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Abstract

This dissertation reports a systematic study on analysis and identification of multiple parameter damped
mechanical systems. The attention is focused on viscously and non-viscously damped multiple degree-of-
freedom linear vibrating systems. The non-viscous damping model is such that the damping forces depend
on the past history of motion via convolution integrals over some kernel functions. The familiar viscous
damping model is a special case of this general linear damping model when the kernel functions have no
memory.

The concept of proportional damping is critically examined and a generalized form of proportional
damping is proposed. It is shown that the proportional damping can exist even when the damping mechanism
is non-viscous.

Classical modal analysis is extended to deal with general non-viscously damped multiple degree-of-
freedom linear dynamic systems. The new method is similar to the existing method with some modifications
due to non-viscous effect of the damping mechanism. The concept of (complex) elastic modes and non-
viscous modes have been introduced and numerical methods are suggested to obtain them. It is further
shown that the system response can be obtained exactly in terms of these modes. Mode orthogonality
relationships, known for undamped or viscously damped systems, have been generalized to non-viscously
damped systems. Several useful results which relate the modes with the system matrices are developed.

These theoretical developments on non-viscously damped systems, in line with classical modal analy-
sis, give impetus towards understanding damping mechanisms in general mechanical systems. Based on a
first-order perturbation method, an approach is suggested to the identify non-proportional viscous damping
matrix from the measured complex modes and frequencies. This approach is then further extended to iden-
tify non-viscous damping models. Both the approaches are simple, direct, and can be used with incomplete
modal data.

It is observed that these methods yield non-physical results by breaking the symmetry of the fitted
damping matrix when the damping mechanism of the original system is significantly different from what is
fitted. To solve this problem, approaches are suggested to preserve the symmetry of the identified viscous
and non-viscous damping matrix.

The damping identification methods are applied experimentally to a beam in bending vibration with
localized constrained layer damping. Since the identification method requires complex modal data, a gen-
eral method for identification of complex modes and complex frequencies from a set of measured transfer
functions have been developed. It is shown that the proposed methods can give useful information about
the true damping mechanism of the beam considered for the experiment. Further, it is demonstrated that
the damping identification methods are likely to perform quite well even for the case when noisy data is
obtained.

The work conducted here clarifies some fundamental issues regarding damping in linear dynamic sys-
tems and develops efficient methods for analysis and identification of generally damped linear systems.
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Û Matrix containing ẑj
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Chapter 1

Introduction

It is true that the grasping of truth is not possible without empirical basis. How-

ever, the deeper we penetrate and the more extensive and embracing our theories

become, the less empirical knowledge is needed to determine those theories.

Albert Einstein, December 1952.

Problems involving vibration occur in many areas of mechanical, civil and aerospace engineering:
wave loading of offshore platforms, cabin noise in aircrafts, earthquake and wind loading of cable
stayed bridges and high rise buildings, performance of machine tools – to pick only few random
examples. Quite often vibration is not desirable and the interest lies in reducing it by dissipation of
vibration energy or damping. Characterization of damping forces in a vibrating structure has long
been an active area of research in structural dynamics. Since the publication of Lord Rayleigh’s
classic monograph ‘Theory of Sound (1877)’, a large body of literature can be found on damping.
Although the topic of damping is an age old problem, the demands of modern engineering have led
to a steady increase of interest in recent years. Studies of damping have a major role in vibration
isolation in automobiles under random loading due to surface irregularities and buildings subjected
to earthquake loadings. The recent developments in the fields of robotics and active structures have
provided impetus towards developing procedures for dealing with general dissipative forces in the
context of structural dynamics. Beside these, in the last few decades, the sophistication of modern
design methods together with the development of improved composite structural materials instilled
a trend towards lighter structures. At the same time, there is also a constant demand for larger
structures, capable of carrying more loads at higher speeds with minimum noise and vibration level
as the safety/workability and environmental criteria become more stringent. Unfortunately, these
two demands are conflicting and the problem cannot be solved without proper understanding of
energy dissipation or damping behaviour. It is the aim of this dissertation is to develop fundamental
techniques for the analysis and identification of damped structural systems.

In spite of a large amount of research, understanding of damping mechanisms is quite primitive.
A major reason for this is that, by contrast with inertia and stiffness forces, it is not in general
clear which state variables are relevant to determine the damping forces. Moreover, it seems that

1



2 Chapter 1. Introduction

in a realistic situation it is often the structural joints which are more responsible for the energy
dissipation than the (solid) material. There have been detailed studies on the material damping
(see Bert, 1973) and also on energy dissipation mechanisms in the joints (Earls, 1966, Beards and
Williams, 1977). But here difficulty lies in representing all these tiny mechanisms in different parts
of the structure in an unified manner. Even in many cases these mechanisms turn out be locally
non-linear, requiring an equivalent linearization technique for a global analysis (Bandstra, 1983).
A well known method to get rid of all these problems is to use the so called ‘viscous damping’.
This approach was first introduced by Rayleigh (1877) via his famous ‘dissipation function’, a
quadratic expression for the energy dissipation rate with a symmetric matrix of coefficients, the
‘damping matrix’. A further idealization, also pointed out by Rayleigh, is to assume the damping
matrix to be a linear combination of the mass and stiffness matrices. Since its introduction this
model has been used extensively and is now usually known as ‘Rayleigh damping’, ‘proportional
damping’ or ‘classical damping’. With such a damping model, the modal analysis procedure,
originally developed for undamped systems, can be used to analyze damped systems in a very
similar manner.

In this Chapter, we begin our discussion with classical dynamics of undamped systems. A
brief review of literature on currently available damping models, techniques for analysis of damped
dynamic systems and methods for identification of damping is presented. Based on this literature
review, some open problems have been identified which are discussed in the subsequent Chapters
of this dissertation.

From an analytical point of view, models of vibrating systems are commonly divided into two
broad classes – discrete, or lumped-parameter models, and continuous, or distributed-parameter
models. In real life, however, systems can contain both distributed and lumped parameter mod-
els (for example, a beam with a tip mass). Distributed-parameter modelling of vibrating systems
leads to partial-differential equations as the equations of motion. Exact solutions of such equations
are possible only for a limited number of problems with simple geometry, boundary conditions,
and material properties (such as constant mass density). For this reason, normally we need some
kind of approximate method to solve a general problem. Such solutions are generally obtained
through spatial discretization (for example, the Finite Element Method, Zienkiewicz and Taylor,
1991), which amounts to approximating distributed-parameter systems by lumped-parameter sys-
tems. Equations of motion of lumped-parameter systems can be shown to be expressed by a set
of coupled ordinary-differential equations. In this dissertation we mostly deal with such lumped-
parameter systems. We also restrict our attention to the linear system behaviour only.

1.1 Dynamics of Undamped Systems

Linear dynamics of undamped systems occupy a central role in vibrational studies of engineering
systems. This is also the starting point of the work taken up in this dissertation and here we briefly
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outline the classical theory of linear dynamics of undamped systems.

1.1.1 Equation of Motion

Suppose that a system with N degrees of freedom is executing small oscillations around equilib-
rium points. The theory of small oscillations was studied in detail by Rayleigh (1877). Considering
the vector of generalized coordinates

q = {q1(t), q2(t), · · · , qN(t)}T ∈ RN (1.1)

the potential energy could be expanded in the form of a Taylor series in the neighborhood of the
equilibrium position as (see Meirovitch, 1997, for details)

V (q) = V (0) +
N∑

j=1

(
∂V
∂qj

)

q=0
qj +

1

2

N∑
j=1

N∑

k=1

(
∂2V

∂qj∂qk

)

q=0
qjqk +O(q3). (1.2)

Since the potential energy is defined only to a constant, it may be assumed that V (0) = 0, and
consequently the second order approximation yields

V (q) =
1

2

N∑
j=1

N∑

k=1

Kjkqjqk (1.3)

because second term is zero at equilibrium. Here the elastic coefficients

Kjk =

(
∂2V

∂qj∂qk

)

q=0
. (1.4)

Equation (1.3) can also be put in the matrix positive definite quadratic form as

V (q) =
1

2
qT Kq (1.5)

where K ∈ RN×N , the (linear) stiffness matrix of the system, is symmetric and non-negative
definite. In a similar way, in the absence of any centripetal and Coriolis forces, the kinetic energy
of a system can be expressed as

T (q) =
1

2

N∑
j=1

N∑

k=1

Mjkq̇j q̇k =
1

2
q̇T Mq̇. (1.6)

In the above expression q̇ is the vector of the generalized velocities and M ∈ RN×N , the mass

matrix of the system, is a symmetric and positive definite matrix. The equations of motion of free
vibration can now be obtained by the application of Lagrange’s equation

d

dt

(
∂L
∂q̇k

)
− ∂L

∂qk

= Qnck
+ fk, ∀k = 1, · · · , N (1.7)
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where L = T − V is the Lagrangian, Qnck
are the non-conservative forces and fk are the applied

forces acting on the system. For undamped systems Qnck
= 0, ∀k. Using the expressions of V and

T from equation (1.5) and (1.6) and substituting L, from equation (1.7), the equations of motion
of an undamped non-gyroscopic system can be obtained as

Mq̈(t) + Kq(t) = f(t) (1.8)

where f(t) ∈ RN is the forcing vector. Equation (1.8) represents a set of coupled second-order
ordinary-differential equations. The solution of this equation also requires knowledge of the initial
conditions in terms of the displacements and velocities of all the coordinates.

1.1.2 Modal Analysis

Rayleigh (1877) has shown that undamped linear systems, equations of motion of which are given
by (1.8), are capable of so-called natural motions. This essentially implies that all the system
coordinates execute harmonic oscillation at a given frequency and form a certain displacement
pattern. The oscillation frequency and displacement pattern are called natural frequencies and
normal modes, respectively. The natural frequencies (ωj) and the mode shapes (xj) are intrinsic
characteristic of a system and can be obtained by solving the associated matrix eigenvalue problem

Kxj = ω2
j Mxj, ∀ j = 1, · · · , N. (1.9)

Since the above eigenvalue problem is in terms of real symmetric matrices M and K, the eigenval-
ues and consequently the eigenvectors are real, that is ωj ∈ R and xj ∈ RN . In addition to this, it
was also shown by Rayleigh that the undamped eigenvectors satisfy an orthogonality relationship
over the mass and stiffness matrices, that is

xT
l Mxj = δlj (1.10)

and xT
l Kxj = ω2

j δlj, ∀ l, j = 1, · · · , N (1.11)

where δlj is the Kroneker delta function. In the above equations the eigenvectors are unity mass
normalized, a convention often used in practice. This orthogonality property of the undamped
modes is very powerful as it allows to transform a set of coupled differential equations to a set of
independent equations. For convenience, we construct the matrices

Ω = diag [ω1, ω2, · · · , ωN ] ∈ RN×N (1.12)

and X = [x1, x2, · · · , xN ] ∈ RN×N (1.13)

where the eigenvalues are arranged such that ω1 < ω2, ω2 < ω3, · · · , ωk < ωk+1. Use a coordinate
transformation

q(t) = Xy(t). (1.14)
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Substituting q(t) in equation (1.8), premultiplying by XT and using the orthogonality relationships
in (1.12) and (1.13), the equations of motion in the modal coordinates may be obtained as

ÿ(t) + Ω2y(t) = f̃(t) (1.15)

where f̃(t) = XT f(t) is the forcing function in modal coordinates. Clearly, this method signifi-
cantly simplifies the dynamic analysis because complex multiple degrees of freedom systems can
be treated as collections of single degree of freedom oscillators. This approach of analyzing lin-
ear undamped systems is known as modal analysis, possibly the most efficient tool for vibration
analysis of complex engineering structures.

1.2 Models of Damping

Damping is the dissipation of energy from a vibrating structure. In this context, the term dissipate is
used to mean the transformation of energy into the other form of energy and, therefore, a removal
of energy from the vibrating system. The type of energy into which the mechanical energy is
transformed is dependent on the system and the physical mechanism that cause the dissipation.
For most vibrating system, a significant part of the energy is converted into heat.

The specific ways in which energy is dissipated in vibration are dependent upon the physical
mechanisms active in the structure. These physical mechanisms are complicated physical process
that are not totally understood. The types of damping that are present in the structure will depend
on which mechanisms predominate in the given situation. Thus, any mathematical representation
of the physical damping mechanisms in the equations of motion of a vibrating system will have
to be a generalization and approximation of the true physical situation. As Scanlan (1970) has
observed, any mathematical damping model is really only a crutch which does not give a detailed
explanation of the underlying physics.

For our mathematical convenience, we divide the elements that dissipate energy into three
classes: (a) damping in single degree-of-freedom (SDOF) systems, (b) damping in continuous
systems, and (c) damping in multiple degree-of-freedom (MDOF) systems. Elements such as
dampers of a vehicle-suspension fall in the first class. Dissipation within a solid body, on the
other hand, falls in the second class, demands a representation which accounts for both its intrinsic
properties and its spatial distribution. Damping models for MDOF systems can be obtained by
discretization of the equations of motion. There have been attempt to mathematically describe the
damping in SDOF, continuous and MDOF systems.

1.2.1 Single Degree-of-freedom Systems

Free oscillation of an undamped SDOF system never die out and the simplest approach to introduce
dissipation is to incorporate an ideal viscous dashpot in the model. The damping force (Fd) is
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assumed to be proportional to the instantaneous velocity, that is

Fd = c ẋ (1.16)

and the coefficient of proportionality, c is known as the dashpot-constant or viscous damping
constant. The loss factor, which is the energy dissipation per radian to the peak potential energy
in the cycle, is widely accepted as a basic measure of the damping. For a SDOF system this loss
factor can be given by

η =
c|ω|
k

(1.17)

where k is the stiffness. The expression similar to this equation have been discussed by Ungar and
Kerwin (1962) in the context of viscoelastic systems. Equation (1.17) shows a linear dependence
of the loss factor on the driving frequency. This dependence has been discussed by Crandall (1970)
where it has been pointed out that the frequency dependence, observed in practice, is usually not
of this form. In such cases one often resorts to an equivalent ideal dashpot. Theoretical objections
to the approximately constant value of damping over a range of frequency, as observed in aeroelas-
ticity problems, have been raised by Naylor (1970). On the lines of equation (1.17) one is tempted
to define the frequency-dependent dashpot as

c(ω) =
kη(ω)

|ω| . (1.18)

This representation, however has some serious physical limitations. Crandall (1970, 1991), New-
land (1989) and Scanlan (1970) have pointed out that such a representation violates causality, a
principle which asserts that the states of a system at a given point of time can be affected only by
the events in the past and not by those of the future.

Now for the SDOF system, the frequency domain description of the equation of motion can be
given by [−mω2 + iωc(ω) + k

]
X(iω) = F (iω) (1.19)

where X(iω) and F (iω) are the response and excitation respectively, represented in the frequency
domain. Note that the dashpot is now allowed to have frequency dependence. Inserting equation
(1.18) into (1.19) we obtain

[−mω2 + k {1 + iη(ω)sgn(ω)}] X(iω) = F (iω) (1.20)

where sgn(•) represents the sign function. The ‘time-domain’ representations of equations (1.19)
and (1.20) are often taken as

mẍ + c(ω)ẋ + kx = f (1.21)

and

mẍ + kx {1 + iη(ω)sgn(ω)} = f (1.22)
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respectively. It has been pointed out by Crandall (1970) that these are not the correct Fourier in-
verses of equations (1.19) and (1.20). The reason is that the inertia, the stiffness and the forcing
function are inverted properly, while the damping terms in equations (1.21) and (1.22) are ob-
tained by mixing the frequency-domain and time-domain operations. Crandall (1970) calls (1.21)
and (1.22) the ‘non-equations’ in time domain. It has been pointed out by Newland (1989) that
only certain forms of frequency dependence for η(ω) are allowed in order to to satisfy causality.
Crandall (1970) has shown that the impulse response function for the ideal hysteretic dashpot (η
independent of frequency), is given by

h(t) =
1

πkη0

.
1

t
, −∞ < t < ∞. (1.23)

This response function is clearly non-causal since it states that the system responds before the ex-
citation (or the cause) takes place. This non-physical behaviour of the hysteretic damping model
is a flaw, and further attempts have been made to cure this problem. Bishop and Price (1986)
introduced the band limited hysteretic damper and suggested that it might satisfy the causality
requirement. However, Crandall (1991) has further shown that the band-limited hysteretic dash-
pot is also non-causal. In view of this discussion it can be said that the most of the hysteretic
damping model fails to satisfy the casualty condition. Recently, based on the analyticity of the
transfer function, Makris (1999) has shown that for causal hysteretic damping the real and imag-
inary parts of the dynamic stiffness matrix must form a Hilbert transform pair1. He has shown
that the causal hysteretic damping model is the limiting case of a linear viscoelastic model with
nearly frequency-independent dissipation that was proposed by Biot (1958). It was also shown that
there is a continuous transition from the linear viscoelastic model to the ideally hysteretic damping
model.

The physical mechanisms of damping, including various types of external friction, fluid viscos-
ity, and internal material friction, have been studied rather extensively in some detail and are com-
plicated physical phenomena. However, a certain simplified mathematical formulation of damping
forces and energy dissipation can be associated with a class of physical phenomenon. Coulomb
damping, for example is used to represent dry friction present in sliding surfaces, such as structural
joints. For this kind of damping, the force resisting the motion is assumed to be proportional to the
normal force between the sliding surfaces and independent of the velocity except for the sign. The
damping force is thus

Fd =
ẋ

|ẋ|Fr = sgn(ẋ)Fr (1.24)

where Fr is the frictional force. In the context of finding equivalent viscous damping, Bandstra
(1983) has reported several mathematical models of physical damping mechanisms in SDOF sys-
tems. For example, velocity squared damping, which is present when a mass vibrates in a fluid or

1The Hilbert transform relation is known as Kramers-Kronig result.



8 Chapter 1. Introduction

when fluid is forced rapidly through an orifice. The damping force in this case is

Fd = sgn(ẋ)aẋ2; or, more generally Fd = cẋ|ẋ|n−1 (1.25)

where c is the damping proportionality constant. Viscous damping is a special case of this type of
damping. If the fluid flow is relatively slow i.e. laminar, then by letting n = 1 the above equation
reduces to the case of viscous damping (1.16).

1.2.2 Continuous Systems

Construction of damping models becomes more difficult for continuous systems. Banks and Inman
(1991) have considered four different damping models for a composite beam. These models of
damping are:

1. Viscous air damping: For this model the damping operator in the Euler-Bernoulli equation
for beam vibration becomes

L1 = γ
∂

∂t
(1.26)

where γ is the viscous damping constant.

2. Kelvin-Voigt damping: For this model the damping operator becomes

L1 = cdI
∂5

∂x4∂t
(1.27)

where I is the moment of inertia and cd is the strain-rate dependent damping coefficient. A
similar damping model was also used by Manohar and Adhikari (1998) and Adhikari and
Manohar (1999) in the context of randomly parametered Euler-Bernoulli beams.

3. Time hysteresis damping: For this model the damping operator is assumed as

L1 =

∫ t

−∞
g(τ)uxx(x, t + τ)dτ where g(τ) =

α√−τ
exp(βτ) (1.28)

where α and β are constants. Later, this model will be discussed in detail.

4. Spatial hysteresis damping:

L1 =
∂

∂x

[∫ L

0

h(x, ξ){uxx(x, t)− uxt(ξ, t)}dξ

]
(1.29)

The kernel function h(x, ξ) is defined as

h(x, ξ) =
a

b
√

π
exp[−(x− ξ)2/2b2]

where b is some constant.

It was observed by them that the spatial hysteresis model combined with a viscous air damping
model results in the best quantitative agreement with the experimental time histories. Again, in the
context of Euler-Bernoulli beams, Bandstra (1983) has considered two damping models where the
damping term is assumed to be of the forms {sgn ut(x, t)} b1u

2(x, t) and {sgn ut(x, t)} b2|u(x, t)|.
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1.2.3 Multiple Degrees-of-freedom Systems

The most popular approach to model damping in the context of multiple degrees-of-freedom
(MDOF) systems is to assume viscous damping. This approach was first introduced by Rayleigh
(1877). By analogy with the potential energy and the kinetic energy, Rayleigh assumed the dissi-

pation function, given by

F (q) =
1

2

N∑
j=1

N∑

k=1

Cjkq̇j q̇k =
1

2
q̇T Cq̇. (1.30)

In the above expression C ∈ RN×N is a non-negative definite symmetric matrix, known as the vis-
cous damping matrix. It should be noted that not all forms of the viscous damping matrix can be
handled within the scope of classical modal analysis. Based on the solution method, viscous damp-
ing matrices can be further divided into classical and non-classical damping. Further discussions
on viscous damping will follow in Section 1.3.

It is important to avoid the widespread misconception that viscous damping is the only linear
model of vibration damping in the context of MDOF systems. Any causal model which makes the
energy dissipation functional non-negative is a possible candidate for a damping model. There have
been several efforts to incorporate non-viscous damping models in MDOF systems. Bagley and
Torvik (1983), Torvik and Bagley (1987), Gaul et al. (1991), Maia et al. (1998) have considered
damping modeling in terms of fractional derivatives of the displacements. Following Maia et al.

(1998), the damping force using such models can be expressed by

Fd =
l∑

j=1

gjD
νj [q(t)]. (1.31)

Here gj are complex constant matrices and the fractional derivative operator

Dνj [q(t)] =
dνj q(t)

dtνj
=

1

Γ(1− νj)

d

dt

∫ t

0

q(t)

(t− τ)νj
dτ (1.32)

where νj is a fraction and Γ(•) is the Gamma function. The familiar viscous damping appears
as a special case when νj = 1. We refer the readers to the review papers by Slater et al. (1993),
Rossikhin and Shitikova (1997) and Gaul (1999) for further discussions on this topic. The physical
justification for such models, however, is far from clear at the present time.

Possibly the most general way to model damping within the linear range is to consider non-
viscous damping models which depend on the past history of motion via convolution integrals over
some kernel functions. A modified dissipation function for such damping model can be defined as

F (q) =
1

2

N∑
j=1

N∑

k=1

q̇k

∫ t

0

Gjk(t− τ)q̇j(τ)dτ =
1

2
q̇T

∫ t

0

G(t− τ)q̇(τ)dτ. (1.33)
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Here G(t) ∈ RN×N is a symmetric matrix of the damping kernel functions, Gjk(t). The kernel
functions, or others closely related to them, are described under many different names in the lit-
erature of different subjects: for example, retardation functions, heredity functions, after-effect
functions, relaxation functions etc. In the special case when G(t − τ) = C δ(t − τ), where δ(t)

is the Dirac-delta function, equation (1.33) reduces to the case of viscous damping as in equation
(1.30). The damping model of this kind is a further generalization of the familiar viscous damping.
By choosing suitable kernel functions, it can also be shown that the fractional derivative model dis-
cussed before is also a special case of this damping model. Thus, as pointed by Woodhouse (1998),
this damping model is the most general damping model within the scope of a linear analysis.

Golla and Hughes (1985), McTavis and Hughes (1993) have used damping model of the form
(1.33) in the context of viscoelastic structures. The damping kernel functions are commonly de-
fined in the frequency/Laplace domain. Conditions which G(s), the Laplace transform of G(t),
must satisfy in order to produce dissipative motion were given by Golla and Hughes (1985). Sev-
eral authors have proposed several damping models and they are summarized in Table 1.1.

Damping functions Author, Year

G(s) =
∑n

k=1

aks

s + bk

Biot (1955, 1958)

G(s) = as
∫∞
0

γ(ρ)

s + ρ
dρ Buhariwala (1982)

γ(ρ) =





1

β − α
α ≤ γ ≤ β

0 otherwise

G(s) =
E1s

α − E0bs
β

1 + bsβ
Bagley and Torvik (1983)

0 < α < 1, 0 < β < 1

sG(s) = G∞
[
1 +

∑
k αk

s2 + 2ξkωks

s2 + 2ξkωks + ω2
k

]
Golla and Hughes (1985)

and McTavis and Hughes (1993)

G(s) = 1 +
∑n

k=1

∆ks

s + βk

Lesieutre and Mingori (1990)

G(s) = c
1− e−st0

st0
Adhikari (1998)

G(s) = c
1 + 2(st0/π)2 − e−st0

1 + 2(st0/π)2
Adhikari (1998)

Table 1.1: Summary of damping functions in the Laplace domain

1.2.4 Other Studies

Another major source of damping in a vibrating structure is the structural joints, see Tan (1997)
for a recent review. Here, a major part of the energy loss takes place through air-pumping. The air-
pumping phenomenon is associated with damping when air is entrapped in pockets in the vicinity
of a vibrating surface. In these situations, the entrapped air is ‘squeezed out’ and ‘sucked-in’
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through any available hole. Dissipation of energy takes place in the process of air flow and culomb-
friction dominates around the joints. This damping behaviour has been studied by many authors
in some practical situations, for example by Cremer and Heckl (1973). Earls (1966) has obtained
the energy dissipation in a lap joint over a cycle under different clamping pressure. Beards and
Williams (1977) have noted that significant damping can be obtained by suitably choosing the
fastening pressure at the interfacial slip in joints.

Energy dissipation within the material is attributed to a variety of mechanisms such as thermoe-
lasticity, grainboundary viscosity, point-defect relaxation etc (see Lazan, 1959, 1968, Bert, 1973).
Such effects are in general called material damping. In an imperfect elastic material, the stress-
strain curve forms a closed hysteresis loop rather that a single line upon a cyclic loading. Much
effort has been devoted by numerous investigators to develop models of hysteretic restoring forces
and techniques to identify such systems. For a recent review on this literature we refer the readers
to Chassiakos et al. (1998). Most of these studies are motivated by the observed fact that the energy
dissipation from materials is only a weak function of frequency and almost directly proportional to
xn. The exponent on displacement for the energy dissipation of material damping ranges from 2 to
3, for example 2.3 for mild steel (Bandstra, 1983). In this context, another large body of literature
can be found on composite materials where many researchers have evaluated a material’s specific
damping capacity (SDC). Baburaj and Matsukai (1994) and the references therein give an account
of research that has been conducted in this area.

1.3 Modal Analysis of Viscously Damped Systems

Equations of motion of a viscously damped system can be obtained from the Lagrange’s equation
(1.7) and using the Rayleigh’s dissipation function given by (1.30). The non-conservative forces
can be obtained as

Qnck
= −∂F

∂q̇k

, k = 1, · · · , N (1.34)

and consequently the equations of motion can expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t). (1.35)

The aim is to solve this equation (together with the initial conditions) by modal analysis as de-
scribed in Section 1.1.2. Using the transformation in (1.14), premultiplying equation (1.35) by XT

and using the orthogonality relationships in (1.12) and (1.13), equations of motion of a damped
system in the modal coordinates may be obtained as

ÿ(t) + XT CXẏ(t) + Ω2y(t) = f̃(t). (1.36)

Clearly, unless XT CX is a diagonal matrix, no advantage can be gained by employing modal
analysis because the equations of motion will still be coupled. To solve this problem, it it common
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to assume proportional damping, that is C is simultaneously diagonalizable with M and K. Such
damping model allows to analyze damped systems in very much the same manner as undamped
systems. Later, Caughey and O’Kelly (1965) have derived the condition which the system matrices
must satisfy so that viscously damped linear systems possess classical normal modes. In Chapter
2, the concept of proportional damping or classical damping will be analyzed in more detail.

Modes of proportionally damped systems preserve the simplicity of the real normal modes as in
the undamped case. Unfortunately there is no physical reason why a general system should behave
like this. In fact practical experience in modal testing shows that most real-life structures do not do
so, as they possess complex modes instead of real normal modes. This implies that in general linear
systems are non-classically damped. When the system is non-classically damped, some or all of
the N differential equations in (1.36) are coupled through the XT CX term and can not be reduced
to N second-order uncoupled equation. This coupling brings several complication in the system
dynamics – the eigenvalues and the eigenvectors no longer remain real and also the eigenvectors
do not satisfy the classical orthogonality relationship as given by equations (1.10) and (1.11). The
methods for solving this kind of problem follow mainly two routes, the state-space method and the
methods in configuration space or ‘N -space’. A brief discussion of these two approaches is taken
up in the following sections.

1.3.1 The State-Space Method

The state-space method is based on transforming the N second-order coupled equations into a
set of 2N first-order coupled equations by augmenting the displacement response vectors with the
velocities of the corresponding coordinates (see Newland, 1989). Equation (1.35) can be recast as

ż(t) = Az(t) + p(t) (1.37)

where A ∈ R2N×2N is the system matrix, p(t) ∈ R2N the force vector and z(t) ∈ R2N is the
response vector in the state-space given by

A =

[
ON IN

−M−1K −M−1C

]
, z(t) =

{
q(t)
q̇(t)

}
, and p(t) =

{
0

−M−1f(t).

}
(1.38)

In the above equation ON is the N × N null matrix and IN is the N × N identity matrix. The
eigenvalue problem associated with the above equation is in term of an asymmetric matrix now.
Uncoupling of equations in the state-space is again possible and has been considered by many
authors, for example, Meirovitch (1980), Newland (1989) and Veletsos and Ventura (1986). This
analysis was further generalized by Newland (1987) for the case of systems involving singular
matrices. In the formulation of equation (1.37) the matrix A is no longer symmetric, and so eigen-
vectors are no longer orthogonal with respect to it. In fact, in this case, instead of an orthogonality
relationship, one obtains a biorthogonality relationship, after solving the adjoint eigenvalue prob-
lem. The complete procedure for uncoupling the equations now involves solving two eigenvalue
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problems, each of which is double the size of an eigenvalue problem in the modal space. The de-
tails of the relevant algebra can be found in Meirovitch (1980, 1997). It should be noted that these
solution procedures are exact in nature. One disadvantage of such an exact method is that it re-
quires significant numerical effort to determine the eigensolutions. The effort required is evidently
intensified by the fact that the eigensolutions of a non-classically damped system are complex.
From the analyst’s view point another disadvantage is the lack of physical insight afforded by this
method which is intrinsically numerical in nature.

Another variation of the state-space method available in the literature is through the use of
‘Duncan form’. This approach was introduced by Foss (1958) and later several authors, for ex-
ample, Béliveau (1977), Nelson and Glasgow (1979), Vigneron (1986), Suarez and Sing (1987,
1989), Sestieri and Ibrahim (1994) and Ren and Zheng (1997) have used this approach to solve a
wide range of interesting problems. The advantage of this approach is that the system matrices in
the state-space retain symmetry as in the configuration space.

1.3.2 Methods in Configuration Space

It has been pointed out that the state-space approach towards the solution of equation of motion
in the context of linear structural dynamics is not only computationally expensive but also fails to
provide the physical insight which modal analysis in configuration space or N -space offers. The
eigenvalue problem associated with equation (1.35) can be represented by the λ−matrix problem
(Lancaster, 1966)

s2
jMuj + sjCuj + Kuj = 0 (1.39)

where sj ∈ C is the j-th latent root (eigenvalue) and uj ∈ CN is the j-th latent vector (eigenvector).
The eigenvalues, sj , are the roots of the characteristic polynomial

det
[
s2M + sC + K

]
= 0. (1.40)

The order of the polynomial is 2N and the roots appear in complex conjugate pairs. Several authors
have studied non-classically damped linear systems by approximate methods. In this section we
briefly review the existing methods for this kind of analysis.

Approximate Decoupling Method

Consider the equations of motion of a general viscously damped system in the modal coordinates
given by (1.36). Earlier it has been mentioned that due to non-classical nature of the damping this
set of N differential equations are coupled through the C′ = XT CX term. An usual approach in
this case is simply to ignore the off-diagonal terms of the modal damping matrix C′ which couple
the equations of motion. This approach is termed the decoupling approximation. For large-scale
systems, the computational effort in adopting the decoupling approximation is an order of magni-
tude smaller than the methods of complex modes. The solution of the decoupled equation would
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be close to the exact solution of the coupled equations if the non-classical damping terms are suffi-
ciently small. Analysis of this question goes back to Rayleigh (1877). A preliminary discussion on
this topic can be found in Meirovitch (1967, 1997). Thomson et al. (1974) have studied the effect
of neglecting off-diagonal entries of the modal damping matrix through numerical experiments and
have proposed a method for improved accuracy. Warburton and Soni (1977) have suggested a cri-
terion for such a diagonalization so that the computed response is acceptable. Using the frequency
domain approach, Hasselsman (1976) proposed a criterion for determining whether the equations
of motion might be considered practically decoupled if non-classical damping exists. The criterion
suggested by him was to have adequate frequency separation between the natural modes.

Using matrix norms, Shahruz and Ma (1988) have tried to find an optimal diagonal matrix
Cd in place of C′. An important conclusion emerging from their study is that if C′ is diagonally
dominant, then among all approximating diagonal matrices Cd, the one that minimizes the error
bound is simply the diagonal matrix obtained by omitting the off-diagonal elements of C′. Using
a time-domain analysis Shahruz (1990) has rigorously proved that if Cd is obtained form C′ by
neglecting the off-diagonal elements of C′, then the error in the solution of the approximately
decoupled system will be small as long as the off-diagonal elements of C′ are not too large.

Ibrahimbegovic and Wilson (1989) have developed a procedure for analyzing non-pro- portion-
ally damped systems using a subspace with a vector basis generated from the mass and stiffness
matrices. Their approach avoids the use of complex eigensolutions. An iterative approach for
solving the coupled equations is developed by Udwadia and Esfandiari (1990) based on updating
the forcing term appropriately. Felszeghy (1993) presented a method which searches for another
coordinate system in the neighborhood of the normal coordinate system so that in the new coordi-
nate system removal of coupling terms in the equations of motion produces a minimum bound on
the relative error introduced in the approximate solution. Hwang and Ma (1993) have shown that
the error due to the decoupling approximation can be decomposed into an infinite series and can
be summed exactly in the Laplace domain. They also concluded that by solving a small number of
additional coupled equations in an iterative fashion, the accuracy of the approximate solution can
be greatly enhanced. Felszeghy (1994) developed a formulation based on biorthonormal eigen-
vector for modal analysis of non-classically damped discrete systems. The analytical procedure
take advantage of simplification that arises when the modal analysis of the motion separated into a
classical and non-classical modal vector expansion.

From the above mentioned studies it has been believed that either frequency separation be-
tween the normal modes (Hasselsman, 1976), often known as ‘Hasselsman’s criteria’, or some
form of diagonal dominance (Shahruz and Ma, 1988), in the modal damping matrix C′ is sufficient
for neglecting modal coupling. In contrast to these widely accepted beliefs Park et al. (1992a,b,
1994) have shown using Laplace transform methods that within the practical range of engineering
applications neither the diagonal dominance of the modal damping matrix nor the frequency sep-
aration between the normal modes would be sufficient for neglecting modal coupling. They have
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also given examples when the effect of modal coupling may even increase following the previous
criterion.

In the context of approximate decoupling, Shahruz and Srimatsya (1997) have considered error
vectors in modal and physical coordinates, say denoted by eN(•) and eP(•) respectively. They
have shown that based on the norm (denoted here as ‖ (•) ‖) of these error vectors three cases may
arise:

1. ‖ eN(•) ‖ is small (respectively, large) and ‖ eP(•) ‖ is small (respectively, large)

2. ‖ eN(•) ‖ is large but ‖ eP(•) ‖ is small

3. ‖ eN(•) ‖ is small but ‖ eP(•) ‖ is large

From this study, especially in view of case 3, it is clear that the error norms based on the modal
coordinates are not reliable to use in the actual physical coordinates. However, they have given
conditions when ‖ eN(•) ‖ will lead to a reliable estimate of ‖ eP(•) ‖. For a flexible structure
with light damping, Gawronski and Sawicki (1997) have shown that neglecting off-diagonal terms
of the modal damping matrix in most practical cases imposes negligible errors in the system dy-
namics. They also concluded that the requirement of diagonal dominance of the damping matrix
is not necessary in the case of small damping, which relaxes the criterion earlier given by Shahruz
and Ma (1988).

In order to quantify the extent of non-proportionality, several authors have proposed ‘non-
proportionality indices’. Parter and Sing (1986) and Nair and Sing (1986) have developed sev-
eral indices based on modal phase difference, modal polygon areas, relative magnitude of cou-
pling terms in the modal damping matrix, system response, Nyquist plot etc. Recently, based
on the idea related to the modal polygon area, Bhaskar (1999) has proposed two more indices
of non-proportionality. Another index based on driving frequency and elements of the modal
damping matrix is given by Bellos and Inman (1990). Bhaskar (1992, 1995) has proposed a non-
proportionality index based on the error introduced by ignoring the coupling terms in the modal
damping matrix. Tong et al. (1992, 1994) have developed an analytical index for quantification of
non-proportionality for discrete vibrating systems. It has been shown that the fundamental nature
of non-proportionality lies in finer decompositions of the damping matrix. Shahruz (1995) have
shown that the analytical index given by Tong et al. (1994) solely based on the damping matrix can
lead to erroneous results when the driving frequency lies close to a system natural frequency. They
have suggested that a suitable index for non-proportionality should include the damping matrix
and natural frequencies as well as the excitation vector. Prells and Friswell (2000) have shown that
the (complex) modal matrix of a non-proportionally damped system depends on an orthonormal
matrix, which represents the phase between different degrees of freedom of the system. For pro-
portionally damped systems this matrix becomes an identity matrix and consequently they have
used this orthonormal matrix as an indicator of non-proportionality. Recently, Liu et al. (2000) has
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proposed three indices to measure the damping non-proportionality. The first index measures the
correlation between the real and imaginary parts of the complex modes, the second index measures
the magnitude of the imaginary parts of the complex modes and the third index quantifies the de-
gree of modal coupling. These indices are based on the fact that the complex modal matrix can be
decomposed to a product of a real and and complex matrix.

Complex Modal Analysis

Other than the approximate decoupling methods, another approach towards the analysis of non-
proportionally damped linear systems is to use complex modes. Since the original contribution
of Caughey and O’Kelly (1965), many papers have been written on complex modes. Several au-
thors, for example, Mitchell (1990), Imregun and Ewins (1995) and Lallement and Inman (1995),
have given reviews on this subject. Placidi et al. (1991) have used a series expansion of complex
eigenvectors into the subspace of real modes, in order to identify normal modes from complex
eigensolutions. In the context of modal analysis Liang et al. (1992) have posed and analyzed the
question of whether the existence of complex modes is an indicator of non-proportional damping
and how a mode is influenced by damping. Analyzing the errors in the use of modal coordinates,
Sestieri and Ibrahim (1994) and Ibrahim and Sestieri (1995) have concluded that the complex mode
shapes are not necessarily the result of high damping. The complexity of the mode shapes is the
result of particular damping distributions in the system and depends upon the proximity of the
mode shapes. Liu and Sneckenberger (1994) have developed a complex mode theory for a linear
vibrating deficient system based on the assumption that it has a complete set of eigenvectors. Com-
plex mode superposition methods have been used by Oliveto and Santini (1996) in the context of
soil structure interaction problems. Balmès (1997) has proposed a method to find normal modes
and the associated non-proportional damping matrix from the complex modes. He has also shown
that a set of complex modes is complete if it verifies a defined properness condition which is used
to find complete approximations of identified complex modes. Garvey et al. (1995) have given a
relationship between real and imaginary parts of complex modes for general systems whose mass,
stiffness and damping can be expressed by real symmetric matrices. They have also observed that
the relationship becomes most simple when all roots are complex and the real part of all the roots
have same sign. Recently Bhaskar (1999) has analyzed complex modes in detail and addressed the
problem of visualizing the deformed modes shapes when the motion is not synchronous.

While the above mentioned works concentrate on the properties of the complex modes, several
authors have considered the problem of determination of complex modes in the N -space. Cronin
(1976) has obtained an approximate solution for a non-classically damped system under harmonic
excitation by perturbation techniques. Clough and Mojtahedi (1976) considered several methods
of treating generally damped systems, and concluded that the proportional damping approxima-
tion may give unreliable results for many cases. Similarly, Duncan and Taylor (1979) have shown
that significant errors can be incurred when dynamic analysis of a non-proportionally damped sys-
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tem is based on a truncated set of modes, as is commonly done in modelling continuous systems.
Meirovitch and Ryland (1985) have used a perturbation approach to obtain left and right eigen-
vectors of damped gyroscopic systems. Chung and Lee (1986) applied perturbation techniques to
obtain the eigensolutions of damped systems with weakly non-classical damping. Cronin (1990)
has developed an efficient perturbation-based series method to solve the eigenproblem for dynamic
systems having non-proportional damping matrix. To illustrate the general applicability of this
method, Peres-Da-Silva et al. (1995) have applied it to determine the eigenvalues and eigenvectors
of a damped gyroscopic system. In the context of non-proportionally damped gyroscopic systems
Malone et al. (1997) have developed a perturbation method which uses an undamped gyroscopic
system as the unperturbed system. Based on a small damping assumption, Woodhouse (1998)
has given the expression for complex natural frequencies and mode shapes of non-proportionally
damped linear discrete systems with viscous and non-viscous damping. More recently, based on
the idea related to the first-order perturbation method, Adhikari (2000) has proposed an expression
of complex modes in terms of classical normal modes.

Response Bounds and Frequency Response

In the two previous subsections we have mainly discussed on the eigensolutions of non-classically
damped systems. In this subsection we briefly consider the problem of obtaining dynamic response
of such systems. Nicholson (1987b) and Nicholson and Baojiu (1996) have reviewed the literature
on stable response of non-classically damped mechanical systems. Nicholson (1987a) gave upper
bounds for the response of non-classically damped systems under impulsive loads and step loads.
Yae and Inman (1987) have obtained bound on the displacement response of non-proportionally
damped discrete systems in terms of physical parameters of the system and input. They also have
observed that the larger the deviation from proportional damping the less accurate their results
become.

