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Discrepancies between experimentally measured data and computational predictions

are unavoidable for complex engineering dynamical systems. To reduce this gap, model

updating methods have been developed over the past three decades. Current methods

for model updating often use discrete parameters, such as thickness or joint stiffness, for

model updating. However, there are many parameters in a numerical model which are

spatially distributed in nature. Such parameters include, but are not limited to,

thickness, Poisson’s ratio, Young’s modulus, density and damping. In this paper a novel

approach is proposed which takes account of the distributed nature of the parameters

to be updated, by expressing the parameters as spatially correlated random fields. Based

on this assumption, the random fields corresponding to the parameters to be updated

have been expanded in a spectral decomposition known as the Karhunen–Lo �eve (KL)

expansion. Using the KL expansion, the mass and stiffness matrices are expanded in

series in terms of discrete parameters. These parameters in turn are obtained using a

sensitivity based optimization approach. A numerical example involving a beam with

distributed updating parameters is used to illustrate this new idea.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The deterministic finite element model updating problem [1,2] is well established, both in the development of methods
and in application to industrial-scale structures. The proposed methods can be broadly divided into two categories, namely,
the non-parametric (or direct) and parametric approaches. In the non-parametric approach, developed during early
eighties, the system matrices (namely, mass, stiffness and damping matrices) are updated directly so that the differences
between predicted data (natural frequencies, damping ratios, and mode shapes) and measured data are minimum
according to a suitable norm. The major problem with these methods is the lack of physical insight into the modeling errors
that are corrected, and this has led to the popularity of parametric model updating methods. Here physical parameters
(for example, joint stiffnesses, thicknesses) are selected and usually updated based on some kind on sensitivity analysis
that minimizes the error between predicted results and test data from a single physical structure. The choice of updating
parameters is an important aspect of the process and should always be justified physically. Model uncertainties should be
located and parameterized sensitively to the predictions. Finally, the model should be validated by assessing the model
quality within its range of operation and its robustness to modifications in the loading configuration, design changes,
coupled structure analysis and different boundary conditions.
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Collins et al. [3] developed a Bayesian approach to model updating used linearized sensitivities based on knowledge of
the statistics of the unknown parameters and the vibration measurements. In these approaches, the randomness arises
only from the measurement noise and the updating parameters take unique values, to be found by iterative correction to
the estimated means, whilst the variances are minimized [4]. These statistical approaches have been extended to update
parameter distributions using measured response distributions from multiple measurements. These include Bayesian
methods [5–8], perturbation based methods [9] and the maximum likelihood method [10]. Thus randomness due to
manufacturing and material variability in a number of nominally identical test structures was not considered, and this
latter variability is often much more significant than measurement noise.

Determining a suitable parametrization is a key issue in model updating [11]. It is important that the chosen parameters
should be able to clarify the ambiguity of the model, and in that case it is necessary for the model output to be sensitive to
the parameters. Elements in the mass and stiffness matrices perform very poorly as candidate parameters and are rarely
used. Element parameters, such as the flexural rigidity of a beam element, may be used provided there is some justification
as to why the element properties should be in error. Mottershead et al. [12] used geometric parameters, such as beam
offsets, for the updating of mechanical joints and boundary conditions. Gladwell and Ahmadian [13], Ahmadian et al. [14]
and Terrell et al. [15] demonstrated the effectiveness of parametrizing the modes at the element level, and used the generic
element method to update mechanical joints. Teughels et al. [16,17] parameterized distributed damage in concrete beams
and highway bridges using damage functions to determine the spatial bending stiffness distribution. The updating
parameters were then the multiplication factors of the damage functions. The objective of this paper is to use model
updating to estimate distributed parameters modeled as realizations of random fields. The main motivation of considering
this approach is arising from the fact that in many cases the deviations of the parameter values from the assumed constant
values are spatially distributed in nature. Examples include thickness, Young’s modulus, Poisson’s ratio and mass density of
a system. Such distributed deviations are obviously a priori unknown and therefore can be considered to be samples from a
random field. Such random fields can be discretized into random variables using the Karhunen–Lo�eve (KL) expansion
[18–21]. The discretized variables can in turn be used as updating parameters.

Karhunen–Lo�eve (KL) expansion based model updating has not been widely used in the context of structural dynamics.
Khalil et al. [22] proposed a system identification method based on proper orthogonal decomposition. Later Khalil et al.
[23,24] proposed Kalman filter base techniques for identification on nonlinear uncertain systems. Yeong and Torquato
[25,26] and Cule and Torquato [27] have proposed methodologies for reconstructing random media described by two-point
correlation function. In the chemical engineering literature some authors have used the Karhunen–Lo�eve expansion for
system identification. Rigopoulos et al. [28] proposed a KL expansion based method for the on-line identification of full
profile disturbance models for sheet forming processes. Park and Cho [29] proposed a KL based modeling approach for
nonlinear heat conduction problems in two dimensions. Krischer et al. [30] used a KL expansion for the identification of a
catalytic spatiotemporally varying reaction. Qi and Li [31] used a KL based approach for a nonlinear distributed parameter
processes.

We propose a Karhunen–Lo�eve (KL) expansion based model updating for linear structural dynamical systems. The
outline of the paper is as follows. In Section 2 the spectral decomposition of random fields using the Karhunen–Lo�eve
expansion is discussed. Using this expansion, the mass and stiffness matrices of an Euler–Bernoulli beam are expanded in
Section 3 in terms of parameters that will be used for model updating. Based on the expansion of the system matrices, an
eigen-sensitivity based updating approach is proposed in Section 4 and illustrated numerically in Section 5. