proaches in the extended state-space. Genta and Amati10 [GEN 10] considered dynamics of nonviscously damped
MDOF systems in the context of rotor dynamics by a state-space approach. Friswell et al. [FRI 10a] used internal
variables for the time domain analysis of rotors with frequency-dependent damping. The papers by de Lima et
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al. [LIM 10, LIM 09] proposed a novel component mode synthesis approach for general viscoelastic linear dy-
namic systems. Wang and Inman [WAN 13] used a symmetric state-space formulation linear systems with GHM
damping.

1.3.2. Time-domain based methods

While the above methods often aimed at determining the eigensolutions of the system, few authors have con-
sidered the calculation of the dynamic response in the time-domain. Adhikari and Wagner [ADH 04b] proposed
a direct time-domain approach for exponentially damped systems which avoids the use of dissipation coordinates.
Shen and Duan [SHE 09] proposed a Guass integration approach in conjunction with state-space representation of
the equation of motion for linear MDOF systems with exponential damping. An efficient time-domain approach
for linear dynamic systems with fractional damping was proposed by Trinks and Ruge [TRI 02]. Cortes and Ele-
jabarrieta [COR 07a] proposed a time-domain integration approach for linear systems with fractional derivative
damping model. Later Cortes et al. [COR 09] proposed a direct integration formulation for linear dynamics sys-
tems with exponential nonviscous damping model. Pan and Wang [PAN 13] proposed a frequency as well as a
time-domain approach using a Discrete Fourier Transform (DFT) method in combination with the Fast Fourier
Transform (FFT) for exponentially damped systems.

1.3.3. Approximate methods in the configuration space

Computational cost for nonviscously damped systems can be prohibitive for large dimensional problems. To
address this, several authors have proposed reduced approximate methods in the configuration space. Using a first-
order perturbation approach, Woodhouse [WOO 98] has obtained expressions for the eigensolutions and transfer
functions of system [1.31]. His method, although it avoids the state-space representations and additional dissipation
coordinates, is valid for small damping terms only. Adhikari [ADH 02b] proposed an approximate method based on
Neumann expansion for the eigenvectors of linear systems with general nonviscous damping. Several mathematical
properties of the eigensolutions of such systems were derived in [ADH 01b]. Cortes and Elejabarrieta [COR 06a,
COR 06c] proposed a new approximate method for the complex eigensolutions of a nonviscously damped system.
The key idea proposed used the solution of the undamped system and approximated the complex eigensolutions
by finite increments using the eigenvector derivatives and the Rayleigh quotient. Garcia-Barruetabena [GAR 11]
demonstrated that nonviscous modes only contribute to the transient response in of a linear system with exponential
nonviscous damping. Some approximate methods to obtain the eigensolutions of nonviscously damped systems
using the eigensolutions of the underlying undamped systems were proposed in [ADH 09a, ADH 10, ADH 11b].
Lázaro et al. [L´ 12, L´ 13a, L´ 13b] proposed an approach for the computation of eigensolutions and dynamic
response of MDOF system with exponential damping. The motivation was to approximates the response of the
original viscoelastic system using the eigensolutions of the underlying undamped or proportionally damped system.
Li et al. [LI 13a] approximated the frequency response function (FRF) matrix without using the dissipation modes
of the linear MDOF systems with viscoelastic hereditary terms. Pawlak and Lewandowski [PAW 13] proposed a
reduced computational approach for nonlinear eigenvalue problems arising in nonviscously damped systems.

1.4. Identification of viscous damping

In section 1.2 we have discussed several methods for analysis of viscously damped linear dynamic systems. In
this section we focus our attention on the methodologies available for identification of viscous damping parameters
from experimental measurements.

1.4.1. Single degree-of-freedom systems systems

Several methods are available for identifying the viscous damping parameters for single-degree-of-freedom
systems for linear and non-linear damping models, see [NAS 85]. For linear damping models these methods can
be broadly described as:
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1) Methods based on transient response of the system: This is also known as logarithmic decrement method:
if qi and qi+i are heights of two subsequent peaks then the damping ratio ζ can be obtained as

δ = loge

(
qi
qi+i

)
≈ 2πζ [1.32]

For applicability of this method the decay must be exponential.
2) Methods based on harmonic response of the system: These methods are based on calculating the half power

points and bandwidth from the frequency response curve. It can be shown that the damping factor ζ can be related
to a peak of the normalised frequency response curve by

|H|max ≈ 1

2ζ
[1.33]

3) Methods based on energy dissipation: Consider the force-deflection behaviour of a spring-mass-damper
(equivalent to a block of material) under sinusoidal loading at some particular frequency. In steady-state, consid-
ering conservation of energy, energy loss per cycle (∆qcyc) can be calculated by equating it with the input power.
Here it can be shown that the damping factor ζ can be related as

2ζ =
∆qcyc
2πUmax

[1.34]

where Umax is maximum energy of the system.