Bellos and Inman (1990) have given a procedure for computing the transfer functions of a
non-proportionally damped discrete system. Their method was based on Laplace transformation
of the equation of motion in modal coordinates. A fairly detailed survey of the previous research is
made in Bellos and Inman (1990). Yang (1993) has developed a iterative procedure for calculation
of the transfer functions of non-proportionally damped systems. Bhaskar (1995) has analyzed
the behaviour of errors in calculating frequency response function when the off-diagonal terms of
modal damping matrix are neglected. It has been shown that the exact response can be expressed
by an infinite Taylor series and the approximation of ignoring the off-diagonal terms of modal
damping matrix is equivalent to retaining one term of the series.

Finally, it should be noted that frequency responses of viscously damped systems with non-
proportional damping can be obtained exactly in terms of the complex frequencies and complex
modes in the configuration space, see for example Lancaster (1966, Section 7.5) and Géradin and
Rixen (1997, pp. 126-128). Similar expressions are also derived by Fawzy and Bishop (1976),
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Vigneron (1986) and Woodhouse (1998). This in turn requires determination of complex modes in
the configuration space.

1.4 Analysis of Non-viscously Damped Systems

In Section 1.2.3 it was pointed out that the most general way to model (non-viscous) damping
within the scope of linear theory is through the use of the modified dissipation function given by
equation (1.33). Equations of motion of such non-viscously damped systems can be obtained from
the Lagrange’s equation (1.7). The non-conservative forces can be obtained as

Qnck
= −∂F

∂q̇k

= −
N∑

j=1

∫ t

0

Gjk(t− τ)q̇j(τ)dτ, k = 1, · · · , N (1.41)

and consequently the equations of motion can be expressed as

Mq̈(t) +

∫ t

0

G(t− τ)q̇(τ)dτ + Kq(t) = f(t). (1.42)

This is a set of coupled second-order integro-differential equation. The presence of the ‘integral’
term in the equations of motion complicates the analysis. Unlike the viscously damped systems,
the concept of ‘proportional damping’ cannot easily be formulated for such systems. The question
of the existence of classical normal modes in such systems, i.e., if proportional damping can occur
in such systems, will be discussed in Chapter 2.

Equations similar to (1.42) occur in many different subjects. Bishop and Price (1979) have
considered equations of motion similar to (1.42) in the context of ship dynamics. The convolution
term appeared in order to represent the fluid forces and moments. They have discussed the eigen-
value problem associated with equation (1.42) and presented an orthogonality relationship for the
right and left eigenvectors. They have also given an expression for the system response due to sinu-
soidal excitation. Their results were not very efficient because the orthogonality relationship of the
eigenvectors were not utilized due to the difficulty associated with the form of the orthogonality
equation, which itself became frequency dependent.

Equations of motion like (1.42) also arise in the dynamics of viscoelastic structures. Golla
and Hughes (1985), McTavis and Hughes (1993) have proposed a method to obtain such equations
using a time-domain finite-element formulation. Their approach (the GHM method), which intro-
duces additional dissipation coordinates corresponding to the internal dampers, increases the size
of the problem. Dynamic responses of the system were obtained by using the eigensolutions of the
augmented problem in the state-space. Muravyov (1997, 1998) has proposed a method to obtain
the time and frequency-domain description of the response by introducing additional coordinates
like the GHM method. To reduce the order of the problem, recently Park et al. (1999) and Friswell
and Inman (1999) have proposed a state-space approach which employs a modal truncation and
uses an iterative approach to obtain the eigensolutions. Using a first-order perturbation approach,
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Woodhouse (1998) has obtained expressions for the eigensolutions and transfer functions of system
(1.42). His method, although it avoids the state-space representations and additional dissipation
coordinates, is valid for small damping terms only.

1.5 Identification of Viscous Damping

In Section 1.3 we have discussed several methods for analysis of viscously damped linear dynamic
systems. In this section we focus our attention on the methodologies available for identification of
viscous damping parameters from experimental measurements.

1.5.1 Single Degree-of-freedom Systems Systems

Several methods are available for identifying the viscous damping parameters for single degree of
freedom systems for linear and non-linear damping models (see Nashif et al., 1985). For linear
damping models these methods can be broadly described as:

1. Methods based on transient response of the system: This is also known as logarithmic decre-
ment method: if qi and qi+i are heights of two subsequent peaks then the damping ratio ζ

can be obtained as
δ = loge

(
qi

qi+i

)
≈ 2πζ (1.43)

For applicability of this method the decay must be exponential.

2. Methods based on harmonic response of the system: These methods are based on calculating
the half power points and bandwidth from the frequency response curve. It can be shown that
the damping factor ζ can be related to a peak of the normalized frequency response curve by

|H|max ≈ 1

2ζ
(1.44)

3. Methods based on energy dissipation: Consider the force-deflection behaviour of a spring-
mass-damper (equivalent to a block of material) under sinusoidal loading at some particular
frequency. In steady-state, considering conservation of energy, energy loss per cycle (∆ucyc)
can be calculated by equating it with the input power. Here it can be shown that the damping
factor ζ can be related as

2ζ =
∆ucyc

2πUmax

(1.45)

where Umax is maximum energy of the system.

The above mentioned methods, although developed for single-degree-of-freedom systems, can be
used for separate modes of multiple degree of freedom systems, for example a cantilever beam
vibrating in the first mode. Recently Chassiakos et al. (1998) proposed an on-line parameter iden-
tification technique for a single degree of freedom hysteretic system.
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1.5.2 Multiple Degrees-of-freedom Systems

For multiple degree-of-freedom systems, most of the common methods for experimental determi-
nation of the damping parameters use the proportional damping assumption. A typical procedure
can be described as follows (see Ewins, 1984, for details):

1. Measure a set of transfer functions Hij(ω) at a set of grid points on the structure.

2. Obtain the natural frequencies ωk by a pole-fitting method.

3. Evaluate the modal half-power bandwidth ∆ωk from the frequency response functions, then
the Q-factor Qk = ωk

∆ωk
and the modal damping factor ζk = 1

2Qk
.

4. Determine the modal amplitude factors ak to obtain the mode shapes, uk.

5. Finally reconstruct some transfer functions to verify the accuracy of the evaluated parame-
ters.

Such a procedure does not provide reliable information about the nature or spatial distribution of
the damping, though the reconstructed transfer functions may match the measured ones well.

The next stage, followed by many researchers, is to attempt to obtain the full viscous damping
matrix from the experimental measurements. Pilkey and Inman (1998) have given a recent survey
on methods of viscous damping identification. These methods can be divided into two basic cate-
gories (Fabunmi et al., 1988): (a) damping identification from modal testing and analysis, and (b)
direct damping identification from the forced response measurements.

The modal testing and analysis method seeks to determine the modal parameters, such as nat-
ural frequencies, damping ratio and mode shapes, from the measured transfer functions, and then
fit a damping matrix to these data. In one of the earliest works, Lancaster (1961) has given an
expression from which the damping matrix can be constructed from complex modes and frequen-
cies. Unfortunately this expression relies on having all the modes, which is almost impossible
in practice. For this reason, several authors have proposed identification methods by consider-
ing the modal data to be incomplete or noisy. Hasselsman (1972) has proposed a perturbation
method to identify a non-proportional viscous damping matrix from complex modes and frequen-
cies. Béliveau (1976) has proposed a method which uses eigensolutions, phase angles and damping
ratios to identify the parameters of viscous damping matrix. His method utilizes a Bayesian frame-
work based on eigensolution perturbation and a Newton-Raphson scheme. Ibrahim (1983b) uses
the higher order analytical modes together with the experimental set of complex modes to compute
improved mass, stiffness and damping matrices. Minas and Inman (1991) have proposed a method
for viscous damping identification in which it is assumed that the mass and stiffness are a priori

known and modal data, obtained from experiment, allowed to be incomplete. Starek and Inman
(1997) have proposed an inverse vibration problem approach in which it is assumed that the damp-
ing matrix has an a priori known structure. Their method yields a positive-definite damping matrix
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but requires the full set of complex modes. Pilkey and Inman (1997) have developed an iterative
method for damping matrix identification by using Lancaster’s (1961) algorithm. This method re-
quires experimentally identified complex eigensolutions and the mass matrix. Alvin et al. (1997)
have proposed a method in which a correction was applied to the proportionally damped matrix by
means of an error minimization approach. Recently Halevi and Kenigsbuch (1999) have proposed
a method for updating the damping matrix by using the reference basis approach in which error and
incompleteness of the measured modal data were taken into account. As an intermediate step, their
method corrects the imaginary parts of the measured complex modes which are more inaccurate
than their corresponding real parts.

Direct damping identification methods attempt to fit the equations of motion to the measured
forced response data at several time/frequency points. Caravani and Thomson (1974) have pro-
posed a least-square error minimization approach to obtain the viscous damping matrix. Their
method uses measured frequency response at a set of chosen frequency points and utilizes an it-
erative method to successively improve the identified parameters. Fritzen (1986) has used the
instrumental variable method for identification of the mass, damping and stiffness matrices. It was
observed that the identified values are less sensitive to noise compared to what obtained from least-
square approach. Fabunmi et al. (1988) has presented a damping matrix identification scheme that
uses forced response data in the frequency domain and assumes that the mass and stiffness ma-
trices are known. Mottershead (1990) has used the inverse of the frequency response functions
to modify the system matrices so that the modified model varies minimally from an initial finite-
element model. Using a different approach, Roemer and Mook (1992) have developed methods
in the time domain for simultaneous identification of the mass, damping and stiffness matrices. It
was observed that the identified damping matrix has larger relative error than that of the mass and
stiffness matrices. Chen et al. (1996a) have proposed a frequency domain technique for identifi-
cation of the system matrices in which the damping matrix was determined independently. It was
shown that separate identification of the damping matrix improves the result as relative magnitude
of the damping matrix is less than those of the mass and stiffness matrices. Later, Baruch (1997)
has proposed a similar approach in which the damping matrix was identified separately from the
mass and stiffness matrices.

1.6 Identification of Non-viscous Damping

Unlike viscous damping, there is very little available in the literature which discusses generic
methodologies for identification of non-viscous damping. Most of the methods proposed in the
literature are system-specific. Banks and Inman (1991) have considered the problem of estimating
damping parameters in a non-proportionally damped beam. They have taken four different mod-
els of damping: viscous air damping, Kelvin-Voigt damping, time hysteresis damping and spatial
hysteresis damping, and used a spline inverse procedure to form a least-square fit to the experimen-
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tal data. A procedure for obtaining hysteretic damping parameters in free-hanging pipe systems
is given by Fang and Lyons (1994). Assuming material damping is the only source of damping
they have given a theoretical expression for the loss factor of the n-th mode. Their theory pre-
dicts higher modal damping ratios in higher modes. Maia et al. (1997) have emphasized the need
for development of identification methodologies of general damping models and indicated several
difficulties that might arise. Recently, Dalenbring (1999) has proposed a method for identification
of (exponentially decaying) damping functions from the measured frequency response functions
and finite element displacement modes. A limitation of this method is that it neglects the effect of
modal coupling, that is, the identified non-viscous damping model is effectively proportional.

1.7 Open Problems

From the discussions based on the existing literature it is clear that in spite of extensive research ef-
fort, many questions regarding damped dynamic systems are still to be answered. These questions
can be broadly divided as follows:

1. What damping model has to be used for a given structure, i.e., viscous or non-viscous, and
if non-viscous then what kind of model should it be?

2. How can conventional modal analysis be extended to systems with non-viscous damping?

3. How is it possible to determine the damping parameters by conventional modal testing if a
system is non-viscous?

The first question is a major issue, and in the context of general vibration analysis, has been ‘set-
tled’ by assuming viscous damping, although has been pointed out in the literature that in general
it will not be the correct model. The last two questions are related to each other in the sense that
for identification of the non-viscous damping parameters a reliable method of modal analysis is
also required.

Most of the techniques for detecting damping in a structure either consider the structure to be
viscously damped or a priori assume some particular non-viscous model of damping and try to fit
its parameters with regard to some specific structure. This a priori selection of damping no doubt
hides the physics of the system and there has not been any indication in the literature on how to find
a damping model by doing conventional vibration testing. However another relevant question in
this context is whether this a priori selection of damping model matters from an engineering point
of view: it may be possible that a pre-assumed damping model with a ‘correct’ set of parameters
may represent the system response quite well, although the actual physical mechanism behind the
damping may be different. These issues will be discussed in this dissertation. Next, the works
taken up in this dissertation is outlined briefly.



1.8. Outline of the Dissertation 23

1.8 Outline of the Dissertation

Motivated by the existing gaps and open problems identified in the last section, a systematic study
on analysis and identification of damped discrete linear dynamic systems has been carried out in
this dissertation. In Section 1.2 it has been brought out that the convolution integral model is the
most general damping model for multiple-degrees-of-freedom linear systems. Attention is specif-
ically focused on this kind of general damping model. However, for comparing and establishing
the relationship with the current literature, viscously damped systems are also discussed. The
dissertation is divided into nine chapters and two Appendices.

In Chapter 2, the concept of classical damping, well known for viscously damped systems,
is extended to non-viscously damped discrete linear systems. The convolution integral model is
assumed for non-viscous damping. Conditions for the existence of classical normal modes in
such non-viscously damped systems are discussed. Several numerical examples are provided to
illustrate the derived results.

Chapter 3 is aimed at extending classical modal analysis to treat lumped-parameter non-viscously
damped linear dynamic systems. The nature of the eigenvalues and eigenvectors are discussed
under certain simplified but physically realistic assumptions concerning the system matrices and
kernel functions. A numerical method for calculation of the eigenvectors is suggested. The transfer
function matrix of the system is derived in terms of the eigenvectors of the second-order system.
Exact closed-form expressions for the dynamic response due to general forces and initial condi-
tions are derived.

In Chapter 4, the mode-orthogonality relationships, known for undamped or viscously damped
systems, have been generalized to such non-viscously damped systems. Some expressions are
suggested for the normalization of the eigenvectors. A number of useful results which relate the
system matrices with the eigensolutions have been established.

The above mentioned studies give a firm basis for modal analysis of non-viscously damped
systems. Motivated by these results, from Chapter 5 onwards, studies on damping identification
are considered. Chapter 5 considers identification of viscous damping under circumstances when
the actual damping model in the structure is non-viscous. A method is presented to obtain a full
(non-proportional) viscous damping matrix from complex modes and complex natural frequencies.
It is assumed that the damping is ‘small’ so that a first order perturbation method is applicable.
The proposed method and several related issues are discussed by considering numerical examples
based on a linear array of damped spring-mass oscillators. It is shown that the method can predict
the spatial location of damping with good accuracy, and also give some indication of the correct
mechanism of damping.

From the studies in Chapter 5 it is observed that when a system is non-viscously damped, an
identified equivalent viscous damping model does not accurately represent the damping behaviour.
This demands new methodologies to identify non-viscous damping models. Chapter 6 takes a



24 Chapter 1. Introduction

first step, by outlining a procedure for identifying a damping model involving an exponentially-
decaying relaxation function. The method uses experimentally identified complex modes and com-
plex natural frequencies, together with the knowledge of mass matrix for the system. The proposed
method and several related issues are discussed by considering numerical examples of a linear ar-
ray of damped spring-mass oscillators. It is shown that good estimates can be obtained for the
exponential time constant and the spatial distribution of the damping.

In some cases the identified damping matrix become non-symmetric, which in a way is a non-
physical result because the original system is reciprocal. In Chapter 7, methods are developed
to identify damping models which preserve the symmetry of the system. Both viscous and non-
viscous models are considered. The procedures are based on a constrained error minimization
approach and they use experimentally identified complex modes and complex natural frequencies.
The proposed methods are supported by suitable numerical examples.

Experimental verification of the damping identification techniques developed in this disserta-
tion is considered in Chapter 8. First, extraction of complex modes and frequencies from a set of
measured transfer functions is considered as all the damping identification procedures rely heav-
ily on these complex modal parameters. A general methodology based on linear-nonlinear least-
square approach is proposed. The experimental structure is comprised of a beam with localized
constrained layer damping. It is demonstrated that the proposed approach for damping identifica-
tion can indeed predict the nature of the damping with good accuracy. Through an error analysis,
it is further shown that the proposed method is likely to be robust in the presence of noisy data,
as the identified damping matrix is less sensitive to the imaginary parts of the complex modes, on
which any measurement noise has highest effect.

Finally, Chapter 9 presents the conclusions emerging from the studies taken up in this disserta-
tion and makes a few suggestions for further research.



Chapter 2

The Nature of Proportional Damping

2.1 Introduction

Modal analysis is the most popular and efficient method for solving engineering dynamic problems.
The concept of modal analysis, as introduced by Rayleigh (1877), was originated from the linear
dynamics of undamped systems. It was shown (see Section 1.1.2 for details) that the undamped
modes or classical normal modes satisfy an orthogonality relationship over the mass and stiffness
matrices and uncouple the equations of motion, i.e., If X ∈ RN×N is the modal matrix then XT MX
and XT KX are both diagonal matrices. This significantly simplifies the dynamic analysis because
complex multiple degree-of-freedom (MDOF) systems can be treated as a collection of single
degree-of-freedom oscillators.

Real-life systems are however, not undamped, but possess some kind of energy dissipation
mechanism or damping. In order to apply modal analysis of undamped systems to damped sys-
tems, it is common to assume the proportional damping, a special case of viscous damping. The
proportional damping model expresses the damping matrix as a linear combination of the mass and
stiffness matrices, that is

C = α1M + α2K (2.1)

where α1, α2 are real scalars. This damping model is also known as ‘Rayleigh damping’ or ‘clas-
sical damping’. Modes of classically damped systems preserve the simplicity of the real normal
modes as in the undamped case. Caughey and O’Kelly (1965) have derived the condition which
the system matrices must satisfy so that viscously damped linear systems possess classical normal
modes. They have also proposed an (series) expression for the damping matrix in terms of the
mass and stiffness matrices so that the system can be decoupled by the undamped modal matrix
and have shown that the Rayleigh damping is a special case of this general expression. In this
chapter a more general expression of the damping matrix is proposed so that the system possess
classical normal modes.

There are no physical reasons to believe that viscous damping is the only linear damping model.
It is perfectly possible for the damping forces to depend on values of other quantities. In the last

25
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chapter (see Section 1.2.3) it was concluded that the convolution integral model is the most general
linear damping model. Since the concept of classical or proportional damping is defined in the
context of viscously damped systems, it is not clear whether such a concept exists for this kind of
non-viscously damped systems. In this chapter we address the question – under what conditions
can such non-viscously damped systems be ‘classically damped’? i.e., under what conditions such
non-viscously damped systems possess classical normal modes?

2.2 Viscously Damped Systems

The equations of motion of free vibration of a viscously damped system can be expressed by

Mq̈(t) + Cq̇(t) + Kq(t) = 0. (2.2)

In this case the equations of motion are characterized by three real symmetric matrices which
brings additional complication compared to the undamped systems where the equations of motion
are characterized by two matrices. We require a non-zero matrix X ∈ RN×N such that it simulta-
neously diagonalizes M, C and K under a congruence transformation. This requirement restricts
the admissible forms of these matrices as discussed below.

2.2.1 Existence of Classical Normal Modes

Caughey and O’Kelly (1965) have proved that a damped linear system of the form (2.2) can pos-
sess classical normal modes if and only if the system matrices satisfy the relationship KM−1C =

CM−1K. This is an important result on modal analysis of viscously damped systems and is now
well known. However, this result does not immediately generalize to systems with singular mass
matrices (see Newland, 1989, Chapter 6). This apparent restriction in Caughey and O’Kelly’s re-
sult may be removed by considering the fact that the properties (and roles) of all the three system
matrices are identical and can be treated on equal basis. In view of this, a modified version of
Caughey and O’Kelly’s theorem can be stated as following:
Theorem 2.1. If M, C and K are positive definite matrices and there exist a nonsingular X ∈
RN×N such that XT MX, XT CX and XT KX are all real diagonal matrices then the following are

equivalent

(a) KM−1C = CM−1K, (b) MK−1C = CK−1M, (c) MC−1K = KC−1M.

Proof. We have to prove that: (1) from the given condition (a), (b) and (c) follows, (2) from (a),
(b) and (c) the given condition follows – in total all the six statements proposed in the theorem. For
notational brevity define Z = {M, C, K} as a ordered collection of the system property matrices.
Instead of proving all the six statements separately, first we will prove that ‘ there exist a X such

that XT ZkX is a real diagonal if and only if there exist an i, 1 ≤ i ≤ 3 such that ZjZ
−1
i Zm =

ZmZ−1
i Zj for all j, m = 1, 2, 3 6= i’ and then will come back to our main result.
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Consider the ‘if’ part first: Let Zi is the positive definite matrix, then there exist a V such
that Z−1

i = VVT . From the given condition ZjZ
−1
i Zm = ZmZ−1

i Zj we have Zj(VVT )Zm =

Zm(VVT )Zj or (VT ZjV)(VT ZmV) = (VT ZmV)(VT ZjV). This implies that (VT ZjV), ∀j,
are symmetric matrices and also pairwise commutative. So there exist a orthogonal Q such that
QT (VT ZjV)Q is diagonal ∀j. The ‘if’ part follows by selecting X = VQ.

To prove the ‘only if’ part, suppose (XT ZiX) = Λi is a diagonal matrix with its elements
λir > 0, ∀r. So Λ

−1/2
i (XT ZiX)Λ

−1/2
i = I, from which one has Zi = X−TΛ

1/2
i Λ

1/2
i X−1 or

Z−1
i = XΛ

−1/2
i Λ

−1/2
i XT . Now from the given condition (XT ZjX) = Λj is a diagonal matrix

∀j 6= i, or Λ
−1/2
i (XT ZjX)Λ

−1/2
i = Λj/i a diagonal matrix. Similar expression for Λm/i can also

be obtained by considering that (XT ZmX) is diagonal. Since two diagonal matrix always commute
we have Λj/iΛm/i = Λm/iΛj/i, ∀j, m 6= i or

Λ
−1/2
i XT ZjXΛ

−1/2
i Λ

−1/2
i XT ZmXΛ

−1/2
i =

Λ
−1/2
i XT ZmXΛ

−1/2
i Λ

−1/2
i XT ZjXΛ

−1/2
i .

Using the expression of Z−1
i obtained before, the above equation results ZjZ

−1
i Zm = ZmZ−1

i Zj ,
∀j, m 6= i.

Since in this proof l,m, i are all arbitrary and Z−1
i exist ∀i = 1, 2, 3 all the six statements

proposed in the theorem have been proved by successive change of indices.

This result may be alternatively proved by following Caughey and O’Kelly’s approach and
interchanging M, K and C successively. If a system is (•)-singular then the condition(s) involving
(•)−1 have to be disregarded and remaining condition(s) have to be used. Thus, for a positive
definite system, along with Caughey and O’Kelly’s result (condition (a) of the theorem), there
exist two other equivalent criterion to judge whether a damped system can possess classical normal
modes. It is important to note that these three conditions are equivalent and simultaneously valid
but in general not the same.
Example 2.1. Assume that a system’s mass, stiffness and damping matrices are given by

M =




1.0 1.0 1.0
1.0 2.0 2.0
1.0 2.0 3.0


 and K =




2 −1 0.5
−1 1.2 0.4
0.5 0.4 1.8


 and C =




15.25 −9.8 3.4
−9.8 6.48 −1.84
3.4 −1.84 2.22


 .

It may be verified that all the system matrices are positive definite. The mass-normalized undamped
modal matrix is obtained as

X =




0.4027 −0.5221 −1.2511
0.5845 −0.4888 1.1914
−0.1127 0.9036 −0.4134


 . (2.3)

Since Caughey and O’Kelly’s condition

KM−1C = CM−1K =




125.45 −80.92 28.61
−80.92 52.272 −18.176
28.61 −18.176 7.908
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is satisfied, the system possess classical normal modes and that X given in equation (2.3) is the
modal matrix. Because the system is positive definite the other two conditions,

MK−1C = CK−1M =




2.0 −1.0 0.5
−1.0 1.2 0.4
0.5 0.4 1.8




and

MC−1K = KC−1M =




4.1 6.2 5.6
6.2 9.73 9.2
5.6 9.2 9.6




are also satisfied. Thus all three conditions described in theorem 2.1 are simultaneously valid
although none of them are the same. So, if any one of the three conditions proposed in Theorem
2.1 is satisfied, a viscously damped positive definite system possesses classical normal modes.
Example 2.2. Suppose for a system

M =

[
7.0584 1.3139
1.3139 0.2446

]
, K =

[
3.0 −1.0
−1.0 4.0

]
and C =

[
1.0 −1.0
−1.0 3.0

]
.

It may be verified that the mass matrix is singular for this system. For this reason, Caughey and
O’Kelly’s criteria is not applicable. But, as the other two conditions in theorem 2.1,

MK−1C = CK−1M =

[
1.6861 0.3139
0.3139 0.0584

]

and
MC−1K = KC−1M =

[
29.5475 5.5

5.5 1.0238

]

are satisfied all three matrices can be diagonalized by a congruence transformation using the un-
damped modal matrix

X =

[
0.9372 −0.1830
0.3489 0.9831

]
.

2.2.2 Generalization of Proportional Damping

Obtaining a damping matrix from ‘first principles’ as with the mass and stiffness matrices is not
possible for most systems. For this reason, assuming M and K are known, we often want to find
C in terms of M and K such that the system still possesses classical normal modes. Of course,
the earliest work along this line is the proportional damping shown in equation (2.1) by Rayleigh
(1877). It may be verified that, for positive definite systems, expressing C in such a way will
always satisfy all three conditions given by theorem 2.1. Caughey (1960) proposed that a sufficient

condition for the existence of classical normal modes is: if M−1C can be expressed in a series
involving powers of M−1K. His result generalized Rayleigh’s result, which turns out to be the first
two terms of the series. Later, Caughey and O’Kelly (1965) proved that the series representation
of damping

C = M
N−1∑
j=0

αj

[
M−1K

]j (2.4)
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is the necessary and sufficient condition for existence of classical normal modes for systems with-
out any repeated roots. This series is now known as the ‘Caughey series’ and is possibly the most
general form of damping under which the system will still possess classical normal modes.

Here, a further generalized and useful form of proportional damping will be proposed. We
assume that the system is positive definite. Consider the conditions (a) and (b) of theorem 2.1;
premultiplying (a) by M−1 and (b) by K−1 one has

(
M−1K

) (
M−1C

)
=

(
M−1C

) (
M−1K

)
or AB = BA

(
K−1M

) (
K−1C

)
=

(
K−1C

) (
K−1M

)
or A−1D = DA−1

(2.5)

where A = M−1K, B = M−1C and D = K−1C. Notice that we did not consider the condition (c)
of theorem 2.1. Premultiplying (c) by C−1, one would obtain a similar commutative condition but
it would involve C terms in both the matrices, from which any meaningful expression of C in terms
of M and K can not be deduced. For this reason only the above two commutative relationships
will be considered. It is well known that for any two matrices A and B, if A commutes with
B, f(A) also commutes with B where f(z) is any analytic function of the variable z. Thus,
in view of the commutative relationships represented by equation (2.5), one can use almost all

well known functions to represent M−1C in terms of M−1K and also K−1C in terms of K−1M,
that is, representations like C = Mf(M−1K) and C = Kf(K−1M) are valid for any analytic f(z).
Adding these two quantities and also taking A and A−1 in the argument of the function as (trivially)
A and A−1 always commute we can express the damping matrix in the form of

C = Mf1

(
M−1K, K−1M

)
+ Kf2

(
M−1K, K−1M

)
(2.6)

such that the system possesses classical normal modes. Further, postmultiplying condition (a) of
theorem 2.1 by M−1 and (b) by K−1 one has

(
KM−1

) (
CM−1

)
=

(
CM−1

) (
KM−1

)
(
MK−1

) (
CK−1

)
=

(
CK−1

) (
MK−1

)
.

(2.7)

Following a similar procedure we can express the damping matrix in the form

C = f3

(
KM−1, MK−1

)
M + f4

(
KM−1, MK−1

)
K (2.8)

for which system (2.2) possesses classical normal modes. The functions fi, i = 1, · · · , 4 can
have very general forms− they may consist of an arbitrary number of multiplications, divisions,
summations, subtractions or powers of any other functions or can even be functional compositions.
Thus, any conceivable form of analytic functions that are valid for scalars can be used in equations
(2.6) and (2.8). In a natural way, common restrictions applicable to scalar functions are also valid,
for example logarithm of a negative number is not permitted. Although the functions fi, i =

1, · · · , 4 are general, the expression of C in (2.6) or (2.8) gets restricted because of the special
nature of the arguments in the functions. As a consequence, C represented in (2.6) or (2.8) does not
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cover the whole RN×N , which is well known that many damped systems do not possess classical
normal modes.

Rayleigh’s result (2.1) can be obtained directly from equation (2.6) or (2.8) as a very special
− one could almost say trivial − case by choosing each matrix function fi as real scalar times
an identity matrix. The damping matrix expressed in equation (2.6) or (2.8) provides a new way
of interpreting the ‘Rayleigh damping’ or ‘proportional damping’ where the identity matrices (al-
ways) associated in the right or left side of M and K are replaced by arbitrary matrix functions
fi with proper arguments. This kind of damping model will be called generalized proportional

damping. We call the representation in equation (2.6) right-functional form and that in equation
(2.8) left-functional form. Caughey series (2.4) is an example of right functional form. Note that if
M or K is singular then the argument involving its corresponding inverse has to be removed from
the functions.

All analytic functions have power series form via Taylor expansion. It is also known that for any
A ∈ RN×N , all Ak, for integer k > N , can be expressed as a linear combination of Aj, j ≤ (N−1)

by a recursive relationship using the Cayley-Hamilton theorem. For this reason the expression of
C in (2.6) or (2.8) can in turn be expressed in the form of Caughey series (2.4). However, since
all fi can have very general forms, such a representation may not be always straight forward.
For example, if C = M(M−1K)e the system possesses normal modes, but it is neither a direct
member of the Caughey series (2.4) nor is it a member of the series involving rational fractional
powers given by Caughey (1960) as e is an irrational number. However, we know that e =

1+ 1
1!

+ · · ·+ 1
r!

+ · · ·∞, from which we can write C = M(M−1K)(M−1K)
1
1! · · · (M−1K)

1
r! · · ·∞,

which can in principle be represented by the Caughey series. It is easy to verify that, from a
practical point of view, this representation is not simple and requires truncation of the series up to
some finite number of terms. Hence, C expressed in the form of equation (2.6) or (2.8) is a more
convenient representation of the Caughey series and we say that viscously damped positive definite

systems possess classical normal modes if and only if C can be represented by equation (2.6) or

(2.8).
Example 2.3. It will be shown that the linear dynamic system satisfying the following equations of
free vibration

Mq̈+

[
Me

−
“
M−1K

”2
/2

sinh(K−1M ln(M−1K)2/3)

+ K cos2(K−1M)
4
√

K−1M tan−1

√
M−1K
π

]
q̇ + Kq = 0

(2.9)

possesses classical normal modes and can be analyzed using modal analysis. Here M and K are
the same as example 2.1.

Direct calculation shows C =



−67.9188 −104.8208 −95.9566
−104.8208 −161.1897 −147.7378
−95.9566 −147.7378 −135.2643


 . Using the modal ma-
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trix calculated before in equation (2.3), we obtain

XT CX =



−88.9682 0.0 0.0

0.0 0.0748 0.0
0.0 0.0 0.5293


 ,

a diagonal matrix. Analytically the modal damping ratios can be obtained as

2ξjωj = e−ω4
j /2 sinh

(
1

ω2
j

ln
4

3
ωj

)
+ ω2

j cos2

(
1

ω2
j

)
1√
ωj

tan−1 ωj

π
. (2.10)

A natural question which arises in the context of the generalized proportional damping is how
to obtain the damping functions fi from experimental modal analysis. The following numerical
example shows how one might obtain these damping functions.
Example 2.4. Suppose Figure 2.1 shows modal damping ratios as a function of frequency obtained
by conducting simple vibration testing on a structural system. The damping ratio is such that,
within the frequency range considered, it shows very low values in the low frequency region, high
values in the mid frequency region and again low values in the high frequency region. We want to
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Figure 2.1: Curve of modal damping ratios (simulated)

find a damping model which shows this kind of behaviour. The first step is to identify the function
which produces this curve. Here this (continuous) curve was simulated using the equation

ξ(ω) =
1

15

(
e−2.0ω − e−3.5ω

) (
1 + 1.25 sin

ω

7π

) (
1 + 0.75ω3

)
. (2.11)

From the above equation, the modal damping ratios in terms of the discrete natural frequencies,
can be obtained by

2ξjωj =
2ωj

15

(
e−2.0ωj − e−3.5ωj

) (
1 + 1.25 sin

ωj

7π

) (
1 + 0.75ω3

j

)
. (2.12)
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In the light of the previous example, identifying the damping matrix which will produce the above
damping ratio is straightforward (see the relationship between equation (2.9) and (2.10)). We view
equation (2.12) as a function of ω2

j and simply replace ω2
j by M−1K and any constant terms by that

constant times I to obtain the damping matrix. Using the right functional form in this case one has

C =
2

15
M

√
M−1K

[
e−2.0

√
M−1K − e−3.5

√
M−1K

]

×
[

I + 1.25 sin

(
1

7π

√
M−1K

)] [
I + 0.75(M−1K)3/2

] (2.13)

as the identified damping matrix. Using the numerical values of M and K from example 2.1 we
obtain

C =




2.3323 0.9597 1.4255
0.9597 3.5926 3.7624
1.4255 3.7624 7.8394


× 10−2. (2.14)

If we recalculate the damping ratios from the above constructed damping matrix, it will pro-
duce three points corresponding to the three natural frequencies which will exactly match with
our initial curve as shown in figure 2.1. The method outlined here can produce a very accu-
rate estimate of the damping matrix if the modal damping ratio function is known. When an
exact expression of ξ(ω) is not known, all polynomial fitting methods can be employed to ap-
proximate ξ(ω) and corresponding to the fitted function one can construct a damping matrix by
the procedure outlined here. As an example, if 2ξjωj can be represented in a Fourier series by
2ξjωj = a0

2
+

∑∞
r=1

[
ar cos

(
2πrωj

Ω

)
+ br sin

(
2πrωj

Ω

)]
then the damping matrix can be expanded

as C = a0

2
I+M

∑∞
r=1

[
ar cos

(
2πrΩ−1

√
M−1K

)
+ br sin

(
2πrΩ−1

√
M−1K

)]
in a Fourier series.

2.3 Non-viscously Damped Systems

In Section 1.2.3 a class of non-viscous linear damping models where the damping forces depend on
the past history of motion via convolution integrals was considered. Equations of motion governing
free vibration of a linear system with such damping can be expressed by the following coupled
integro-differential equations

Mq̈(t) +

∫ t

−∞
G(t, τ) q̇(τ) dτ + Kq(t) = 0. (2.15)

Here G(t, τ) ∈ RN×N is the matrix of kernel functions. It is also assumed that G(t, τ) is a sym-
metric matrix so that reciprocity holds. Often the kernel depends upon the difference (t− τ) only:
then, G(t, τ) = G(t − τ). In a special case when G(t, τ) = C δ(t − τ), where δ(t) is the Dirac-
delta function, equation (2.15) reduces to equation (2.2). Most of the current research considers
system (2.15) in its general form. For this reason an exact analysis becomes computationally ex-
pensive and almost intractable for large systems (see Chapter 3 for further discussions). Here we
are interested in whether such non-viscously damped systems can exhibit ‘proportional damping’
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or ‘classical damping’, similar to the viscously damped case, so that a simplified analysis method
can be adopted.

2.3.1 Existence of Classical Normal Modes

It is required to find out the conditions when there exist a non-zero X ∈ RN×N which diagonalizes
equation (2.15) by a congruence transformation. Unlike the viscously damped case where all the
system matrices were constant and symmetric, here the system dynamics is characterized by two
constant symmetric matrices and one symmetric matrix containing real functions. The problem
of simultaneous diagonalization of Hermitian matrices with functional entries through constant
complex transformations has been discussed by Chakrabarti et al. (1978). In view of their results
and our earlier result (theorem 2.2) on viscously damped systems, the conditions for existence of
classical normal modes in system (2.15) can be described as follows:
Theorem 2.2. If M, K and G(t, τ), ∀t, τ are positive definite matrices and there exist a non-zero

X ∈ RN×N such that XT MX, XT KX and XT G(t, τ)X,∀t, τ are all real diagonal matrices then

the following are equivalent

(a) KM−1G(t, τ) = G(t, τ)M−1K,

(b) MK−1G(t, τ) = G(t, τ)K−1M,

(c) MG−1(t, τ)K = KG−1(t, τ)M, ∀t, τ .
A rigorous proof of this theorem can be constructed following the proof of theorem 2.1 to-

gether with the results established by Chakrabarti et al. (1978). Intuitively, if G(t, τ) is a suffi-
ciently smooth matrix function then one can obtain a sequence Gjk = G(tj, τk) ∈ RN×N , ∀j, k =

1, 2, · · · ,∞, where all Gjk are symmetric. Use of theorem 2.1 for all j, k = 1, 2, · · · ,∞ essentially
leads to the result of this theorem.
Example 2.5. Consider a system whose equation of motion can be described by (2.15) with

M =

[
2 −1
−1 3

]
, K =

[
1 −2
−2 5

]

and

G(t, τ) =

[
1.0177e−µ1τ̂ + 0.3517e−µ2τ̂2/2 −1.7724e−µ1τ̂ − 0.5364e−µ2τ̂2/2

−1.7724e−µ1τ̂ − 0.5364e−µ2τ̂2/2 4.4749e−µ1τ̂ + 1.3688e−µ2τ̂2/2

]
, where τ̂ = t−τ

and µ1, µ2 are constants. Note that M, K and G(t, τ) are positive definite. It may be easily verified
that all the three conditions outlined in Theorem 2.2 are satisfied. For this reason the undamped
modal matrix

X =

[
0.7710 −0.0743
0.3124 0.5499

]

which diagonalizes M and K also diagonalizes G(t, τ) as

XT G(t, τ)X =

[
0.1879e−µ1τ̂ + 0.0843e−µ2τ̂2/2 0.0

0.0 1.5037e−µ1τ̂ + 0.4597e−µ2τ̂2/2

]
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is a diagonal matrix ∀t, τ .

2.3.2 Generalization of Proportional Damping

We can now follow the approach similar to the viscously damped case for obtaining an expression
of the damping function in terms of M and K so that system (2.15) possesses classical normal
modes. From results (a) and (b) of theorem 2.2, the conditions for existence of classical normal
modes can be expressed as

AB(t, τ) = B(t, τ)A and A−1D(t, τ) = D(t, τ)A−1, ∀t, τ (2.16)

where A = M−1K, B(t, τ) = M−1G(t, τ) and D(t, τ) = K−1G(t, τ). In view of this commutative
condition we say system (2.15) possesses classical normal modes if and only if

G(t, τ) = MF1

(
M−1K, K−1M, t, τ

)
+ KF2

(
M−1K, K−1M, t, τ

)
(2.17)

whereFi(z1, z2, t, τ), i = 1, 2 are any real z1z2-analytic functions such that
∣∣∣
∫∞
−∞Fi(z1, z2, t, τ) dτ

∣∣∣ <

∞, ∀z1, z2, t . This representation of damping is the right-functional form. Following a similar ap-
proach to that outlined for the viscous damping case, one can also have the left-functional form
as

G(t, τ) = F3

(
KM−1, MK−1, t, τ

)
M + F4

(
KM−1, MK−1, t, τ

)
K. (2.18)

This is possibly the most general class of damping that can be treated within the scope of classical
modal analysis. The representation of C in equation (2.6) and (2.8) can be obtained as a special
case when Fi(z1, z2, t, τ) = fi(z1, z2)δ(t − τ). This in turn relates equation (2.17) and (2.18) to
the Rayleigh’s representation and Caughey series.
Example 2.6. It will be shown that the linear dynamic system satisfying the following equations of
motion of free vibration

Mq̈ +

∫ t

−∞

[
M(K−1M)−π/4e−µ(t−τ) + e−

√
KM−1

Kδ(t− τ)

]
q̇(τ) dτ + Kq = 0

possesses classical normal modes. Here M and K are the same as example 2.1 and µ is a constant.
Introduce the transformation y(t) = Xq(t) where the mass normalized modal matrix X is given

as before in equation (2.3). From direct calculation, equations of motion in the modal coordinates
may be obtained as

Iÿ+

∫ t

−∞




0.2695 0.0 0.0
0.0 0.9732 0.0
0.0 0.0 5.2433


 e−µ(t−τ)ẏ(τ) dτ

+




0.1220 0.0 0.0
0.0 0.3615 0.0
0.0 0.0 0.4668


 ẏ +




0.1883 0.0 0.0
0.0 0.9660 0.0
0.0 0.0 8.2457


 y = 0.

The above equations are uncoupled and can be solved in the frequency domain adopting similar
procedures to those used for viscously damped systems.
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2.4 Conclusions

Conditions for the existence of classical normal modes in viscously and non-viscously damped
linear multiple degree-of-freedom systems have been discussed. The non-viscous damping mech-
anism is such that it depends on the past history of the velocities via convolution integrals over
some kernel functions. Caughey and O’Kelly’s (1965) criteria for the existence of classical normal
modes in viscously damped systems is extended to non-viscously damped systems and systems
with a singular mass matrix. By introducing the concept of generalized proportional damping we
have extended the applicability of classical damping. The generalized proportional damping ex-
presses the damping in terms of any non-linear function involving time and specially arranged mass
and stiffness matrices so that the system still posses classical normal modes. This enables to ana-
lyze more general class of non-viscously damped discrete linear dynamic systems using classical
modal analysis.



36 Chapter 2. The Nature of Proportional Damping



Chapter 3

Dynamics of Non-viscously Damped
Systems

3.1 Introduction

In the last chapter, the concept of proportional damping was extended to non-viscously damped
systems. Conditions for existence of proportional damping in non-viscously damped systems were
derived. It is clear that these conditions are purely mathematical in nature and there is no rea-
son why a general linear system should obey such conditions. Thus, in general, non-viscously
damped systems are non-proportionally damped. The central theme of this chapter is to analyze
non-viscously damped multiple-degrees-of-freedom linear systems with non-proportional damp-
ing. We rewrite the equations of motion of forced vibration of an N -degrees-of-freedom linear
system with non-viscous damping as

Mq̈(t) +

∫ t

0

G(t− τ)q̇(τ)dτ + Kq(t) = f(t). (3.1)

The initial conditions associated with the above equation are

q(0) = q0 ∈ RN

and q̇(0) = q̇0 ∈ RN .
(3.2)

In Section 1.4 currently available methods for analyzing such systems were discussed. Majority
of the available methods employ additional dissipation coordinates and then use the state-space
formalism. This approach not only computationally more involved but also physical insight is
lost in such approach. For this reason, we develop procedures which avoid this approach and is
consistent with traditional modal analysis.

The nature of eigenvalues and eigenvectors is discussed under certain simplified but physically
realistic assumptions on the system matrices and kernel functions. A series expansion method for
the determination of complex eigenvectors is proposed. The transfer function matrix of the system
is derived in term of these eigenvectors. Exact closed-form expressions are derived for the transient
response and the response due to non-zero initial conditions. Applications of the proposed method

37
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and related numerical issues are discussed using a non-viscously damped three-degrees-of-freedom
system.

3.2 Eigenvalues and Eigenvectors

Considering free vibration, that is f(t) = q0 = q̇0 = 0, and taking the Laplace transform of the
equations of motion (3.1) one has

s2Mq̄ + sG(s)q̄ + Kq̄ = 0. (3.3)

Here q̄(s) = L [q(t)] ∈ CN , G(s) = L [G(t)] ∈ CN×N and L [•] denotes the Laplace transform.
In the context of structural dynamics, s = iω, where i =

√−1 and ω ∈ R+ denotes the frequency.
It is assumed that: (a) M−1 exists, and (b) all the eigenvalues of M−1K are distinct and positive.
Because G(t) is a real function, G(s) is also a real function of the parameter s. We assume
that G(s) is such that the motion is dissipative. Conditions which G(s) must satisfy in order to
produce dissipative motion were given by Golla and Hughes (1985). Several physically realistic
mathematical forms of the elements of G(s) were given in Table 1.1. For the linear viscoelastic
case it can be shown that (see Bland, 1960, Muravyov, 1997), in general, the elements of G(s) can
be represented as

Gjk(s) =
pjk(s)

qjk(s)
(3.4)

where pjk(s) and qjk(s) are finite-order polynomials in s. Here, we do not assume any specific
functional form of Gjk(s) but assume that |Gjk(s)| < ∞ when s → ∞. This in turn implies that
the elements of G(s) are at the most of order 1/s in s or constant, as in the case of viscous damping.
The eigenvalues, sj , associated with equation (3.3) are roots of the characteristic equation

det
[
s2M + sG(s) + K

]
= 0. (3.5)

If the elements of G(s) have simple forms, for example – as in equation (3.4), then the charac-
teristic equation becomes a polynomial equation of finite order. In other cases the characteristic
equation can be expressed as a polynomial equation by expanding G(s) in a Taylor series. How-
ever, the order of the equation will be infinite in those cases. For practical purposes the Taylor
expansion of G(s) can be truncated to a finite series to make the characteristic equation a poly-
nomial equation of finite order. Such equations can be solved using standard numerical methods
(see Press et al., 1992, Chapter 9). Suppose the order of the characteristic polynomial is m. In
general m is more than 2N , that is m = 2N + p; p ≥ 0. Thus, although the system has N

degrees-of-freedom, the number of eigenvalues is more than 2N . This is a major difference be-
tween the non-viscously damped systems and the viscously damped systems where the number of
eigenvalues is exactly 2N , including any multiplicities.

A general analysis on the nature of the eigenvalues of non-viscously damped systems is beyond
the scope of this chapter. It is assumed that all m eigenvalues are distinct. We further restrict
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our attention to a special case when, among the m eigenvalues, 2N appear in complex conjugate
pairs1. Under such assumptions it is easy to show that the remaining p eigenvalues become purely
real. The mathematical conditions which M, K and G(s) must satisfy in order to produce such
eigenvalues will not be obtained but a physical justification will follow shortly. For convenience
the eigenvalues are arranged as

s1, s2, · · · , sN , s∗1, s
∗
2, · · · , s∗N , s2N+1, · · · , sm (3.6)

where (•)∗ denotes complex conjugation.
The eigenvalue problem associated with equation (3.1) can be defined from (3.3) as

D(sj)zj = 0, for j = 1, · · · ,m (3.7)

where
D(sj) = s2

jM + sj G(sj) + K (3.8)

is the dynamic stiffness matrix corresponding to the j-th eigenvalue and zj is the j-th eigenvec-
tor. Here (•)T denotes the matrix transpose. From equation (3.7) it is clear that, when sj appear
in complex conjugate pairs, zj also appear in complex conjugate pairs, and when sj is real zj is
also real. Corresponding to the 2N complex conjugate pairs of eigenvalues, the N eigenvectors
together with their complex conjugates will be called elastic modes. These modes are related to
the N modes of vibration of the structural system. Physically, the assumption of ‘2N complex
conjugate pairs of eigenvalues’ implies that all the elastic modes are oscillatory in nature, that is,
they are sub-critically damped. The modes corresponding to the ‘additional’ p eigenvalues will
be called non-viscous modes. These modes are induced by the non-viscous effect of the damping
mechanism. For stable passive systems the non-viscous modes are over-critically damped (i.e.,
negative real eigenvalues) and not oscillatory in nature. Non-viscous modes, or similar to these,
are known by different names in the literature of different subjects, for example, ‘wet modes’ in
the context of ship dynamics (Bishop and Price, 1979) and ‘damping modes’ in the context of vis-
coelastic structures (McTavis and Hughes, 1993). Determination of the eigenvectors is considered
next.

3.2.1 Elastic Modes

Once the eigenvalues are known, zj, ∀j = 1, · · · , 2N can be obtained from equation (3.7) by fixing
any one element and inverting the matrix D(sj) ∈ CN×N . Note that inversion of an (N − 1) ×
(N − 1) complex matrix is required for calculation of every zj . Although the method is exact,
it is computationally expensive and does not offer much physical insight. Here we propose an
alternative method based on Neumann expansion approach which utilizes the familiar undamped
eigenvectors discussed in Section 1.1.2.

1Because G(t) is real, G∗(s) = G(s∗). Using this and taking complex conjugation of (3.3) it is clear that s∗
2
Mq̄+

s∗G(s∗)q̄ + Kq̄ = 0, i.e., if s satisfies equation (3.3) then so does s∗.
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Neumann Expansion Method

For distinct undamped eigenvalues (ω2
l ), xl, ∀ l = 1, · · · , N , form a complete set of vectors. For

this reason, zj can be expanded as a complex linear combination of xl. Thus, an expansion of the
form

zj =
N∑

l=1

α
(j)
l xl (3.9)

may be considered. Now, without any loss of generality, we can assume that α
(j)
j = 1 (normaliza-

tion) which leaves us to determine α
(j)
l ,∀l 6= j. Substituting the expansion of zj , from equation

(3.7) one obtains
N∑

l=1

s2
jα

(j)
l Mxl + sjα

(j)
l G(sj)xl + α

(j)
l Kxl = 0. (3.10)

Premultiplying above equation by xT
k and using the orthogonality property of the undamped eigen-

vectors described by (1.10) and (1.11) one obtains

s2
jα

(j)
k + sj

N∑

l=1

α
(j)
l G′

kl(sj) + ω2
kα

(j)
k = 0, ∀k = 1, · · · , N (3.11)

where G′
kl(sj) = xT

k G(sj)xl. The j-th equation of this set obtained by setting k = j is a trivial
case because α

(j)
j = 1 has already been assumed. From the above set of equations, excluding this

trivial case, one has

s2
jα

(j)
k + sj

(
G′

kj(sj) + α
(j)
k G′

kk(sj) +
N∑

l 6=k 6=j

α
(j)
l G′

kl(sj)

)
+ω2

kα
(j)
k = 0,

∀k = 1, · · · , N ; 6= j.

(3.12)

These equations can be combined into a matrix form as
[
P(j) −Q(j)

]
â(j) = gu

(j). (3.13)

In the above equation:

P(j) = diag

[
s2

j + sjG
′
11(sj) + ω2

1

−sj

, · · · ,{j−th term deleted} ,

· · · ,
s2

j + sjG
′
NN(sj) + ω2

N

−sj

]
∈ C(N−1)×(N−1),

(3.14)

the trace-less matrix

Q(j) =




0 G′
12(sj) · · · {j−th term deleted} · · · G′

1N(sj)

G′
21(sj) 0

...
...

... G′
2N(sj)

...
...

... {j−th term deleted} ...
...

...
...

...
...

...
...

G′
N1(sj) G′

N2(sj) · · · {j−th term deleted} · · · 0



∈ C(N−1)×(N−1), (3.15)
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gu
(j) =

{
G′

1j(sj), G
′
2j(sj), · · · ,{j−th term deleted} , · · · , G′

Nj(sj)
}T ∈ C(N−1) (3.16)

and
â(j) =

{
α

(j)
1 , α

(j)
2 , · · · ,{j−th term deleted} , · · · , α

(j)
N

}T

∈ C(N−1) (3.17)

is the vector of unknown α
(j)
k ,∀k 6= j. From equation (3.13), â(j) has to be determined by per-

forming the associated matrix inversion and is achieved by using the Neumann expansion method.
Now, using the Neumann expansion we have

â(j) =
[
IN−1 − P(j)−1

Q(j)
]−1 {

P(j)−1

gu
(j)

}

=
[
IN−1 + Ru

(j) + Ru
(j)2 + Ru

(j)3 + · · ·
]
a

(j)
0

(3.18)

where IN−1 is a (N − 1)× (N − 1) identity matrix,

Ru
(j) = P(j)−1

Q(j) ∈ C(N−1)×(N−1) (3.19)

and
a

(j)
0 = P(j)−1

gu
(j) ∈ C(N−1). (3.20)

Because P(j) is a diagonal matrix, its inversion can be carried out analytically and subsequently the
closed-form expressions of Ru

(j) and a
(j)
0 can be obtained as

R(j)
ukl

=
−sjG

′
kl(sj) (1− δkl)

ω2
k + s2

j + sjG′
kk(sj)

, ∀k, l 6= j (3.21)

a
(j)
0l

=
−sjG

′
lj(sj)

ω2
l + s2

j + sjG′
ll(sj)

, ∀l 6= j. (3.22)

This makes further calculations involving these quantities simpler. From equation (3.18), â(j) can
be calculated in an efficient way as one can write

â(j) = a
(j)
0 + a

(j)
1 + a

(j)
2 + · · ·+ a

(j)
k + · · · (3.23)

where
a

(j)
1 = Ru

(j)a
(j)
0 , a

(j)
2 = Ru

(j)a
(j)
1 , · · · a

(j)
k = Ru

(j)a
(j)
k−1. (3.24)

This implies that all the a
(j)
k can be obtained using successive matrix-vector multiplications only.

Noting that â(j) is the vector of α
(j)
k , ∀k 6= j, substitution of it in equation (3.9) will give the

elastic modes. It is easy to see that by taking more terms in the series represented by (3.23), one
can obtain the elastic modes to any desired accuracy provided the complex matrix power series
IN−1 + Ru

(j) + Ru
(j)2 + Ru

(j)3 + · · · is convergent. Convergence of this series will be addressed
later.

From the preceding formulation one may verify that, corresponding to the complex conjugate
pairs of the eigenvalues, the eigenvectors also appear in complex conjugate pairs. For many en-
gineering problems it is often observed that the damping forces are not very ‘big’ and that by
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retaining only a few terms in the series expression (3.23) will result in an acceptable accuracy.
Closed-form approximate expressions for the elastic modes obtained by retaining one and two
terms of these series are given in Section 3.2.3. These expressions might be useful whenever we
find that the entries of the damping kernel-functions are small compared to those of M and K.

Convergence of the Neumann Series

For the validity of the series expressions for â(j) in (3.23) it is required that the series

Su = IN−1 + Ru
(j) + Ru

(j)2 + Ru
(j)3 + · · · (3.25)

should be convergent. We develop following conditions for convergence.
Condition 1. The complex matrix power series Su converges if, and only if, for all the eigenvalues

σ
(j)
l of the matrix Ru

(j), the inequality |σ(j)
l | < 1 holds.

Although this condition is both necessary and sufficient, checking convergence for all j =

1, · · · , N is often not feasible. So we look for a sufficient condition which is relatively easy to
check and which ensures convergence for all j = 1, · · · , N .
Condition 2. The complex matrix power series Su converges for any sj, ωj if G′(sj) is a diagonally

dominant matrix.

Proof. Since a matrix norm is always greater than or equal to its maximum eigenvalue, it follows
from condition 1 that convergence of the series is guaranteed if ‖ Ru

(j) ‖< 1. Writing the sum
of absolute values of entries of Ru

(j) results in the following inequality as the required sufficient
condition for convergence

N∑
k=1
k 6=j

N∑
l=1
l6=j

∣∣∣∣
sjG

′
kl(sj)

ω2
k + s2

j + sjG′
kk(sj)

∣∣∣∣ (1− δlk) < 1. (3.26)

Dividing both numerator and denominator by sj the above inequality can be written as

N∑
k=1
k 6=j

N∑
l=1

l6=i6=k

|G′
kl(sj)|

|1/sj

(
ω2

k + s2
j

)
+ G′

kk(sj)|
< 1. (3.27)

Taking the maximum for all k 6= j this condition can further be represented as

max
k 6= j

∑N
l=1

l6=j,k
|G′

kl(sj)|
|1/sj

(
ω2

k + s2
j

)
+ G′

kk(sj)|
< 1. (3.28)

It is clear that (3.28) always holds if

N∑
l=1

l6=j 6=k

|G′
kl(sj)| < |G′

kk(sj)|, ∀k 6= j; (3.29)
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which in turn implies that, for all j = 1 · · ·N , the inequality ‖ Ru
(j) ‖< 1 holds if G′(sj) is a

diagonally dominant matrix. It is important to note that the diagonal dominance of G′(sj) is only
a sufficient condition and the lack of it does not necessarily prevent convergence of Su.

3.2.2 Non-viscous Modes

When 2N < j ≤ m, the eigenvalues become real and consequently from equation (3.8) we observe
that D(sj) ∈ RN×N . The non-viscous modes can be obtained from equation (3.7) by fixing any
one element of the eigenvectors. Since D(sj) ∈ RN×N , from equations (3.7) it is easy to see that
zj ∈ RN . Partition zj as

zj =

{
z1j

z2j

}
. (3.30)

We select z1j = 1 so that z2j ∈ R(N−1) has to be determined from equations (3.7). Further,
partition D(sj) as

D(sj) =

[
D11(sj) D12(sj)
D21(sj) D22(sj)

]
(3.31)

where D11(sj) ∈ R, D12(sj) ∈ R1×(N−1), D21(sj) ∈ R(N−1)×1 and D22
(j) ∈ R(N−1)×(N−1). In

view of (3.31) and recalling that z1j = 1, from equation (3.7) we can have

D22(sj)z2j = −D21(sj)

or z2j = − [D22(sj)]
−1 D21(sj).

(3.32)

It may be noted that determination of the non-viscous modes is computationally more demand-
ing than the elastic modes because inversion of an (N − 1) × (N − 1) real matrix is associated
with each eigenvector. However, for most physically realistic non-viscous damping models it ap-
pears that the number of non-viscous modes is not very high and also the contribution of them
to the global dynamic response is not very significant (see the example section). For this reason,
calculation of the first few non-viscous modes may be sufficient from a practical point view.

3.2.3 Approximations and Special Cases

The expression of the elastic modes derived in Section 3.2.1 is quite general. In this section we
consider some special cases and approximation of this general expression which are of practical
interest.

Light Non-proportionally Damped Systems

For light non-proportionally damped systems, the off-diagonal entries of the modal damping func-
tion matrix is small compared to the diagonal entries, that is G′

kl(sj) ≤ G′
kk(sj), ∀k 6= l, sj . For

this reason higher order terms in the series expression (3.23) can be neglected.
The expression for the elastic modes obtained by taking one term in the series (3.23) is close

to the one obtained from the first-order perturbation analysis. Considering the j-th set of equation
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(3.11) and neglecting the second-order terms involving α
(j)
k and G′

kl(sj), ∀k 6= l, and also noting
that α

(j)
j = 1, one obtains

s2
j + sjG

′
jj(sj) + ω2

j ≈ 0

or sj ≈ ±iωj −G′
jj(±iωj)/2

= iωj −G′
jj(iωj)/2, −iωj −G′

jj(−iωj)/2.

(3.33)

This is the first-order approximate expression for the complex eigenvalues of system (3.1) corre-
sponding to the elastic modes. A similar result was also obtained by Woodhouse (1998). In de-
riving this expression the assumption has been made that G(sj) ≈ G(iωj). Since the off-diagonal
elements of G(sj) is assumed small, it is expected that this approximation will not result in signif-
icant errors. Note that, as G(t) is a real function, G′

jj(•) satisfies the property

G′
jj(−iωj) = G′∗

jj(iωj). (3.34)

Using this relationship it may be confirmed that the eigenvalues corresponding to the elastic modes,
approximately given by equation (3.33), appear in complex conjugate pairs.

To obtain approximate expression for the eigenvectors, one simply considers only the first term
of the series (3.23) and substitutes â(j) in equation (3.9) to obtain

zj ≈ xj −
N∑

k=1
k 6=j

sjG
′
kj(sj)xk

ω2
k + s2

j + sjG′
kk(sj)

. (3.35)

Now, retaining the first two terms of the series expression (3.23) and substituting â(j) in equation
(3.9) one obtains

zj ≈ xj−
N∑

k=1
k 6=j

sjG
′
kj(sj)xk

ω2
k + s2

j + sjG′
k(sj)

+
N∑

k=1
k 6=j

N∑
l=1

l6=j 6=k

s2
jG

′
kl(sj)G

′
lj(sj)xk(

ω2
k + s2

j + sjG′
kk(sj)

) (
ω2

l + s2
j + sjG′

ll(sj)
) .

(3.36)

The above equation is second-order approximate expressions for the eigenvectors corresponding
to the elastic modes of system (3.1). Finally, note that no such simple expressions can be obtained
for the non-viscous modes unless some specific forms for the kernel function are assumed.

Viscously Damped Systems With Light Non-proportional Damping

Eigensolutions of viscously damped systems consist of only the elastic modes. All the results
derived for elastic modes can be applied to viscously damped systems by considering the fact
that the matrix of the damping functions, G(s), is a constant matrix. Say G(s) = C, ∀s, where
C ∈ RN×N is the viscous damping matrix.
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Using this simplification, from equation (3.33), the approximate eigenvalues (appear in com-
plex conjugate pairs) can be obtained as

sj ≈ ±iωj − C ′
jj/2 = −C ′

jj/2 + iωj, −C ′
jj/2− iωj. (3.37)

From equation (3.35), the first-order approximate expressions of eigenvectors may be obtained as

zj ≈ xj −
N∑

k=1
k 6=j

sjC
′
kjxk

ω2
k + s2

j + sjC ′
kk

. (3.38)

Similarly, from equation (3.36), the second-order approximate expressions of eigenvectors may be
obtained as

zj ≈ xj −
N∑

k=1
k 6=j

sjC
′
kjxk

ω2
k + s2

j + sjC ′
k

+
N∑

k=1
k 6=j

N∑
l=1

l6=j 6=k

s2
jC

′
klC

′
ljxk(

ω2
k + s2

j + sjC ′
kk

) (
ω2

l + s2
j + sjC ′

ll

) . (3.39)

3.3 Transfer Function

The transfer function (matrix) of a system completely defines its input-output relationship in
steady-state. It is well known that for any linear system, if the forcing function is harmonic,
that is f(t) = f̄ exp[st] with s = iω and amplitude vector f̄ ∈ RN , the steady-state response will
also be harmonic at frequency ω ∈ R+. So we seek a solution of the form q(t) = q̄ exp[st], where
q̄ ∈ CN is the response vector in the frequency domain. Substitution of q(t) and f(t) in equation
(3.1) gives

s2Mq̄ + s G(s)q̄ + Kq̄ = f̄ or D(s)q̄ = f̄ . (3.40)

Here the dynamic stiffness matrix

D(s) = s2M + s G(s) + K ∈ CN×N . (3.41)

From equation (3.40) the response vector q̄ can be obtained as

q̄ = D−1(s)̄f = H(s)̄f (3.42)

where
H(s) = D−1(s) ∈ CN×N (3.43)

is the transfer function matrix. From this equation one further has

H(s) =
adj [D(s)]

det [D(s)]
. (3.44)

The poles of H(s), denoted by sj , are the eigenvalues of the system. Because it is assumed that all

the m eigenvalues are distinct, each pole is a simple pole. The matrix inversion in (3.42) is difficult
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to carry out in practice because of the singularities associated with the poles. Moreover, such an
approach would be an expensive numerical exercise and may not offer much physical insight. For
these reasons, we seek a solution analogous to the classical modal series solution of the undamped
or proportionally damped systems.

From the residue theorem it is known that any complex function can be expressed in terms of
the poles and residues, that is, the transfer function has the form

H(s) =
m∑

j=1

Rj

s− sj

. (3.45)

Here

Rj =
res

s=sj
[H(s)]

def
= lim

s→sj

(s− sj) [H(s)] (3.46)

is the residue of the transfer function matrix at the pole sj . It may be noted that equation (3.45) is
equivalent to expressing the right hand side of equation (3.44) in the partial-fraction form. Here
we try to obtain the residues, that is the coefficients in the partial-fraction form, in terms of the
system eigenvectors.

3.3.1 Eigenvectors of the Dynamic Stiffness Matrix

It turns out that the eigenvectors of the dynamic stiffness matrix play an important role in deter-
mining the residues of the transfer function matrix. For any given s ∈ C, the eigenvalue problem
associated with the dynamic stiffness matrix can be expressed by

D(s)φk(s) = νk(s)φk(s), ∀ k = 1, · · · , N. (3.47)

In the preceding equation the eigenvalues νk(s) ∈ C are the roots of the characteristic equation

det [D(s)− ν(s)IN ] = 0 (3.48)

and φk(s) ∈ CN is the k-th eigenvector of D(s). The symbols νk(s) and φk(s) indicate functional
dependence of these quantities on the complex parameter s. Such a continuous dependence is ex-
pected whenever D(s) is a sufficiently smooth matrix function of s. It should be noted that because
D(s) is an N ×N complex matrix for a fixed s, the number of eigenvalues (and consequently the
eigenvectors) must be N . Further, it can be shown that, for distinct eigenvalues, φk(s) also satisfy
an orthogonality relationship although zk do not enjoy any such simple relationship. We normalize
φk(s) such that

φT
j (s)φk(s) = δkj, ∀ k, j = 1, · · · , N (3.49)

In view of the above relationship, from equation (3.47) we have

φT
j (s)D(s)φk(s) = νk(s)δkj, ∀ k, j = 1, · · · , N (3.50)
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or in the matrix form

ΦT (s)D(s)Φ(s) = ν(s). (3.51)

Here

Φ(s) = [φ1(s),φ2(s), · · · ,φN(s)] ∈ CN×N , (3.52)

and ν(s) = diag [ν1(s), ν2(s), · · · , νN(s)] ∈ CN×N . (3.53)

It is possible to establish the relationships between the original eigenvalue problem of the system
defined by equation (3.7) and that by equation (3.47). Consider the case when the parameter s

approaches any one of the system eigenvalues, say sj . Since all the νk(s) are assumed to be
distinct, for nontrivial eigenvectors, comparing equations (3.7) and (3.47) we can conclude that
one and only one of the νk(s) must be zero when s → sj (see Yang and Wu, 1998). Suppose that
the r-th eigenvalue of the eigenvalue problem (3.47) is zero when s → sj . It is also clear that the
eigenvector in (3.47) corresponding to the r-th eigenvalue also approaches the eigenvector in (3.7)
as s → sj . Thus, when s = sj one has

νr(sj) = 0 and νk(sj) 6= 0,∀k = 1, · · · , N ; 6= r (3.54)

and also

φr(sj) = zj. (3.55)

These equations completely relate the eigensolutions of (3.7) with (3.47). Now, these relationships
will be utilized to obtain the residues of the transfer function matrix.

3.3.2 Calculation of the Residues

From equation (3.51) one has

D−1(s) = Φ(s)ν−1(s)ΦT (s). (3.56)

Using the expression of the transfer function in equation (3.43) and noting that ν(s) is a diagonal
matrix, we may expand the right-hand side of the above equation to obtain

H(s) = D−1(s) =
N∑

k=1

φk(s)φ
T
k (s)

νk(s)
. (3.57)

Separation of the r-th term in the above sum yields

H(s) =
φr(s)φ

T
r (s)

νr(s)
+




N∑
k=1
k 6=r

φk(s)φ
T
k (s)

νk(s)


 . (3.58)
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Clearly, when s → sj , the second term of the right-hand side of equation (3.58) is analytic because
according to equation (3.54) νk(sj) 6= 0,∀k = 1, · · · , N ; 6= r. Now, from equation (3.46) the
residue at s = sj may be obtained as

Rj
def
= lim

s→sj

(s− sj)





φr(s)φ
T
r (s)

νr(s)
+




N∑
k=1
k 6=r

φk(s)φ
T
k (s)

νk(s)








= lim
s→sj

(s− sj)
φr(s)φ

T
r (s)

νr(s)

=
φr(s)φ

T
r (s)|s=sj

∂νr(s)

∂s
|s=sj

+ lim
s→sj

(s− sj)
∂

∂s

[
φk(s)φ

T
k (s)

]

∂νr(s)

∂s

(using l’Hôspital’s rule)

=
zjzT

j

∂νr(s)

∂s
|s=sj

(by equation (3.55)).

(3.59)

The denominator in the above expression for the residues, ∂νr(s)
∂s

|s=sj
, is still unknown. Now,

consider the r-th eigenvalue problem associated with the dynamic stiffness matrix. Differentiation
of equation (3.47) for k = r with respect to s yields

∂D(s)

∂s
φr(s) + D(s)

∂φr(s)

∂s
=

∂νr(s)

∂s
φr(s) + νr(s)

∂φr(s)

∂s
. (3.60)

Premultiplying the above equation by φT
r (s) and rearranging one obtains

φT
r (s)

∂D(s)

∂s
φr(s) +

[
φT

r (s)D(s)− φT
r (s)νr(s)

] ∂φr(s)

∂s
= φT

r (s)
∂νr(s)

∂s
φr(s). (3.61)

Taking transpose of equation (3.47) it follows that the second term of the left-hand side of the above
equation is zero. Using the normalizing condition in (3.49) and letting s → sj , from equation
(3.61) we have

∂νr(s)

∂s
|s=sj

= zT
j

∂D(s)

∂s
|s=sj

zj = zT
j

∂D(sj)

∂sj

zj. (3.62)

The term
∂D(sj)

∂sj

can be obtained by differentiating equation (3.41) as

∂D(sj)

∂sj

= 2sjM + G(sj) + sj
∂G(sj)

∂sj

. (3.63)

Using (3.59) and (3.62) one finally obtains the residue as

Rj =
zjzT

j

zT
j

∂D(sj)

∂sj
zj

. (3.64)

The above equation completely relates the transfer function residues to the eigenvalues and eigen-
vectors of the system. Recalling that, among the m eigenvalues 2N appear in complex conjugate
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pairs, from equation (3.45) the transfer function matrix may be obtained as

H(iω) =
N∑

j=1

[
γjzjzT

j

iω − sj

+
γ∗j z∗jz∗T

j

iω − s∗j

]
+

m∑
j=2N+1

γjzjzT
j

iω − sj

, (3.65)

where

γj =
1

zT
j

∂D(sj)

∂sj
zj

. (3.66)

The transfer function matrix has two parts, the first part is due to the elastic modes, and the second
part is due to the non-viscous modes. Using a first-order perturbation method, Woodhouse (1998,
equation (35)) has obtained an expression of the transfer functions similar to equation (3.65). How-
ever, the non-viscous part of the transfer functions has not been obtained by him.

3.3.3 Special Cases

The expression for the transfer function matrix in equation (3.65) is a natural generalization for the
familiar expressions for the transfer function matrix of undamped or viscously damped systems.
Transfer functions for several useful special cases may be obtained from (3.65) as follows:

1. Undamped systems: In this case G(s) = 0 results the order of the characteristic polynomial
m = 2N ; sj is purely imaginary so that sj = iωj where ωj ∈ R are the undamped natural
frequencies and zj = xj ∈ RN . In view of the mass normalization relationship in (1.10),
γj = 1

2iωj
and equation (3.65) leads to

H(iω) =
N∑

j=1

1

2iωj

[
1

iω − iωj

− 1

iω + iωj

]
xjxT

j =
N∑

j=1

xjxT
j

ω2
j − ω2

. (3.67)

2. Viscously-damped systems with non-proportional damping (see, Lancaster, 1966, Vigneron,
1986, Géradin and Rixen, 1997): In this case m = 2N and γj = 1

zT
j [2sjM+C]zj

. These

reduce expression (3.65) to

H(iω) =
N∑

j=1

[
γjzjzT

j

iω − sj

+
γ∗j z∗jz∗T

j

iω − s∗j

]
. (3.68)

3.4 Dynamic Response

The steady-state response due to harmonic loads or the response due to broad-band random excita-
tion can be obtained directly from the expression of the transfer function matrix in equation (3.65).
In this section we consider the system response due to transient loads and initial conditions in the
time and frequency domains.
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Taking the Laplace transform of equation (3.1) and considering the initial conditions in (3.2)
we have

s2Mq̄− sMq0 −Mq̇0 + s G(s)q̄−G(s)q0 + Kq̄ = f̄(s)

or
[
s2M + s G(s) + K

]
q̄ = f̄(s) + Mq̇0 + [sM + G(s)]q0.

(3.69)

Using the expression for the transfer function derived before, the response vector q̄ may be ob-
tained as

q̄ =
m∑

j=1

γjzjzT
j

s− sj

{
f̄(s) + Mq̇0 + [sM + G(s)]q0

}
. (3.70)

This can be simplified further to

q̄(iω) =
m∑

j=1

γjAj(iω)

iω − sj

zj (3.71)

where the frequency-dependent complex scalar

Aj(iω) = zT
j f̄(iω) + zT

j Mq̇0 + iωzT
j Mq0 + zT

j G(iω)q0. (3.72)

The summation in equation (3.71) may be split into two different parts – the first part would
correspond to the 2N complex conjugate pairs of elastic modes and the second part would be the
contribution of the non-viscous modes.

The response in the time domain due to any forcing function can be obtained using a convo-
lution integral over the impulse response function. From the expression of the transfer function in
equation (3.65), the impulse response function matrix h(t) ∈ RN×N may be obtained as

h(t) =
N∑

j=1

[
γjzjzT

j esjt + γ∗j z∗jz∗T

j es∗j t
]

+
m∑

j=2N+1

γjzjzT
j esjt. (3.73)

The response due to the initial conditions may also be obtained by taking the inverse transform of
equation (3.70). First, simplify equation (3.70) to obtain

q̄(s) =
m∑

j=1

γj

[
zT
j f̄(s) + zT

j G(s)q0

s− sj

+
zT
j Mq̇0

s− sj

+

(
1 +

sj

s− sj

)
zT

j Mq0

]
zj. (3.74)

From the above, one has

q(t) = L−1[q̄(s)] =
N∑

j=1

[
γjaj(t)zj + γ∗j a

∗
j(t)z

∗
j

]
+

m∑
j=2N+1

γjaj(t)zj (3.75)

where the time-dependent scalar coefficients

aj(t) =

∫ t

0

esj(t−τ)
{

zT
j f(τ) + zT

j G(τ)q0

}
dτ + esjt

{
zT

j Mq̇0 + sjzT
j Mq0

}
; ∀t > 0. (3.76)
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The expression of the system response, either the frequency-domain description in equation (3.71)
or the time-domain description in equation (3.75), is similar to the classical modal superposi-
tion result for undamped or proportionally damped systems usually obtained using the mode-
orthogonality relationships. Thus, the formulation presented here is a generalization of the classical
result where the real normal modes are appropriately replaced by the elastic modes and the non-
viscous modes. Also note that we have not used any orthogonality relationship – the expression
of the transfer function residue in equation (3.64) allows us to express the response in terms of
superposition of individual modes even when the equations of motion cannot be decoupled.

3.5 Summary of the Method

Following the procedure outlined so far one can obtain the eigensolutions and dynamic response
of non-viscously damped linear systems. Here we briefly summarize the steps to be followed
in order to obtain the eigenvalues, eigenvectors and dynamic response of non-viscously damped
linear systems:

1. Evaluate the natural frequencies ωj and eigenvectors xj of the undamped system from Kxj =

ω2
j Mxj for all j = 1, · · · , N . Normalize so that xT

l Mxj = δlj .

2. Obtain the eigenvalues by solving the (say m-th order) characteristic equation
det [s2M + sG(s) + K] = 0. For convenience, arrange the eigenvalues as
s1, s2, · · · , sN , s∗1, s

∗
2, · · · , s∗N , s2N+1, s2N+2, · · · , sm.

3. Set up the G′(sj) matrix using G′
kl(sj) = xT

k G(sj)xl. Calculate the matrices Ru
(j) using

R(j)
uk1l1

=
−sjG

′
kl(sj) (1− δk1l1)

ω2
k + s2

j + sjG′
kk(sj)

. (3.77)

In order to keep the dimension of Ru
(j) to (N − 1)× (N − 1), the subscript k1 is expressed

as k1 = k − U(k,j). Here the function U(k,j) is defined as

U(k,j) =





0 if k < j,

1 if k > j,

not defined if k = j.

(3.78)

4. Obtain the vectors a
(j)
0 using

a
(j)
0l1

=
−sjG

′
lj(sj)

ω2
l + s2

j + sjG′
ll(sj)

. (3.79)

5. Select the number of terms, say n, and calculate a
(j)
k = Ru

(j)a
(j)
k−1 for all k = 1, · · · , n .

Subsequently obtain the complex constants â(j) =
∑n

k=1 a
(j)
k−1.
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6. Determine the elastic modes as uj = xj +
∑N

l=1
l6=j

â
(j)
l1

xl1 for all j = 1, · · · , N .

7. For 2N < j < 2N + p, obtain the dynamic stiffness matrix D(sj) = s2
jM + sjG(sj) + K.

Partition as D(sj) =
[

D11(sj) D12(sj)

D21(sj) D22(sj)

]
where D11(sj) ∈ R, D12(sj) ∈ R1×(N−1), D21(sj) ∈

R(N−1)×1 and D22
(j) ∈ R(N−1)×(N−1).

8. Calculate z2j = − [D22(sj)]
−1 D21(sj). Now obtain the non-viscous modes as uj ={

1, z2j

}
for all j = 2N + 1, · · ·m.

9. Finally, using the eigensolutions, calculate the response either in the frequency domain from
equation (3.71) or alternatively, in the time domain from equation (3.75).

This procedure is general, simple, direct and provides better physical insights as the familiar N -
space eigenvectors are only used. The approach also offers reduction in computational effort
because it neither uses the state-space formalism nor utilizes additional dissipation coordinates.
Applications of the proposed method are illustrated next.

3.6 Numerical Examples

3.7 The System

We consider a three degree-of-freedom system to illustrate the proposed method. Figure 3.1 shows
the example taken together with the numerical values considered for mass and stiffness properties.
A similar system with viscous damping has been studied by Newland (1989, see pages 148-151).
Damping is associated only with the middle mass, and the kernel function corresponding to this

u

c g(t)

321

ku

m

ku

m m
ku ku

u u

Figure 3.1: Three degree-of-freedom non-viscously damped system, mu = 1 kg, ku = 1 N/m

damper has the form

G22(t) = c g(t) (3.80)

where c is a damping coefficient and g(t) is the damping function. Two different forms of g(t)

available in the literature will be considered here. For the first model (exponential)

g(t) = µe−µt; µ, t ≥ 0 (3.81)
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and for the second model (double exponential)

g(t) =
1

2

(
µ1e

−µ1t + µ2e
−µ2t

)
; µ1, µ2, t ≥ 0. (3.82)

The exponential function in (3.81) is possibly the simplest physically realistic non-viscous damp-
ing model. This function, often known as a ‘relaxation function’, was introduced by Biot (1955).
It has been used extensively in the context of viscoelastic systems. In Chapter 6 a method will be
proposed to identify such damping models using modal testing. The double exponential damping
function, known as the GHM model, was introduced by Golla and Hughes (1985) and McTavis and
Hughes (1993). Identification of GHM model has been discussed by Friswell et al. (1997). Both
damping functions have been scaled so as to have unit area when integrated to infinity. This makes
them directly comparable with the viscous model in which the corresponding damping function
would be a unit delta function, g(t) = δ(t), and the coefficient c would be the usual viscous damp-
ing coefficient. The difference between a delta function and g(t) given by equations (3.81) and
(3.82) is that at t = 0 they start with finite values of µ and 1/2 (µ1 + µ2) respectively. Thus, the
values of µ, µ1 and µ2 give a notion of non-viscousness − if they are large the damping behaviour
will be near-viscous, and vice versa.

The mass and stiffness matrices and the damping matrix in the Laplace domain for the problem
can be obtained as:

M =




mu 0 0
0 mu 0
0 0 mu


 , (3.83)

K =




2ku −ku 0
−ku 2ku −ku

0 −ku 2ku


 (3.84)

and

G(s) =




0 0 0
0 cG(s) 0
0 0 0


 . (3.85)

Here G(s) is the Laplace transform of g(t). Next, the eigensolutions and the dynamic response of
the system are discussed for the two functional forms of g(t).

3.7.1 Example 1: Exponential Damping

Eigensolutions

We assume c = 0.3, as considered by Newland (1989, page 149) for the equivalent viscously
damped system. From equation (3.81) one obtains

G(s) =
1

s + µ
. (3.86)
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Using this expression, the characteristic equation can be simplified as

m3
us

7 + m3
uµ s6 +

(
2 m2

uku + mu (µ cmu + 4 muku)
)
s5 + 6 kum

2
uµ s4

+
(
2 ku (µ cmu + 4 muku) + mu

(
2 µ cku + 2 ku

2
))

s3 + 10 ku
2muµ s2

+ 2 ku

(
2 µ cku + 2 ku

2
)
s + 4 ku

3µ = 0.

(3.87)

The order of the above polynomial, m = 7. Since the system has three degrees of freedom there are
three elastic modes corresponding to the three modes of vibration. The number of the non-viscous
modes, p = m− 2N = 1.

It is of interest to us to understand the effect of ‘non-viscousness’ on the eigensolutions. Figure
3.2 shows the locus of the third eigenvalue, that is s3, plotted as a function of µ. It is interesting to
observe that the locus is much more sensitive in the region of lower values of µ (i.e., when damping
is significantly non-viscous) compared to that in the region of higher values. The eigenvalue of the
corresponding viscously damped system is also plotted (marked by *) in the same diagram. Note
that, the non-viscous damping mechanism approaches the viscous damping when µ >≈ 50.0.
Similar behaviour has been observed (results not shown here) for the locus of s1 also. The second
mode, in which the middle mass remains stationary, is not effected by damping.
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viscous damping case 

Figure 3.2: Root-locus plot showing the locus of the third eigenvalue (s3) as a function of µ

The eigenvectors of the system, i.e., the three elastic modes (together with their complex con-
jugates) and one non-viscous mode can be obtained in a straight forward manner by following
the steps outlined in the previous section. We select two representative values of µ – one when
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µ is large (i.e., near viscous case) and the other when µ is small. The undamped eigenvalues and
eigenvectors are obtained as

{ω1, ω2, ω3} = {0.7654, 1.4142, 1.8478} (3.88)

and

[x1, x2, x3] =




0.5 0.7071 −0.5
0.7071 0.0 0.7071

0.5 −0.7071 −0.5


 . (3.89)

Using these results, when µ = 50.0, for the elastic modes we have

{s1, s2, s3} = {−0.0757 + 0.7659i, 1.4142i,−0.0751 + 1.8416i} (3.90)

and

[z1, z2, z3] =




0.4983 + 0.0204i 0.7071 −0.5002 + 0.0491i
0.7095− 0.0289i 0.0 0.7069 + 0.0694i
0.4983 + 0.0204i −0.7071 −0.5002 + 0.0491i


 . (3.91)

The above calculation is performed by retaining five terms in the series (3.23). It may be verified
that, because µ is large (about 27 times of the maximum natural frequency), the results obtained
are close to the viscously damped case (see Newland, 1989, page 149). For the one non-viscous
mode we obtain

s7 = −49.6984 and z7 =





1.0
2.4719× 103

1.0



 (3.92)

Because s7 is purely real and negative this mode is non-oscillatory (over critically damped) and
stable.