The above mentioned methods, although developed for single-degree-of-freedom systems, can be used for sep-
arate modes of multiple-degree-of-freedom systems, for example a cantilever beam vibrating in the first mode.
Chassiakos et al. [CHA 98] proposed an on-line parameter identification technique for a single-degree-of-freedom
hysteretic system. Some authors have [KHA 09, KHA 10, SRA 11] proposed methods to identify damping param-
eters in nonlinear systems.

1.4.2. Multiple degrees-of-freedom systems

For multiple degree-of-freedom systems, most of the common methods for experimental determination of the
damping parameters use the proportional damping assumption. A typical procedure can be described as follows,
see [EWI 84] for details:

1) Measure a set of transfer functions Hij(ω) at a set of grid points on the structure.
2) Obtain the natural frequencies ωk by a pole-fitting method.
3) Evaluate the modal half-power bandwidth ∆ωk from the frequency response functions, then the Q-factor

Qk = ωk

∆ωk
and the modal damping factor ζk = 1

2Qk
.

4) Determine the modal amplitude factors ak to obtain the mode shapes, xk.
5) Finally reconstruct some transfer functions to verify the accuracy of the evaluated parameters.

Such a procedure does not provide reliable information about the nature or spatial distribution of the damping,
though the reconstructed transfer functions may match the measured ones well.

The next stage, followed by many researchers, is to attempt to obtain the full viscous damping matrix from the
experimental measurements. Pilkey and Inman [PIL 98] have given a recent survey on methods of viscous damping
identification. These methods can be divided into two basic categories [FAB 88]: (a) damping identification from
modal testing and analysis, and (b) direct damping identification from the forced response measurements.

The modal testing and analysis method seeks to determine the modal parameters, such as natural frequencies,
damping ratio and mode shapes, from the measured transfer functions, and then fit a damping matrix to these data.
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In one of the earliest works, Lancaster [LAN 61] has given an expression from which the damping matrix can be
constructed from complex modes and frequencies. Unfortunately this expression relies on having all the modes,
which is almost impossible in practice. For this reason, several authors have proposed identification methods by
considering the modal data to be incomplete or noisy. Hasselsman [HAS 72] has proposed a perturbation method
to identify a non-proportional viscous damping matrix from complex modes and frequencies. Béliveau [BÉL 76]
has proposed a method which uses eigensolutions, phase angles and damping ratios to identify the parameters of
viscous damping matrix. His method utilises a Bayesian framework based on eigensolution perturbation and a
Newton-Raphson scheme. Ibrahim [IBR 83b] uses the higher order analytical modes together with the experimen-
tal set of complex modes to compute improved mass, stiffness and damping matrices. Minas and Inman [MIN 91]
have proposed a method for viscous damping identification in which it is assumed that the mass and stiffness are
a priori known and modal data, obtained from experiment, allowed to be incomplete. Starek and Inman [STA 97]
have proposed an inverse vibration problem approach in which it is assumed that the damping matrix has an a pri-
ori known structure. Their method yields a positive-definite damping matrix but requires the full set of complex
modes. Pilkey and Inman [PIL 97] have developed an iterative method for damping matrix identification by using
Lancaster’s [LAN 61] algorithm. This method requires experimentally identified complex eigensolutions and the
mass matrix. Alvin et al. [ALV 97] have proposed a method in which a correction was applied to the proportionally
damped matrix by means of an error minimisation approach. Halevi and Kenigsbuch [HAL 99] have proposed a
method for updating the damping matrix by using the reference basis approach in which error and incompleteness
of the measured modal data were taken into account. As an intermediate step, their method corrects the imaginary
parts of the measured complex modes which are more inaccurate than their corresponding real parts.