When µ = 0.5 the damping is significantly non-viscous. For this case, performing similar
calculations for the elastic modes one has

{s1, s2, s3} = {−0.0207 + 0.8i, 1.4142i,−0.0053 + 1.8671i} (3.93)

and

[z1, z2, z3] =




0.4983 + 0.0204i 0.7071 −0.5002 + 0.0491i
0.6787 + 0.0112i 0.0 0.7442− 0.0630i
0.4983 + 0.0204i −0.7071 −0.5002 + 0.0491i


 . (3.94)

These values are not significantly different from those obtained for µ = 50.0 in (3.91). For this
problem the elastic modes are not very sensitive to the damping mechanism. However, we empha-
size that this fact cannot be generalized to all systems. For the non-viscous mode one has

s7 = −0.4480 and z7 =





1.0
2.2007

1.0



 . (3.95)

These values are, however, quite different from those obtained for µ = 50.0 in (3.92). It is difficult
to physically visualize the nature of the non-viscous modes in general. These modes are intrinsic
to the dampers and we do not have sufficient generalized coordinates to represent them properly.
Nevertheless, they yield non-zero residues in the system transfer functions and thus contribute to
the global dynamic response.
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Dynamic Response Analysis

The problem of stationary random vibration analysis of the system is considered here. Suppose
the system is subjected to a band-limited Gaussian white noise at the third DOF. We are interested
in the resulting displacement of the system at the third DOF (i.e., z3). The power spectral density
(PSD) of the response (see Nigam, 1983, for details) can be given by

Suu(iω) = |H33(iω)|2Sff (iω) (3.96)

where

Sff (iω) =

{
1 if 0 < ω ≤ 2.5 rad/sec
0 otherwise

. (3.97)

In Figure 3.3 the PSD of z3 that is |H33(iω)|2 is plotted for the cases when µ = 50.0 and µ = 0.5.
These results are obtained by direct application of equation (3.65). From the diagram observe that
the damping is less for the case when µ = 0.5 than when µ = 50.0. Also note the (horizontal)
shift in the position of the natural frequencies. These features may also be observed in the loot
locus diagram as shown in Figure 3.2. To understand the effect of ‘non-viscosity’, in the same
diagram we have plotted the non-viscous term (the second term) appearing in equation (3.65) for
both values of µ. For this problem the non-viscous part is quite small and becomes smaller at
higher frequencies. Observe that when µ = 0.5, that is when damping is significantly non-viscous,
the value of the non-viscous part of the response is more than that when µ = 50.0. This plot also
clearly demonstrates that the non-viscous part of the response is not oscillatory in nature.

3.7.2 Example 2: GHM Damping

Taking the Laplace transform of equation (3.82) one obtains

G(s) =
(µ1 + µ2) /2 s + µ1µ2

s2 + (µ1 + µ2) s + µ1µ2

. (3.98)

Using this equation, together with the expressions of the system matrices given by equations (3.83)
– (3.85), it can be shown that the order of the characteristic polynomial, m = 8. Thus, the number
of the non-viscous modes, p = m−2N = 2. In this section we focus our attention on the numerical
accuracy of the formulation developed in this chapter.

Regarding the numerical values of the damping parameters, we assume c = 0.5, µ1 = 1 and
µ2 = 3. Small values of µ1 and µ2 indicate that the damping mechanism is strongly non-viscous.
Solving the characteristic equation, exact eigenvalues corresponding to the three elastic modes can
be obtained as

{s1, s2, s3} = {−0.0994 + 0.8180i, 1.4142i,−0.0687 + 1.9025i} (3.99)

and their complex conjugate pairs. Eigenvalues corresponding to the two non-viscous modes are
found to be

{s7, s8} = {−2.7901,−0.8738}. (3.100)
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Figure 3.3: Power spectral density function of the displacement at the third DOF (z3)

Eigenvalues corresponding to the elastic modes can also be obtained approximately by equation
(3.33) in Section 3.2.3. Recall that only the undamped eigensolutions are required in order to apply
this equation. Approximate eigenvalues using equation (3.33) are calculated as

{s1, s2, s3}approx = {−0.0981− 0.8105i, 1.4142i,−0.0595− 1.9018i}. (3.101)

It is useful to compare the exact and approximate eigenvalues in the light of the Q-factors. In this
problem the second mode is not damped, so Q2 = ∞. For the first and third modes we obtain
Q1 = 4.1164 and Q3 = 13.8540. Small values of Q-factor indicate that these modes are quite
heavily damped. Comparing equations (3.99) and (3.101) it may be observed that the approximate
values are quite close to the exact one even when damping is reasonably high.

In order to check the numerical accuracy of the eigenvectors, first the exact values are calculated
by the matrix inversion method. For the elastic modes we obtain

[z1, z2, z3] =




0.5114 + 0.0299i 0.7071 −0.4639 + 0.0403i
0.6905− 0.0431i 0.0 0.7596 + 0.0562i
0.5114 + 0.0299i −0.7071 −0.4639 + 0.0403i


 (3.102)

and their complex conjugates. For the two non-viscous modes one has

[z7, z8] =




1.0000 1.0000
9.7847 2.7636
1.0000 1.0000


 . (3.103)
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Approximate eigenvectors corresponding to the elastic modes, calculated by equation (3.35), are
obtained as

[z1, z2, z3]approx =




0.5114 + 0.0299i 0.7071 −0.4639 + 0.0403i
0.6910− 0.0422i 0.0 0.7582 + 0.0569i
0.5114 + 0.0299i −0.7071 −0.4639 + 0.0403i


 . (3.104)

The above values are equivalent to performing the calculation by retaining only one term in the
series (3.23). Also recall that the approximate values are obtained from the undamped eigensolu-
tions only. Comparing equation (3.102) and (3.104) it is clear that the results obtained from the
approximate method match the exact solutions to an excellent accuracy.

As a final check on the formulation developed in this chapter, we compare the transfer func-
tion obtained from equation (3.65) with the exact transfer function calculated by inversion of the
dynamic stiffness matrix. Figure 3.4 shows such a comparison for H33(iω). Approximate natural
frequencies and modes given by (3.101) and (3.104) are used and also the non-viscous term in
equation (3.65) is neglected in order to calculate the approximate transfer function. Thus, in turn,
the approximate transfer function in Figure 3.4 is obtained only by proper ‘post-processing’ of the
undamped eigensolutions. From this figure it may be observed that, except in a few places, the
approximate transfer function is reasonably close to the exact one. This analysis demonstrates the
usefulness of the proposed method.
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Figure 3.4: Transfer function H33(iω)
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3.8 Conclusions

The problem of dynamic analysis of non-viscously damped multiple-degrees-of-freedom linear
systems has been considered. The assumed non-viscous damping model is such that the damping
forces depend on the past history of motion via convolution integrals over some kernel functions.
It has been assumed that, in general, the mass and stiffness matrices as well as the matrix of the
kernel functions cannot be simultaneously diagonalized by any linear transformation. The analysis
is, however, restricted to systems with non-repetitive eigenvalues and non-singular mass matrices.

The system eigenvalues were obtained by solving the characteristic equation. It turns out that,
unlike viscously damped systems, the order of the characteristic equation for an N -degrees-of-
freedom system is more than 2N . As a consequence, the number of modes become more than
2N and they were grouped into two types – (a) elastic modes and (b) non-viscous modes. It is
assumed that the elastic modes appear in complex conjugate pairs, that is, they are sub-critically
damped. The elastic modes, which consist of N eigenvectors together with their complex conju-
gate pairs, correspond to N modes of vibration of the structural system. These N eigenvectors
were expressed as a complex linear combination of the (real) eigenvectors of the corresponding
undamped system. The vector of these complex constants were further determined from a series
obtained by the Neumann expansion method. Based on this analysis, some approximate formulas
for the eigenvalues and eigenvectors were suggested and their accuracy were verified using numer-
ical examples. The non-viscous modes, which occur due to the non-viscous damping mechanism,
are real, over critically damped and non-oscillatory in nature. These modes were obtained by
inversion of a partition of the dynamic stiffness matrix evaluated at the corresponding eigenvalues.

The transfer function matrix of the system was derived in terms of the eigenvalues and eigen-
vectors of the second-order system. Exact closed-form expressions of the response due to arbitrary
forcing functions and initial conditions were obtained. The response can be expressed as a sum
of two parts, one that arises in usual viscously damped systems and the other that occurs due to
non-viscous damping mechanisms. Through an example it was shown that the non-viscous part of
the response is purely dissipative and non-oscillatory in nature.

The method developed here is analogous to classical modal analysis where undamped natural
frequencies and modes have to be appropriately replaced by elastic modes and non-viscous modes
of the non-conservative system. The method presented offers a reduction in computational effort
because neither the first-order formalisms nor the additional dissipation coordinates are employed.
Moreover, this approach also provides better physical insight as familiar N -space eigenvectors are
utilized.
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Chapter 4

Some General Properties of the
Eigenvectors

4.1 Introduction

In the last chapter, the eigenvalues, eigenvectors and transfer functions associated with multiple-
degrees-of-freedom non-viscously damped systems have been discussed. A method was outlined
to obtain the eigenvectors and dynamic response of the system. Although the method is analogous
to classical modal analysis, unlike the classical modes, very little is known about qualitative prop-
erties of the modes of non-viscously damped systems. Purpose of this chapter is to develop some
basic relationships satisfied by the eigensolutions and the system matrices of (3.1). Specifically we
have focused our attention to the normalization and orthogonality relationship of the eigenvectors.

4.2 Nature of the Eigensolutions

The eigenvalue problem associated with equation (3.1) can be defined as

[
s2

jM + sj G(sj) + K
]

zj = 0 or D(sj)zj = 0, ∀ k = 1, · · · ,m (4.1)

where the dynamic stiffness matrix

D(s) = s2M + s G(s) + K ∈ CN×N . (4.2)

Here zj is the j-th eigenvector and sj is the j-th eigenvalue. In general the number of eigenvalues,
m = 2N + p; p ≥ 0. It is assumed that all m eigenvalues are distinct. It should be noted that
eigenvalue problems of this kind are not similar to the eigenvalue problems arise in the context
of Lambda-matrices (Lancaster, 1966) because G(s) is not a constant matrix. We consider the
damping to be ‘non-proportional’, that is, the mass and stiffness matrices as well as the matrix
of the kernel functions cannot be simultaneously diagonalized by any linear transformation. It is
assumed that |Gjk(s)| < ∞ when s → ∞. This in turn implies that the elements of G(s) are at
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the most of order 1/s in s or constant, as in the case of viscous damping. Construct the diagonal
matrix containing the eigenvalues as

S = diag [s1, s2, · · · , sm] ∈ Cm×m (4.3)

and the matrix containing the eigenvectors (the modal matrix) as

Z = [z1, z2, · · · , zm] ∈ CN×m. (4.4)

Next, we consider the normalization relationship of the eigenvectors.

4.3 Normalization of the Eigenvectors

Premultiplying equation (4.1) by zT
k , applying equation (4.1) for k-th set and postmultiplying by

zj and subtracting one from the other we obtain

zT
k

[(
s2

j − s2
k

)
M + sjG(sj)− skG(sk)

]
zj = 0. (4.5)

Since sj and sk are distinct for different j and k, the above equation can be divided by (sj − sk) to
obtain

zT
k

[
(sj + sk) M +

sjG(sj)− skG(sk)

sj − sk

]
zj = 0, ∀j, k; j 6= k. (4.6)

This equation may be regarded as the orthogonality relationship of the eigenvectors. It is easy
to verify that, in the undamped limit equation (4.6) degenerates to the familiar mass orthogonal-
ity relationship of the undamped eigenvectors. However, this orthogonality relationship is not very
useful because it is expressed in terms of the natural frequencies. A frequency-independent orthog-
onality relationship of the eigenvectors will be derived later in this chapter. Assuming δs = sj−sk,
rewrite equation (4.6) as

zT
k

[
(δs + 2sk) M +

(sk + δs) G(sk + δs)− skG(sk)

δs

]
zj = 0. (4.7)

Consider the case when sj → sk, that is, δs → 0. For this limiting case, equation (4.7) reads

zT
k

[
2skM +

∂ [sG(s)]

∂s
|sk

]
zk = θk (4.8)

or zT
k [2skM + G(sk) + skG′(sk)] zk = θk, (4.9)

∀k = 1, · · · ,m

for some non-zero θk ∈ C. Equation (4.9) is the normalization relationship for the eigenvectors
of the non-viscously damped system (3.1). From the expression of the dynamic stiffness matrix in
(4.2), the normalization condition in equation (4.9) can also be expressed as

zT
k D′(sk)zk = θk, ∀k = 1, · · · ,m. (4.10)
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Equation (4.9), and consequently equation (4.10), can be regarded as the generalization of the
‘mass normalization’ relationship used in structural dynamics. In the undamped limit when G(s)

is a null matrix, equation (4.9) reduces to the familiar mass normalization relationship for the
undamped eigenvectors. For viscously damped systems (see Section 4.7 for details), relationship
analogous to (4.9) was obtained, for example, by Sestieri and Ibrahim (1994) using state-space
approach and, by Fawzy and Bishop (1976) and Fawzy (1977) using second-order equations of
motion. We define the normalization matrix, Θ, as

Θ = diag [θ1, θ2, · · · , θm] ∈ Cm×m. (4.11)

Numerical values of θk can be selected in various ways:

• Choose θk = 2sk, ∀k that is Θ = 2S. This reduces to zT
k Mzk = 1, ∀k when the damping is

zero. This is consistent with the unity modal mass convention, often used in experimental
modal analysis and finite element methods.

• Choose θk = 1 + 0i,∀k, that is, Θ = Im. Theoretical analysis becomes easiest with this
normalization. However, as pointed out by Fawzy (1977) and Vigneron (1986) in the context
of viscously damped systems, this normalization is inconsistent with undamped or classically
damped modal theories.

4.4 Orthogonality of the Eigenvectors

The orthogonality relationship of the eigenvectors given by equation (4.6) is not very useful be-
cause it is expressed in terms of the eigenvalues of the system. In this section, we will develop an
orthogonality relationship which is independent of the eigenvalues. Expressions equivalent to the
orthogonality relationships of the undamped eigenvectors with respect to the mass and stiffness
matrices will also be established. In order to derive these results, first recall the expression of the
transfer function matrix derived in Section 3.3. In the pole-residue form the inverse of the dynamic
stiffness matrix (transfer function matrix) can be expressed as

D−1(s) =
adj [D(s)]

det [D(s)]
=

m∑
j=1

Rj

s− sj

. (4.12)

Here Rj , the residue of D−1(s) at the pole sj obtained from equation (3.64) as

Rj =
zjzT

j

zT
j

∂D(sj)

∂sj
zj

∈ CN×N . (4.13)

Interestingly, observe that denominator of left-hand side of the above equation is exactly the same
as the normalization condition given by equation (4.10). Now, using equations (4.10) and (4.13)
one finally obtains the residues as

Rj =
zjzT

j

θj

. (4.14)
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For undamped systems, i.e., when G(s) = ON , ∀ s, the eigenvectors satisfy familiar orthog-
onality relationship over the mass and stiffness matrices as given by equations (1.10) and (1.11).
For viscously damped systems (with non-proportional damping), equivalent relationships may be
obtained by converting the equations of motion into the state-space form (see Sestieri and Ibrahim,
1994). The eigenproblem in the state-space form is essentially similar to the undamped eigen-
problem except that the size of the problem gets doubled, and the eigensolutions become complex.
Thus, from the analysis point of view, the state-space approach offers significant advantage for
viscously damped systems. Unfortunately, for non-viscously damped systems, no advantage can
be gained by adopting the state-space formalism as at least one of the system matrices will not be a
constant matrix. For this reason, and also realizing that the state-space eigenvectors are not phys-
ically appealing, we kept the analysis in the second-order form. One of our main result regarding
the orthogonality of the eigenvectors is the following:
Theorem 4.1. The modal matrix of a non-viscously damped system, Z ∈ CN×m, satisfy the or-

thogonality relationship ZΘ−1ZT = ON .

Proof. From equations (4.12) and (4.14) one obtains

adj [D(s)]

det [D(s)]
=

m∑
j=1

1

s− sj

zjzT
j

θj

. (4.15)

Multiplying both side of the above equation by s and taking limit as s →∞ we obtain

lim
s→∞

s
adj [D(s)]

det [D(s)]
= lim

s→∞

m∑
j=1

s

s− sj

zjzT
j

θj

=
m∑

j=1

zjzT
j

θj

. (4.16)

It is easy to observe that the order of the elements of adj [D(s)] is at the most (m− 2) in s. Since
the order of the determinant, det [D(s)], is m, after taking the limit every element of the left-hand
side of equation (4.16) reduces to zero. Thus, in the limit, the left-hand side of equation (4.16)
approaches to an N ×N null matrix. Finally, writing equation (4.16) in the matrix form we obtain

ZΘ−1ZT = ON (4.17)

and the theorem is proved.

The result of this theorem is quite general and it does not depend on the nature of the system
property matrices. The only requirement of this theorem is that the system must have m ≥ 2N dis-
tinct eigenvalues. Clearly, the undamped systems as well as the viscously damped systems are also
covered as special cases. In the context of viscously damped systems (see Section 4.7 for details),
similar result has been derived by Fawzy and Bishop (1976) by considering the normalization ma-
trix Θ as the identity matrix. Later Fawzy (1977) generalized this result for the case when Θ is not
an identity matrix. The result obtained in theorem 4.1 can be viewed as a further generalization of
these results to the non-viscously damped systems. Next, we consider the relationship between the
eigensolutions and the mass matrix.
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Theorem 4.2. The modal matrix of a non-viscously damped system, Z ∈ CN×m, satisfy the rela-

tionship ZΘ−1SZT = M−1.

Proof. First consider the function sD−1(s). Following the approach outlined in Section 3.3.2 and
using the residue theorem one obtains

sD−1(s) =
m∑

j=1

Qj

s− sj

. (4.18)

Here the residues Qj can be obtained as

Qj
def
= lim

s→sj

(s− sj)
[
sD−1(s)

]
= sj

zjzT
j

θj

. (4.19)

Using the expression of the dynamic stiffness matrix in equation (4.2) we can deduce

lim
s→∞

D(s)

s2
= lim

s→∞

[
M +

G(s)

s
+

K
s2

]
= M. (4.20)

Taking the inverse of the above equation results

lim
s→∞

[
s2D−1(s)

]
= M−1. (4.21)

Now, multiplying equation (4.18) by s and taking limit as s →∞ we obtain

lim
s→∞

[
s2D−1(s)

]
= lim

s→∞

m∑
j=1

s

s− sj

sjzjzT
j

θj

=
m∑

j=1

sjzjzT
j

θj

. (4.22)

Casting the right-hand side of the above equation in the matrix form and equating it with (4.21)
results

ZΘ−1SZT = M−1 (4.23)

and the theorem is proved.

Since Θ and S are diagonal matrices, they commute in product. For this reason the above
result can also be expressed as ZSΘ−1ZT = M−1. For viscously damped systems, similar result
has been derived by Fawzy and Bishop (1976) by considering the normalization matrix Θ as the
identity matrix. It might be thought that by taking the inverse of equation (4.23) and rearranging,
the conventional mass-orthogonality relationship

ZT MZ = S−1Θ (4.24)

could be obtained. We emphasize that the representation of equation (4.23) in the form of equation
(4.24) is not always possible. To show this, premultiply equation (4.24) by ZΘ−1 to obtain

ZΘ−1ZT MZ = ZΘ−1S−1Θ = ZS−1. (4.25)
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Due to theorem 4.1, the left-hand side of equation (4.25) is a null matrix, while its right-hand side
is not. Thus (4.24) cannot be a valid equation. However, for a special case, when the system is
undamped, the modal matrix Z can be expressed by a square matrix and equation (4.23) can be
represented by the classical mass-orthogonality relationship in (4.24). Thus, theorem 4.2 provides
the result equivalent to the classical mass-orthogonality relationship for general cases.

Like the mass-orthogonality relationship of the eigenvectors, the orthogonality relationship
with respect to the stiffness matrix can also be obtained. Assuming that K−1 exists we have the
following:
Theorem 4.3. The modal matrix of a non-viscously damped system, Z ∈ CN×m, satisfy the rela-

tionship ZΘ−1S−1ZT = −K−1.

Proof. Using the expression of the dynamic stiffness matrix in equation (4.2) we can easily deduce

lim
s→0

D(s) = K. (4.26)

Taking the inverse of the above equation results

lim
s→0

D−1(s) = K−1. (4.27)

From equations (4.12) and (4.14) one obtains

D−1(s) =
m∑

j=1

1

s− sj

zjzT
j

θj

. (4.28)

Taking the limit as s → 0 in equation (4.28) we obtain

lim
s→0

D−1(s) =
m∑

j=1

1

−sj

zjzT
j

θj

. (4.29)

Casting the right-hand side of the preceding equation in the matrix form and equating it with (4.27)
results

ZΘ−1S−1ZT = −K−1 (4.30)

and the theorem is proved.

4.5 Relationships Between the Eigensolutions and Damping

In the last section, some direct relationships have been established between the mass and stiffness
matrices and the eigensolutions. In this section we try to establish the relationships between the
damping matrix and the eigensolutions. A major difficulty in this regard is that, unlike the mass
and stiffness matrices, the damping matrix, G(s), is a function of s. To simplify the problem we
consider only two limiting cases, (a) when s →∞, and (b) when s → 0. Suppose

lim
s→∞

G(s) = G∞ ∈ RN×N (4.31)

and lim
s→0

G(s) = G0 ∈ RN×N , (4.32)

where ‖G∞‖, ‖G0‖ < ∞.
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4.5.1 Relationships in Terms of M−1

Casting equation (4.28) into the matrix form one obtains

D−1(s) = ZΘ−1 (sIm − S)−1 ZT . (4.33)

The preceding equation can be expanded as

D−1(s) =
1

s
ZΘ−1

(
Im − S

s

)−1

ZT

=
1

s

(
ZΘ−1ZT

)
+

1

s2

(
ZΘ−1SZT

)

+
1

s3

(
ZΘ−1S2ZT

)
+

1

s4

(
ZΘ−1S3ZT

)
+ · · ·

(4.34)

Now, rewrite the expression of the dynamic stiffness matrix in equation (4.2) as

D(s) = s2M
[

IN +
M−1

s

(
G(s) +

K
s

)]
. (4.35)

Taking the inverse of this equation and expanding the right-hand side one obtains

D−1(s) =

[
IN − M−1

s

(
G(s) +

K
s

)

+

{
M−1

s

(
G(s) +

K
s

)}2

− · · ·
]

M−1

s2
.

(4.36)

Equation (4.36) can be further simplified to obtain

D−1(s) =
M−1

s2
+

1

s3

(−M−1G(s)M−1
)

+
1

s4

(
M−1

[
G(s)M−1G(s)−K

]
M−1

)
+ · · ·

(4.37)

Comparing equations (4.34) and (4.37) it is clear that their right-hand sides are equal. Theorems
1 and 2 can be alternatively proved by multiplying these equations by s and s2 respectively and
taking the limit as s → ∞. Observe that, the coefficients associated with the corresponding
(negative) powers of s in the series expressions (4.34) and (4.37) cannot be equated because G(s)

is also a function of s. However, in the limit when s → ∞, the variation of G(s) becomes
negligible as by equation (4.31) it approaches to G∞. Considering the second term of the right-
hand side of equation (4.37), equating it with the corresponding term of equation (4.34) and taking
the limit as s →∞ one obtains

ZΘ−1S2ZT = −M−1G∞M−1. (4.38)

It must be noted that this procedure cannot be extended to further lower order terms as all of them
would be effected by the functional variation of G(s) from previous terms.

Were the system viscously damped G(s) would be a constant matrix and equating the coef-
ficients associated with different powers of s one could obtain several relationships between the
eigensolutions and the system matrices. Considering the first few terms in the series expressions
(4.34) and (4.37), some such relationships are reported in Section 4.7.
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4.5.2 Relationships in Terms of K−1

We rewrite equation (4.33) as

D−1(s) = −ZΘ−1S−1
(
Im − sS−1

)−1 ZT . (4.39)

Expanding equation (4.39) one obtains

D−1(s) =− ZΘ−1S−1ZT − s
(
ZΘ−1S−2ZT

)

− s2
(
ZΘ−1S−3ZT

)− s3
(
ZΘ−1S−4ZT

)− · · ·
(4.40)

The expression of the dynamic stiffness matrix in equation (4.2) can be rearranged as

D(s) = K
[
IN + s

(
sK−1M + K−1G(s)

)]
. (4.41)

Taking the inverse of equation (4.41) and expanding the right-hand side one obtains

D−1(s) =
[
IN − s

(
sK−1M + K−1G(s)

)

+
{
s
(
sK−1M + K−1G(s)

)}2 − · · ·
]

K−1.
(4.42)

The preceding equation can be further simplified to obtain

D−1(s) =K−1 + s
(−K−1G(s)K−1

)

+ s2
(
K−1

[
G(s)K−1G(s)−M

]
K−1

)
+ · · ·

(4.43)

Comparing the right-hand side of equations (4.40) and (4.43), theorem 4.3 can be proved alterna-
tively by taking the limit as s → 0. Considering the second term of the right-hand side of equation
(4.43), equating it with the second term of equation (4.40) and taking the limit as s → 0 one
obtains

ZΘ−1S−2ZT = K−1G0K−1. (4.44)

Again, note that this approach cannot be extended to the higher order terms as all of them would
be effected by the functional variation of G(s) from previous terms.

4.6 System Matrices in Terms of the Eigensolutions

Theorems 4.2, 4.3 and equations (4.38), (4.44) allow us to represent the system property matrices
explicitly in terms of the eigensolutions. This might be useful in system identification problems
where the eigensolutions of a structure can be measured from experiments. Using the eigensolu-
tions we define two matrices

P1 = ZΘ−1SZT (4.45)

and P2 = ZΘ−1S−1ZT . (4.46)
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Using these equations, from equation (4.23) one obtains the mass matrix as

M = P−1
1 . (4.47)

Similarly from equation (4.30) the stiffness matrix can be obtained as

K = −P−1
2 . (4.48)

The damping matrix in the Laplace domain, G(s), can be obtained only at the two limiting values
when s →∞, and s → 0. From equations (4.38) and (4.44) one obtains

G∞ = −P−1
1

[
ZΘ−1S2ZT

]
P−1

1 (4.49)

and G0 = P−1
2

[
ZΘ−1S−2ZT

]
P−1

2 . (4.50)

These results, however, do not give any indication regarding the functional behaviour of G(s)

between these two extreme values.

4.7 Eigenrelations for Viscously Damped Systems

Viscously damped systems arise as a special case of the more general non-viscously damped sys-
tems when the damping matrix become a constant matrix, that is, G(s) = C ∈ RN×N ,∀ s. Here,
several relationships satisfied by the eigensolutions and the system matrices will be derived for this
special case.

For viscously damped systems the order of the characteristic polynomial m = 2N , and conse-
quently the modal matrix Z ∈ CN×2N and the diagonal matrices S,Θ ∈ C2N×2N . From equation
(4.9), the normalization relationship reads

zT
k [2skM + C] zk = θk, ∀k = 1, · · · , 2N. (4.51)

Now, consider the series expansion of D−1(s) given by equations (4.34) and (4.37). Equating the
coefficients of 1/s we obtain the mode orthogonality relationship

ZΘ−1ZT = ON . (4.52)

This relationship was also derived by Fawzy (1977). Now, equating the coefficients of 1/s2, · · · , 1/s5

in the right hand sides of equations (4.34) and (4.37), several relationships involving the eigenso-
lutions and M−1, C and K may be obtained:

ZΘ−1SZT = M−1 (4.53)

ZΘ−1S2ZT = −M−1CM−1 (4.54)

ZΘ−1S3ZT = M−1
[
CM−1C−K

]
M−1 (4.55)
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and
ZΘ−1S4ZT = M−1

[
KM−1C + CM−1K− CM−1CM−1C

]
M−1. (4.56)

This procedure can be extended to obtain further higher order terms involving S.
Similarly, equating the coefficients of s0, · · · , s3 in the right-hand sides of equations (4.40) and

(4.43), several relationships involving the eigensolutions and K−1, C and M may be obtained:

ZΘ−1S−1ZT = −K−1 (4.57)

ZΘ−1S−2ZT = K−1CK−1 (4.58)

ZΘ−1S−3ZT = K−1
[
M− CK−1C

]
K−1 (4.59)

and
ZΘ−1S−4ZT = K−1

[
CK−1CK−1C−MK−1C + CK−1M

]
K−1. (4.60)

This procedure can be extended to obtain further lower order terms involving S. Employing a
different approach, and considering the normalization matrix Θ as the identity matrix, Fawzy and
Bishop (1976) obtained expressions similar to equations (4.53) – (4.55) and (4.57) – (4.59). Thus,
the relationships derived here extend their results to generally normalized eigenvectors.

4.8 Numerical Examples

4.8.1 The System

A three-degree-of-freedom system, similar to what considered in Section 3.7, is used to illustrate
the results derived in this chapter. The mass and stiffness matrices are assumed to be

M =




3 0 0
0 3 0
0 0 3


 (4.61)

and K =




4 −2 0
−2 4 −2

0 −2 4


 . (4.62)

Numerical values for these matrices are taken by assuming mu = 3 and ku = 2 in the example
considered in Section 3.7. The matrix of the damping functions is assumed to be of the form

G(t) =




0 0 0
0 1.5g(t) 0
0 0 0


 (4.63)

where
g(t) = δ(t) +

(
µ1e

−µ1t + µ2e
−µ2t

)
; µ1, µ2 > 0. (4.64)

The damping matrix in the Laplace domain, G(s), can be obtained by taking the Laplace transform
of equation (4.63). The Laplace transform of g(t) given by (4.64) can be obtained as

G(s) = 1 +
(µ1 + µ2) s + 2µ1µ2

s2 + (µ1 + µ2) s + µ1µ2

. (4.65)
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This damping model is a linear combination of the viscous model and the GHM model considered
in the last chapter. Regarding the numerical values of the damping parameters, we assume µ1 = 1.5

and µ2 = 0.1.

4.8.2 Eigenvalues and Eigenvectors

Using equation (4.65), together with the expressions of the system matrices given by equations
(4.61) – (4.63), it can be shown that the order of the characteristic polynomial, m = 8. It has
been mentioned that (for lightly damped systems), among the m eigenvalues, 2N = 6 appear in
complex conjugate pairs (elastic modes) and the rest p = m− 2N = 2 eigenvalues become purely
real (non-viscous modes).

Solving the characteristic equation, the diagonal matrix containing the eigenvalues can be ex-
pressed as

S = diag [se, s∗e, sn] ∈ C8×8. (4.66)

Here, the eigenvalues corresponding to the three elastic modes are

se = {−0.2632 + 0.7363i, 1.1547i,−0.2392 + 1.5177i, } . (4.67)

The eigenvalues corresponding to the two non-viscous modes are found to be

sn = {−1.0029,−0.0921} . (4.68)

Since these eigenvalues are purely real and negative, it implies that the non-viscous modes are
stable and non-oscillatory in nature (i.e., over critically damped).

The eigenvectors can be obtained by applying the procedure outlined in the last chapter. The
matrix of eigenvectors can be expressed as

Z = [Ze, Z∗e, Zn] ∈ C3×8 (4.69)

Here, Ze, the matrix of eigenvectors corresponding to the three elastic modes, is

Ze =




1 1 1
1.2908− 0.5814i 0 −1.3690− 1.0893i

1 −1 1


 . (4.70)

The matrix of eigenvectors corresponding to the two non-viscous modes is calculated as

Zn =




1 1
3.5088 2.0127

1 1


 . (4.71)

Using the eigenvectors given by equations (4.70) – (4.71), the normalization matrix Θ can be
obtained from equation (4.9) as

Θ = diag [θe,θ
∗
e,θn] . (4.72)
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Here

θe = {0.0223 + 0.1180i, 0.1386i,−0.2756 + 0.2359i} (4.73)

and

θn = {1.0075, 9.8738} . (4.74)

4.8.3 Orthogonality Relationships

Using Z and Θ one can easily verify that the mode orthogonality relationship given by theorem
4.1 is satisfied, that is,

ZΘ−1ZT = O3. (4.75)

Now, in the line of theorem 4.2 we calculate

ZΘ−1SZT =




0.3333 0 0
0 0.3333 0
0 0 0.3333


 = M−1. (4.76)

Similarly, following theorem 4.3 one obtains

− ZΘ−1S−1ZT =




0.375 0.250 0.125
0.250 0.500 0.250
0.125 0.250 0.375


 = K−1. (4.77)

4.8.4 Relationships With the Damping Matrix

Taking the Laplace transform of equation (4.63) and considering the limiting cases as s →∞, and
s → 0 one obtains

G∞ =




0 0 0
0 1.5 0
0 0 0


 (4.78)

and G0 =




0 0 0
0 4.5 0
0 0 0


 . (4.79)

Note that the matrices P1 and P2, defined in equations (4.45) and (4.46) respectively, can be directly
obtained from (4.76) and (4.77). Using these matrices, the truth of equations (4.49) and (4.50),
which relate G∞ and G0 to the eigensolutions, can be verified. Thus, the damping matrix, G(s),
can be reconstructed from the eigensolutions for the cases when s →∞, and s → 0.

4.9 Conclusions

In this chapter we have developed several eigenrelations for non-viscously damped multiple-
degrees-of-freedom linear dynamic systems. It has been assumed that, in general, the mass and
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stiffness matrices as well as the matrix of the kernel functions cannot be simultaneously diago-
nalized by any linear transformation. The analysis is, however, restricted to systems with non-
repetitive eigenvalues and non-singular mass matrices. Relationships regarding the normalization
and the orthogonality of the (complex) eigenvectors have been established (theorem 4.1). Expres-
sions equivalent to the orthogonality of the undamped modes over the mass and stiffness matrices
have been proposed (theorems 4.2 and 4.3). It was shown that the classical relationships can be
obtained as special cases of these general results. Based on these results, we have shown that the
mass and stiffness matrices can be uniquely expressed in terms of the eigensolutions. The damp-
ing matrix, G(s), cannot be reconstructed using this approach because it is not a constant matrix.
However, we have provided expressions which relate the damping matrix to the eigensolutions for
the cases when s → ∞, and s → 0. Whenever applicable, viscously damped counterparts of the
newly developed results were provided.
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Chapter 5

Identification of Viscous Damping

5.1 Introduction

In Chapters 3 and 4, a systematic study on modal analysis of generally damped linear systems has
been carried out. The results based on these studies give a firm basis for further analysis, to use the
details of the measured vibration data to learn more about the underlying damping mechanisms.
It was shown that non-viscously damped systems have two types of modes, (a) elastic modes,
and (b) non-viscous modes. The elastic modes correspond to the ‘modes of vibration’ of a linear
system. The non-viscous modes occur due to the non-viscous damping mechanism and they are not
oscillatory in nature. For an underdamped system, that is a system whose all modes are vibrating,
the elastic modes are complex (appear in complex conjugate pairs) and non-viscous modes are real.
For an N -degrees-of-freedom non-viscously damped systems there are exactly N pairs of elastic
modes. The number of non-viscous modes depends on the nature of the damping mechanisms.
Conventional viscously damped systems are special cases of non-viscously damped systems when
the damping kernel functions have no ‘memory’. Modes of viscously damped systems consist of
only (complex) elastic modes as non-viscous modes do not appear in such systems. Elastic modes
can be real only if the damping is proportional, that is only if the conditions derived in Theorem
2.2 are satisfied.

There is no physical reason why a general system should follow the mathematical conditions
for existence of real normal modes. In fact practical experience in modal testing shows that most
real-life structures do not do so, as they possess complex modes instead of real normal modes.
As Sestieri and Ibrahim (1994) have put it ‘ ... it is ironic that the real modes are in fact not real
at all, in that in practice they do not exist, while complex modes are those practically identifiable
from experimental tests. This implies that real modes are pure abstraction, in contrast with complex
modes that are, therefore, the only reality!’ For this reason it is legitimate to consider only complex
modes for further developments. However, consideration of complex modes in experimental modal
analysis has not been very popular among researchers. In fact many publications, for example
Ibrahim (1983a), Chen et al. (1996b) and Balmès (1997), discuss how to obtain the ‘best’ real
normal modes from identified complex modes.

75
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The works in the previous chapters made it clear that the standard procedure of experimental
modal analysis actually measured ‘modes’ when complex results were obtained. The justification
of the method in the standard texts (eg., Ewins, 1984) is based on assuming viscous damping, and
begs the question of how one might tell in practice whether a viscous model is applicable to a
given structure, let alone of how to proceed if a viscous model is not supported by the measure-
ments. These are the central questions to be addressed in this study. The works in the earlier
chapters showed that the expression for vibration transfer functions in terms of mode shapes and
natural frequencies, familiar from undamped systems, carries over almost unchanged to systems
with completely general linear damping. One simply replaces the mode shapes with corresponding
complex elastic modes and non-viscous modes, and the natural frequencies with their correspond-
ing values. This result shows that experimental modal analysis can indeed measure the correct
complex modes of a structure, since the pole-fitting strategy normally used is based on the validity
of this transfer function expression. Here we emphasize that by conducting conventional modal
testing procedure it is only possible to obtain the elastic modes as the non-viscous modes do not
produce any ‘peak’ in the measured transfer functions (see Section 8.2 for further discussions ).
This is however, not a very big limitation since it was shown before that the effect of non-viscous
modes is not very significant on the vibration response. For this reason, in what follows next, the
non-viscous modes will not be considered. Beside this we also assume that the damping is light so
that the first-order perturbation method can be applied.

There are good arguments to support the principle of reciprocity when the physical mechanism
of damping arises from linear viscoelastic behaviour within some or all of the material of which the
structure is built. The ‘correspondence principle’ of linear viscoelasticity applies to such problems
under rather general conditions (see eg., Fung, 1965), and since the undamped problem satisfies
reciprocity, then the damped one will also do so. However, the case is less obvious for damping
associated with structural joints, often the dominant source of damping in practice. The mech-
anisms of such damping are frequently non-linear when examined in detail, but empirically the
overall result frequently satisfies normal experimental tests of linearity. The question of whether
such systems should be expected to satisfy reciprocity remains open. For the purpose of the present
investigation, reciprocity will be assumed in all cases.

These facts gives us the confidence to ask some general questions of interest:

1. From experimentally determined complex modes can one identify the underlying damping
mechanism? Is it viscous or non-viscous? Can the correct model parameters be found ex-
perimentally?

2. Is it possible to establish experimentally the spatial distribution of damping?

3. Is it possible that more than one damping model with corresponding ‘correct’ sets of param-
eters may represent the system response equally well, so that the identified model becomes
non-unique?
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4. Does the selection of damping model matter from an engineering point of view? Which
aspects of behaviour are wrongly predicted by an incorrect damping model?

This chapter and following two address these questions. The analysis is restricted to linear systems
with light damping: we assume throughout the validity of the first-order perturbation results. The
initial aim is to consider what can be learned about these questions in principle, so procedures will
be illustrated by applying them to simulated transfer functions, with no noise. The issue of how the
usefulness of any procedure might be limited in practice by measurement noise will be deferred to
later studies. This chapter will concentrate on the fitting of viscous models to ‘measured’ transfer
functions, and on establishing the symptoms by which a non-viscous model might be recognized.
In Section 5.2 we briefly review the theory of determination of complex frequencies and modes
based on the first-order perturbation method. In Section 5.3 an algorithm is given for fitting a
non-proportional viscous damping model, using the complex modes and complex frequencies. In
Section 5.4 numerical examples are given to illustrate the fitting procedure. Some implications of
these results for damping identification are summarized in Section 5.5. In Chapter 6, the procedures
are generalized to some non-viscous models of damping, and the discussion extended to this more
general case.

5.2 Background of Complex Modes

Dynamics of viscously damped systems has been discussed in details in Section 1.3. Complex
modes arise in viscously damped systems provided the damping is non-proportional. Expressions
of complex modes can be obtained as a special case of the general analysis presented in Section
3.2.1. One such special case when the damping is lightly non-proportional is discussed in Section
3.2.3. In this section we consider a further special case when the damping is light so that the first-
order perturbation method can be applied. First-order perturbation results can be obtained from
the results in Section 3.2.3 as follows.

Suppose λj, zj is the j-th complex natural frequency and complex mode shape. In the context
of the notations used in Section 3.2.3, sj = iλj . Using this, from equation (3.37) approximate
expression for the complex natural frequencies can be obtained as

λj ≈ ±ωj + iC ′
jj/2. (5.1)

From equation (3.38), the first-order approximate expression of the complex eigenvectors is

zj ≈ xj + i
N∑

k=1
k 6=j

ωjC
′
kj

(ω2
j − ω2

k)
xk. (5.2)

In the above expressions C ′
kl = xT

k Cxl are the elements of the damping matrix in modal coordi-
nates. These results were obtained by Rayleigh (1877, see Section 102, equation 5 and 6). The



78 Chapter 5. Identification of Viscous Damping

above equation shows (up to first order approximation) that the real parts of the complex modes
are the same as the undamped modes and that the off-diagonal terms of the modal damping matrix
are responsible for the imaginary parts.

5.3 Identification of Viscous Damping Matrix

Currently available methods for identification of viscous damping matrix in the context of linear
multiple-degrees-of-freedom systems have been discussed in Section 1.5.2. These methods range
form the simplest case, that is proportional damping, to more general non-proportional damping
case. Several practical issues, for example, effect of measurement noise, incomplete modal data,
consistency with FE models, etc. have been discussed. However, all these methods are based on
the assumption that the damping mechanism of the structure is viscous, and their efficacy when the
damping mechanism is not viscous is largely unexplored. Here we propose a method to obtain the
full non-proportional viscous damping matrix from complex modal data, in a way which will gen-
eralize very naturally to the fitting of non-viscous damping models in Chapter 6. The perturbation
expression from the previous section is used as the basis of the fitting procedure, and it is assumed
that the damping is sufficiently light to justify this.

Approximate complex natural frequencies and mode shapes for a system with light viscous
damping can be obtained from the expressions given in equations (5.1) and (5.2). Write

ẑj = ûj + iv̂j (5.3)

where ẑj ∈ CN is the measured j-th complex mode, and N denotes the number of measurement
points on the structure. Suppose that the number of modes to be considered in the study is m: in
general m 6= N , usually N ≥ m. If the measured complex mode shapes are consistent with a
viscous damping model then from equation (5.1) the real part of each complex natural frequency
gives the undamped natural frequency:

ω̂j = <
(
λ̂j

)
, (5.4)

where λ̂j denotes the j-th complex natural frequency measured from the experiment. Similarly
from equation (5.2), the real part of each complex mode ûj immediately gives the corresponding
undamped mode and the mass orthogonality relationship (1.10) will be automatically satisfied.
Now from equation (5.2), expand the imaginary part of ẑj as a linear combination of ûj:

v̂j =
m∑

k=1

Bkjûk; where Bkj =
ω̂jC

′
kj

ω̂2
j − ω̂2

k

. (5.5)

With N ≥ m this relation cannot be satisfied exactly in general. Then the constants Bkj should be
calculated such that the error in representing v̂j by such a sum is minimized. Note that in the above
sum we have included the k = j term although in the original sum in equation (5.2) this term was
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absent. This is done to simplify the mathematical formulation to be followed, and has no effect
on the result. Our interest lies in calculating C ′

kj from Bkj through the relationship given by the
second part of the equation (5.5), and indeed for k = j we would obtain C ′

kj = 0. The diagonal
terms C ′

jj are instead obtained from the imaginary part of the complex natural frequencies:

C ′
jj = 2=(λ̂j). (5.6)

The error from representing v̂j by the series sum (5.5) can be expressed as

εj = v̂j −
m∑

k=1

Bkjûk. (5.7)

To minimize the error a Galerkin approach can be adopted. The undamped mode shapes ûl,∀l =

1, · · · ,m, are taken as ‘weighting functions’. Using the Galerkin method on εj ∈ RN for a fixed
j one obtains

ûT
l εj = 0; ∀l = 1, · · ·m. (5.8)

Combining equations (5.7) and (5.8) yields

ûT
l

{
v̂j −

m∑

k=1

Bkjûk

}
= 0 or

m∑

k=1

Wlk Bkj = Dlj; l = 1, · · · ,m (5.9)

with Wlk = ûT
l ûk and Dlj = ûT

l v̂j . Since Wkl is j−independent, for all j = 1, · · ·m the above
equations can be combined in matrix form

W B = D (5.10)

where B ∈ Rm×m is the matrix of unknown coefficients to be found, W = ÛT Û ∈ Rm×m and
D = ÛT V̂ ∈ Rm×m with

Û = [û1, û2, · · · ûm] ∈ RN×m

V̂ = [v1, v̂2, · · · v̂m] ∈ RN×m.
(5.11)

Now B can be obtained by carrying out the matrix inversion associated with equation (5.10) as

B = W−1D =
[
ÛT Û

]−1

ÛT V̂. (5.12)

From the B matrix, the coefficients of the modal damping matrix can be derived from

C ′
kj =

(ω̂2
j − ω̂2

k)Bkj

ω̂j

; k 6= j (5.13)

The above two equations together with equation (5.6) completely define the modal damping matrix
C′ ∈ Rm×m. If Û ∈ RN×N is the complete undamped modal matrix then the damping matrices
in the modal coordinates and original coordinates are related by C′ = ÛTCÛ. Thus given C′, the
damping matrix in the original coordinates can be easily obtained by the inverse transformation as
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C = UT−1C′Û−1. For the case when the full modal matrix is not available, that is Û ∈ RN×m

is not a square matrix, a pseudoinverse is required in order to obtain the damping matrix in the
original coordinates. The damping in the original coordinates is then given by

C =

[(
ÛT Û

)−1

ÛT

]T

C′
[(

UT Û
)−1

ÛT

]
. (5.14)

It is clear from the above equations that we need only the complex natural frequencies and mode
shapes to obtain C. The method is very simple and does not require much computational time.
Another advantage is that neither the estimation of mass and stiffness matrices nor the full set of
modal data is required to obtain an estimate of the full damping matrix. Using a larger number
of modes will of course produce better results with higher spatial resolution. In summary, this
procedure can be described by the following steps:

1. Measure a set of transfer functions Hij(ω).

2. Choose the number m of modes to be retained in the study. Determine the complex natural
frequencies λ̂j and complex mode shapes ẑj from the transfer functions, for all j = 1, · · ·m.
Obtain the complex mode shape matrix Ẑ = [ẑ1, ẑ2, · · · ẑm] ∈ CN×m.

3. Estimate the ‘undamped natural frequencies’ as ω̂j = <(λ̂j).

4. Set Û = <
[
Ẑ

]
and V̂ = =

[
Ẑ

]
, from these obtain W = ÛT Û and D = ÛT V̂. Now denote

B = W−1D.

5. From the B matrix get C ′
kj =

(ω̂2
j − ω̂2

k)Bkj

ω̂j

for k 6= j and C ′
jj = 2=(λ̂j).

6. Finally, carry out the transformation C =

[(
ÛTU

)−1

ÛT

]T

C′
[(

ÛT Û
)−1

ÛT

]
to get the

damping matrix in physical coordinates.

It should be observed that even if the measured transfer functions are reciprocal, this procedure
does not necessarily yield a symmetric damping matrix. If we indeed obtain a non-symmetric
damping matrix then it may be deduced that the physical law behind the damping mechanism in
the structure is not viscous. This fact is illustrated by example in the next section. Under those
circumstances, if an accurate model for the damping in the structure is needed then a non-viscous
model of some kind must be fitted to the measured data. Some examples of such models and
algorithms for fitting them will be illustrated in the next chapter.

5.4 Numerical Examples

There is a major difference in emphasis between this study and other related studies on damping
identification reported in the literature. Most of the methods assume from the outset that the
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system is viscously damped (see the review paper by Pilkey and Inman, 1998) and then formulate
the theory to identify a viscous damping matrix. Here, we wish to investigate how much one can
learn by fitting a viscous damping model when the actual system is non-viscously damped, as one
must expect to be the case for most practical systems. It is far from clear in practice what kind of
non-viscous damping behaviour a system might exhibit. We defer that question for the moment,
and instead study by simulation a system which has a known non-viscous damping model. Two
different physically realistic non-viscous damping models are considered in this study. They are
applied to a system consisting of a linear array of spring-mass oscillators and dampers.

This simple system gives us a useful basis to carry out numerical investigations. Complex
natural frequencies and modes can be calculated for the model system using the procedure outlined
in Section 3.2, then treated like experimental data obtained from a modal testing procedure, and
used for identifying a viscous damping model by the procedure described in the previous section.
Note that in a true experimental environment the measured complex natural frequencies and mode
shapes will be contaminated by noise. Since the simulation data are noise-free the results obtained
using them are ‘ideal’, the best one can hope using this approach. Once promising algorithms have
been identified in this way, the influence of noise in degrading the performance will have to be
addressed.

Figure 5.1 shows the model systems. N masses, each of mass mu, are connected by springs
of stiffness ku. The mass matrix of the system has the form M = muIN where IN is the N × N

identity matrix. The stiffness matrix of the system is

K = ku




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

. . . . . .
−1 2




. (5.15)

Certain of the masses of the system shown in Figure 5.1(a) have dissipative elements connecting
them to the ground. In this case the damping force depends only on the absolute motion of the
individual masses. Such damping will be described as ‘locally reacting’ by analogy with usage
in the theory of fluid-loaded structures (see eg. Crighton, 1985). For the system shown in Figure
5.1(b), by contrast, dissipative elements are connected between certain adjacent pairs of masses.
In this case the damping force depends on the relative motion of the two adjacent masses, and will
be called ‘non-locally reacting’.

The dissipative elements shown in Figure 5.1 will be taken to be linear, but not to be simple
viscous dashpots. For any such element, the force developed between the two ends will depend on
the history of the relative motion of the two ends. The dependence can be written in terms of a
convolution integral. Using the mass and the stiffness matrices described before, the equations of
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Figure 5.1: Linear array of N spring-mass oscillators, N = 30, mu = 1 Kg, ku = 4× 103N/m

motion can thus be expressed in the form

Mq̈(t) + C̄

∫ t

−∞
g(t− τ) q̇(τ) dτ + Kq(t) = 0 (5.16)

where g(t) is the damping function (assumed to have the same form for all the damping elements
in the system) and C̄ is the associated coefficient matrix which depends on the distribution of the
dampers. Two specific damping models will be considered, defined by two different forms of g(t):

MODEL 1: g(1)(t) = µ1e
−µ1t; t ≥ 0 (5.17)

MODEL 2: g(2)(t) = 2

√
µ2

π
e−µ2t2 ; t ≥ 0 (5.18)

where µ1 and µ2 are constants. Any physically realistic damping model must satisfy a condition
of positive energy dissipation at all frequencies. A sufficient condition to guarantee this, satisfied
by both models considered here, will be described in Chapter 6.

It is convenient to normalize the functions to make comparisons between models meaningful.
Both functions have already been scaled so as to have unit area when integrated to infinity. This
makes them directly comparable with the viscous model, in which the corresponding damping
function would be a unit delta function, g(t) = δ(t), and the coefficient matrix C̄ would be the
usual damping matrix. It is also convenient to define a characteristic time constant θj for each
damping function, via the first moment of g(j)(t):

θj =

∫ ∞

0

t g(j)(t) dt (5.19)
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For the two damping models considered here, evaluating the above integral gives θ1 = 1
µ1

and
θ2 = 1√

πµ2
. For viscous damping θj = 0. The characteristic time constant of a damping function

gives a convenient measure of ‘width’: if it is close to zero the damping behaviour will be near-
viscous, and vice versa. To establish an equivalence between the two damping models we can
choose that they have the same time constant, so that 1

µ1
= 1√

πµ2
.

For the system with locally reacting damping shown in Figure 5.1(a), C̄ = c̄I where c is a
constant and Ī is a block identity matrix which is non-zero only between the s-th and (s + l)-th
entries along the diagonal, so that ‘s’ denotes the first damped mass and (s+ l) the last one. For the
system with non-locally reacting damping shown in Figure 5.1(b), C̄ has a similar pattern to the
stiffness matrix given by equation (5.15), but non-zero only for terms relating to the block between
s and (s + l). For the numerical calculations considered here, we have taken N = 30, s = 8 and
(s + l) = 17.

For the purpose of numerical examples, the values mu = 1 kg, ku = 4 × 105 N/m have been
used. The resulting undamped natural frequencies then range from near zero to approximately 200
Hz. For damping models, the value c = 25 has been used, and various values of the time constant
θ have been tested. These are conveniently expressed as a fraction of the period of the highest
undamped natural frequency:

θ = γTmin (5.20)

When γ is small compared with unity the damping behaviour can be expected to be essentially
viscous, but when γ is of order unity non-viscous effects should become significant.

The complex natural frequencies and mode shapes can now be calculated from the analysis
presented in Section 3.2. We can then follow the steps outlined in the previous section to obtain an
equivalent viscous damping which represents these ‘measured’ data most accurately.

5.4.1 Results for Small γ

When γ = 0.02 both damping models should show near-viscous behaviour. First consider the
system shown in Figure 5.1(a) with locally reacting damping. Figure 5.2 shows the fitted viscous
damping matrix C for damping model 2, calculated using the complete set of 30 modes. The fitted
matrix identifies the damping in the system very well. The high portion of the plot corresponds
to the spatial location of the dampers. The off-diagonal terms of the identified damping matrix
are very small compared to the diagonal terms, indicating correctly that the damping is locally
reacting.

It is useful to understand the effect of modal truncation on the damping identification proce-
dure. In practice, one might expect to be able to use only the first few modes of the system to
identify the damping matrix. Figures 5.3 and 5.4 shows the fitted viscous damping matrix using,
respectively, the first 20 and the first 10 modes only. The quality of the fitted damping matrix grad-
ually deteriorates as the number of modes used to fit the damping matrix is reduced, but still the



84 Chapter 5. Identification of Viscous Damping

0
5

10
15

20
25

30

0

5
10

15

20
25

30
−5

0

5

10

15

20

25

k−th DOF
j−th DOF

F
itt

ed
 v

is
co

us
 d

am
pi

ng
 m

at
rix

 C kj

Figure 5.2: Fitted viscous damping matrix for the local case, γ = 0.02, damping model 2

identified damping matrix shows a reasonable approximation to the true behaviour. The spatial res-
olution of the identified damping is limited by that of the set of modes used, and some off-diagonal
activity is seen in the fitted matrix. Since for this system the mode shapes are approximately sinu-
soidal, we can recognize the effects of modal truncation as analogous to Gibbs phenomenon in a
truncated Fourier series.

Now consider the system shown in Figure 5.1(b) with non-locally reacting damping. Figure
5.5 shows the fitted viscous damping matrix for damping model 2, using the full set of modes.
Again, the fitted matrix identifies the damping in the system quite well. The high portion of the plot
corresponds to the spatial location of the dampers. The negative off-diagonal terms in the identified
damping matrix indicate that the damping is non-locally reacting, and the pattern is recognizably
that of equation (5.15). The extent of noise away from the three diagonals is rather higher than was
the case in Figure 5.2. This is not very surprising. The pattern of terms along a row of the matrix
corresponding to a damped position was, in the former case, a discrete approximation to a delta
function. In the latter case it is an approximation to the second derivative of a delta function. The
modal expansion, approximately a Fourier series, will thus have a much larger contribution from
the higher modes, which are the first to be affected by the non-zero width of the damping function.
A higher level of noise is the inevitable result.

One consequence of the distinction between local and non-local damping is illustrated in Fig-
ure 5.6. The modal Q-factors are plotted for the two cases studied, for the full set of 30 modes.
Locally-reacting damping (solid line) produces a Q-factor roughly proportional to mode number.
The particular non-local damping chosen here shows the opposite trend, with Q-factors roughly
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Figure 5.3: Fitted viscous damping matrix using first 20 modes for the local case, γ = 0.02,
damping model 2
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Figure 5.4: Fitted viscous damping matrix using first 10 modes for the local case, γ = 0.02,
damping model 2

inversely proportional to mode number (dashed line). Both trends can be understood in terms of
Rayleigh damping. If the damping extended over the entire structure rather that being limited to a
finite patch, then the local-reacting damping would correspond to a dissipation matrix proportional
to the mass matrix, while the non-local damping would correspond to a dissipation matrix propor-
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Figure 5.5: Fitted viscous damping matrix for the non-local case, γ = 0.02, damping model 2

tional to the stiffness matrix. The trends of modal Q-factor with frequency would then be exactly
proportional and inversely proportional, respectively. Limiting the damping to a part of the struc-
ture has evidently not disturbed this pattern very much. The variation with frequency has translated
into a variation with mode number: the mode number relates rather directly to wavenumber for this
simple system, and the physical origins of the different trends of Q-factors lies in dependence on
wavelength, rather than on frequency as such.

When the fitting procedure is repeated using the alternative damping model of equation (5.17)
the results are sufficiently similar that they are not reproduced here. Since the time constant is
so short, both damping models are near to viscous damping and the detailed difference in their
functional behaviour does not influence the results significantly. In summary, we can say that
when the time constant for a damping model is small the proposed identification method works
quite well regardless of the functional form of the damping mechanism. The spatial location of
damping is revealed clearly, and whether it is locally or non-locally reacting. Modal truncation
blurs the results, but does not invalidate the identification process.

5.4.2 Results for Larger γ

When γ is larger the two non-viscous damping models depart from the viscous damping model,
each in its own way. For the value γ = 0.5, Figure 5.7 shows the result of running the fitting
procedure for damping model 1 (equation (5.17)) with locally-reacting damping and the full set of
modes, similar to Figure 5.2. Figure 5.8 shows the corresponding fitted viscous damping matrix
C for damping model 2 (equation (5.18)). In both cases it may be noted that although we have
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Figure 5.6: Modal Q-factors, γ = 0.02, damping model 2

started with a locally reacting damping model, which means the matrix is non-zero only along the
diagonal, the non-zero values in the off-diagonal terms show that the fitted viscous damping is, in a
sense, not locally reacting. Nevertheless, the spatial distribution of the damping is well identified,
and perhaps one might be able to guess that the underlying mechanism was locally-reacting from
the fact that the significantly non-zero elements all have positive values, with a clear peak centered
on the diagonal of the matrix. This remark remains true even for larger values of γ. We give just
one example: Figure 5.9 shows the fitted dissipation matrix for γ = 2. Most of the matrix elements
are now significantly non-zero, but the pattern shows the same general features as Figure 5.7. The
high values, along the main diagonal of the matrix, still correctly identify the spatial distribution
of the damping.

Figures 5.10,5.11 show the fitted results corresponding to Figures 5.7,5.8, using the non-local
damping model. Similar remarks can be made as for the locally-reacting case. The spatial distri-
bution of the damping is revealed quite clearly and correctly. The non-local nature of the damping
is hinted at by the strong negative values on either side of the main diagonal of the matrix. In both
cases, there is an obvious echo of the pattern seen in Figure 5.5 and equation (5.15).

To give a different insight into the behaviour of the various damping models it is useful to see
the pattern of modal damping factors. In Figure 5.12, the modal Q-factors are plotted for the two
damping models with γ = 0.5, in the local-reacting case. Figure 5.13 shows the corresponding
results for the non-locally reacting case. For locally-reacting damping the Q-factors rise with mode
number, for both damping models. For the non-local case the Q-factors fall initially. For damping
model 1 and these particular parameter values the Q-factors are then approximately constant, while
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Figure 5.7: Fitted viscous damping matrix for the local case, γ = 0.5, damping model 1
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Figure 5.8: Fitted viscous damping matrix for the local case, γ = 0.5, damping model 2

for damping mode 2 they rise again after a while, reaching very high values at high mode numbers.
In terms of physical plausibility, damping model 1 in the non-local configuration gives the closest
match to the common practical experience that modal damping factors are approximately constant.
However, physical plausibility is not a major issue here, where the aim is to test the procedure
under a wide range of circumstances.
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Figure 5.9: Fitted viscous damping matrix for the local case, γ = 2.0, damping model 1

0

5

10

15

20

25

30

0
5

10
15

20
25

30
−4

−2

0

2

4

6

8

k−th DOF
j−th DOF

F
itt

ed
 v

is
co

us
 d

am
pi

ng
 m

at
rix

 C kj

Figure 5.10: Fitted viscous damping matrix for the non-local case, γ = 0.5, damping model 1

To judge the numerical accuracy of the fitted viscous damping it is useful to reconstruct transfer
functions. It is easy to do this, by inverting the dynamic stiffness matrix using the fitted viscous
damping matrix. A typical transfer function Hkj(ω), for k = 11 and j = 24 is shown in Figure
5.14, based on locally-reacting damping using damping model 1. It is clear that the reconstructed
transfer function agrees well with the original one. This is to be expected: the fitting procedure
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Figure 5.11: Fitted viscous damping matrix for the non-local case, γ = 0.5, damping model 2

outlined in the previous section is exact, within the the approximations of the small-damping per-
turbation theory, provided the full set of modes is used. The full set of poles and their residues are
correctly reproduced — this is the essential contrast between this approach and one which fits only
proportional damping, for which the poles can be correct but the residues cannot (because they will
be real, not complex). This result has a far-reaching implication: an incorrect damping model (the
fitted viscous damping) with a different spatial distribution from the true locally-reacting model
can reproduce accurately the full set of transfer functions. This means that by measuring transfer
functions it is not possible to identify uniquely the governing mechanism.

However, it should be noted that in all cases of Figures 5.7−5.11 the fitted damping matrix is
not symmetric. This is, in some sense, a non-physical result. In view of this non-symmetry, it is
interesting to check the reciprocity of the transfer functions. In Figure 5.14 the reciprocal transfer
function Hjk(ω) is also plotted, as a dashed line. It is not visible as a separate line in the figure,
because it matches Hkj(ω) to good accuracy. This plot demonstrates that the non-symmetry of
the fitted viscous damping in the spatial coordinate does not necessarily affect the reciprocity of
the transfer functions. Instead, we should regard non-symmetry of a fitted dissipation matrix as
evidence that the true damping model is not viscous. To obtain a correct physical description of
the damping, a non-viscous model should be fitted instead. This idea is developed in Chapter 6.
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Figure 5.12: Modal Q-factors for the local case, γ = 0.5
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Figure 5.13: Modal Q-factors for the non-local case, γ = 0.5
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Figure 5.14: Transfer functions for the local case, γ = 0.5, damping model 1, k = 11, j = 24

5.5 Conclusions

In this chapter a method has been proposed to identify a non-proportional viscous damping matrix
in vibrating systems. It is assumed that damping is light so that the first order perturbation method
is applicable. The method is simple, direct, and compatible with conventional modal testing proce-
dures. The complex modes and natural frequencies are used, but the method does not require either
the full set of modal data, or any knowledge of the mass and stiffness matrices. The validity of the
proposed method has been explored by applying it to simulated data from a simple test problem,
in which a linear array of spring-mass oscillators is damped by non-viscous elements over part of
its length.

Numerical experiments have been carried out with a wide range of parameter values and dif-
ferent damping models. The main features of the results have been illustrated by two particular
damping models and representative parameter values. It has been shown that the method generally
predicts the spatial location of the damping with good accuracy, and also gives a good indication of
whether the damping is locally-reacting or not. Whatever the nature of the fitted damping matrix C,
the transfer functions obtained from the fitted viscous damping agree well with the exact transfer
functions of the simulated system. Reciprocity of the transfer functions remains preserved within
an acceptable accuracy although in some cases the fitted viscous damping C is not symmetric.

Symmetry breaking of the fitted viscous damping matrix C depends on the value of the char-
acteristic time constants θ of the damping model, defined by equation (5.19). When θ is short
compared with the natural periods of the vibration, the damping is effectively viscous and the fit-
ting procedure gives a physically-sensible symmetric matrix. When θ is larger, though, the memory
of the damping function influences the detailed behaviour. Although the poles and residues of the
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transfer functions can still be fitted accurately with a model of viscous form, the underlying non-
viscous behaviour manifests itself in a non-symmetrical matrix. If a correct physical description of
the damping mechanism is needed, then a suitable non-viscous model must be selected and fitted.
We take up this question in Chapter 6.
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Chapter 6

Identification of Non-viscous Damping

6.1 Introduction

Linear systems must generally be expected to exhibit non-viscous damping. In the last chapter
it was shown that when a system is non-viscously damped, it is possible to fit a viscous damp-
ing model to the set of measured transfer functions but that the fitted damping matrix will be
non-symmetrical. The fitted model may also be misleading in other ways: for example it may
predict the wrong spatial distribution of damping over the structure. Of course, a priori selection
of viscous damping in the identification procedure rules out any possibility of recognizing other
damping behaviour present in the structure. In this chapter we consider the identification of certain
non-viscous damping models in the context of general multiple degrees-of-freedom linear systems.

A key issue in identifying non-viscous damping is to decide on an appropriate damping model
to consider. A brief review on available damping models may be found in Section 1.2. There have
been detailed studies of material damping and of specific structural components. Lazan (1968),
Bert (1973) and Ungar (1973) have given excellent accounts of different mathematical methods
for modelling damping in (solid) material and their engineering applications. The book by Nashif
et al. (1985) presents more recent studies in this area. Other than material damping a major source
of energy dissipation in a vibrating structure is the structural joints. Here, energy loss can take
place through air-pumping and local frictional effects. The air-pumping phenomenon is associated
with air trapped in pockets in the vicinity of a vibrating surface. In these situations, the air is
squeezed in and out through any available gap, leading to viscous dissipation of energy. Damping
behaviour associated with joints has been studied by many authors. For example Earls (1966) has
obtained the energy dissipation in a lap joint over a cycle under different clamping pressure. Beards
and Williams (1977) have noted that significant damping can be obtained by suitably choosing the
fastening pressure to allow some interfacial slip in joints. In many cases these damping mecha-
nisms turn out be locally non-linear, requiring an equivalent linearization technique for a global
analysis (Bandstra, 1983). These studies provide useful physical insights into damping mecha-
nisms, but due to their very specific nature it is not possible to formulate a general procedure for
identification of such mechanisms by simple vibration measurement.

95
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In Section 1.6 it was pointed out that methodologies of identification of non-viscous damping
in the context of general MDOF systems is not well developed. Banks and Inman (1991) have
proposed a somewhat general approach for identification of non-viscous damping models in Euler-
Bernoulli beams. They have considered four different models of damping: viscous air damping,
Kelvin-Voigt damping, time hysteresis damping and spatial hysteresis damping, and used a spline
inverse procedure to form a least-square fit to the experimental data. It was observed that the spatial
hysteresis model combined with a viscous air damping model gave the best quantitative agreement
with the experimental time histories. A procedure for obtaining hysteretic damping parameters in
free-hanging pipe systems is given by Fang and Lyons (1994). Assuming material damping to be
the only source of damping they have given a theoretical expression for the loss factor of the n-th
mode. The system-specific nature of these methods means that they cannot be extended in a simple
way to more general multiple degrees-of-freedom systems.

In Section 1.2.3 it was mentioned that convolution integral models are most general class of
linear non-viscous damping models in the context of multiple degrees-of-freedom systems. In
Chapter 3 it was shown that such damping models can be handled in a very similar way to viscous
models. These results motivate us to develop procedures for identification this type of general
damping models from standard vibration testing data. A wide variety of mathematical expressions,
as shown in Table 1.1, could be used for the kernel functions. Of these, the exponential function
seems a particularly promising candidate. Cremer and Heckl (1973) have written ‘Of the many
after-effect functions that are possible in principle, only one — the so-called relaxation function
— is physically meaningful.’ They go on to give a physical justification for this model, by which
they mean the exponential case. The argument applies most convincingly to the case of material
damping, rather than joint damping. An alternative mathematical rationalization can be given
in terms of exponential contributions from the poles of frequency-response functions when the
Fourier transform is inverted (see Muravyov, 1997). With this motivation, we concentrate here on
fitting exponential damping models to vibration data.

The analysis in this chapter is restricted to linear system behaviour and it is assumed that the
damping is light. In Section 6.2 we outline the expressions of complex frequencies and modes
based on the first-order perturbation method when the system is non-viscously damped. Using
these perturbation results, a method for identification of non-viscous damping models using com-
plex modes and natural frequencies is proposed. We assume that the mass matrix of the structure
is known — either directly from a finite element model or by means of modal updating based on
experimental measurements. Having the mass matrix we try to identify an exponential damping
model consistent with the measured complex modes. In Section 6.3 a procedure to obtain the re-

laxation parameter of an exponential damping model is outlined. Identification of the associated
damping coefficient matrix is discussed in Section 6.5. The proposed method is illustrated using
simulated numerical examples directly comparable to those in the last chapter. Finally Section 6.6
summarizes the main findings of this chapter.
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6.2 Background of Complex Modes

Dynamics of non-viscously damped systems has been discussed in details in Chapter 3. As men-
tioned earlier, only elastic modes will be considered because non-viscous modes are not measur-
able within the scope of traditional modal analysis. Thus, in the context of non-viscously damped
systems ‘complex modes’ implies complex elastic modes. Expressions of complex modes can be
obtained from the analysis presented in Section 3.2.1. One special case of this general analysis in
considered in Section 3.2.3 when the damping is lightly non-proportional. In this section we con-
sider a further special case when the damping is light so that the first-order perturbation method
can be applied. First-order perturbation results can be obtained from the results in Section 3.2.3 as
follows.

Suppose λj, zj is j-th complex natural frequency and and complex mode shape. In the context
of the notations used in Section 3.2.3, sj = iλj . Using this, from equation (3.33) approximate
expression for the complex natural frequencies can be obtained as

λj ≈ ±ωj + iG′
jj(±ωj)/2 (6.1)

where G′
kl(ωj) = xT

k G(ωj)xl is the frequency dependent damping matrix expressed in normal
coordinates and G(ω) is the Fourier transform of the matrix of kernel functions G(t). Since the
inverse Fourier transform of G(ω) must be real it must satisfy the condition G(−ω) = G(ω)∗,
where (•)∗ denotes complex conjugation. It follows that the eigenvalues of the generally damped
system appear in pairs λ and −λ∗ (unless λ is purely imaginary). The first-order approximate
expression for the complex eigenvectors can be obtained as a special case of equation (3.35). The
result is

zj ≈ xj + i
N∑

k=1
k 6=j

ωjG
′
kj(ωj)

(ω2
j − ω2

k)
xk. (6.2)

Equations (6.1) and (6.2) were first obtained by Woodhouse (1998). Note that the eigenvectors
also appear in complex conjugate pairs. Since in general G′

kj(ωj) will be complex, in contrast to
the viscously damped case the real part of complex natural frequencies and complex mode shapes
do not coincide with the undamped ones. This fact will complicate the problem of fitting model
parameters to experimental complex modes.

It is natural to consider first the idealized problem in which just one relaxation function is used
for identification purposes. In that case the general form of the kernel function in equation (3.1)
reduces to

G(t) = C g(t) (6.3)

where g(t) is some damping function and C is a positive-definite coefficient matrix. The admissible
form of g(t) is restricted by the condition of non-negative energy loss given in equation (1.33). The
damping model in equation (6.3) is physically realistic if the real part of the Fourier transform of
the kernel function is non-negative within the driving frequency range, that is <[G(ω)] ≥ 0,∀ω.
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This can be easily shown. Rewriting equation (1.33) in the frequency domain and using (6.3), the
rate of energy dissipation can be expressed as

F (ω) =
ω2

2
<

{
q̄∗T C q̄G(ω)

}
(6.4)

where <(•) represents the real part of (•) and F (ω), q̄ and G(ω) are the Fourier transform of F(t),
q(t) and g(t) respectively. For a physically realistic model of damping we must have

F (ω) ≥ 0

or
ω2

2
<

{
q̄∗T C q̄G(ω)

}
≥ 0

or <{G(ω)} ≥ 0

(6.5)

since for a real value of driving frequency ω2 ≥ 0 and q̄ can be chosen in a way that<
{

q̄∗T C q̄
}
≥

0 as C is positive definite.

6.3 Fitting of the Relaxation Parameter

As has been mentioned earlier, from the wide range of non-viscous damping models the exponen-
tial function seems a particularly good candidate. It satisfies the condition (6.5) at all frequencies.
In this section we outline a general method to fit the relaxation parameter of an exponential damp-
ing model using measured modal data.

6.3.1 Theory

We assume that the damping has only one relaxation function, so that the matrix of kernel functions
is of the form

G(t) = µe−µt C (6.6)

where µ is the relaxation parameter and C is the associated coefficient matrix. The factor µ serves
to normalize the kernel function: see Section 6.3.2. Complex natural frequencies and mode shapes
for systems with this kind of damping can be obtained from equations (6.1) and (6.2). In view of
the expression for damping given in equation (6.6) it is easy to see that the term G′

kj(ωj) appearing
in these equations can be expressed as

G′
kj(ωj) =

µ

µ + iωj

C ′
kj =

[
µ2

µ2 + ω2
j

− i
µωj

µ2 + ω2
j

]
C ′

kj (6.7)

where C ′
kj = xT

k Cxj . Using this expression in equation (6.1), the j-th complex natural frequency
is given by

λj ≈ ωj + i
C ′

jj

2

[
µ2

µ2 + ω2
j

− i
µωj

µ2 + ω2
j

]
. (6.8)



6.3. Fitting of the Relaxation Parameter 99

Similarly from equation (6.2) the j-th complex mode can be expressed as

zj ≈ xj +
N∑

k=1
k 6=j

µωj

(µ2 + ω2
j )

ωjC
′
kj

(ω2
j − ω2

k)
xk + i

N∑
k=1
k 6=j

µ2

(µ2 + ω2
j )

ωjC
′
kj

(ω2
j − ω2

k)
xk. (6.9)

Suppose that λ̂j and ẑj for j = 1, 2, · · ·m are the measured complex natural frequencies and
modes. Write

ẑj = ûj + iv̂j. (6.10)

Here ẑj ∈ CN where N denotes the number of measurement points on the structure and the
number of modes considered in the study is m. In general m 6= N , usually N ≥ m. Assume
that x̂j ∈ RN are the undamped modes and µ̂ is the relaxation parameter to be estimated from the
experiment. In order to fit a damping model of the form (6.6), equations (6.8) and (6.9) must be
valid in conjunction with the experimental measurements λ̂j and ẑj . As an initial approximation
we may suppose the real part of the complex natural frequencies to be the same as the undamped
natural frequencies:

ω̂
(0)
j = <

(
λ̂j

)
. (6.11)

For most practical cases it turns out that the above value of ω̂
(0)
j is sufficiently accurate to carry out

further analysis. However, we present later an iterative method which may be used to update the
value of ω̂j and remove the need for this approximation (see Section 6.5.2 for details).

In view of equations (6.9) and (6.10) and considering that only m modes are measured, sepa-
rating real and imaginary parts of ûj gives

ûj = <(ẑj) ≈ x̂j +
m∑

k=1
k 6=j

Ãkjx̂k; where Ãkj =
µ̂ω̂j

(µ̂2 + ω̂2
j )

Bkj (6.12)

and

v̂j = =(ẑj) ≈
m∑

k=1
k 6=j

B̃kjx̂k; where B̃kj =
µ̂2

(µ̂2 + ω̂2
j )

Bkj. (6.13)

Here the unknown constants Bkj are defined as

Bkj =
ω̂jC

′
kj

ω̂2
j − ω̂2

k

. (6.14)

It may be noted that in addition to Bkj , the relaxation constant µ̂ and the undamped modes x̂k are
also unknown. Combining equations (6.12) and (6.13) one can write

ûj = x̂j +
ω̂j

µ̂
v̂j. (6.15)

From the preceding equation it is clear that if µ̂ À ω̂j , then ûj → x̂j . This implies that when
the damping mechanism is near to viscous, the real part of each complex mode tends towards
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the corresponding undamped mode. Since the undamped modes are orthonormal with respect to
the mass matrix, from equation (6.13) it may be observed that the imaginary part of each complex
mode v̂j is M-orthogonal to its corresponding undamped mode so that v̂T

j Mx̂j = 0. Premultiplying
equation (6.15) by v̂T

j M one can write

v̂T
j Mûj = v̂T

j Mx̂j +
ω̂j

µ̂
v̂T

j Mv̂j (6.16)

Now use of the orthogonality property of v̂j and x̂j leads to

µ̂j =
ω̂jv̂

T
j Mv̂j

v̂T
j Mûj

. (6.17)

We have used the notation µ̂j because for different choices of j on the right hand side one will
in general obtain different values of µ̂. If in practice one obtained very similar values, this would
confirm the initial assumption that the actual system has only one relaxation time. On the other
hand, if significantly different values are obtained it would indicate that the assumed model needs
to be extended. We show shortly that the pattern of variation of µ̂j can give some clues about the
true underlying model. If one wished to choose a single value of µ̂ to best represent a range of
values found by this procedure, one could consider several alternatives:

1. Simply select a value of j, say j = k ≤ m, to obtain µ̂. For this choice

µ̂ =
ω̂kv̂

T
k Mv̂k

v̂T
k Mûk

. (6.18)

How to select the value of k will be discussed in the next subsection.

2. Average the realizations of µ̂. For this choice

µ̂ =
1

mµ

mµ∑
j=1

ω̂jv̂
T
j Mv̂j

v̂T
j Mûj

. (6.19)

where mµ ≤ m are the number of terms to be retained.

3. Sum the numerator and denominator separately and take their ratio to obtain µ̂. For this
choice

µ̂ =

∑mµ

j=1 ω̂jv̂
T
j Mv̂j∑mµ

j=1 v̂T
j Mûj

. (6.20)

We can best illustrate via a numerical example.

6.3.2 Simulation Method

Numerical studies have been carried out using simulated systems identical to those used in Chapter
5. Figure 6.1 shows the model systems together with the numerical values used. For these param-
eter values the resulting undamped natural frequencies range from near zero to approximately 200
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Hz. The damping elements are associated with masses between the s-th and (s + l)-th (N = 30,
s = 8 and (s + l) = 17 are taken for the numerical calculations). For the system shown in Fig-
ure 6.1(a) the damping force depends only on the absolute motion of the individual masses. Such
damping will be described as ‘locally reacting’. For the system shown in Figure 6.1(b), by con-
trast, dissipative elements are connected between certain adjacent pairs of masses. In this case
the damping force depends on the relative motion of the two adjacent masses, and will be called
‘non-locally reacting’. In the previous chapter, a viscous damping matrix was calculated from the
complex modes and frequencies of these systems. Here we seek to identify the parameters of an
exponential damping model using the same modal data.

(a)

(b)

m

. . .

. . .

uk uk um
uk um uk um uk

um
ukum

ukum
ukuk

g(t)

g(t)

g(t)

N- th

N- th

um uk

u

Figure 6.1: Linear array of N spring-mass oscillators, N = 30, mu = 1 Kg, ku = 4× 103N/m.

The dissipative elements shown in Figure 6.1 are taken to be linear non-viscous dampers so
that the equations of motion are described by (5.16). Three damping models, two of which were
considered in 5, are used: one with an exponential kernel function as assumed in the model being
fitted, and two others with different functions to probe the limitations of the fitting procedure. They
are determined by three different forms of g(t) (defined in equation (6.3)):

• MODEL 1 (exponential):

g(1)(t) = µ1e
−µ1t (6.21)

• MODEL 2 (Gaussian):

g(2)(t) = 2

√
µ2

π
e−µ2t2 (6.22)
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• MODEL 3 (double exponential or GHM):

g(3)(t) =
β1µ3e

−µ3t + β2µ4e
−µ4t

β1 + β2

(6.23)

All the three damping models are normalized such that the damping functions have unit area when
integrated to infinity, i.e., ∫ ∞

0

g(j)(t) dt = 1. (6.24)

This will make them directly comparable with the viscous model, in which the corresponding
damping function would be a unit delta function, g(t) = δ(t), and the coefficient matrix C would
be the usual dissipation matrix. For each damping function a characteristic time constant can be
defined via the first moment of g(j)(t):

θ(j) =

∫ ∞

0

t g(j)(t) dt. (6.25)

For the three damping models considered here, evaluating this integral gives

θ(1) =
1

µ1

(6.26)

θ(2) =
1√
πµ2

(6.27)

θ(3) =
β1/µ3 + β2/µ4

β1 + β2

. (6.28)

Note that for viscous damping θ = 0. The characteristic time constant of a damping function gives
a convenient measure of ‘width’: if it is close to zero the damping behaviour will be near-viscous,
and vice versa. For comparability between the three damping models we take them all to have the
same time constant.

Complex natural frequencies and modes of the systems are calculated using equations (6.1)
and (6.2), then these are treated as if they were experimental data obtained from a modal testing
procedure. The procedures described above can be applied to identify the relaxation parameter
of an exponential damping model. We present results of the fitting procedure for both small and
large values of the characteristic time constant, expressed in non-dimensional form as given by
equation (5.20). When γ is small compared with unity the damping behaviour can be expected to
be essentially viscous, but when γ is of order unity or bigger non-viscous effects are likely to be
significant.

6.3.3 Numerical Results
Results for Small γ

We consider first γ = 0.02, so that damping models show near-viscous behaviour. Since the
viscous model is a special case of the exponential model we might expect good fit quality in this
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case. For the system shown in Figure 6.1(a) with locally reacting damping, Figure 6.2 shows the
values of γ̂ obtained from µ̂ (recall that γ̂ = 1

Tminµ̂
) for all j = 1, · · · , 30 for Gaussian damping

(model 2). In the same Figure the values of γ̂ corresponding to equations (6.19) and (6.20) using
mµ = 30 are also shown. Because the damping mechanism is near to viscous the fitted values of
γ̂ are quite small, and in fact agree well with the assumed γ = 0.02 for all values of j. To obtain
a single ‘best’ value any one of the three relationships in equations (6.18) – (6.20) could be used.
Similar features were observed (results not shown) when the fitting procedure was repeated for the
non-locally damped case shown in Figure 6.1(b).
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Figure 6.2: Values of γ̂ obtained from different µ̂ calculated using equations (6.18)–(6.20) for the
local case, damping model 2

Now we turn our attention to the systems with double exponential damping model (model 3).
It is supposed that the two exponential functions combine to give a value γ = 0.02. In this case
we consider β1 = 0.5, γ3 = 0.01 and β2 = 0.5, γ4 = 0.03. Values of γ̂ obtained for different
modes for the locally reacting case with this damping model is shown in Figure 6.3. In the same
figure we also show the values of γ̂ corresponding to equation (6.19) and (6.20). Again, as in the
case of damping model 2 discussed above, the fitted values of γ̂ are all very close to the correct
value γ = 0.02. The only difference from the previous case is that values now decrease slightly
with j rather than increasing. Similar features were observed (results not shown) when the fitting
procedure is extended to non-locally damped systems with damping model 3. We conclude that,
when the damping is near to viscous, regardless of the functional form or damping type, the fitting
procedure gives a good estimate of the damping time constant and that any one of the relationship
in equations (6.18) – (6.20) may be used to obtain the ‘best’ relaxation parameter.