Direct damping identification methods attempt to fit the equations of motion to the measured forced response
data at several time/frequency points. Caravani and Thomson [CAR 74] have proposed a least-square error min-
imisation approach to obtain the viscous damping matrix. Their method uses measured frequency response at a
set of chosen frequency points and utilises an iterative method to successively improve the identified parameters.
Fritzen [FRI 86] has used the instrumental variable method for identification of the mass, damping and stiffness
matrices. It was observed that the identified values are less sensitive to noise compared to what obtained from
least-square approach. Fabunmi et al. [FAB 88] has presented a damping matrix identification scheme that uses
forced response data in the frequency domain and assumes that the mass and stiffness matrices are known. Mot-
tershead [MOT 90] has used the inverse of the frequency response functions to modify the system matrices so that
the modified model varies minimally from an initial finite-element model. Using a different approach, Roemer and
Mook [ROE 92] have developed methods in the time domain for simultaneous identification of the mass, damping
and stiffness matrices. It was observed that the identified damping matrix has larger relative error than that of the
mass and stiffness matrices. Chen et al. [CHE 96a] have proposed a frequency domain technique for identification
of the system matrices in which the damping matrix was determined independently. It was shown that separate
identification of the damping matrix improves the result as relative magnitude of the damping matrix is less than
those of the mass and stiffness matrices. Later, Baruch [BAR 97] has proposed a similar approach in which the
damping matrix was identified separately from the mass and stiffness matrices.

Adhikari and Woodhouse [ADH 01c, ADH 02e] proposed a complex mode based approach for the identifi-
cation of viscous damping matrix. Later, a method to identify symmetric damping matrices [ADH 02d] were
proposed. Li [LI 05] used modulations of the responses to identify damping. Damping identification in pneumatic
tyres was discussed by Geng et al. [GEN 07] uisng complex modes. A pattern recognition approach was used
to identify damping in sucker-rod pumping system [LIU 07]. Erlicher and Argoul [ERL 07] proposed a wavelet
transform based method for damping identification. Lin and Zhu [LIN 06] and Phani and Woodhouse [PHA 07,
PHA 09] discussed methods for damping matrix identification from measured frequency response functions. Khalil
et al. [KHA 07] proposed a proper orthogonal decomposition approach for the identification of the damping matrix
along with the mass and stiffness matrices. Arora et al. [ARO 10, ARO 09a, ARO 09d, ARO 09b, ARO 09c] con-
sidered updating of the damping matrix using analytical and experimental approaches. Prandina et al. [PRA 09]
discussed the philosophy and performance of different damping identification approaches and investigated the role
of the first-order perturbation methods and modal truncation on damping identification. A system identification al-
gorithm based on the free vibration response of structures was proposed to identify damping in [ROY 09, CHA 10].
Cavacece et al. [CAV 09] used a Moore-Penrose pseudo-inverse for the identification of damping. Pradhan and
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Modak [PRA 12a, PRA 12b] considered the determination of damping matrices from the frequency response func-
tion data. They developed an updating formulation that seeks to separate updating of the damping matrix from
the updating of the stiffness and the mass matrix. Holland et al. [HOL 12a, HOL 12b] considered identification
of damping in bladed disks. In a series of work Liu et al. [LIU 08c, LIU 08d, LIU 08b, LIU 08a, LIU 09] pi-
oneered the Lie-group estimation method for the inverse problem and damping identification in linear structural
dynamics. Li and Law [LI 09] proposed a time-domain approach for damping identification using the sensitivity
of the acceleration response of the analytical model along with a model updating technique. Algorithms for the
mass normalisation of the mode shapes in the context of experimental modal analysis was proposed by Yang et
al. [YAN 12]. A common-base proper orthogonal decomposition approach was used by Andrianne and Dimitri-
adis [AND 12]. A pattern recognition approach was proposed to identify damping in sucker-rod pumping system
[LIU 07]. Cheonhong et al. [MIN 12] discussed a direct method for the identification of non-proportional damp-
ing matrix using modal parameters. A two-step model updating algorithm for parameter identification of linear
elastic damped structures was proposed by García-Palencia and Santini-Bell [GAR 13]. More recently, Holland
and Epureanu [HOL 13] suggested a technique to identify the overall damping matrix utilising identified (simple)
damping matrices from different components. They demonstrated the approach for a mistuned blisk with varying
levels of measurement noise.

1.5. Identification of nonviscous damping

Unlike viscous damping, there is little available in the literature which discusses generic methodologies for
identification of nonviscous damping. Most of the methods proposed in the literature are system-specific. Banks
and Inman [BAN 91] have considered the problem of estimating damping parameters in a non-proportionally
damped beam. They have taken four different models of damping: viscous air damping, Kelvin-Voigt damping,
time hysteresis damping and spatial hysteresis damping, and used a spline inverse procedure to form a least-square
fit to the experimental data. A procedure for obtaining hysteretic damping parameters in free-hanging pipe systems
is given by Fang and Lyons [FAN 94]. Assuming material damping is the only source of damping they have given
a theoretical expression for the loss factor of the n-th mode. Their theory predicts higher modal damping ratios in
higher modes. Maia et al. [MAI 97b] have emphasised the need for development of identification methodologies
of general damping models and indicated several difficulties that might arise. Dalenbring [DAL 99] has proposed
a method for identification of (exponentially decaying) damping functions from the measured frequency response
functions and finite element displacement modes. A limitation of this method is that it neglects the effect of modal
coupling, that is, the identified nonviscous damping model is effectively proportional.