104 Chapter 6. Identification of Non-viscous Damping

0 5 10 15 20 25 30
0.0198

0.0199

0.02

0.0201

Mode number

O
ri

gi
na

l a
nd

 fi
tte

d 
γ

Fitted γ for different modes              
Fitted using Eq. (6.19), γ

fit
= 0.019914

Fitted using Eq. (6.20), γ
fit

= 0.01984 

Original γ= 0.02                          

Figure 6.3: Values of γ̂ obtained from different µ̂ calculated using equations (6.18)–(6.20) for the
local case, damping model 3

Results for Larger γ

When γ is larger the three damping models depart more strongly from the viscous damping model
each in its own way. Also, model 1, which is used for fitting purpose, differ form the other two
damping models. We show typical results for the case γ = 0.5. When the fitting procedure is
run for damping model 1, the calculation correctly reproduces the assumed γ value for all modes
because the model being fitted is precisely the one assumed by the theory. This confirms the
accuracy of the computer coding, but nothing further is to be learnt from displaying the results.
Figure 6.4 shows the values of γ̂ obtained for each mode for damping model 2 applied to the
locally reacting system. The value of γ̂ now vary considerably with j. This indicate, of course,
that the assumption of a single kernel is not correct for this system. As will be discussed shortly,
the variation of γ̂ with j gives some clue as to the correct form of the kernel function. Estimates
of γ̂ obtained from equations (6.19) and (6.20) using mµ = 30 are also shown in Figure 6.4. Both
these estimates are higher than the value of γ used for simulation and also the estimate obtained
using equation (6.19) is higher than that obtained using equation (6.20). Observe that the value
of γ̂ obtained using equation (6.18) with k = 1 (marked by a *) is very close to the value of the
original γ used in the simulation. An explanation of this behaviour is given in Section 6.4. It is
shown there that under rather general circumstances, a value of γ̂ obtained from equation (6.18)
with k = 1 is likely to be a good estimate of the correct characteristic time constant defined via
the first moment as in equation (5.20). Results for the non-local case are shown in Figure 6.5. A
similar trend is seen to that in Figure 6.4. In this figure also we observe that the value of γ̂ obtained
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from equation (6.18) with k = 1 (marked by a *) is very close to the value of the original γ while
those obtained from equations (6.19) and (6.20) differ significantly from the original one. Also
observe that estimates of γ̂ obtained from the two former equations are higher than the simulated
value for both the local and nonlocal systems. However, unlike the case of Figure 6.4, here the
value of γ̂ obtained from equation (6.19) is lower than that obtained using equation (6.20).
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Figure 6.4: Values of γ̂ obtained from different µ̂ calculated using equations (6.18)–(6.20) for the
local case, damping model 2

Now consider damping model 3, consisting of two exponential functions. For the numerical
values we take: β1 = 0.5, γ3 = 0.2 and β2 = 0.5, γ4 = 0.8. This results an equivalent γ for the
model of 0.5, the same as for damping model 2 discussed above. Figure 6.6 shows the values of γ̂

obtained for each mode for this damping model applied to the locally reacting system. This time
γ̂ decreases with j, in contrast to the Gaussian case. The range of variation is less dramatic, but
still significant. Observe that, as with damping model 2, the value of γ̂ obtained from equation
(6.18) with k = 1 (marked by a *) is very close to the value of the original γ used in the simulation
while that obtained from equations (6.19) and (6.20) differ significantly from the original one.
However, unlike the case of damping model 2, here the estimates of γ̂ obtained from the two former
equations are lower than the simulated value. Behaviour analogous to this was also observed when
the identification procedure is repeated for the nonlocally damped system.

6.4 Selecting the Value of µ̂

From equations (6.18) – (6.20) it is clear that different choices of j yield different values of µ̂,
which contradicts our initial assumption that the system has only one relaxation time. Here it
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Figure 6.6: Values of γ̂ obtained from different µ̂ calculated using equations (6.18)–(6.20) for the
local case, damping model 3

will be shown that for systems with normalized damping functions similar to equations (6.21) and
(6.22) the best estimate of µ̂ is given by equation (6.18) with k = 1.

Since the damping functions are normalized to have unit area when integrated to infinity they
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can be written in the form

g(t) = β f(t); where β =
1∫∞

0
f(t)dt

. (6.29)

The characteristic time constant is obtained from equation (6.25) as

θ =

∫∞
0

t f(t)dt∫∞
0

f(t)dt
. (6.30)

It is useful to express this result in the frequency domain. From the definition of the Fourier
transform

F (ω) =

∫ ∞

0

f(t)e−iωtdt, (6.31)

differentiating with respect to ω we have

F ′(ω) =
dF (ω)

dω
=

∫ ∞

0

−itf(t)e−iωtdt. (6.32)

From equations (6.31) and (6.32) it is clear that

F (0) =

∫ ∞

0

f(t)dt

and iF ′(0) =

∫ ∞

0

t f(t)dt

(6.33)

so that from equation (6.30) the characteristic time constant may be represented as

θ =
iF ′(0)

F (0)
. (6.34)

Substituting g(t) from (6.29) and taking the Fourier transform of equation (6.3) one obtains

G(ω) = C βF (ω) = C β [FR(ω) + iFI(ω)] (6.35)

where

F (ω) = FR(ω) + iFI(ω) (6.36)

where FR and FI are respectively the real and imaginary parts of F . Using this G(ω) in the
approximate expression for the complex modes in equation (6.2) and separating real and imaginary
parts we have

uj = <(zj) ≈ xj − ωjβFI(ωj)
N∑

k=1
k 6=j

C ′
kj

(ω2
j − ω2

k)
xk (6.37)

and

vj = =(zj) ≈ ωjβFR(ωj)
m∑

k=1
k 6=j

C ′
kj

(ω2
j − ω2

k)
xk. (6.38)
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From the above two equations it is easy to see that

uj = xj − FI(ωj)

FR(ωj)
vj (6.39)

It has been mentioned that v̂j is M-orthogonal to its corresponding undamped mode, i.e., v̂T
j Mx̂j =

0. Using this relationship in equation (6.39) we have

vT
j Muj = −FI(ωj)

FR(ωj)
vT

j Mvj or
vT

j Muj

vT
j Mvj

= −FI(ωj)

FR(ωj)
(6.40)

From this equation the expression for µ̂ may be rewritten as

µ̂ = − ω̂jFR(ω̂j)

FI(ω̂j)
. (6.41)

For the exponential function we have shown that the characteristic time constant θ = 1/µ.
Thus using equation (6.34) one has

µ =
1

θ
=
−iF (0)

F ′(0)
. (6.42)

This is an exact relationship. We now show why equation (6.41) is a good approximation to
equation (6.42) when ωj is small. Since f(t) is a real function F (ω) can be expanded as a real
polynomial in (iω). Thus

F (ω) = F (0) + (iω)F (1) +
(iω)2

2!
F (2) + · · · (6.43)

where all F (k) are real. From this expansion we obtain

F (0) = F (0)

F ′(0) = iF (1)
(6.44)

Now consider the case when ω is small. For this case the higher order terms in series (6.43) can be
neglected to obtain

F (ω) ≈ F (0) + iωF (1). (6.45)

Comparing above with equation (6.36) and in view of (6.44) one has

FR(ω) ≈ F (0) = F (0)

and FI(ω) ≈ ωF (1) = −iωF ′(0).
(6.46)

Substituting in equation (6.42) we obtain

µ ≈ −ωFR(ω)

FI(ω)
when ω → 0. (6.47)

This result is immediately comparable with the expression of µ̂ in (6.41). Observe that ω̂j is closest
to zero when j = 1. For this reason the best estimate of µ̂ can be obtained by choosing j = 1 in
(6.41). From equation (6.40) this in turn implies that

µ̂ ≈ − ω̂1FR(ω̂1)

FI(ω̂1)
=

ω̂1v̂
T
1 Mv̂1

v̂T
1 Mû1

. (6.48)
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6.4.1 Discussion

It should be noted that for all the cases in Figures 6.2, 6.4, 6.5 and Figures 6.3, 6.6 the values of
γ̂ evaluated for each mode show opposite trend: for system with damping model 2 the values of γ̂

increases with increase of the mode number j whereas for system damping model 2 the values of γ̂

decreases with increase of the mode number. This behaviour can give us further insight regarding
the underlying damping function. Recall that after obtaining the complex modes and frequencies
and having the mass matrix it is possible to obtain γ̂ for different modes:

γ̂j =
1

Tminµ̂j

(6.49)

where µ̂j is given by equation (6.17). Because by equation (5.20) we know that γ̂j is proportional
to θ̂j it is sufficient if we understand the behaviour of the fitted θ̂j . Using the expression of µ̂j in
equation (6.41) one can express θ̂j as

θ̂j =
1

µ̂j

= − FI(ω̂j)

ω̂jFR(ω̂j)
(6.50)

where FR and FI are respectively the real and imaginary parts of F , the Fourier transform of the
(non-normalized) damping function f(t) as defined in equation (6.29). Multiplying the numerator
and denominator of equation (6.50) by the normalization constant β, the fitted θ̂j can be expressed
in a more convenient form as

θ̂j = − GI(ω̂j)

ω̂jGR(ω̂j)
. (6.51)

Here G(ω), the Fourier transform of the normalized damping function g(t), is defined as

G(ω) =

∫ ∞

0

g(t)e−iωtdt. (6.52)

Expanding e−iωt in the above expression gives

G(ω) =

∫ ∞

0

g(t)

[
1− iωt− ω2t2

2!
+

iω3t3

3!
− · · ·

]
dt

=M0 − iωM1 − ω2

2
M2 +

iω3

6
M3 − · · ·

(6.53)

where Mk, the k-th moment of the damping function g(t), is defined as

Mk =

∫ ∞

0

tkg(t)dt; k = 0, 1, 2, · · · (6.54)

For the three damping functions considered here in equations (6.21) – (6.22) the exact expressions
for the k-th moment may be obtained as follows:

• MODEL 1:
Mk = k! µ−k

1 ; k = 0, 1, 2, · · · (6.55)
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• MODEL 2:

M2k =
(2k − 1)!!

2µk
2

; M2k+1 =
k!√
π

µ
−(k+1/2)
2 ; k = 0, 1, 2, · · · (6.56)

• MODEL 3:

Mk =
β1 k! µ−k

3 + β2 k! µ−k
4

β1 + β2

; k = 0, 1, 2, · · · (6.57)

Clearly, for all the damping functions Mk > 0∀k. In Figure 6.7 the first 6 moments of the three
damping functions considered here are plotted when γ = 0.5. It is clear that although all Mk > 0

their values approach zero as k increases. This ensures that omission of the higher order terms
in equation (6.53) do not introduce much error for low values of ω. Now separating real and
imaginary parts of G(ω) in equation (6.53) one has

GR(ω) = < [G(ω)] ≈M0 − ω2

2
M2

GI(ω) = = [G(ω)] ≈− ωM1 +
ω3

6
M3.

(6.58)

Using these relationships, from equation (6.51) the value of θ̂ at any frequency can be obtained as
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Figure 6.7: First six moments of the three damping functions for γ = 0.5

θ̂(ω) ≈ −
−ωM1 +

ω3

6
M3

ω

(
M0 − ω2

2
M2

) =
M1 − ω2

6
M3

M0 − ω2

2
M2

. (6.59)
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From this we can further deduce

θ̂(ω) ≈

{
M1 − ω2

6
M3

}

M0

{
1 +

ω2

2

(M2

M0

)
+

ω4

4

(M2

M0

)2

+ · · ·
}

(6.60)

Since ω is small and M0 > M2, higher order terms arising in this expression will be small. Thus,
neglecting all the terms associated with higher power than ω2 we obtain

θ̂(ω) ≈

{
M1 − ω2

6
M3

}

M0

{
1 +

ω2

2

M2

M0

}

≈
M1 + ω2

{
1

2

M1M2

M0

− M3

6

}

M0

(6.61)

The variation of the fitted θj in the low frequency region can now be deduced. The curve of fitted
θj will increase, as for the system with damping model 2 shown in Figures 6.2, 6.4 and 6.5, if

M1M2

M0

− M3

3
> 0; since ω,M0 > 0

or 3
M2

M3

− M0

M1

> 0.

(6.62)

Currently the curve of fitted θj will decrease if the above quantity is negative. This analysis gives
some insight into the nature of the underlying damping function. Using the expressions for the mo-
ments given by equations (6.55) – (6.57) it may be verified that the damping functions considered
here always satisfy this condition.

6.5 Fitting of the Coefficient Matrix

6.5.1 Theory

Once the relaxation parameter of the damping function is estimated our next step is to obtain
the coefficient matrix C associated with the damping function as shown in equation (6.6). After
obtaining µ̂, from the imaginary part of equation (6.8) the diagonal entries of C′ can be obtained
as

C ′
jj = 2=(λ̂j)

(µ̂2 + ω̂2
j )

µ̂2
. (6.63)

This C ′
jj and µ̂ can be substituted in equation (6.8) and subsequently an improved estimate value

of ω̂j may be obtained from (6.11) by

ω̂
(new)
j = ω̂j +

C ′
jj

2

µ̂ω̂j

µ̂2 + ω̂2
j

. (6.64)

If all the ω̂
(new)
j are sufficiently close to ω̂

(0)
j then we take the values of ω̂

(new)
j as the estimated

values, i.e., ω̂j = ω̂
(new)
j . Otherwise the process can be repeated by substituting ω̂

(new)
j in place of
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ω̂j in one of the equations (6.18) – (6.20) to obtain µ̂, and subsequently obtaining a new set of
ω̂j from (6.64). This iterative procedure may be continued until the differences between all new
ω̂j and old ω̂j become sufficiently small. We select the final values of ω̂j and µ̂ as our estimated
values.

Now µ̂ can be substituted in equation (6.15) to obtain an estimate of the undamped modes as

x̂j = ûj − ω̂j

µ̂
v̂j. (6.65)

After obtaining x̂j in this way from equation (6.13), the constants B̃kj can be derived using
Galerkin error minimization as described in Section 5.3. Denoting B̃ ∈ Rm×m as the matrix
of unknown B̃kj one obtains

B̃ =
[
X̂T X̂

]−1

X̂T V̂. (6.66)

where

X̂ = [x̂1, x̂2, · · · x̂m] ∈ RN×m (6.67)

is the matrix of undamped modes. Now the off-diagonal terms C ′
kj can be obtained from

C ′
kj =

(ω̂2
j − ω̂2

k)

ω̂j

(µ̂2 + ω̂2
j )

µ̂2
B̃kj ∀ k, j = 1, · · ·m; k 6= j (6.68)

The diagonal entries of C′ have already been obtained in (6.63). Recall that C ′
kj are constant

coefficients of the damping matrix in the modal coordinates, with associated time function e−µ̂t.
The coefficients in the original coordinates can be calculated using the transformation

C =

[(
X̂T X̂

)−1

X̂T

]T

C′
[(

XT X̂
)−1

X̂T

]
∈ Rm×m. (6.69)

This coefficient matrix together with the relaxation parameter completely defines the fitted damp-
ing model for the structure. This fitting procedure has made use only of the complex natural fre-
quencies, mode shapes and mass matrix to identify the best exponential damping model associated
with the measurements.

It is easy to check that when µ̂ is large, i.e., when the damping mechanism is near to viscous,
this procedure reduces exactly to the procedure described in the earlier chapter 5 for identification
of a viscous damping model. Thus, this method is a generalization of identification of viscous
damping properties to the more general linear damping case described by an exponential model
with a single relaxation time constant. One limitation of this method compared to the identification
method of viscous damping matrix is that an estimate of the mass matrix is required. The extra
information from the mass matrix also enables us to detect whether the correct damping model of
the system is viscous/exponential or not.
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6.5.2 Summary of the Identification Method

In summary, the procedure can be described by the following steps:

1. Measure a set of transfer functions Hij(ω) at a set of N grid points. Fix the number of
modes to be retained in the study, say m. Determine the complex natural frequencies λ̂j and
complex mode shapes ẑj from the transfer functions, for all j = 1, · · ·m. Denote by Ẑ =

[ẑ1, ẑ2, · · · ẑm] ∈ CN×m the complex mode shape matrix. Set Û = <
[
Ẑ

]
= [û1, û2, · · · ûm]

and V̂ = =
[
Ẑ

]
= [v1, v̂2, · · · v̂m].

2. Obtain the first guess (i.e., r = 0) of the ‘undamped natural frequencies’ as ω̂
(r)
j = <(λ̂j).

3. Estimate the relaxation parameter µ̂(r) =
ω̂

(r)
1 v̂T

1 Mv̂1

v̂T
1 Mû1

(or using a different estimate of µ̂

given by equations (6.19) or (6.20)).

4. Calculate the diagonal terms of the C′ matrix as C ′(r)

jj = 2=(λ̂j)
(µ̂(r)2 + ω̂

(r)2

j )

µ̂(r)2
for all j.

5. Obtain new values of the undamped natural frequencies ω̂
(r+1)
j = ω̂

(r)
j +

C ′(r)

jj

2

µ̂(r)ω̂
(r)
j

(µ̂(r)2 + ω̂
(r)2

j )
.

6. Select a value of ε, say ε = 0.001. If |ω̂(r+1)
j − ω̂

(r)
j | < ε∀j then ω̂j = ω̂

(r+1)
j , C ′

jj = C ′(r)

jj

and µ̂ = µ̂(r) and move to the next step. Otherwise increase r, set the final values of ω̂j as
the current values, i.e., ω̂

(r)
j = ω̂

(r+1)
j , and go back to step 3.

7. For all j = 1, · · · ,m calculate the ‘undamped mode shapes’ x̂j =

{
ûj − ω̂j

µ̂
v̂j

}
. Set

X̂ = [x̂1, x̂2, · · · x̂m] ∈ RN×m.

8. Evaluate the matrix B̃ =
[
X̂T X̂

]−1

X̂T V̂.

9. From the B̃ matrix get C ′
kj =

(ω̂2
j − ω̂2

k)

ω̂j

(µ̂2 + ω̂2
j )

µ̂2
B̃kj for k, j = 1, 2 · · ·m; k 6= j.

10. Use C =

[(
X̂TX

)−1

X̂T

]T

C′
[(

X̂T X̂
)−1

X̂T

]
to get the coefficient matrix in physical

coordinates.

It may be observed that even if the measured transfer functions are reciprocal, from this procedure
there is no reason why the fitted coefficient matrix C will always be symmetric. If we indeed detect
a non-symmetric C then it may be guessed that the physical law behind the damping mechanism
in the structure cannot be described by an exponential model. This possibility will be illustrated
by considering numerical examples.
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6.5.3 Numerical Results
Results for Small γ

Consider first γ = 0.02 so that all the damping models show near-viscous behaviour. For the
system shown in Figure 6.1(a), with locally reacting damping, Figure 6.8 shows the fitted coeffi-
cient matrix of the exponential model for damping model 2, calculated using the complete set of
30 modes. The fitted matrix identifies the damping in the system very well. Equation (6.18) with
k = 1 has been used to obtain the relaxation parameter. As has seen in Figure 6.2, the fitted relax-
ation parameter γ̂ = 0.02 so that the fitted characteristic time constant also agrees exactly with the
original one, even though the underlying model was Gaussian rather than exponential. The high
portion of the plot corresponds exactly to the spatial location of the dampers. The off-diagonal
terms of the identified damping matrix are very small compared to the diagonal terms, indicating
correctly that the damping is locally reacting.
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Figure 6.8: Fitted coefficient matrix of exponential model for the local case, γ = 0.02, damping
model 2

Now consider the system shown in Figure 6.1(b) with non-locally reacting damping. Figure
6.9 shows the fitted coefficient matrix of an exponential model for damping model 2, using the full
set of modes. Again the high portion of the plot corresponds to the spatial location of the dampers.
Now the negative off-diagonal terms in the identified damping matrix indicate that the damping
is non-locally reacting. We conclude that in both cases the proposed method extracts accurate
information from the complex frequencies and modes. In practice, one might expect to be able to
use only the first few modes of the system to identify the damping matrix. The proposed method
can be applied using a smaller number of modes, and it is found that the result behaves in a very
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similar way to the case of identification of a viscous damping matrix as discussed in Chapter 5 —
the spatial resolution of the identified coefficient matrix gradually deteriorates as the number of
modes used to fit the damping matrix is reduced, but still the identified coefficient matrix shows a
reasonable approximation to the true behaviour.
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Figure 6.9: Fitted coefficient matrix of exponential model for the non-local case, γ = 0.02, damp-
ing model 2

When the fitting procedure is repeated using other damping models with a similarly short char-
acteristic time constant, the result are very similar. The detailed difference in their functional
behaviour does not influence the results significantly. It may be observed that the results obtained
here are quite similar to those obtained by fitting a viscous damping model for the corresponding
case discussed in Section 5.4.1. In summary, we can say that when the time constant for a damping
model is small the proposed identification method seems to work well regardless of the functional
form of the damping mechanism. The spatial location of damping is revealed clearly and the as-
sociated relaxation parameter is accurately estimated whether damping is locally or non-locally
reacting. Modal truncation blurs the fitted coefficient matrix, but does not degrade the estimate of
the relaxation parameter and overall the identification process remains valid.

Results for Larger γ

When γ is larger the two non-exponential damping models depart from the exponential damping
model, each in its own way. For the value γ = 0.5, Figure 5.7 shows the result of fitting a vis-
cous damping matrix, using the procedure described in Chapter 5, for damping model 1 (equation
(6.21)) with locally-reacting damping and the full set of 30 modes. Note that although we have
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started with a locally reacting damping model, which means the true coefficient matrix is non-zero
only along the diagonal, non-zero values in the off-diagonal terms show that the fitted viscous
damping is, in a sense, not locally reacting. Figure 6.10 shows the corresponding result of fitting
the exponential model for this problem. This result clearly demonstrates the improvement of fit-
ting over the result in Figure 5.7. Since the damping model is ‘identified’ correctly in this case,
the correct value of the relaxation parameter is obtained, and the coefficient matrix corresponds
to the exact coefficient matrix for the problem. Thus, even if the characteristic time constant of
the damping mechanism present in a system is large, a correctly identified damping model can
represent the true damping behaviour.
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Figure 6.10: Fitted coefficient matrix of exponential model for the local case, γ = 0.5, damping
model 1

Figure 6.11 shows the fitted coefficient matrix of the exponential function similar to Figure 6.10
but with damping model 2 (equation (6.22)). The fitted matrix has some negative off-diagonal val-
ues which wrongly gives the impression that the damping type is non-local. For this result equation
(6.18) with k = 1 has been used to estimate the relaxation parameter. Figure 6.12 compares the
original damping time function (Gaussian) with the fitted exponential function. It may be observed
that although the fitted coefficient matrix does not match the original one very accurately the time
functions agree with reasonable accuracy. Since γ̂ = 0.4951 the characteristic time constant of the
fitted exponential model is surprisingly close to the exact γ of the simulated model. This remains
true with even larger values of the characteristic time constant for systems with damping model 2.

The identification results show somewhat different behaviour for systems with damping model
3. Figure 6.13 shows the fitted coefficient matrix of the exponential function with γ = 0.5 for
damping model 3 with two exponential functions as considered in subsection 6.3.3. Compared



6.5. Fitting of the Coefficient Matrix 117

0
5

10
15

20
25

30

0

5
10

15

20
25

30
−1

0

1

2

3

4

5

6

7

8

9

k−th DOF
j−th DOF

F
itt

ed
 c

oe
ffi

ci
en

t m
at

rix
 C kj

Figure 6.11: Fitted coefficient matrix of exponential model for the local case, γ = 0.5, damping
model 2
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Figure 6.12: Original and fitted damping time function for the local case with damping model 2

to the case of damping model 2 (Figure 6.11), the fitted coefficient matrix is much closer to the
original coefficient matrix used for simulation. However, we note that for the fitted exponential
function γ̂ = 0.4834, less close to the correct value compared to that with damping model 2.
Explanation of this fact lies in values of γ̂j shown in Figures 6.5 and 6.6 for damping model 2 and
3 respectively. For damping model 2 variation of γ̂j is much more compared to that for damping
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model 3. Thus the fitted (exponential) damping model is ‘closer’ to model 3 compared to model 2.
This is expected because γ̂j always lies between extremum of all the γ used in simulation.
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Figure 6.13: Fitted coefficient matrix of exponential model for the local case, γ = 0.5, damping
model 3

In Chapter 5 it was shown that the features of the fitted viscous model were quite similar in the
case of non-viscous damping models 1 and 2. Now, however, the features of fitting the exponential
model with damping model 2 (Figure 6.11) are clearly different from those with model 1 (Figure
6.10) and model 3 (Figure 6.13). This is due to the fact that a viscous damping model was incorrect
for both model 1 and 2, whereas when fitting the exponential model, it is correct for damping model
1 and close for damping model 3. For damping model 2, since the original damping function is
Gaussian while the fitted function is exponential, the coefficient matrix does not correspond to
the exact coefficient matrix of the problem. For damping model 3, since the fitted exponential
function is a reasonable approximation of the original multiple exponential function, the coefficient
matrix does not differ from the original function. From these results we conclude that when the
characteristic time constant of a damping model is large an incorrect damping model (no matter
whether it is viscous or non-viscous) may not accurately indicate the actual damping behaviour of
a structure.

Now we turn our attention to the non-local case shown in Figure 6.1(b). As has just been shown
with locally-reacting damping, the proposed method can identify the exact coefficient matrix and
damping function for the system with damping model 1 because the fitted model is the same as
the original model. Figure 6.14 shows the fitted coefficient matrix for damping model 2, using the
full set of 30 modes. For these results equation (6.18) with k = 1 has been used to calculate γ̂ =

0.5033. Thus although the fitted coefficient matrix does not match very well with the original one,
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we find once again that the value of the characteristic time constant is quite accurately predicted.
For damping model 3 it was observed (results not shown) that, as in the locally-reacting case, the
identified coefficient matrix is very close to the original one.
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Figure 6.14: Fitted coefficient matrix of exponential model for the non-local case, γ = 0.5, damp-
ing model 2

It might be thought that a useful check on the accuracy of the fitting method could be made
by comparing the ‘measured’ and reconstructed transfer functions. However, little information
is gained from such a comparison. The reason is that, for both viscous and non-viscous fitting
procedures, the poles and corresponding residues of all transfer functions are fitted correctly. It
follows from Liouville’s theorem that the transfer functions are always well reproduced. This
demonstrates that there is a fundamental ambiguity in damping identification: two different damp-
ing models (eg., the viscous model and the exponential model) with different spatial distributions
and different sets of parameters can reproduce accurately the full set of transfer functions of a
system with an entirely different damping model (eg., the Gaussian model) with different spatial
distributions and parameters. This in turn implies that just by measuring the transfer functions it is

not possible to identify uniquely the governing damping mechanism. However, it should be noted
that in cases like Figures 6.11, 6.14 etc., the fitted coefficient matrix is not symmetric. This is a
non-physical result, which can be regarded as evidence that the true damping behaviour is not in
fact described by an exponential function. In Chapter 5 similar features were also observed while
fitting a viscous damping matrix.
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6.6 Conclusions

In this chapter a method has been proposed to identify a non-proportional non-viscous damping
model in vibrating systems. It is assumed that damping is light so that the first-order perturbation
method is applicable. The method is simple, direct, and compatible with conventional modal
testing procedures. The complex modes and natural frequencies are used together with the system
mass matrix. The method does not require the full set of modal data. The damping behaviour is
assumed to be described by an exponential relaxation function, and the relaxation time constant
is found as part of the fitting procedure. Identification of the familiar viscous damping model is a
special case of the general method proposed here. The validity of the proposed method has been
explored by applying it to simulated data from a simple test problem, in which a linear array of
spring-mass oscillators is damped by non-viscous elements over part of its length.

Numerical experiments have been carried out with a wide range of parameter values and dif-
ferent damping models. The main features of the results have been illustrated by two particular
damping models and representative parameter values. It has been shown that the method generally
predicts the spatial location of the damping with good accuracy, and also gives a good indication of
whether the damping is locally-reacting or not. In general, the relaxation time constant was fitted
well, even when the coefficient matrix was less accurate. The transfer functions obtained from
the fitted exponential damping model agree well with the exact transfer functions of the simulated
system. Reciprocity of the transfer functions is preserved within an acceptable accuracy, although
in some cases the fitted coefficient matrix is not symmetric, indicating that the true damping model
differs from the assumed exponential model.

When the time constant is short compared with the periods of all modes retained in the analy-
sis, the damping is close to viscous and the fitting procedure gives a physically-sensible symmetric
coefficient matrix and an accurate value of the relaxation parameter. When the time constant is
larger, though, the memory of the damping function influences the detailed behaviour. If the iden-
tified model matches the true model then the fitting procedure gives a correct physical description
of the damping. When the models are different, the poles and residues of the transfer functions
are still fitted accurately with a model of the form considered, but the underlying different func-
tional behaviour manifests itself in a non-symmetrical coefficient matrix and significant variation
of fitted relaxation parameter with mode number. A correct physical description of the damping
mechanism can be obtained only if a correct model is selected and fitted.

From equation (6.2) we can deduce that, within the approximation of small damping, each
frequency function G′

kj(ω) can be observed at only two frequencies, ωj and ωk. This fact imposes
a fundamental restriction on identification of an exact damping function using this approach. When
the fitted coefficient matrix turns out to be non-symmetric, this indicates that it was not possible to
fit the assumed function through both ‘measured’ frequency points, and two different coefficients
were needed. To correct this problem it would be necessary to fit a different damping model,
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able to pass through both measured points while retaining symmetric coefficients. The function
cannot be uniquely determined by this requirement, of course. There can be two possible ways to
tackle this problem. One can ‘invent’ different physically plausible damping models and try to fit
their parameters using the approach outlined in this chapter and see which model fits the measured
data most convincingly. Alternatively, one might use the viscous or exponential model and put
constraints on the coefficients such that they yield symmetric coefficient damping matrix. This
approach is explored in the next chapter.
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Chapter 7

Symmetry Preserving Methods for
Damping Identification

7.1 Introduction

In the preceding two chapters (Chapter 5 and Chapter 6) methods were proposed to identify viscous
and non-viscous damping models from modal data. Some general conclusions emerging from these
studies are

1. Whenever the fitted damping model (whether viscous or non-viscous) is not close to the
original damping model of the system, the identified coefficient matrix becomes asymmetric.

2. Once the poles and residues of transfer functions are obtained, several damping models can
be fitted. In other words, more than one damping model can reproduce some measured set
of transfer functions exactly.

An asymmetric fitted damping matrix is a non-physical result because the original system is recip-
rocal. Thus, result 1 above may be regarded as an indication of the fact that the selected model is
incorrect. Whereas, result 2 indicates that if one’s interest is reconstructing the transfer functions
within a given frequency band, then it does not matter even if a wrong damping model is assumed.
This is the justification of widespread use of the viscous damping model. Motivated by these facts,
in this chapter we consider fitting of viscous and exponential damping models so that reciprocity
of the system is preserved. Unless the identified damping matrix is symmetric, the model may
have poor predictive power for changes to the system.

Like the previous two chapters, analysis in this chapter is restricted to linear systems with
light damping. Based on first-order perturbation results, a method for identification of a symmetry
preserving viscous damping model using complex modes and natural frequencies is outlined in
Section 7.2. In Section 7.3 this method is extended to identify the coefficients of an exponential
damping model with a single relaxation parameter. Applications of these methods are illustrated
by considering a few numerical examples. Finally Section 7.4 summarizes the main findings of
this chapter.

123
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7.2 Identification of Viscous Damping Matrix

7.2.1 Theory

In Chapter 5 we have proposed a method to identify a viscous damping matrix from measured
complex frequencies and modes using a Galerkin type error minimization approach. This method
does not guarantee symmetry of the identified damping matrix. In a numerical simulation study it
was observed that in some cases the identified viscous damping matrix becomes asymmetric. This
is a non-physical result since the viscous damping matrix by its definition (through the Rayleighs
dissipation function) is symmetric. For this reason we now develop a method so that the identi-
fied damping matrix is always symmetric. A Lagrange multiplier based constrained optimization
method is adopted for this purpose.

Consider λ̂j and ẑj for all j = 1, 2, · · ·m to be the measured complex natural frequencies and
modes. Here ẑj ∈ CN where N denotes the number of measurement points on the structure and
the number of modes considered in the study is m. In general m 6= N , usually N ≥ m. Denote
the complex modal matrix

Ẑ = [ẑ1, ẑ2, · · · , ẑm] ∈ CN×m. (7.1)

If the measured complex mode shapes are consistent with a viscous damping model then from
equation (5.1) the real part of each complex natural frequency gives the undamped natural fre-
quency:

ω̂j = <
(
λ̂j

)
. (7.2)

Similarly from equation (5.2), the real part of the complex modes immediately gives the corre-
sponding undamped modes and the usual mass orthogonality relationship will be automatically
satisfied. Write

Ẑ = Û + iV̂ (7.3)

where

Û = [û1, û2, · · · , ûm] ∈ RN×m

and V̂ = [v̂1, v̂2, · · · , v̂m] ∈ RN×m
(7.4)

are respectively the matrices of real and imaginary parts of the measured complex modes. Now in
view of equation (5.2), expand the imaginary part of ẑj as a linear combination of ûj:

v̂j =
m∑

k=1

Bkjûk; where Bkj =
ω̂jC

′
kj

ω̂2
j − ω̂2

k

. (7.5)

The constants Bkj should be calculated such that the error in representing v̂j by the above sum is
minimized while the resulting damping matrix remains symmetric. Note that in the above sum we
have included the k = j term although in the original sum in equation (5.2) this term was absent.
This is done to simplify the mathematical formulation to be followed, and has no effect on the
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result. Our interest lies in calculating C ′
kj from B′

kj through the relationship given by the second
part of the equation (7.5), and indeed for k = j we would obtain C ′

kj = 0. The diagonal terms C ′
jj

are instead obtained from the imaginary part of the complex natural frequencies:

C ′
jj = 2=(λ̂j). (7.6)

For symmetry of the identified damping matrix C, it is required that C′ is symmetric, that is

C ′
kj = C ′

jk. (7.7)

Using the relationship given by the second part of the equation (7.5) the above condition reads

Bkj

ω̂2
j − ω̂2

k

ω̂j

= Bjk

ω̂2
k − ω̂2

j

ω̂k

. (7.8)

Simplification of equation (7.8) yields

Bkj

ω̂j

= −Bjk

ω̂k

or Bkjω̂k + Bjkω̂j = 0; ∀k 6= j. (7.9)

For further calculations is it convenient to cast the above set of equations in a matrix form. Consider
B ∈ Rm×m to be the matrix of unknown constants Bkj and define

Ω̂ = diag(ω̂1, ω̂2, · · · , ω̂m) ∈ Rm×m (7.10)

to be the diagonal matrix of the measured undamped natural frequencies. From equation (7.9) for
all k, j = 1, 2, · · · ,m (including k = j for mathematical convenience) we have

Ω̂B + BT Ω̂ = 0 (7.11)

This equation must be satisfied by the matrix B in order to make the identified viscous damping
matrix C symmetric. The error from representing v̂j by the series sum (7.5) can be expressed as

εj = v̂j −
m∑

k=1

Bkjûk ∈ RN (7.12)

We need to minimize the above error subject to the constraints given by equation (7.9). The
standard inner product norm of εj is selected to minimize the error. Considering the Lagrange
multipliers φkj the objective function may be constructed as

χ2 =
m∑

j=1

εT
j εj +

m∑
j=1

m∑

k=1

(Bkjω̂k + Bjkω̂j) φkj (7.13)

To obtain Bjk by the error minimization approach set

∂χ2

∂Brs

= 0; ∀r, s = 1, · · · , m. (7.14)
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Substituting εj from equation (7.12) one has

− 2ûT
r

(
v̂s −

m∑

k=1

Bksûk

)
+ [φrs + φsr] ω̂r = 0

or
m∑

k=1

(
ûT

r ûk

)
Bks +

1

2
[ω̂rφrs + ω̂rφsr] = ûT

r v̂s; ∀r, s = 1, · · · ,m.

(7.15)

The above set of equations can be represented in a matrix form as

WB +
1

2

[
Ω̂Φ + Ω̂ΦT

]
= D (7.16)

where

W =ÛT Û ∈ Rm×m

D =ÛT V̂ ∈ Rm×m
(7.17)

and Φ ∈ Rm×m is the matrix of φrs. Note that both B and Φ are unknown, so there are in total 2m2

unknowns. Equation (7.16) together with the symmetry condition (7.11) provides 2m2 equations.
Thus both B and Φ can be solved exactly provided their coefficient matrix is not singular or badly
scaled. We follow the following procedure to obtain B and Φ.

Because in this study Φ is not a quantity of interest, we try to eliminate it. Recalling that Ω̂ is
a diagonal matrix taking transpose of (7.16) one has

BT WT +
1

2

[
ΦT Ω̂ + ΦΩ̂

]
= DT (7.18)

Now postmultiplying equation (7.16) by Ω̂ and premultiplying equation (7.18) by Ω̂ and subtract-
ing one has

WBΩ̂ +
1

2
Ω̂ΦΩ̂ +

1

2
Ω̂ΦT Ω̂− Ω̂BT WT − 1

2
Ω̂ΦT Ω̂− 1

2
Ω̂ΦΩ̂ = DΩ̂− Ω̂DT

or WBΩ̂− Ω̂BT WT = DΩ̂− Ω̂DT .
(7.19)

This way Φ has been eliminated. However, note that since the above is a rank deficient system of
equations it cannot be used to obtain B and here we need to use the symmetry condition (7.11).
Rearranging equation (7.11) we have

BT = −Ω̂BΩ̂
−1

(7.20)

Substituting BT in equation (7.19) and premultiplying by Ω̂
−1

results in

Ω̂
−1

WBΩ̂ + Ω̂BΩ̂
−1

WT = Ω̂
−1

DΩ̂− DT . (7.21)

Observe from equation (7.17) that W is a symmetric matrix. Now denote

Q =Ω̂
−1

W = Ω̂
−1

WT

P =Ω̂
−1

DΩ̂− DT .
(7.22)
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Using the above definitions, equation (7.21) reads

QBΩ̂ + Ω̂BQ = P. (7.23)

This matrix equation represents a set of m2 equations and can be solved to obtain B (m2 unknowns)
uniquely. To ease the solution procedure let us define the operation vec: Rm×n → Rmn which
transforms a matrix to a long vector formed by stacking the columns of the matrix in a sequence
one below other. It is known that (see Zhou et al., 1995, page 25) for any three matrices A ∈
Ck×m, B ∈ Cm×n, and C ∈ Cn×l, we have vec (ABC) =

(
CT ⊗ A

)
vec(B) where ⊗ denotes

the Kronecker product. Using this relationship and taking vec of both side of equation (7.23) one
obtains

(
Ω̂⊗Q

)
vec(B) +

(
QT ⊗ Ω̂

)
vec (B) = vec (P)

or [R] vec (B) = vec (P)
(7.24)

where

R =
(
Ω̂⊗Q

)
+

(
QT ⊗ Ω̂

)
∈ Rm2×m2

. (7.25)

Since R is square matrix equation (7.24) can be solved to obtain

vec (B) = [R]−1 vec (P) . (7.26)

From vec (B) the matrix B can be easily obtained by the inverse operation. Obtaining B in such
a way will always make the identified damping matrix symmetric. The coefficients of the modal
damping matrix can be derived from

C ′
kj =

(ω̂2
j − ω̂2

k)Bkj

ω̂j

; k 6= j (7.27)

Once C′ is obtained, the damping matrix in the original coordinates can be obtained from
equation (5.14). In summary, this procedure can be described by the following steps:

1. Measure a set of transfer functions Hij(ω) at a set of N grid points. Fix the number of
modes to be retained in the study, say m. Determine the complex natural frequencies λ̂j

and complex mode shapes ẑj from the transfer function, for all j = 1, · · ·m. Denote Ẑ =

[ẑ1, ẑ2, · · · ẑm] ∈ CN×m the complex mode shape matrix.

2. Set the ‘undamped natural frequencies’ as ω̂j = <(λ̂j). Denote the diagonal matrix
Ω̂ = diag(ω̂1, ω̂2, · · · , ω̂m) ∈ Rm×m.

3. Separate the real and imaginary parts of Ẑ to obtain Û = <
[
Ẑ

]
and V̂ = =

[
Ẑ

]
.

4. From these obtain the m × m matrices W = ÛT Û, D = ÛT V̂, Q = Ω̂
−1

W and P =

Ω̂
−1

DΩ̂− DT .
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5. Now denote p = vec (P) ∈ Rm2

and calculate R =
(
Ω̂⊗Q

)
+

(
QT ⊗ Ω̂

)
∈ Rm2×m2

(MATLABTM command kron can be used to calculate the Kronecker product).

6. Evaluate vec (B) = [R]−1 p and obtain the matrix B.

7. From the B matrix get C ′
kj =

(ω̂2
j − ω̂2

k)Bkj

ω̂j

for k 6= j and C ′
jj = 2=(λ̂j).

8. Finally, carry out the transformation C =

[(
ÛTU

)−1

ÛT

]T

C′
[(

ÛT Û
)−1

ÛT

]
to get the

damping matrix in physical coordinates.

A numerical illustration of the proposed method is considered next.

7.2.2 Numerical Examples

Numerical studies have been carried out using simulated systems identical to those used in Chap-
ters 5 and 6. Figure 7.1 shows the model systems together with the numerical values used. The
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Figure 7.1: Linear array of N spring-mass oscillators, N = 30, mu = 1 Kg, ku = 4× 103N/m.

damping elements are associated with masses between the s-th and (s + l)-th (N = 30, s = 8 and
(s+l) = 17 are taken for the numerical calculations). Damping shown in Figure 7.1(a) is described
as ‘locally reacting’ and that in Figure 7.1(b) is called ‘non-locally reacting’. The dissipative el-
ements shown in Figure 7.1 are taken to be linear non-viscous dampers so that the equations of
motion are described by (5.16). The two damping models considered in Chapter 5 are used. Here
we seek to identify a symmetric viscous damping matrix using the modal data.
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Figure 7.2: Fitted viscous damping matrix for the local case, γ = 0.02, damping model 2

Results for Small γ

When γ = 0.02 both damping models show near-viscous behaviour. In Section 5.4.1 it was shown
that for this case the fitted viscous damping matrix is symmetric. For this reason, results obtained
by using the symmetry preserving identification procedure developed in this paper must approach
to the corresponding results obtained by using the procedure outlined in Chapter 5. Figure 7.2
shows the fitted viscous damping matrix for the local case using damping model 2. One immedi-
ately recognizes that this result is similar to its corresponding result shown in Figure 5.2. Figure
7.3 shows the fitted viscous damping matrix for non-local case using damping model 2. Again, the
fitted matrix is similar to its corresponding case shown in Figure 5.5. Thus, when γ is small, the
procure developed in the last section and that outlined in Chapter 5 yields similar result.

Results for Larger γ

When γ is larger the two non-viscous damping models depart from the viscous damping model.
For this case, one obtains an asymmetric fitted viscous damping matrix following the procedure
in Chapter 5. It is interesting to see how these results change when symmetry preserving method
developed here is applied. Figure 7.4 shows the result of running the symmetry preserving fitting
procedure for damping model 1 with locally-reacting damping and the full set of modes. The
result of applying the usual viscous damping identification procedure corresponding to this case
was shown before in Figure 5.7. Comparing the Figures 5.7 and 7.4 it may be observed that all
the features of fitting in Figure 5.7, except asymmetry of the damping matrix, reappears in Figure
7.4. From the high non-zero values along the diagonal it is easy to identify the spatial location
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Figure 7.3: Fitted viscous damping matrix for the non-local case, γ = 0.02, damping model 2

of damping. Also observe that all non-zero off-diagonal elements have positive values. This
implies that the damping mechanism maybe locally reacting. In order to understand what result
the symmetry preserving fitting procedure yields when damping is significantly non-viscous we
consider γ = 2 for damping model 1. Figure 7.5 shows the fitted viscous damping matrix for local
case. The result corresponding to this without using the symmetry preserving method was before
shown in Figure 5.9. Again, from Figure 7.5 the spatial distribution of damping can be guessed,
however, the accuracy is reduced as the fitted model differs significantly from the actual damping
model.

Figure 7.6 shows the symmetric fitted viscous damping matrix for damping model 2 corre-
sponding to the case considered earlier in Figure 5.8. Comparing Figures 5.8 and 7.6, observations
similar to the case of damping model 1 can be made. Consider now the effect of modal truncation
on the symmetry preserving damping identification procedure. In practice, one might hope to be
able to use only the first few modes of the system to identify the damping matrix. Figures 7.7 and
7.8 shows the fitted viscous damping matrix using, respectively, the first 20 and the first 10 modes
only. The quality of the fitted damping matrix does not significantly deteriorate as the number
of modes used to fit the damping matrix is reduced. This in turn implies that, if the fitted model
(viscous in this case) is not close to the original one, then by using more modes in the symmetry
preserving identification method does not significantly improve the result.

Figures 7.9 and 7.10 show the fitted symmetric viscous damping matrix for γ = 0.5 using the
non-local damping model for damping model 1 and 2. Results corresponding to these obtained
without the symmetry preserving method was shown in Figures 5.10 and 5.11. The spatial distri-
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Figure 7.4: Fitted viscous damping matrix for the local case, γ = 0.5, damping model 1

0
5

10
15

20
25

30

0

5
10

15

20
25

30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

k−th DOF
j−th DOF

F
itt

ed
 v

is
co

us
 d

am
pi

ng
 m

at
rix

 C kj

Figure 7.5: Fitted viscous damping matrix for the local case, γ = 2.0, damping model 1

bution of the damping is revealed quite clearly and correctly. In both cases, the non-local nature
of the damping is hinted at by the strong negative values on either side of the main diagonal of the
matrix.

Because the symmetry preserving method uses a constrained optimization approach, numerical
accuracy of the fitting procedure might be lower compared to the procedure outlined in Chapter 5.
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Figure 7.6: Fitted viscous damping matrix for the local case, γ = 0.5, damping model 2
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Figure 7.7: Fitted viscous damping matrix using first 20 modes for the local case, γ = 0.5,
damping model 2

In order to check numerical accuracy we have reconstructed the transfer functions using the com-
plex modes obtained by using the fitted viscous damping matrix. Comparison between a typical
original and reconstructed transfer function Hkj(ω), for k = 11 and j = 24 is shown in Figure
7.11, based on locally-reacting damping using damping model 1. It is clear that the reconstructed
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Figure 7.8: Fitted viscous damping matrix using first 10 modes for the local case, γ = 0.5,
damping model 2
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Figure 7.9: Fitted viscous damping matrix for the non-local case, γ = 0.5, damping model 1

transfer function agrees well with the original one. Thus the symmetry preserving viscous damp-
ing matrix identification method developed here does not introduce much error due to the applied
constrains in the optimization procedure.
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Figure 7.10: Fitted viscous damping matrix for the non-local case, γ = 0.5, damping model 2

7.3 Identification of Non-viscous Damping

7.3.1 Theory

As has been mentioned earlier, out of several non-viscous damping models the exponential function
turns out to be the most plausible. In this section we outline a general method to fit an exponential
model to measured data such that the resulting coefficient matrix remains symmetric. We assume
that the mass matrix of the structure is known either directly from a finite element model or by
means of modal updating. Also suppose that the damping has only one relaxation parameter, so
that the matrix of the kernel functions is of the form

G(t) = µe−µt C (7.28)

where µ is the relaxation parameter and C is the associated coefficient matrix. In Chapter 6 a
method was proposed to obtain µ and C from measured complex modes and frequencies. This
method may yield a C matrix which is not symmetric. In this section we develop a method which
will always produce a symmetric C matrix.

The starting point of our discussion is equations (6.12) and (6.13), the expressions for the real
and imaginary parts of the complex modes of a linear system with damping of the form (7.28).
Assume that

X̂ = [x̂1, x̂2, · · · , x̂m] ∈ RN×m (7.29)

is the matrix of undamped mode shapes and µ̂ is the relaxation parameter and m is the number of
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Figure 7.11: Transfer functions for the local case, γ = 0.5, damping model 1, k = 11, j = 24

modes retained in the study. Rewriting equations (6.12) and (6.13) one has

ûj = <(ẑj) = x̂j +
m∑

k=1
k 6=j

µ̂ω̂j

(µ̂2 + ω̂2
j )

Bkjx̂k (7.30)

and

v̂j = =(ẑj) =
m∑

k=1
k 6=j

fjBkjx̂k; where fj =
µ̂2

(µ̂2 + ω̂2
j )

. (7.31)

The unknown constants Bkj are defined before in equation (7.5). It may be noted that in addition
to Bkj , the relaxation constant µ̂ and the undamped modes x̂k are also unknown. Combining the
equations (7.30) and (7.31) one can write

x̂j = ûj − ω̂j

µ̂
v̂j; ∀j = 1, · · · ,m

or X̂ = Û− 1

µ̂

[
V̂Ω̂

]
.

(7.32)

The relaxation constant µ̂ has to be calculated by following the procedure described in Chapter 6.
To ensure symmetry of the identified coefficient matrix the condition in (7.7) must hold. For

this reason equations (7.9) and (7.11) are also applicable for this case. Now, the error from repre-
senting v̂j by the series sum (7.31) can be expressed as

εj = v̂j −
m∑

k=1

fjBkjx̂k (7.33)

We need to minimize the above error subjected to the constraint in equation (7.9). The objective
function can be formed using the Lagrange multipliers like equation (7.13). To obtain the unknown
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coefficients Bjk using equation (7.14) one has

− 2x̂T
r

(
v̂s −

m∑

k=1

fsBksx̂k

)
+ + [φrs + φsr] ω̂r = 0

or
m∑

k=1

(
x̂T

r x̂k

)
fsBks +

1

2
[ω̂rφrs + ω̂rφsr] = x̂T

r v̂s; ∀r, s = 1, · · · ,m

(7.34)

The above set of equations can be combined in a matrix form and can be conveniently expressed
as

W1BF +
1

2

[
Ω̂Φ + Ω̂ΦT

]
= D1. (7.35)

where the m×m matrices

W1 =X̂T X̂

D1 =X̂T V̂

F =diag(f1, f2, · · · , fm).

(7.36)

Equation (7.35) needs to be solved with the symmetry condition (7.11). To eliminate Φ, postmul-
tiplying (7.35) by Ω̂ and premultiplying its transpose by by Ω̂ and subtracting we obtain

W1BFΩ̂− Ω̂FT BTW1
T = D1Ω̂− Ω̂D1

T . (7.37)

Substitution of BT from (7.20) in the above equation and premultiplication by Ω̂
−1

results

Ω̂
−1

W1BFΩ̂ + FT Ω̂BΩ̂
−1

W1
T = Ω̂

−1
D1Ω̂−D1

T . (7.38)

Observe from equation (7.36) that W1 is a symmetric matrix and F is diagonal matrix. Now denote

Q1 =Ω̂
−1

W1 = Ω̂
−1

W1
T

P1 =Ω̂
−1

D1Ω̂−D1
T

H =FΩ̂ = FT Ω̂.

(7.39)

Using above definitions equation (7.38) reads

Q1BH + HBQ1 = P1. (7.40)

This equation is similar to equation (7.23) obtained for the viscously damped case and can be
solved using a similar procedure by taking vec of both sides. The procedures to be followed later
to obtain the coefficient matrix C also remain similar to the viscously damped case. In summary
the method can be implemented by the following steps:

1. Measure a set of transfer functions Hij(ω) at a set of N grid points. Fix the number of
modes to be retained in the study, say m. Determine the complex natural frequencies λ̂j

and complex mode shapes ẑj from the transfer function, for all j = 1, · · ·m. Denote Ẑ =

[ẑ1, ẑ2, · · · ẑm] ∈ CN×m the complex mode shape matrix.
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2. Set the ‘undamped natural frequencies’ as ω̂j = <(λ̂j). Denote the diagonal matrix Ω̂ =

diag(ω̂1, ω̂2, · · · , ω̂m) ∈ Rm×m.

3. Separate the real and imaginary parts of Ẑ to obtain Û = <
[
Ẑ

]
and V̂ = =

[
Ẑ

]
.

4. Obtain the relaxation parameter µ̂ =
ω̂1v̂

T
1 Mv̂1

v̂T
1 Mû1

.

5. Calculate the diagonal matrix F = diag
(

µ̂2

(µ̂2+ω̂2
j )

)
∈ Rm×m.

6. Obtain the ‘undamped modal matrix’ X̂ = Û− 1

µ̂

[
V̂Ω̂

]
.

7. From these evaluate the m×m matrices W1 = X̂T X̂, D1 = X̂T V̂, Q1 = Ω̂
−1

W1,
P1 = Ω̂

−1
D1Ω̂−D1

T and H = FΩ̂.

8. Now denote p1 = vec (P1) ∈ Rm2

and calculate R1 = (H⊗Q1)+
(
Q1

T ⊗H
) ∈ Rm2×m2

.

9. Evaluate vec (B) = [R1]
−1 p1 and obtain the matrix B.

10. From the B matrix get C ′
kj =

(ω̂2
j − ω̂2

k)Bkj

ω̂j

for k 6= j and C ′
jj = 2=(λ̂j).

11. Finally, carry out the transformation C =

[(
X̂TX

)−1

X̂T

]T

C′
[(

X̂T X̂
)−1

X̂T

]
to get the

damping matrix in physical coordinates.

7.3.2 Numerical Examples

We again consider the systems shown in Figure 7.1 to illustrate symmetry preserving fitting of ex-
ponential damping models outlined in last subsection. Three damping models, given by equations
(6.21), (6.21) and (6.23) will be considered. Recall that the relaxation parameter has to be obtained
by the procedure outlined in Chapter 6. So here we will only discuss fitting of the coefficient ma-
trix.

Results for Small γ

It has been mentioned before that when γ is small, the ordinary viscous damping identification
method (in Chapter 5), non-viscous damping identification method (in Chapter 6) and symmetry
preserving viscous damping identification method (in Section 7.2) yields same result. This is
because all the non-viscous damping models approach to a viscous damping model for small value
of γ. Since the viscous damping model is a special case of the exponential damping model, we
expect this method to produce results like the three previous methods. Figure 7.12 shows the fitted
coefficient matrix of the exponential model for damping model 2, calculated using the complete set
of 30 modes. It is clear that this result is similar to the corresponding result obtained in Figure 6.8
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without using the symmetry preserving method. Figure 7.13 shows the fitted coefficient matrix for
damping model 2 for the non-local case using the symmetry preserving method. Again, comparing
it with Figure 6.9 one observes that they are similar. Thus, when γ is small the symmetry preserving
method for fitting the coefficient matrix for the exponential function and the method described in
Chapter 6 yields similar results.
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Figure 7.12: Fitted coefficient matrix of exponential model for the local case, γ = 0.02, damping
model 2

Results for Larger γ

When γ is larger the two non-exponential damping models depart from the exponential damping
model. Like previous examples, we consider γ = 0.5. For this case, in Chapter 6 it was observed
that the identification method proposed there results an asymmetric coefficient matrix. The degree
of asymmetry of the fitted coefficient depends on how much the original damping model deviates
from the identified exponential model. Specifically, it was concluded that if variation of µj with
j calculated using equation (6.17) is more, then the fitted coefficient matrix is likely to be more
asymmetric. In this section we want to understand how the proposed method overcomes this
problem and what one could tell from the identified coefficient matrix about the nature of damping.
Figure 7.14 shows the fitted symmetric coefficient matrix for the local case with damping model
2. The result corresponding to this without using the symmetry preserving method was shown
before in Figure 6.11. Comparison of these two figures clearly demonstrates the advantage of the
proposed symmetry preserving method. The identified coefficient matrix is not only symmetric,
but also the correct spatial location of damping can be deduced from the peak along the diagonal.
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Figure 7.13: Fitted coefficient matrix of exponential model for the non-local case, γ = 0.02,
damping model 2

Besides, predominantly positive values of the off-diagonal entries of the fitted coefficient matrix
indicate that damping is locally reacting.
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Figure 7.14: Fitted coefficient matrix of exponential model for the local case, γ = 0.5, damping
model 2

To demonstrate the efficacy of the proposed method we consider a further larger value of γ.
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Figure 7.15 shows the fitted coefficient matrix of the exponential function without using the sym-
metry preserving method for damping model 2 with γ = 2.0 and local case. Clearly, the large
variation of µj with j, shown in Figure 7.16, is the reason for significant asymmetry of the fitted
coefficient matrix. Application of the symmetry preserving method for this case is shown in Fig-
ure 7.17. In spite of large off-diagonal activity one can still guess about the position of damping.
Again, like Figure 7.14, non-negative values of the off-diagonal entries indicate that damping is of
local type.
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Figure 7.15: Fitted coefficient matrix of exponential model without using the symmetry preserving
method for the local case, γ = 2.0, damping model 2

The fitted coefficient matrix for the local case with a double exponential damping model (model
3) with γ = 0.5 using the procedure outlined in Chapter 6 was shown in Figure 6.13. Observe that
this matrix is not asymmetric as the corresponding variation of µj with j, shown in Figure 6.6,
is small. Thus, application of the symmetry preserving method will not be significantly different
from the result obtained using the procedure in Chapter 6 and may be verified from Figure 7.18.

Finally we turn our attention to the non-local case. Figure 7.19 shows the fitted coefficient
matrix for non-local case with damping model 2 and γ = 0.5. Again, improvement of the fitted
coefficient matrix may be observed by comparing it with Figure 6.14.

7.4 Conclusions

In this chapter a method is proposed to preserve symmetry of the identified damping matrix. Both
viscous and non-viscous damping models are considered. For fitting a viscous damping model
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Figure 7.17: Fitted coefficient matrix of exponential model using the symmetry preserving method
for the local case, γ = 2.0, damping model 2

only complex natural frequencies and mode shapes are required. To fit a non-viscous model, in
addition to the modal data, knowledge of the mass matrix is also required. However, availability
of the complete set of modal data is not a requirement of these methods. The proposed methods
utilize a least-square error minimization approach together with a set of constraints which guaran-
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Figure 7.18: Fitted coefficient matrix of exponential model for the local case, γ = 0.5, damping
model 3
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Figure 7.19: Fitted coefficient matrix of exponential model for the non-local case, γ = 0.5, damp-
ing model 2

tee symmetry of the fitted damping matrix. It was shown that, for the cases when application of
the usual damping identification methods described in Chapters 5 and 6 produces an asymmetric
matrix, this method not only fits a symmetric matrix but also all the other useful information about
the systems damping properties are preserved.



Chapter 8

Experimental Identification of Damping

8.1 Introduction

In the last three Chapters several methods have been proposed to identify damping in a vibrating
structure. The purpose of this Chapter is to verify some of the developed theories by conducting
vibration experiments. Unlike mass and stiffness properties, damping is a purely dynamic property
of a system, i.e., damping can be measured only by conducting dynamic testing on a structure.

A description of a mechanical structure requires knowledge of the geometry, boundary condi-
tions and material properties. The mass and stiffness matrices of a structure with complicated
geometry, boundary conditions and material properties can be obtained experimentally or nu-
merically (for example, using the finite-element method). Unfortunately, present knowledge of
damping does not allow us to obtain the damping matrix like the mass and stiffness matrices for
complicated systems. For this reason we consider simple systems for which geometry, boundary
conditions and material properties are easy to determine. Specifically, a free-free uniform beam in
bending vibration is considered in this Chapter to implement and verify the damping identification
procedures developed so far in this dissertation. Details of the beam experiment will follow in
Section 8.3.

The damping identification procedures developed in Chapters 5, 6 and 7 rely on complex natu-
ral frequencies and mode shapes. For lightly damped structures, complex natural frequencies can
be expressed in terms of undamped natural frequencies and modal Q-factors. Natural frequencies,
Q-factors and mode shapes are collectively called modal parameters or modal data. It should be
noted that, in the context of general multiple-degree-of-freedom systems, these modal parameters
can not be directly measured by conducting a vibration experiment. Typically one measures time
histories of the responses at different degrees of freedom together with time histories of the input
forces. The transfer functions of a system can be obtained by taking ratios of Fourier transforms of
output time histories to that of corresponding input time histories. The modal parameters of a struc-
ture can be extracted from a set of transfer functions obtained in this way. The subject which deals
with extraction of modal parameters is called experimental modal analysis. We refer to the books
by Ewins (1984) and Maia and Silva (1997) for further details on experimental modal analysis. It

143
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should be mentioned that the underlying theory behind experimental modal analysis explicitly or
implicitly assumes that damping is viscous. It is legitimate to ask the question: what happens if the
damping of the system is not viscous – does the conventional experimental modal analysis method-
ology extract correct modal parameters? In the next section we address this question and propose
a generic method to extract modal parameters of generally damped multiple-degrees-of-freedom
linear systems.

8.2 Extraction of Modal Parameters

It was mentioned that the starting point of extracting modal parameters is transfer functions. A
transfer function Hjn(ω) is defined as

Hjn(ω) =
uj(ω)

fn(ω)
(8.1)

where uj(ω) is the response at j-th degree of freedom and fn(ω) is the applied force at n-th degree
of freedom. A closed-form exact expression of the transfer function matrix of a generally damped
N -degrees-of-freedom linear systems was obtained in Section 3.3. Taking the jn-th element of the
transfer function matrix given by equation (3.65) one has

Hjn(ω) =
N∑

k=1

[
Rkjn

iω − sk

+
R∗

kjn

iω − s∗k

]
+

m∑
j=2N+1

Rkjn

iω − sk

. (8.2)

In the above expression Rkjn
is the jn-th element of the residue matrix corresponding to pole sk.

From equation (3.64) one obtains the relationship between residues Rkjn
and mode shapes as

Rkjn
= γkznkzjk (8.3)

where znk is the n-th element of k-the mode shape and γk, the normalization constant of k-th mode,
was defined in equation (3.66). The poles are related to natural frequencies λk by

sk = iλk. (8.4)

In Chapter 3 it was mentioned that the first part of the right hand side of equation (8.2) corre-
sponds to elastic modes and the second part corresponds to non-viscous modes. In general, elastic
modes are complex in nature as damping is non-proportional. For an N -degree-of-freedom linear
system, N elastic modes together with their complex conjugates correspond to N physical vibra-
tion modes. For lightly damped systems, the complex natural frequencies corresponding to the
elastic modes have the form

λk ≈ ωk + i
ωk

2Qk

. (8.5)

In the above equation ωk is the k-th undamped natural frequency and Qk is the k-th Q-factor. The
Q-factors or quality factors, reciprocal of twice the damping ratios, are expressed as

Qk ≈ <(λk)

2=(λk)
=

1

2ζk

(8.6)
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where ζk are damping ratios. If the damping is sufficiently light then all the elastic modes are sub-
critically damped, i.e., all of them are oscillatory in nature. In this case the transfer functions of
a system has ‘peaks’ corresponding to all the elastic modes. The natural frequencies (ωk) and the
Q-factors (Qk) can be obtained by examining each peak separately, for example using the circle
fitting method (see Ewins, 1984). Estimation of ωk and Qk is likely to be good if the peaks are
well separated.

For passive systems, the kind of systems we mostly encounter in practice, non-viscous modes
are usually over-critically damped. Thus, in contrast to elastic modes, they do not produce any
peaks in the transfer functions. As a consequence to this, the modal parameters corresponding
to non-viscous modes cannot be obtained by usual techniques of experimental modal analysis as
discussed above. This is the fundamental difficulty in applying conventional experimental modal
analysis procedure to non-viscously damped systems. However, as shown through an example
in Section 3.7.1, the non-viscous part of the response may be quite small compared to that of
the elastic part. Thus, for practical purposes the second part of the right hand side of equation
(8.2) may be neglected. In that case, the transfer functions of generally damped systems can be
represented in way similar to viscously damped systems, that is,

Hjn(ω) ≈
N∑

k=1

[
Rkjn

iω − sk

+
R∗

kjn

iω − s∗k

]
. (8.7)

Once equation (8.7) is assumed as the expression for transfer functions, conventional exper-
imental modal analysis procedure may be applied to deal with non-viscously damped systems.
This, analysis justifies that the conventional experimental modal analysis procedure, which a pri-

ori assumes the viscous damping model, indeed measures modal parameters of a system even
when it is non-viscously damped. Next, assuming the validity of equation (8.7) a linear-nonlinear
optimization approach is presented to extract complex modal parameters of non-viscously damped
multiple-degrees-of-freedom linear systems.

8.2.1 Linear Least-Square Method

From equation (8.7) it is easy to observe that Hjn(ω) is a linear function of the residues while it is
a nonlinear function of the poles. On the basis of this fact, it is legitimate to separate the extraction
procedure for the poles and the residues. We propose a linear least-square approach to obtain the
residues and a non-linear optimization approach to obtain the poles. Recently Duffour (1998) has
proposed a similar method by considering all the residues to be real. His approach is equivalent to
assuming that the systems is proportionally damped and consequently it yields real normal modes.
In this section we extend this method to identify complex residues in order to extract complex
modes.

Depending on what quantity is measured, the transfer functions can be (a) displacement trans-
fer functions (receptance), (b) velocity transfer functions (mobility), and (c) acceleration transfer
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functions (accelerance). Substituting sk from equation (8.4), in a more general form, the transfer
functions given by equation (8.7) may be expressed as

Hjn(ω) ≈ (iω)r

N∑

k=1

[
Rkjn

iω − iλk

+
R∗

kjn

iω + iλ∗k

]

= (iω)r

N∑

k=1

[
− iRkjn

ω − λk

+

(
iRkjn

)∗
ω + λ∗k

] (8.8)

where

• r = 0 corresponds to displacement transfer functions

• r = 1 corresponds to velocity transfer functions

• r = 2 corresponds to acceleration transfer functions.

Since the systems we consider are reciprocal, the transfer function matrix and consequently the
residue matrix corresponding to each pole is symmetric, that is Rkjn

= Rknj
. For this reason

evaluation of the upper or lower half of the transfer function matrix is sufficient. However, most
often only one row of the transfer matrix is measured in practice. For example, if one uses an
impulse hammer for the excitation, then often the response measurement point is kept fixed while
the excitation point varies according to an a priori selected grid on a structure. Thus, in equation
(8.8) , j is fixed with its value equals to the degree of freedom of the response measurement point.
Suppose the number of channels (i.e., DOF of the system) is N and the number of modes retained
in the study is m. Usually m ≤ N . For brevity, omitting the subscript j, from equation (8.8) we
obtain

Hn(ω) ≈
m∑

k=1

[f1k
(ω)Akn + f2k

(ω)A∗
kn] ; ∀n = 1, 2, · · · , N (8.9)

where

f1k
(ω) = − (iω)r

ω − λk

(8.10)

f2k
(ω) =

(iω)r

ω + λ∗k
(8.11)

Akn = iRkjn
. (8.12)

8.2.2 Determination of the Residues

Suppose Yn(ω),∀n = 1, 2, · · · , N are set of the measured transfer functions corresponding to
all the channels. We assume that initial estimates of ωk, Qk,∀ k = 1, 2, · · · , m are known, for
example using a circle fitting method. Thus, from equations (8.5), (8.10) and (8.11) it is clear that
the complex functions f1k

(ω) and f2k
(ω) are known for all ω. Our aim is to obtain the matrix

A : {Akn} ∈ Cm×N such that the error in representing Yn(ω) by equation (8.9) is minimized.
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We define the frequency dependent error as

εn(ω) = Yn(ω)−Hn(ω). (8.13)

Based on this, further define the merit function as

χ2 =
N∑

n=1

∫

ω∈Ω

|εn(ω)|2dω

=
N∑

n=1

∫

ω∈Ω

εn(ω)ε∗n(ω)dω

(8.14)

where Ω is the range of frequency over which the transfer functions are obtained. To obtain Akn

by the error minimization approach, set

∂χ2

∂Apq

= 0; ∀p = 1, · · · ,m; q = 1, · · · , N. (8.15)

Substituting εn from equation (8.13) the preceding equation can be expressed as

−
N∑

n=1

∫

ω∈Ω

[
∂Hn(ω)

∂Apq

{Y ∗
n (ω)−H∗

n(ω)}+ {Yn(ω)−Hn(ω)} ∂H∗
n(ω)

∂Apq

]
dω = 0. (8.16)

Now, from the expression of Hn(ω) in equation (8.9) one obtains the following:

∂Hn(ω)

∂Apq

= 0; ∀n 6= q (8.17)

∂Hq(ω)

∂Apq

= f1p(ω) (8.18)

∂H∗
q (ω)

∂Apq

= f ∗2p
(ω). (8.19)

Using the above three equations, (8.16) may be simplified to
∫

ω∈Ω

[
f1p(ω)H∗

q (ω) + f ∗2p
(ω)Hq(ω)

]
dω =

∫

ω∈Ω

[
f1p(ω)Y ∗

q (ω) + f ∗2p
(ω)Yn(ω)

]
dω. (8.20)

Substituting the expression of Hn(ω) in (8.9) for n = q, the preceding equation reduces to

m∑

k=1

WpkAkq + EpkA
∗
kq = Spk (8.21)

where

Wpk =

∫

ω∈Ω

[
f1p(ω)f ∗2k

(ω) + f ∗2p
(ω)f1k

(ω)
]
dω (8.22)

Epk =

∫

ω∈Ω

[
f1p(ω)f ∗1k

(ω) + f ∗2p
(ω)f2k

(ω)
]
dω (8.23)

Spk =

∫

ω∈Ω

[
f1p(ω)Y ∗

q (ω) + f ∗2p
(ω)Yn(ω)

]
dω. (8.24)
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For p = 1, · · · ,m and q = 1, · · · , N equation (8.21) can be rewritten in matrix form as

WA + EA∗ = S (8.25)

where W, E ∈ Cm×m and S ∈ Cm×N . Since χ2 is a real function we also have

∂χ2

∂A∗
pq

=

(
∂χ2

∂Apq

)∗
. (8.26)

In view of the above, taking the complex conjugate of (8.25) one has

W∗A∗ + E∗A = S∗

or A∗ = W∗−1

[S∗ − E∗A]
(8.27)

Substituting A∗ from the above equation in (8.25) we finally obtain

A =
[
W− EW∗−1E∗

]−1 [
S− EW∗−1S∗

]
. (8.28)

Transfer function residues can be calculated from the above formula provided the matrix

W− EW∗−1E∗ 6= Om (8.29)

where Om is a m×m null matrix. Premultiplying the above equation by E−1 and defining

Q = E−1W (8.30)

the condition for which A can be determined can be expressed as

Q 6= Q∗−1

or Q∗Q 6= Im. (8.31)

Determination of the Complex Modes

Once the residues are obtained from equation (8.28), the complex modes can be calculated easily.
Combining equations (8.12) and (8.3) one has

Akn = iγkznkzjk. (8.32)

In Chapter 4 it was mentioned that the normalization constants can be selected in various ways.
The one which is consistent with conventional modal analysis is when γk = 1/2iλk. Substituting
this value of γk, equation (8.32) reads

Akn =
znkzjk

2λk

. (8.33)

Note that in the above equation j is fixed (the response measurement point). For n = j, from
equation (8.33) one has

zjk =
√

2λkAkj; ∀k = 1, 2, · · · ,m (8.34)
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Substituting zjk from the above into equation (8.33) the mode shapes are obtained as

znk =
2λkAkn

zjk

=
√

2λk
Akn√
Akj

, ∀ k = 1, 2, · · · ,m,
n = 1, 2, · · · , N.

(8.35)

Thus, equation (8.35) together with (8.28), provides a closed-form expression for the complex
modes extracted from a set of measured transfer functions.

8.2.3 Non-linear Least-Square Method

In the formulation presented before it was assumed that ‘good’ initial guesses of ωk and Qk are
available. However, if substantially good initial values of ωk and Qk are not available then it is re-
quired to update them. Since Hn(ω) is a nonlinear function of ωk and Qk, a nonlinear optimization
method needs to be employed for this purpose. We use a nonlinear least-square method outlined
in Press et al. (1992, Section 15.5).

For convenience construct the parameter vector

V = {ω1, ω2, · · · , ωm, Q1, Q2, · · · , Qm}T ∈ R2m. (8.36)

Suppose, for some current value of V , say Vcur, χ2(V) is sufficiently close to minimum. Expanding
χ2(V) about Vcur in a Taylor series and retaining quadratic terms we have

χ2(V) ≈ χ2(V − Vcur)− (V − Vcur)
T ∇χ2 (Vcur) +

1

2
(V − Vcur)

T D (V − Vcur) (8.37)

where ∇(•) =

{
∂(•)
∂Vj

}
, ∀j is the gradient vector and D ∈ R2m×2m is the Hessian matrix. Differ-

entiating equation (8.37) one obtains

∇χ2(V) = ∇χ2 (Vcur) + D (V − Vcur) . (8.38)

If the approximation is good, then by setting ∇χ2(V) = 0, the minimizing parameters Vmin can
obtained from the current trial parameters Vcur as

Vmin = Vcur + D−1
[−∇χ2 (Vcur)

]
. (8.39)

However, if (8.37) is a poor approximation, then the best we can do is to move down the gradient
(steepest descent method), that is

Vnext = Vcur − constant×∇χ2 (Vcur) (8.40)

Selection procedure of this constant will be discussed shortly. In order to use (8.39) or (8.40) we
need to calculate the gradient of χ2. Moreover, to use (8.39) calculation of the second derivative
matrix (Hessian matrix) is also required. These issues are discussed next.
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Calculation of the Gradient and Hessian

Differentiating the expression of χ2 in equation (8.14) with respect to Vp the elements of the gra-
dient vector can be obtained as

∂χ2

∂Vp

=
N∑

n=1

∫

ω∈Ω

[
∂εn(ω)

∂Vp

ε∗n(ω) + εn(ω)
∂ε∗n(ω)

∂Vp

]
dω

= −
N∑

n=1

∫

ω∈Ω

[
∂Hn(ω)

∂Vp

ε∗n(ω) + εn(ω)
∂H∗

n(ω)

∂Vp

]
dω.

(8.41)

The preceding equation can further be simplified as

∂χ2

∂Vp

= −2
N∑

n=1

∫

ω∈Ω

<
[
εn(ω)

∂H∗
n(ω)

∂Vp

]
dω. (8.42)

The term
∂H∗

n(ω)

∂Vp

can be calculated following Appendix A. Taking an additional partial derivative

of (8.41) with respect to Vq the elements of the Hessian matrix can be obtained as

∂2χ2

∂Vp∂Vq

= −
N∑

n=1

∫

ω∈Ω

[
∂2Hn(ω)

∂Vp∂Vq

ε∗n(ω) +
∂Hn(ω)

∂Vp

∂ε∗n(ω)

∂Vq

+
∂εn(ω)

∂Vq

∂H∗
n(ω)

∂Vp

+ εn(ω)
∂2H∗

n(ω)

∂Vp∂Vq

]
dω.

(8.43)

Substituting εn from equation (8.13) the preceding equation can be expressed as

∂2χ2

∂Vp∂Vq

= 2
N∑

n=1

∫

ω∈Ω

<
[
∂Hn(ω)

∂Vp

∂H∗
n(ω)

∂Vq

− εn(ω)
∂2H∗

n(ω)

∂Vp∂Vq

]
dω. (8.44)

It is customary to neglect the second term in the above expression because εn(ω) and
∂2H∗

n(ω)

∂Vp∂Vq

are

both small quantities. Thus, the elements of the Hessian matrix can be obtained from

∂2χ2

∂Vp∂Vq

≈ 2
N∑

n=1

∫

ω∈Ω

<
[
∂Hn(ω)

∂Vp

∂H∗
n(ω)

∂Vq

]
dω. (8.45)

For convenience, removing the factors 2 from equations (8.42) and (8.45) we define a vector β ∈
R2m and a matrix α ∈ R2m×2m such that

βp = −1

2

∂χ2

∂Vp

(8.46)

αpq =
1

2

∂2χ2

∂Vp∂Vq

. (8.47)

The matrix α =
1

2
D is often known as the curvature matrix. Using these relationships, equation

(8.39) can be rewritten as the set of linear equations

α δV = β. (8.48)
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Solving the above set of equations the increments δV = Vmin − Vcur can be obtained. These
increments can be added to the current approximation to obtain the new values. Similarly, the
steepest descent formula can be rewritten as

δVq = νqβq. (8.49)

The constants νq can be selected using the Levenberg-Marquardt method.

Levenberg-Marquardt Method

The Levenberg-Marquardt method varies smoothly between the extreme of the inverse-Hessian
method (8.48) and the steepest descent method (8.49). The latter method is used far from the
minimum, switching continuously to the former as the minimum is approached. The Levenberg-

Marquardt method assumes νq =
1

καqq

, where κ is known as the fudge factor with the possibility

of setting κ ¿ 1. Using this, one can rewrite equation (8.49) as

δVq =
1

καqq

βq or καqqδVq = βq. (8.50)

In view of the above equation, (8.48) and (8.49) can be combined into a single equation as

α′ δV = β (8.51)

where the matrix α′ is defined as

α′ = α + κI2m (8.52)

where I2m is an identity matrix of size 2m. If κ is very large, the matrix α′ becomes strictly
diagonally dominant so that equation (8.52) reduces to the steepest descent method in equation
(8.50). On the other hand, for small values of κ equation (8.52) reduces to the inverse-Hessian
method in equation (8.48). Overall, the method can be performed by following these steps:

• Calculate χ2(V).

• Select a modest value of κ, say κ = 0.001.

• (‡) Solve the linear equations (8.51) for δVq and calculate χ2(V + δV)

• If χ2(V + δV) ≥ χ2(V) increase κ by a factor of 10 (or any other substantial factor) and go
back to (‡).

• If χ2(V + δV) < χ2(V) decrease κ by a factor of 10, update the trial solution V ← V + δV
and go back to (‡).

A stopping condition for the above iteration scheme has to be selected by choosing some acceptable
value of χ2.



152 Chapter 8. Experimental Identification of Damping

8.2.4 Summary of the Method

In the last two sections a linear least-square and a nonlinear least-square method have been pro-
posed to obtain the modal parameters. For practical purposes these two methods can unified to
construct a single linear-nonlinear optimization method. Figure 8.1 shows the steps to followed
in order to apply this method. A set of MATLABTM programs have been developed to implement
this method. Several authors, for example Balmès (1995), Cole et al. (1995), Lin and Ling (1996),
Balmès (1996) and Rosa et al. (1999) have proposed modal identification methods in frequency
domain. Application of the approach developed in this study to a beam in bending vibration is
considered next.

Amplitude coefficients [A] computation by linear
least square

Input: ωω, Q, ε

Computation of χ2(ωω, Q, [A])

Computation of the frequencies and damping
increments: dωω, dQ

Computation of χ2(ωω+dωω, Q+ dQ, [A])

|χ2(ωω+dωω, Q+ dQ, [A])-χ2(ωω, Q, [A])|< ε

Yes

No

Solution displayed

linear

non-linear

Figure 8.1: The general linear-nonlinear optimization procedure for identification of modal pa-
rameters



8.3. The Beam Experiment 153

8.3 The Beam Experiment

We consider a free-free beam for experimental verification of the procedures developed so far in
this dissertation. The physical properties of the beam, the arrangement of the damping mechanism
and the scheme for the grid points will be discussed in Section 8.3.2. In the next section, the details
of the equipment used for the experiment are explained.

8.3.1 Experimental Set-up

A schematic diagram of the experimental set-up is shown in Figure 8.2 while the details of the
measuring equipment are given in Table 8.1. Figure 8.2 shows three main components of the
measurement technique implemented:

• Excitation of the structure

• Sensing of the response

• Data acquisition and processing

Details of the above components of the experiment are discussed next.

Excitation of the Structure

A mechanical structure can be excited mainly in two ways, (a) using an exciter or shaker, and
(b) using an impulse hammer. Shaker attachments have the advantage of providing any known
waveform as the driving signal to a structure. This allows one to control the frequency content of
the excitation and consequently to excite the modes in a chosen frequency-band. In addition, the
steady-state sinusoidal driving is probably the only efficient way to measure the frequency response
at different frequencies directly. However, a major disadvantage of attaching shakers as the driving
mechanism is that it becomes a part of the vibrating structure and as a result the stiffness, and more
importantly the damping behaviour, which we want to identify from this experiment, get changed.
Beside this, there are some practical difficulties, for example:

• it not always convenient to mount a shaker to access all the excitation points we choose;

• to obtain a set of transfer functions with high frequency resolution and covering several
modes is very time consuming.

For these reasons, the possibility of using shakers has been ruled out for this experiment.
It is much easier to excite a structure by hitting it with an instrumented hammer. The instru-

mented hammer essentially consists of three main components: a handle, a force transducer and a
hammer tip. With experience it was found that the impulse excitation provided by an instrumented
hammer gave the most reliable results for the present purpose. Impulse excitation using a hammer
has the following advantages:
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• the location of excitation point can be chosen arbitrarily;

• once an impulse has been struck and the hammer separated, the response obtained thereafter
is free from any undesirable interaction with the excitation apparatus;

• depending on the nature of the hammer tip (that is soft or hard) the frequency range can be
selected as desired.

For the hammer used in this experiment, the force transducer was a PCB A218 and a hard plastic
tip was used. With this hard plastic tip we can go up to 2.5KHz.

Sensing of the Response

Response sensors have to be selected on the basis of what quantity one wants to measure and the
size of the structure under test. The relative size and mass of the response transducers have influ-
ence on the vibrational behaviour of the test structure. It is very much desirable that a transducer
has minimum effect on the structure so that one can avoid the corrections required at a later stage
to discard the effect of the transducer.

The response of a structure may be defined in terms of displacement, velocity or accelera-
tion. Accelerometers are the most widely used form of response transducer although, as laser
vibrometers are more readily available, velocity transducers are also gaining popularity. The main
advantage of the laser vibrometer is that the response measurement technique is ‘non-contact’.
Thus, questions of interactions between the response measurement apparatus and the structure do
not arise for laser vibrometers. Beside, laser vibrometers can be used to measure response at points
where accelerometers can not be attached. However, for the simple beam considered in this exper-
iment it was found that traditional piezoelectric accelerometers are sufficient. A DJB piezoelectric
accelerometer is used for the experiment. We have measured the acceleration response at only
one point in the structure (detail will follow in Section 8.3.2). A small hole of 3mm diameter was
drilled into the beam and the accelerometer was attached by screwing it through the hole.

Data Acquisition and Processing

(a) Amplifiers

Signals from the impulse hammer and the accelerometer give small charges. As a result the
signals need to be amplified by using a charge amplifier. For this purpose in-house charge am-
plifiers were designed. The acceleration signal was amplified by using a charge amplifier with a
sensitivity of 14mV/pc while the impulse signal was amplified by using a charge amplifier with a
sensitivity of 2.0mV/pc. Both these amplifiers had a frequency range of 0.44Hz to 10KHz.
(b) Data-logging system

A National Instruments DAQCard 1200 was used to log the impulse force and the acceleration
response. This card gives analog-to-digital conversion in 12 bits. The maximum sampling rate was
set to 20kHz, which was sufficient for the frequency bandwidth of interest (i.e., 0-2.5KHz).
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Figure 8.2: Schematic representation of the test set-up

A Visual Basic program running on a Daytek desktop computer controlled the DAQCard. This
program was used to start data logging, set sampling frequencies, check sample saturation and save
the data. After the raw data were measured and saved they were then opened using MATLABTM and
checked as to whether they were suitable or not by calculating the FRFs.

Item Use
DJB Accelerometers Measuring the acceleration

response of the beam
PCB modal hammer Measuring the force ap-

plied using the impulse
hammer

Impulse charge amplifier Amplifying the impulse
force exerted on the struc-
ture

Response charge amplifier Amplifying the accelera-
tion response

National Instruments DAQ-
Card 1200 data acquisition
personal computer card

Sampling transducer time
signals

Daytek Desktop Computer Control of DAQCard 1200,
data storage and analysis

Table 8.1: Summary of the equipment used

8.3.2 Experimental Procedure

A steel beam with uniform rectangular cross-section is considered for the experiment. Figure 8.3
shows the beam with details of the grid and damping mechanism. The physical and geometrical
properties of the steel beam are shown in Table 8.2. The damping mechanism of the beam is
through constrained layers (see Ungar, 2000, for a recent review on this topic). For the purpose of
this experiment a double sided glued tape is sandwiched between the beam and a thin aluminum
plate.

The impulse hammer test is performed on the ‘front side’ of the beam (i.e., opposite to the
damping layer side). The impulse is applied at 11 different locations as indicated in Figure 8.3(a).
One of the problems that was encountered during impulse testing has the difficulty of exciting the
beam only in the bending mode but not in the torsional mode. Overcoming this difficulty requires
careful application of the impulse along the centre-line of the beam.