Adhikari and Woodhouse [ADH 01d] proposed a complex mode based approach for the identification of ex-
ponential nonviscous damping model. Zhang and Zheng [ZHA 07a] considered the Biot model in the context
of MDOF systems and experimentally identified the model parameters. Vasques et al. [VAS 10b] discussed ex-
perimental identification and model validation of viscoelastically damped systems. They have compared several
viscoelastic models in their study. Adhikari [ADH 02c] used a modified Lancaster’s method to identify viscous
and nonviscous damping matrix from the frequency response function matrix. Cortes and Elejabarrieta [COR 07b]
characterised the viscoelastic damping properties of cantilever beams using the seismic response. Parameter identi-
fication of dynamical systems with fractional derivative damping models using methods based on inverse sensitivity
analysis of damped eigensolutions and frequency response functions was proposed by Sivaprasad et al. [SIV 09].
Ding and Law [DIN 11] proposed an iterative regularisation method for the identification of structural damping.
Wang and Inman [WAN 13] proposed methods to identify parameters of GHM and ADF models from vibration
experiments.

1.6. Parametric sensitivity of eigenvalues and eigenvectors

As seen so far, the characterisation of eigenvalues and eigenvectors constitutes a central role in the design,
analysis and identification of damped dynamic systems. As a result, the study of the variation of the eigenvalues
and eigenvectors due to variations in the system parameters, or more precisely the sensitivity of eigensolutions, has
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emerged as an important area of research. For physically representative damping modelling and model updating
of a dynamic system, it is necessary to know how much the eigenvalue and eigenvectors might change due to the
changes in the parameters [MOT 93, FRI 95b, FRI 01]. For generally damped systems, this tantamounts to com-
puting sensitivity of complex eigenvalues and eigenvectors in general. Sensitivity of eigenvalues and eigenvectors
with respect to some system parameters may be represented by their derivatives with respect to those parameters.
We briefly review some of the existing works on sensitivity of eigensolutions of undamped and damped systems.

1.6.1. Undamped systems

In one of the earliest work, Fox and Kapoor [FOX 68] gave exact expressions for the first derivative of eigen-
values and eigenvectors with respect to any design variable. Their results were obtained in terms of changes in the
system property matrices and the eigensolutions of the structure, and have been used extensively in a wide range of
application areas of structural dynamics. The expressions derived in [FOX 68] are valid for symmetric undamped
systems. In many problems in dynamics the inertia, stiffness and damping properties of the system cannot be
represented by symmetric matrices or self-adjoint differential operators. These kind of problems typically arise in
the dynamics of actively controlled structures and in many general damped dynamic systems, for example − mov-
ing vehicles on roads, missile following trajectories, ship motion in sea water or the study of aircraft flutter. The
asymmetry of damping and stiffness terms are often addressed in the context of gyroscopic and follower forces.
Many authors [ROG 70, PLA 73, GAR 73, RUD 74] have extended Fox and Kapoor’s [FOX 68] approach to de-
termine eigensolution derivatives for more general asymmetric conservative systems. For these kind of systems,
Nelson [NEL 76] proposed an efficient method to calculate the first-order derivative of eigenvectors which requires
only the eigenvalue and eigenvector under consideration. Murthy and Haftka [MUR 88] have written an excellent
review on calculating the derivatives of eigenvalues and eigenvectors associated with general (non-Hermitian) ma-
trices. Eigensensitivity analysis of a defective matrix with zero first-order eigenvalue derivatives was considered
in [ZHA 04]. A method for modal reanalysis due to topological modifications (which changes the degree of free-
dom of the system) of structures was discussed by Zhi et al. [ZHI 06]. A new eigensolution reanalysis method
was developed by Chen et al. [CHE 06] based on the Neumann series expansion and epsilon-algorithm. A gen-
eral approach for incorporating the eigenvector normalisation condition in the computation of eigenvector design
sensitivities was proposed in [SMI 06]. Cha and Sabater [CHA 11] considered eigenvalue sensitivities of a linear
structure carrying lumped attachments.