We have tried to simulate a free-free condition for the test. The free-free boundary condition is
preferred for several reasons. Firstly, from practical point of view the free-free condition is easiest
to incorporate as it avoids the use of any clamping arrangements. Secondly, and most importantly,
the free-free condition removes uncertainties regarding damping and stiffness properties associated
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1

2

aluminum plate

3
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measurment point)
11 (response

(a) (b) (c)

constrained
layer damping

points

Figure 8.3: Details of the beam considered for the experiment; (a) Grid arrangement, (b) Back
view showing the position of damping, (c) Side view of the constrained layer damping

Beam Properties Numerical values
Length (L) 1.00 m
Width (b) 39.0 mm
Thickness (th) 5.93 mm
Mass density (ρ) 7800 Kg/m3

Youngs modulus (E) 2.0× 105 GPa
Cross sectional area (a = bth) 2.3127× 10−4 m2

Moment of inertia (I = 1/12bt3h) 6.7772× 10−10 m4

Mass per unit length (ρl) 1.8039 Kg/m
Bending rigidity (EI) 135.5431 Nm2

Table 8.2: Material and geometric properties of the beam considered for the experiment

with boundary conditions, for example, the kind of problems one often encounters with clamped
or pinned boundary conditions. For the purpose of the present experiment a 3mm hole was drilled
in the beam and it was hung by a thread. The thread was chosen thin and long (one and half times
the length of the beam) so as to produce minimum damping to the beam.

Results from initial testing on the ‘undamped beam’, that is without the damping layer, showed
that damping is extremely light (Q-factors in the order of 1000). In fact, the damping is so light
that for most of the modes the measurement of the Q-factor was not possible using the conven-
tional circle fitting method and an alternative sonogram method was used. This ensures that the
significant part of the damping comes from the localized constrained damping layer only. In a
recent paper Ungar (2000) has mentioned that such damping is likely to be viscoelastic rather that
viscous. This case is thus analogous to the numerical systems considered in the previous three
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chapters, and we hope to obtain results close to that obtained from the numerical studies. Before
discussing the results we briefly outline the theory of bending vibration of Euler-Bernoulli beams.

8.4 Beam Theory

The equation of motion describing free vibration of an undamped uniform Euler-Bernoulli beam
in bending vibration can be expressed by

EI
∂4Y (x, t)

∂x4
+ ρl

∂2Y (x, t)

∂t4
= 0. (8.53)

Assuming harmonic motion, that is Y (x, t) = y(x)eiωt, the above equation can be expressed as

EI
d4y(x)

dx4
− β4y(x) = 0, where β4 =

ω2ρl

EI
. (8.54)

The natural frequencies and the mode shapes can be obtained by solving the differential eigenvalue
problem (8.54) subjected to appropriate boundary conditions. For a free-free beam, the boundary
conditions are expressed as

d2y(x)

dx2
|x=0 = 0,

d3y(x)

dx3
|x=0 = 0, (8.55)

d2y(x)

dx2
|x=L = 0,

d3y(x)

dx3
|x=L = 0. (8.56)

(8.57)

Solving the eigenvalue problem (see Meirovitch, 1997, Section 7.7) the natural frequencies are
obtained approximately as

ωj ≈
(

(2j + 1)π

2

)2
√

EI

ρlL4
. (8.58)

The mode shapes corresponding to the above natural frequencies are approximately

φj(x) ≈bj [(sin αjL− sinh αjL)(sin αjx− sinh αjx)

+(cos αjL + cosh αjL)(cos αjx− cosh αjx)] , where αj =
(2j + 1)π

2L

(8.59)

and bj are normalization constants.

In Chapter 6 it was mentioned that in order to fit a non-viscous damping model, the mass matrix
of the system is required. Note that for a continuous system, like the beam as considered here, a
mass matrix of finite dimension essentially requires discretization of the equation of motion. This
discretization can be performed in several ways, for example using the finite element method.
However, for the simple uniform beam considered in the experiment, a discretized mass matrix
can be obtained by following the simple procedure outlined in Appendix B.



158 Chapter 8. Experimental Identification of Damping

8.5 Results and Discussions

In this section, results obtained from modal testing of the beam are described. All the results are
for the case when damping is attached between the points 2 and 6 (see figure 8.3). First, some
measured transfer functions and extracted modal properties are shown. Later, results on damping
identification obtained using the procedures developed in the previous chapters are shown.

8.5.1 Measured and Fitted Transfer Functions

The frequency range for the experiment has to be selected based on the number of modes to be
retained in the study. Because there are eleven grid points along the length of the beam we consider
only the first eleven modes in this study. Table 8.3 shows the natural frequencies corresponding to
the first eleven modes of the beam obtained from equation (8.58). These values give an indication

Mode Natural frequency (Hz)
number

1 30.6361
2 85.1004
3 166.7968
4 275.7253
5 411.8860
6 575.2788
7 765.9037
8 983.7608
9 1228.8499

10 1501.1713
11 1800.7247

Table 8.3: Natural frequencies using beam theory

of the frequency range to be selected for the experiment. We use a hard plastic tip for the hammer
which produces frequency range of 0 − 2.5 KHz. The sampling frequency was selected to be
20KHz and 65536 samples are used for logging the time response data. The transfer functions
corresponding to input forces at the eleven points shown in Figure 8.3(a) are calculated by taking
the Fourier transform of the logged time histories. In-house software was used for handling the
data. The measured transfer functions are fitted using the modal identification procedure developed
in Section 8.2. Figures 8.4 to 8.14 show amplitude and phase of the measured and fitted transfer
functions obtained by hitting the hammer at points one to eleven respectively. It may be observed
that the fitting of all the transfer functions is in general good. Results on the identified modal
parameters obtained by this fitting procedure are discussed next.
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Figure 8.4: Amplitude and phase of transfer function H1(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.5: Amplitude and phase of transfer function H2(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.6: Amplitude and phase of transfer function H3(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.7: Amplitude and phase of transfer function H4(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.8: Amplitude and phase of transfer function H5(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.9: Amplitude and phase of transfer function H6(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.10: Amplitude and phase of transfer function H7(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.11: Amplitude and phase of transfer function H8(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.12: Amplitude and phase of transfer function H9(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.13: Amplitude and phase of transfer function H10(ω),‘—’ measured, ‘−−’ fitted
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Figure 8.14: Amplitude and phase of transfer function H11(ω),‘—’ measured, ‘−−’ fitted

8.5.2 Modal Data

Figure 8.15 compares the measured natural frequencies (extracted using the non-linear optimiza-
tion method described in Section 8.2.3) and the analytical natural frequencies as shown in Table
8.3. From this diagram it is clear that the natural frequencies obtained from the experiment match
very well to the analytical natural frequencies obtained using simple beam theory. This gives us
the confidence to compare the mode shape associated with each natural frequency.

The modal Q-factors obtained from the experiment are shown in Figure 8.16. The values of
the Q-factors lie between 80 and 140. This implies that the beam is moderately damped and the
damping identification procedures developed in the previous three chapters may be applied to this
system.

Mode shapes can be obtained from the identified transfer function residues by using equation
(8.35). It has been mentioned that if the damping is small then the real part of the complex modes
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Figure 8.16: Modal Q-factors obtained from the experiment

obtained from equation (8.35) would be close to the undamped mode shapes. The undamped mode
shapes of the free-free beam under consideration can be obtained from equation (8.59) sampled
at the points corresponding to the grid points shown in Figure 8.3(a). In Figures 8.17 to 8.27 the
real and imaginary parts of extracted complex modes and the undamped modes obtained from
the beam theory are shown. From these figures it may be observed that the real parts of the
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extracted complex modes (uj) match very well with the undamped modes obtained from the beam
theory (xj). This agreement confirms the accuracy of the experimental procedure and the computer
program developed to implement the mode extraction method described in Section 8.2.
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Figure 8.17: (a) The real part of complex mode z1,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z1 for four sets of experimental data
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Figure 8.18: (a) The real part of complex mode z2,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z2 for four sets of experimental data

It is useful to check the mass orthogonality relationship satisfied by the real parts of extracted
complex modes and the undamped modes obtained from the beam theory. The (tri-diagonal) mass
matrix is obtained using equation (B.8) derived in Appendix B. Figure 8.28 shows the mass matrix
in the modal coordinates (M′) using analytical undamped modes. The ‘ridge’ along the diagonal
indicates that the matrix M′ is diagonally dominant. Also note that the modes are normalized
such that M′ is an identity matrix or close to that. From this figure it is clear that the real parts
of extracted complex modes satisfy the mass orthogonality relationship with good accuracy. In
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Figure 8.19: (a) The real part of complex mode z3,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z3 for four sets of experimental data
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Figure 8.20: (a) The real part of complex mode z4,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z4 for four sets of experimental data

Figure 8.29 the matrix M′ obtained using the real parts of extracted complex modes is shown.

The imaginary parts of extracted complex modes cannot be compared with ‘theory’ because a
correct theoretical damping model is required in order to produce the imaginary parts of complex
modes. Thus, unlike the real parts of extracted complex modes, there is no simple way in which
one can verify the accuracy of the imaginary parts. Unfortunately, it is the imaginary parts of the
extracted complex modes which are more likely to get affected by any experimental noise because
their magnitudes are much smaller compared to the corresponding real parts (see Figures 8.17 to
8.27).

Besides numerical accuracy, it also not known if the shapes of the imaginary parts of the ex-
tracted complex modes are at all correct. For the purpose of this study the experiment was repeated
several times and from Figures 8.17 to 8.27 it may be verified that the imaginary parts of the ex-
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Figure 8.21: (a) The real part of complex mode z5,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z5 for four sets of experimental data
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Figure 8.22: (a) The real part of complex mode z6,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z6 for four sets of experimental data

tracted complex modes are reasonably accurately repeatable. This confirms that although they are
small, these quantities are not random noise, but possibly arise due to the physics of the damping
mechanism. Results on identification of the damping properties using the real and imaginary parts
of complex modes are discussed next.

8.5.3 Identification of the Damping Properties

Fitting of the Viscous Damping Model

First, we consider fitting of a viscous damping matrix to the extracted modal data. The procedure
for fitting the viscous damping matrix developed in Chapter 5 is applied. Figure 8.30 shows the
fitted viscous damping matrix of the beam. Observes that this matrix is not symmetric. The
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Figure 8.23: (a) The real part of complex mode z7,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z7 for four sets of experimental data
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Figure 8.24: (a) The real part of complex mode z8,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z8 for four sets of experimental data

negative off-diagonal terms in some places indicate that the damping is not local. However, it
is encouraging that the high portion in the diagram roughly corresponds to the position of the
damping layer used in the beam. This fact is more evident if one takes the diagonal of the fitted
viscous damping matrix as shown in Figure 8.31. The features of fitting the viscous damping
matrix observed here are quite similar to the cases discussed in Chapter 5 when the damping in the
original system is significantly non-viscous (see, for example Figures 5.7,5.8 and 5.9).

According to the conclusions drawn in Chapter 5, we may regard the asymmetry of the fitted
viscous damping matrix as an indication that a wrong damping model has been chosen for fitting.
This indicates that the damping mechanism of the constrained layer damped beam used here is
not viscous. This results also illustrates that the viscous damping model commonly used in the
literature is not correct for this system. Next we consider fitting of an exponential damping model
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Figure 8.25: (a) The real part of complex mode z9,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z9 for four sets of experimental data
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Figure 8.26: (a) The real part of complex mode z10,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z10 for four sets of experimental data

to the measured modal data.

Fitting of Non-Viscous Damping

A procedure for fitting of a non-viscous damping model was developed in Chapter 6. In this section
we apply this method to the damped beam considered here. Figure 8.32 shows the values of γ̂

obtained from different µ̂ calculated using equations (6.18)–(6.20). The trend of this plot is similar
to the one corresponding to the double-exponential model (GHM model) shown in Figure 6.6. The
values of fitted γ approximately vary from 53 to 0.9. In view of the discussions in Chapter 6, we
select the value of γ corresponding to the value at the first mode (marked by a ∗). For this value of
γ, the damping time function is shown in Figure 8.33. The fitted coefficient matrix corresponding
to this function is shown in Figure 8.34. The high portion near one end roughly indicates the
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Figure 8.27: (a) The real part of complex mode z11,‘—’ experiment, ‘−−’ theory; (b) The imagi-
nary part of complex mode z11 for four sets of experimental data
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Figure 8.28: Mass matrix in the modal coordinates using the modes obtained from the beam theory

position of the damping in the beam. The diagonal of the fitted coefficient matrix shown in Figure
8.35 clearly reveals this fact. Off-diagonal elements are present in the fitted coefficient matrix, but
since they are all positive, this may indicate that the damping mechanism is approximately local.
Interestingly, observe that the fitted coefficient matrix is symmetric which indicates that the fitted
model might be correct. This is, in a way, contradictory to the result shown in Figure 8.32 for the
fitted values of γ. If the original damping model is truly exponential then the values of fitted γ

for all the modes would have been the same, that is, a straight line would be obtained rather than
a line with downward slope as obtained here. In spite of this, the fitted coefficient matrix turns
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Figure 8.29: Mass matrix in the modal coordinates using the modes obtained from measurement
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Figure 8.30: Fitted viscous damping matrix for the beam

out to be symmetric. This is due to the fact that the values of γ are not very high (in the order
of 50). Recall that similar features were also observed in the simulation studies, see Figures 6.6
and 6.13. From these results we conclude that the damping mechanism of the constrained layer
damped beam considered here is perhaps close to a single exponential model. This is consistent
with the fact that constrained layer damping is often viscoelastic (see Ungar, 2000).
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Figure 8.31: Diagonal of the fitted viscous damping matrix
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Figure 8.32: Values of γ̂ obtained from different µ̂ calculated using equations (6.18)–(6.20)

Symmetry-Preserving Fitting

In this section the symmetry-preserving damping identification method developed in Chapter 7
is applied to the modal data extracted for the damped beam. Because the coefficient matrix of
the identified exponential damping function is symmetric, the symmetry preserving method is
applied to identification of the viscous damping model only. Figure 8.36 shows the fitted symmetric
viscous damping matrix. The high portion corresponds to the position of the damping layer in the
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Figure 8.34: Fitted coefficient matrix of exponential model

beam. Comparison of Figures 8.36 and 8.30 clearly demonstrates improvement of the fitted viscous
damping matrix for the latter case.
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Figure 8.35: Diagonal of the fitted coefficient matrix of exponential model
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Figure 8.36: Fitted symmetric viscous damping matrix

Discussions

From the results shown so far it may be concluded that the damping characteristics of the beam
considered in study is best represented by the exponential damping model. Application of the usual
method of fitting the viscous damping matrix yields an asymmetric damping matrix. This indicates
that the damping mechanism of the beam is non-viscous. However, recall that both the damping
models are fitted from the same set of poles and residues extracted from the measured transfer
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functions. This demonstrates that two different damping models with different spatial distributions
and parameters can be fitted to the measured transfer functions. On the one hand, this result is
negative because it says that by conducting conventional modal testing it is not possible to identify
unique damping model. On the other hand, this result is positive as any damping model can be
fitted to reconstruct the measured set of poles and residues.

It is now the analyst’s choice to decide on which approach should be adopted. If the interest
lies in understanding the true damping mechanism of a system then a model should be fitted for
which the coefficient matrix is symmetric. If, however, the interest is only to reconstruct a set
of measured transfer functions, then either a viscous or a non-viscous model can be fitted. The
choice of viscous or non-viscous model in this case depends on whether an accurate mass matrix
of the system is available or not. If the identified coefficient matrix is found to be asymmetric,
the symmetry preserving methods can be applied. As shown here, the damping matrix obtained
using the symmetry preserving method can give a reasonable account of the spatial distribution of
damping even for the case when the fitted model is incorrect.

Modal testing of the beam was conducted several times and the results shown so far correspond
to just one set of data. It was observed that in some cases the results on damping identification
were not very good. Figure 8.37 shows fitted values of γ for a different set of measurements. The
identified coefficient matrix using the value of γ1 is shown in Figure 8.38. Although general trends
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Figure 8.37: Values of γ̂ obtained from different µ̂ calculated using equations (6.18)–(6.20)

of these two figures are similar to Figures 8.32 and 8.34, the numerical values are quite different.
The value of γ1 is much higher in Figure 8.37 compared to that in Figure 8.32. Also observe that
the spatial distribution of damping shown in Figure 8.38 is less accurate than that in Figure 8.34.
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Figure 8.38: Fitted coefficient matrix of exponential model

This raises the question – how sensitive are the damping identification procedures to measurement
noise? We take up this issue in the next section.

8.6 Error Analysis

In this section we consider the effects of measurement noise on the identified damping matrix. Due
to the presence of noise or random errors, the measured transfer functions become noisy. This in
turn makes the poles and residues, and consequently the complex natural frequencies and modes
erroneous. Further, recall that for lightly damped systems the imaginary parts of the complex
modes are small compared to their corresponding real parts. Thus, the presence of random errors
is likely to affect the imaginary parts more than the real parts. The effect of errors in the modal
data on identification of viscous and non-viscous damping is considered in the next two sections.

8.6.1 Error Analysis for Viscous Damping Identification

In Chapter 5, the method for viscous damping identification was developed by assuming that the
complex natural frequencies as well as the complex modes are obtained exactly. In this section,
how the identified viscous damping matrix behaves due to the presence of errors in the modal data
is investigated. This can be done best by considering the numerical example used in Section 5.4.

In order to simulate the effect of noise, we perturb the modal data by adding zero-mean Gaus-
sian random noise to them. Numerical experiments have been performed by adding different levels
of noise to the following four quantities:
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Figure 8.39: Fitted viscous damping matrix for the local case, γ = 0.02, damping model 2, noise
case (a)

1. Real parts of complex natural frequencies (rω)

2. Imaginary parts of complex natural frequencies (rη)

3. Real parts of complex modes (ru)

4. Imaginary parts of complex modes (rv).

Levels of noise, denoted by the quantities rω, rη, ru and rv, are expressed as a percentage of their
corresponding original values. In practice we hope to obtain the natural frequencies and Q-factors
with good accuracy. So, in what follows next, we assume rω = rη = 2% for all the modes. The
following cases are considered regarding noise levels ru and rv for all the modes:

(a) ru = 2% and rv = 10%

(b) ru = 10% and rv = 2%

(c) ru = 2% and rv = 30%.

Figures 8.39, 8.40 and 8.41 show fitted viscous damping matrix for damping model 2 corre-
sponding to the noise cases (a), (b) and (c) respectively. The locally reacting damping model
shown in Figure 5.1(a) is considered and γ = 0.02 is assumed. Observe that for the noise case
(a), the fitted coefficient matrix is not very different from the exact one shown in Figure 5.2. This
indicates that 2% noise in the real parts of complex modes and 10% noise in the imaginary parts
of complex modes do not effect the fitting result significantly. However, as observed from Figure
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Figure 8.40: Fitted viscous damping matrix for the local case, γ = 0.02, damping model 2, noise
case (b)
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Figure 8.41: Fitted viscous damping matrix for the local case, γ = 0.02, damping model 2, noise
case (c)
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8.40, the story becomes completely different for the noise case (b) when the values of ru and rv are
swapped. This clearly shows that the proposed viscous damping identification procedure is much
more sensitive to errors in the real parts of complex modes than to errors in the imaginary parts. To
illustrate this fact further, noise case (c) is considered where the noise level in the imaginary parts
of complex modes is 30%. From Figure 8.41 observe that even for this high value of rv, the fitted
viscous damping matrix is close to the noise-free case as shown before in Figure 5.2.

Numerical experiments have been carried out using different damping models and parameter
sets. The results are in general quite similar. From this simulation study we conclude that errors
in the real parts of complex modes affect the damping fitting procedure much more than errors
in the imaginary parts of complex modes. This fact makes the proposed method very suitable for
practical purposes because the real parts of complex modes can be obtained more accurately and
reliably than their corresponding imaginary parts.

A semi-analytical explanation of this fact may be given by a perturbation analysis. Suppose,
the real and imaginary parts of the complex modal matrix can be expressed as

U =U0 + ∆U

V =V0 + ∆V
(8.60)

where ∆(•) denotes the ‘error part’ and (•)0 denotes the ‘error-free part’. Note that, in general U
and V are not square matrices. From equation (5.12), one obtains the matrix of constants

B =
[
UT U

]−1 UT V

=
[
(U0 + ∆U)T (U0 + ∆U)

]−1

(U0 + ∆U)T (V0 + ∆V)

=
[
I− (

UT
0 U0

)−1 (
∆UT U0 + UT

0 ∆U + ∆UT∆U
)]−1

(
UT

0 U0

)−1
(U0 + ∆U)T (V0 + ∆V)

(8.61)

Neglecting second or higher order terms involving ∆, the above relationship can be approximated
as

B ≈ B0 +
[(

UT
0 U0

)−1
∆UT V0 −

(
UT

0 U0

)−1 (
∆UT U0 + UT

0 ∆U
) (

UT
0 U0

)−1 UT
0 V0

]

+
[(

UT
0 U0

)−1 UT∆V
]

(8.62)

where
B0 =

(
UT

0 U0

)−1 UT
0 V0. (8.63)

From equation (8.62) observe that there is only one term which contains ∆V in the approximate
expression of B. Also recall that the steps to be followed in order to obtain C′ and C do not involve
V. For this reason the effect of ∆V is much less than that of ∆U. This simple analysis explains
why errors in the real parts of complex modes effect the viscous damping fitting procedure much
more than errors in the imaginary parts of complex modes.
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8.6.2 Error Analysis for Non-viscous Damping Identification

For identification of the exponential damping model we need to obtain the relaxation parameter
and the coefficient damping matrix. The three noise cases introduced before have been considered.
Again, the locally reacting damping model shown in Figure 5.1(a) is used and γ = 0.02 is assumed.

Figure 8.42 shows the values of fitted γ for the noise case (a). The fitted coefficient matrix
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Figure 8.42: Values of γ̂ obtained from different µ̂ calculated using equations (6.18)–(6.20) for
the local case, damping model 2, noise case (a)

corresponding to this case is shown in Figure 8.43. Note that, the pattern of fitted γ for different
modes shown in Figure 8.42 is quite different from its corresponding noise-free case shown in
Figure 6.2. However, the fitted coefficient matrix in Figure 8.43 is not very different from the
noise-free case as shown in Figure 6.8 except that the matrix become noisy. The spatial distribution
of damping and that the damping is local type is clear from this diagram.

Figure 8.44 shows the values of fitted γ for the noise case (b). The fitted coefficient matrix
corresponding to this case is shown in Figure 8.45. Like the noise case (a), the pattern of fitted γ

for different modes shown in Figure 8.44 is quite different from its corresponding noise-free case
and also variation in the values of fitted γ is more now. However, unlike noise case (a), the fitted
coefficient matrix in Figure 8.45 is quite noisy and getting useful information from it becomes very
difficult.

Figure 8.42 shows the values of fitted γ for the noise case (c). The fitted coefficient matrix
corresponding to this case is shown in Figure 8.47. Like the two previous noise cases, the pattern of
fitted γ for different modes shown in Figure 8.46 is quite different from its corresponding noise-free
case and the values of fitted γ varies to a greater extent now. In spite of this, the fitted coefficient
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Figure 8.43: Fitted coefficient matrix of exponential model for the local case, γ = 0.02, damping
model 2, noise case (a)
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Figure 8.44: Values of γ̂ obtained from different µ̂ calculated using equations (6.18)–(6.20) for
the local case, damping model 2, noise case (b)

matrix in Figure 8.47 is not very different from the noise-free case shown in Figure 6.8. The spatial
distribution of damping and that the damping is local type can be recognized from this diagram.

From these results we conclude that the values of relaxation parameter are sensitive to errors
in both the real and imaginary parts of complex modes. However, the fitted coefficient matrix is
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Figure 8.45: Fitted coefficient matrix of exponential model for the local case, γ = 0.02, damping
model 2, noise case (b)
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Figure 8.46: Values of γ̂ obtained from different µ̂ calculated using equations (6.18)–(6.20) for
the local case, damping model 2, noise case (c)

more sensitive to errors in the real parts of complex modes than the imaginary parts as observed
for identification of the viscous damping matrix.

Explanation of these facts can again be given by a simple perturbation analysis. Since the the
procedure for fitting of the coefficient matrix is similar to that of the viscous damping matrix, we
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Figure 8.47: Fitted coefficient matrix of exponential model for the local case, γ = 0.02, damping
model 2, noise case (c)

will discuss sensitivity analysis for the relaxation parameter only. Suppose for any j-th mode

uj =u0j
+ ∆uj

vj =v0j
+ ∆vj

ωj =ω0j
+ ∆ωj

(8.64)

Now, from equation (6.17), the expression of the relaxation parameter for j-th mode, µj can be
written as

µj = ωj

vT
j Mvj

vT
j Muj

=
(
ω0j

+ ∆ωj

) (
v0j

+ ∆vj

)T M
(
u0j

+ ∆uj

)
(
v0j

+ ∆vj

)T M
(
v0j

+ ∆vj

)
(8.65)

Neglecting all terms of second or higher order involving ∆, the above expression may be approx-
imated as

µj ≈ µ0j
− µ0j

∆vT
j Mu0j

+ vT
0j

M∆uj

vT
0j

Mu0j

+ µ0j

∆vT
j Mv0j

+ vT
0j

M∆vj

vT
0j

Mv0j

+ µ0j

∆ωj

ω0j

(8.66)

where

µ0j
= ω0j

vT
0j

Mv0j

vT
0j

Mu0j

(8.67)

Equation (8.66) describes how approximately the values of µj get effected due to error in the modal
data. Observe that error in the real and imaginary parts of complex modes as well as error in the
natural frequencies introduces error in the estimate of the relaxation parameter.
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8.7 Conclusions

Identification of damping properties by conducting dynamic testing of structures has been dis-
cussed. It was shown that conventional modal testing theory, the basis of which is viscously
damped linear systems, can be applied to generally damped linear systems with reasonable ac-
curacy. A linear-nonlinear optimization method is proposed to extract complex modal parameters
from a set of measured transfer functions.

A free-free beam with constrained layer damping is considered to illustrate the damping iden-
tification methods developed in the previous chapters of this dissertation. Modal parameters of the
beam were extracted using the newly developed method. It was shown that the transfer functions
can be reconstructed with very good accuracy using this modal extraction procedure. The real parts
of complex frequencies and modes show good agreement with the undamped natural frequencies
and modes obtained from beam theory. It was shown that, in contrast to the traditional viscous
damping assumption, the damping properties of the beam can be adequately represented by an ex-
ponential (non-viscous) damping model. This fact emphasizes the need to incorporate non-viscous
damping models in structural systems.

The effects of noise in the modal data on the identified damping properties has been inves-
tigated. For the case of viscous damping matrix identification, it was observed that the result is
very sensitive to small errors in the real parts of complex modes while it is not very sensitive to
errors in the imaginary parts. For the identification of non-viscous damping model, the relaxation
parameter is sensitive to errors in both the real and imaginary parts, however the associated coef-
ficient damping matrix is not very sensitive to errors in the imaginary parts. This fact makes the
proposed method more suitable for practical problems because the real parts of complex modes
can be obtained more accurately that the imaginary parts.

With this chapter the work taken up in this dissertation comes to an end. The contributions
made in the study are summarized in the next chapter and and a few suggestions for further work
are also made.
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Chapter 9

Summary and Conclusions

The studies taken up in this dissertation have developed fundamental methods for analysis and
identification of damped linear systems. Summary and detailed discussions have been taken up
at the end of relevant chapters. The purpose of this chapter is to recapitulate the main findings,
unifying them and to suggest some further research directions.

9.1 Summary of the Contributions Made

Modal analysis, the most popular tool for solving engineering vibration problems, is based on dy-
namics of undamped systems. However, all real-life structural systems exhibit vibration damping.
The presence of damping give rise to two major problems. Firstly, the classical modal analysis
procedure cannot be applied directly to generally damped systems. Secondly, and possibly more
importantly, unlike the stiffness and inertia forces which have strong theoretical as well as exper-
imental basis, knowledge of the damping forces is largely empirical in nature. For this reason, it
is not obvious what equations of motion should be used at the first place, let alone how to proceed
with a solution procedure. The studies reported in this dissertation address these two problems.

Viscous damping model is the most common form of damping normally considered in the con-
text of general multiple degree-of-freedom systems. This dissertation considers a more general
non-viscous damping model in which the damping forces depend on the past history of motion
via convolution integrals. The importance of considering such general damping models has been
brought out. It was shown that classical modal analysis can be extended to incorporate general
non-viscous damping models, at least when the damping is light. General methodologies for iden-
tification of damping properties have been proposed and through an experimental investigation it
was further shown that the damping mechanism of a system is indeed likely to be non-viscous.

The answer to the question, whether classical modal analysis is directly applicable to a damped
system or not, comes from the concept of existence of classical normal modes in that system. In
this line, classical damping or proportional damping was proposed for viscously damped systems.
In this dissertation, the concept of proportional damping is generalized to non-viscously damped
systems. This result demonstrates that, contrary to the traditional beliefs, the damping mechanism

185
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need not be viscous in order to apply classical modal analysis. This was the initial motivation for
considering more general non-viscous damping models. It was shown that, general non-viscously
damped systems possess two kinds of modes: (a) elastic modes, and (b) non-viscous modes. Elastic
modes are counterparts of the ‘modes’ of viscously damped systems, while non-viscous modes are
intrinsic to the non-viscous damping mechanism and do not appear in viscously damped systems.
For underdamped systems, elastic modes appear in complex conjugate pairs and are oscillatory in
nature. Non-viscous modes are real and not oscillatory in nature. It was shown that the system
response can be expressed exactly in terms of these modes in a manner similar to that used for
undamped or viscously damped systems. Classical mode orthogonality relationships known for
undamped systems were generalized to non-viscously damped systems. It was shown that there
exist unique relationships which relate the system matrices to the natural frequencies and modes
of non-viscously damped systems. These relationships, in turn, enable us to reconstruct the system
matrices from full set of modal data.

The above mentioned results give a strong footing to pursue more fundamental studies regard-
ing damping mechanisms in general vibrating systems. Assuming that the damping is small, a
method is proposed to obtain a viscous damping matrix from complex modes and complex natural
frequencies. It was observed that when the actual damping mechanism of the structure is not vis-
cous, this method fits a viscous damping matrix which is asymmetric, therefore non-physical1. If,
however, the damping mechanism is viscous or close to viscous, this method identifies the correct
viscous damping matrix. Thus, using this method it is possible to tell whether the damping mech-
anism of a structure is effectively viscous or not. This fact makes this method particularly useful
because currently there are no methods available in the literature which address this question, most
of them a priori assume the damping mechanism to be viscous and then try to fit a viscous model.
This study also indicates that when the damping mechanism of a structure is non-viscous, some
particular non-viscous damping model must be used for fitting. As a first step towards this, we have
considered the simplest non-viscous damping model, namely a single relaxation parameter model,
for fitting purposes. Identification of the damping properties using this model offers a greater flex-
ibility than that of the conventional viscous damping model. However, when the original damping
model of the system is not close to the fitted one, the method again yields a non-physical result.
Thus, using this method also, it is possible to understand whether the damping mechanism of the
original system is close to what was considered for the fitting. Another important result to emerge
from these studies is that, when the damping is light, several damping models can be fitted to re-
produce some measured set of transfer functions exactly. In other words, the identified damping
model is non-unique. On the one hand, this result is encouraging and serves as a kind of justifi-
cation of the widespread use of the viscous damping model. On the other hand, it demonstrates
that by conducting conventional modal testing procedure in general it is not possible to identify the
true damping model. Motivated by this fact, some methods were developed to identify damping

1According to the definition of Rayleighs dissipation function, see Section 1.2.3
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models which will preserve the symmetry of the system. These methods in general yield physically
realistic damping matrix and reconstruct the transfer functions with good accuracy. The symmetry
preserving methods should be used when both the viscous and non-viscous damping identification
method fail to yield a symmetric damping matrix. However, the disadvantage is that the identified
models may have poor predictive power for changes to the system as the actual damping model is
incorrect.

It must be noted that complex modes and frequencies can not be measured directly in order to
apply the damping identification methods developed here. A linear-nonlinear optimization method
was proposed to extract the complex modal data from the measured transfer functions. This method
was applied experimentally to a beam with constrained layer damping and quite good agreement
between the measured and the reconstructed transfer functions was obtained. It was observed that
the damping mechanism of the beam considered for the experiment was not viscous but could be
adequately represented by an exponential damping model. This result clearly demonstrates the
need to use non-viscous damping modes in linear dynamic systems.

In summary, the work conducted in this dissertation achieves the following:

• Redefinition of the concept of proportional damping and generalization of it to the non-
viscous case (Chapter 2).

• Extension of modal analysis to deal with non-classical and non-viscously damped linear
systems by introducing the concept of elastic modes and non-viscous modes (Chapter 3).

• Generalization of the classical mode orthogonality and normalization relationships known
for undamped systems to non-classical and non-viscously damped systems (Chapter 4).

• Identification of the full non-proportional viscous damping matrix from incomplete and
noisy modal data (Chapters 5 and 8).

• Identification of non-viscous damping functions from incomplete and noisy modal data to-
gether with the mass matrix (Chapters 6 and 8).

• A method for preserving symmetry in damping identification procedures (Chapter 7).

• A general procedure for extraction of complex natural frequencies and modes from the mea-
sured transfer functions in the context of non-viscously damped systems (Chapter 8).

9.2 Suggestions for Further Work

The study conducted in this dissertation throws open several questions on generally damped vi-
brating systems. The following are some important areas of research which emerge immediately
from this study:



188 Chapter 9. Summary and Conclusions

• Multiple parameter exponential models for damping identification: The non-viscous damp-
ing identification method proposed in Chapter 6 considers only single parameter exponential
model for fitting purposes. It was observed that this simple model becomes inadequate when
the true damping mechanism is different from the exponential model. In order to overcome
this problem, it is required to fit a multiple parameter exponential model to measured com-
plex modes and frequencies. Currently there has been very little study in this direction. The
multiple parameter exponential model has several advantages. From a mathematical point
of view, having more parameters offers more flexibility for fitting purposes. From the point
of view of the physics of the damping mechanism, it is perfectly possible that the damping
mechanism of a structure comprises of a linear combination of several relaxation functions.
Thus, there are good physical as well as mathematical reasons to pursue a systematic study
on fitting of multiple parameter exponential models to measured complex modes and fre-
quencies.

• Analysis of complex modes: In spite of extensive research efforts, the nature of complex
modes is not quite clear. Although the results derived in Chapter 4 clarify some of the
important theoretical issues, eg., normalization, orthogonality etc., there are several topics
which need further attention. Upon proper normalization, the real parts of the complex
modes can be understood from our usual knowledge of normal modes (for example, see
Figures 8.17 to 8.27). However, nothing so simple can be said about the imaginary parts.
Beside this there are several general questions of interest:

1. How should one quantify the amount of ‘complexity’ in a given complex mode?

2. Does the amount of ‘complexity’ have a direct relationship with the amount of non-
proportionality?

3. What should we except the shape of the imaginary parts of the complex modes to look
like? What are the parameters which govern these shapes?

Some of these questions have been addressed to some extent in the literature for viscously
damped systems. It is required to extend these results to generally damped systems.

• Numerical and experimental study on 2D systems: The experimental and numerical stud-
ies on damping identification conducted here were on one dimensional (1D) systems. It is
required to extend these works to more general two dimensional (2D) systems (plates, for
example). Some preliminary numerical studies were conducted by the author (although the
results are not reported) and it was observed that the methods proposed here can be applied
to such general 2D systems. Further studies are required to exploit the generality of the
proposed damping identification methods.

• Stability and Criticality of non-viscously damped systems: In Chapter 3, the nature of the



9.2. Suggestions for Further Work 189

eigenvalues of non-viscously damped systems were discussed under simplified assumptions.
Clearly, these assumptions are not valid under general circumstances. For viscously damped
systems, based on the nature of the eigenvalues, there are well established works on when the
damping become critical or the system become unstable. It is important to obtain analogous
results for non-viscously damped systems.

• Asymmetric systems: The studies conducted in Chapters 2, 3 and 4 are self-contained as long
as systems with symmetric coefficient matrices are considered. However, the dynamical be-
haviour of some systems encountered in practice cannot be expressed in terms of symmetric
coefficient matrices or self-adjoint linear operators. Some examples are − gyroscopic and
circulatory systems (Huseyin and Liepholz, 1973), aircraft flutter (Fawzy and Bishop, 1977),
ship motion in sea water (Bishop and Price, 1979), contact problems (Soom and Kim, 1983)
and many actively controlled systems (Caughey and Ma, 1993). Therefore, for the sake of
generality, it is required to extend the formulation in Chapters 2, 3 and 4 to linear asymmetric
MDOF systems.

• Distributed parameter systems: In this dissertation we have considered only discrete param-
eter systems or discretized model of distributed parameter systems. Modelling of mechanical
systems through distributed parameters (inertia, stiffness and damping) offers more accurate
treatment of the problem. In this case the equations of motion can be expressed by partial
differential equations. The difficulty in adopting such an approach is that the exact solutions
can be obtained for only very special cases with simple geometry and boundary conditions.
There have been some studies on viscously damped distributed parameter systems but very
little is available in the literature on non-viscously damped distributed parameter systems. It
will be useful to extend the works reported in Chapters 2, 3 and 4 to distributed parameter
systems.
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Appendix A

Calculation of the Gradient and Hessian of
the Merit Function

The gradient and Hessian of the merit function χ2 can be obtained from equations (8.42) and (8.45)

respectively. Since V is a real vector,
∂H∗

n(ω)

∂Vp

=

(
∂Hn(ω)

∂Vp

)∗
. Thus, it is sufficient to obtain an

expression of the term
∂Hn(ω)

∂Vp

only.

First note that, from the definition of V in equation (8.36) we have

∂Hn(ω)

∂Vp

=
∂Hn(ω)

∂ωp

, ∀p = 1, 2, · · · ,m (A.1)

and
∂Hn(ω)

∂Vp

=
∂Hn(ω)

∂Q(p−m)

, ∀p = m + 1,m + 2, · · · , 2m. (A.2)

Consider the expression of Hn(ω) in equation (8.9). Since the residue matrix A is independent of
V , from (8.9) we further have

∂Hn(ω)

∂ωj

=
∂f1j

(ω)

∂ωj

Ajn +
∂f2j

(ω)

∂ωj

A∗
jn (A.3)

and
∂Hn(ω)

∂Qj

=
∂f1j

(ω)

∂Qj

Ajn +
∂f2j

(ω)

∂Qj

A∗
jn, ∀j = 1, 2, · · · ,m (A.4)

because, for l = 1, 2,
∂flk(ω)

∂ωj

=
∂flk(ω)

∂Qj

= 0,∀k 6= j.

Using equation (8.5), the functions f1j
(ω) and f2j

(ω) can be expressed in terms of ωj and Qj

as

f1j
(ω) = − (iω)r

d1j
(ω)

, where d1j
(ω) = ω −

(
ωj + i

ωj

2Qj

)
(A.5)

and f2j
(ω) =

(iω)r

d2j
(ω)

, where d2j
(ω) = ω +

(
ωj − i

ωj

2Qj

)
. (A.6)
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Differentiating equations (A.5) and (A.6) with respect to ωj and Qj we have

∂f1j
(ω)

∂ωj

= − (1 + i/2Qk)
(iω)r

d2
1j

(ω)
(A.7)

∂f2j
(ω)

∂ωj

= − (1− i/2Qk)
(iω)r

d2
2j

(ω)
(A.8)

∂f1j
(ω)

∂Qj

=
(
iωj/2Q

2
k

) (iω)r

d2
1j

(ω)
(A.9)

∂f2j
(ω)

∂Qj

= − (
iωj/2Q

2
k

) (iω)r

d2
2j

(ω)
, ∀j = 1, 2, · · · ,m (A.10)



Appendix B

Discretized Mass Matrix of the Beam

Suppose that the displacement field of the beam is sampled at n points. All the points are equally
spaced with a spacing distance of a and denoted by 0, a, 2a, · · · , (n − 1)a as shown in Figure
B.1. The values of displacement at these points are denoted by u1, n2, · · · , un. Consider the first

.......

a 2a

uk1

un

(n−1)a

.....

0

L
x

3u

u1

2u

(k−1)a ka

uk+1

u (x)~

Figure B.1: Discretization of the displacement field

segment and denote ũ1(x) as the value of the displacement in 0 ≤ x ≤ a. Assuming linear

variation of ũ1(x) between u1 and u2, one has

u1 − u2

a
=

ũ1(x)− u2

a− x
or ũ1(x) =

u2x + u1(a− x)

a
. (B.1)

Similar expressions can be obtained for other segments also. To obtain the mass matrix, first
consider the kinetic energy of the beam in the frequency domain given by

T = ω2 1

2

∫ L

o

m(x)u2(x)dx. (B.2)
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194 Appendix B. Discretized Mass Matrix of the Beam

In the above expression L denote the length of the beam, m(x) is the mass distribution and u(x) is
the displacement function. Equation (B.2) can be expressed in a discretized form as

T = ω2 1

2

n−1∑

k=0

∫ a

o

mkũ
2
k(x)dx. (B.3)

Assuming uniform mass density and denoting M as the total mass of the beam, the above equation
can be expressed as

T = ω2 1

2

M

(n− 1)

n−1∑

k=0

∫ a

o

ũ2
k(x)dx. (B.4)

Substituting ũ1(x) from (B.1), the first term of the above series reads

∫ a

o

ũ2
1(x)dx =

∫ a

o

[
u2x + u1(a− x)

a

]2

dx =
a

3
[u2

1 + u2
2 + u1u2]. (B.5)

Similarly, considering all the terms, from (B.4) the kinetic energy of the beam can be expressed as

T = ω2 1

2
uT Mu (B.6)

where u = {u1, u1, · · · , un}T (B.7)

and M = mu




1 1/2
1/2 2 1/2

. . . . . . . . .
1/2 2 1/2

. . . . . .
1/2 1




with mu =
Ma

3(n− 1)
. (B.8)
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