First-order derivatives are useful for practical problems as long as the perturbations of the system parameters
remain ‘small’. To consider a wide range of changes in the design parameters the linear approximation intrinsic
with the first-order derivatives may not be sufficient. Apart from large perturbations of system parameters, Brandon
[BRA 84] has shown that the second-order eigensolution derivatives are not negligible compared to the first-order
derivatives when the system has closely spaced natural frequencies. Second-order eigensolution derivatives are
also required in design optimisation to calculate the so called ‘Hessian Matrix’. For these reasons there has been
considerable interest in obtaining the second-order derivatives of the eigensolutions. Plaut and Huseyin [PLA 73]
gave an expression for the second derivative of the eigenvalues for asymmetric systems. Rudisill [RUD 74] sug-
gested a similar expression for the second derivative of the eigenvalues and went on to derive the second derivative
of the eigenvectors. Brandon [BRA 91] derived the second derivative of the eigenvalues and eigenvectors for the
case when the system matrices are linear functions of the design variables. Chen et al. [CHE 94a, CHE 94b]
derived the second-order derivative of eigenvectors in terms of a series in the eigenvectors. Friswell [FRI 95a] pro-
posed a method, similar to [NEL 76], to obtain the second-order derivative of the eigenvectors which employs only
the eigensolutions of interest. Most of the methods discussed so far do not explicitly consider damped systems. In
order to apply these results to obtain the second derivatives of the eigensolutions of general (non-proportionally)
damped systems, the state-space formalism is required.

1.6.2. Damped systems

The work discussed so far does not explicitly consider the damping present in the system. In order to apply
these results to systems with general non-proportional damping it is required to convert the equations of motion
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into state-space form (see, [ZEN 95] for example). Although exact in nature, the state-space methods require
significant numerical effort as the size of the problem doubles. Moreover, these methods also lack some of the
intuitive simplicity of the analysis based on configuration space. For these reasons the determination of the deriva-
tives of eigenvalues and eigenvectors in the configuration space for damped systems is very desirable. Unlike
undamped systems, in damped systems the eigenvalues and eigenvectors, and consequently their derivatives, be-
come complex in general. Some authors have considered the problem of the calculation of first-order derivatives of
eigensolutions of viscously damped symmetric systems. Lee et al. [LEE 99a, LEE 99b] have proposed first-order
formalism to determine natural frequency and mode shape sensitivities of damped systems. Adhikari [ADH 99b]
derived an exact expression for the first-order derivative of complex eigenvalues and eigenvectors. The results
were expressed in terms of the complex eigenvalues and eigenvectors of the second-order system and the first-
order representation of the equation of motion was avoided. Later Adhikari [ADH 00a] suggested an approximate
method to calculate the first derivative of complex modes using a modal series involving only classical normal
modes. An expression for the derivatives of eigenvalues and eigenvectors of non-conservative systems is presented
by Choi et al. [CHO 04] in the configuration space. Moon et al. [MOO 04] proposed modified modal methods
for calculating eigenpair sensitivity of asymmetric damped system. They have used few lowest sets of modes to
reduce the computational time. Guedria et al. [GUE 06] presented a new approach for calculating simultaneously
the derivatives of the eigenvalues and their associated derivatives of the left and right eigenvectors for asymmetric
damped systems. Friswell and Adhikari [FRI 00] extended Nelson’s method to symmetric and asymmetric vis-
cously damped systems. Guedria et al. [GUE 07] considered the computation of the second-order derivatives of
the eigenvalues and eigenvectors of symmetric and asymmetric damped systems using Nelson’s method. A modal
approach for efficient calculation of complex eigenvector derivatives were proposed by Zhang-Ping and Jin-Wu
[ZHA 07b]. Derivatives of repeated complex eigenvalues and corresponding eigenvectors of nonproportionally
damped systems were considered in [HUI 07]. Chouchane et al. [CHO 07] proposed an algebraic approach for the
calculation of eigensensitivity of asymmetric damped systems. Calculation of derivatives of multiple eigenvalues
and eigenvectors of general unsymmetrical quadratic eigenvalue problems was considered in [XIE 08]. Abuazoum
and Garvey [ABU 09] used structure-preserving equivalences to obtain eigenvalue and eigenvector derivatives of
general second-order systems. Burchett [BUR 09] proposed a QZ-Based algorithm for calculating derivatives of
the system pole, transmission zero and residues. For the case when the system matrices are defective, efficient
approaches to calculate the sensitivity of the eigensolutions was proposed in [XU 10, ZHA 11]. In the context of
bridge deck flutter problems, Omenzetter [OME 12] considered sensitivity analysis of the eigenvalues for general
dynamic systems. Some iterative methods for the derivatives of eigenvectors of quadratic eigenvalue problems
arising in damped systems were suggested by Xie [XIE 12, XIE 13]. Li et al. [LI 12b, LI 13e, LI 13b] proposed
efficient computational methods for the problem of eigensensitivity analysis of damped systems with both distinct
and repeated eigenvalues.

Most of the above studies consider viscously damped system. Adhikari [ADH 02a] proposed a modal approach
for the eigensensitivity of linear systems with general nonviscous and non-proportional damping. It was shown
that the eigenvector derivative can be expressed as a liner combination of other eigenvectors even when they do
not satisfy any simple orthogonality relationships. Later Adhikari and Friswell [ADH 06b] used Nelson’s method
to calculate the eigenvector derivatives of general nonviscously damped systems. Li et al. [LI 12a] proposed an
algebraic method to compute the eigensolution derivatives for nonviscously damped systems. Later they extended
the formulation to asymmetric nonviscous systems [LI 13d]. More recently Li et al. [LI 13c] discussed sensitivity
analysis for general nonlinear eigenproblems arising in non-proportional and nonviscously damped systems.

1.7. Motivation behind this book

From the discussions so far in this chapter, it emerges that significant developments in the analysis of damped
systems has taken place in the past two decades. This is fuelled by the emergence of new materials such as
composite and nanocomposite materials and the need to predict the system response ever more accurately in an
efficient way. Based on the existing literature it is clear that there are some pressing questions of general interest.
These questions include, but not limited to:
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1) What damping model has to be used for a given structure, i.e., viscous or nonviscous, and if nonviscous then
what kind of model should it be?

2) How can conventional modal analysis be extended to systems with nonviscous damping?
3) Can one physically understand the role of nonviscous damping in structural dynamics, as we do for viscous

damping?
4) How is it possible to determine the damping parameters by conventional modal testing if a system is non-

viscous?
5) How can we efficiently calculate the dynamic response of a large complex system in an efficient manner if

the damping is nonproportional and nonviscous?
6) How sensitive is the dynamics of a system to the damping parameters? Does it mater if we get errors in

some damping parameters?
7) How can we quantify damping in a system? What measures and tools can we use when the damping is in

general nonproportional and nonviscous?

This book is motivated by these type of questions. We do not necessarily provide precise answers to these ques-
tions. The aim is to develop mathematical tools so that we can at least appreciate and investigate these type of
questions for practically relevant engineering problems.

The first question is a major issue, and in the context of general vibration analysis, has been ‘settled’ by assum-
ing viscous damping, although has been pointed out in the literature that in general it will not be the correct model.
The next three questions are related to each other in the sense that for the identification of nonviscous damping
parameters, a reliable method of modal analysis is also required. The fifth question on computational efficiency is
becoming an issue as structural dynamic finite element models are getting larger. The consideration of paramet-
ric sensitivity of dynamic system is important to due to the recent drive towards model validation and uncertainty
quantification of computational models. Finally, the last question regarding the quantification of damping is related
to conceptual and intuitive feeling about how much damping is there in a system provided by certain parametric
model.

Most of the techniques for detecting damping in a structure either consider the structure to be viscously damped
or a priori assume some particular nonviscous model of damping and try to fit its parameters with regard to some
specific structure. This a priori selection of damping no doubt hides the physics of the system and there has
not been any indication in the literature on how to find a damping model by doing conventional vibration testing.
However another relevant question in this context is whether this a priori selection of damping model matters
from an engineering point of view: it may be possible that a pre-assumed damping model with a ‘correct’ set
of parameters may represent the system response quite well, although the actual physical mechanism behind the
daemping may be different. These issues will be discussed in this book. Next, the scope of the book is discussed
together with brief overview of the chapters.

1.8. Scope of the book

Motivated by the pressing questions identified in the last section, a systematic study on the analysis and iden-
tification of damped discrete linear dynamic systems has been carried out in this book. The book is divided into
two volumes. The first volume deals with analysis of linear systems with general damping models. The second
volume deals with identification and quantification of damping. The focus of the book is towards theoretical and
computational aspects. However, some limited experimental results are given to support the theoretical develop-
ments. In section 1.1 it has been brought out that the convolution integral model is the most general damping model
for multiple-degrees-of-freedom linear systems. Attention is specifically focused on this kind of general damping
model. However, for comparing and establishing the relationship with current practice, viscously damped systems
are also discussed. The book is divided into ten chapters and one Appendix.
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In chapter 2, we begin by reviewing the theory of dynamics of single-degree-of-freedom undamped systems.
The concept of resonance frequency is explained and methods to calculate dynamic response with initial con-
ditions are discussed. Next viscously damped single-degree-of-freedom systems are considered. Fundamental
ideas such as damped natural frequency, damping ratio, frequency response function and impulse response func-
tion are discussed. A general expression of the forced dynamic response with nonzero initial condition is derived.
Undamped vibration of multiple-degrees-of-freedom system is discussed next. Classical concepts of eigenfrequen-
cies, eigenmodes and mode orthogonality are introduced. Expressions of the dynamic response in the frequency
domain and time domain are derived using the eigensolutions. The discussions are then extended to viscously
damped multiple-degrees-of-freedom systems. The idea of classical damping or proportional damping is critically
reviewed and generalised proportional damping is introduced. Expressions of the dynamic response of propor-
tionally damped systems are derived in terms of the classical normal modes and modal damping factors. General
nonproportionally damped multiple-degrees-of-freedom systems is discussed within the scope of the state-space
method. Expressions of the dynamic response in the frequency and time domain due to general forcing and initial
conditions are derived. The idea of Rayleigh quotient for damped systems is discussed. Stationarity properties for
systems with proportional damping and non-proportional damping are derived. Numerical examples are provided
to illustrate the theoretical developments.

Dynamics of single-degree-of-freedom nonviscously damped oscillators is considered in chapter 3. It is as-
sumed that the nonviscous damping force depends on the history of velocity via a convolution integral over an
exponentially decaying kernel function. Classical qualitative dynamic properties known for viscously damped os-
cillators have been generalised to such nonviscously damped oscillators. The following questions of fundamental
interest have been addressed: (i) under what conditions can a nonviscously damped oscillator sustain oscillatory
motions? (ii) how does the natural frequency of a nonviscously damped oscillator compare with that of an equiva-
lent undamped oscillator? and (iii) how does the decay rate compare with that of an equivalent viscously damped
oscillator? Next the characteristics of the frequency response function is discussed. The classical dynamic response
properties known for viscously damped oscillators have been generalised to such nonviscously damped oscillators.
Following questions of wide interest have been investigated: (a) under what conditions can the amplitude of the
frequency response function reach a maximum value? (b) at what frequency will it occur?, and (c) what will
be the value of the maximum amplitude of the frequency response function? Introducing two non-dimensional
factors, namely, the viscous damping factor and the nonviscous damping factor, answers to these questions are
provided. Wherever possible, attempts have been made to relate the new results with equivalent classical results
for a viscously damped oscillator. It is shown that the classical concepts based on viscously damped systems can
be extended to a nonviscously damped system only under certain conditions. Such conditions have been explicitly
determined and illustrated numerically.

Chapter 4 extends the study in chapter 3 to multiple-degrees-of-freedom systems. Possible choices of non-
viscous kernel functions are discussed. A general nonproportionally damped MDOF system with exponential
nonviscous damping is considered. The traditional state-space approach, well known for viscously damped sys-
tems, is extended to such nonviscously damped systems using a set of internal variables. Two physically realistic
cases, namely, (a) when all the damping coefficient matrices are of full rank, and (b) when the damping coeffi-
cient matrices have rank deficiency, are presented. For both cases the equation of motion has been represented in
terms of two symmetric matrices. The eigenvalues and the corresponding eigenvectors of the system are obtained
by solving the state-space eigenvalue problem. It is shown that unlike viscously damped systems, the number of
eigensolutions is more than 2N and depends on the rank of the damping coefficient matrices. The idea of elastic
modes and nonviscous modes are introduced. The nature of these eigensolutions in the extended state-space has
been explored. Some useful results relating the modal matrix in the extended state-space and the modal matrix in
the original space are derived. Closed-form expressions of the dynamic response in the time domain and frequency
domain due to arbitrary forcing and initial conditions are derived. It is shown than even for general nonviscously
damped systems, the response can be obtained using an approach similar to classical modal superposition method.
A direct time-domain analysis of linear systems with exponentially decaying damping memory kernels is also con-
sidered. The method is based on the extended state-space representation of the equations of motion. Numerical
examples are provided to illustrate the theoretical expressions.
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Chapter 5 is aimed at extending classical modal analysis to treat lumped-parameter general nonviscously
damped linear dynamic systems. This chapter extends the results of the last chapter where the special case of
exponential damping was considered. The analytical approach adopted here is very different as the state-space
approach has not been used. The nature of the eigenvalues and eigenvectors are discussed under certain simpli-
fied but physically realistic assumptions concerning the system matrices and the damping kernel functions. A
numerical method based on Neumann series expansion for the calculation of the eigenvectors is suggested. The
transfer function matrix of the system is derived in terms of the eigenvectors of the second-order system. Exact
closed-form expressions for the dynamic response due to general forces and initial conditions are derived. The
mode-orthogonality relationships, known for undamped or viscously damped systems, have been generalised to
such nonviscously damped systems. Some expressions are suggested for the normalisation of the complex eigen-
vectors. A number of useful results which relate the system matrices with the eigensolutions are established. The
approach taken in this chapter neither uses the state-space approach nor employs additional dissipation coordi-
nates. The concept of the Rayleigh quotient for nonviscously damped systems is discussed. Three new Rayleigh
quotients are proposed and their stationary properties are investigated. Suitable examples are given throughout the
chapter to illustrate the derived analytical results.

Chapter 6 is devoted to reduced computational methods for damped dynamic systems. First, nonproportionally
damped system with viscous model is considered. An iterative method to calculate complex modes from classical
normal modes is proposed. A simple numerical algorithm is given to implement the iterative method. The cal-
culation of eigenvalues of single-degree-of-freedom linear nonviscously damped systems with exponential model
is considered next. An approximate non-state-space based approach is proposed for this type of problem. The
proposed approximations are based on certain physical assumptions which simplify the underlying characteristic
equation to be solved. Closed-form approximate expressions of the complex and real eigenvalues of the system
are derived. These approximate expressions are obtained as functions of the undamped eigenvalues only. The
methods are then extended to exponentially damped multiple-degrees-of-freedom systems. This technique en-
ables one to approximately calculate the eigenvalues of nonviscously damped systems by simple post-processing
of the undamped eigenvalues. Beside these reduced modal methods, another model reduction approach based on
an equivalent second-order form is discussed. This method is applicable to any general nonviscous model and not
only the exponential model. The proposed approximation utilises the idea of generalised proportional damping and
expressions of approximate eigenvalues of the system. A closed-form expression of the equivalent second-order
system has been derived. The new expression is obtained by elementary operations involving the mass, stiffness
and the kernel function matrix only. This enables one to approximately calculate the dynamic response of general
nonviscously damped systems using the standard tools for conventional second-order viscously damped systems.
Representative numerical examples are given throughout to verify the accuracy of the derived expressions.

Theory of dynamics of multiple-degrees-of-freedom symmetric systems has been studied in this book. How-
ever, dynamical behaviour of some systems encountered in practice can be asymmetric in nature. In A methods
are proposed by which an asymmetric dynamic systems can be transformed into symmetric systems. In this way,
the methods proposed in the book can in turn be applied to asymmetric systems also. Under what conditions
multiple-degrees-of-freedom linear dynamical systems can be transformed into equivalent symmetric systems by
non-singular linear transformations are discussed. An approach is proposed to transform asymmetric systems into
symmetric systems by an equivalence transformation. The existing approach of symmetrisation by similarity trans-
formation is the ‘first kind’ and proposed approach by equivalence transformation is the ‘second kind’. Because
equivalence transformations are the most general non-singular linear transformations, conditions of symmetris-
ability obtained here are more ‘liberal’ compared to the first kind and numerical calculations also become more
straightforward. Several examples are provided to illustrate this approach.

The intended readers of this book are primarily senior undergraduate students, graduate students and practicing
engineers working in the field of advanced vibration. Limited examples are provided to support of the theoretical
developments. The book is written with the aim of being a self-contained book. However, a recommended pre-
requisite is an undergraduate level vibration course. There are many excellent books which cover the fundamentals
of the theory of vibration, for example [MEI 67, MEI 80, PAZ 80, NEW 89, CLO 93, BAT 95, MEI 97, PET 98,
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GÉR 97, INM 03, RAO 11]. Readers will highly benefit by familiarising themselves with the basics of the theory
of vibration.

In spite of the attempt of being exhaustive at the time of writing, clearly many relevant and possibly important
bibliographic references are missed. This is inevitable as huge amount of literature were published recently due
to the significant rise in the interest in this topic. However, the author expects that the book covers the necessary
background so that at least the readers will appreciate existing publications and future research works and devel-
opments in the field of damping. It is hoped that the readers will not only gain an understanding of the material
presented in the book, but also will be able do their personal research and take this field forward.
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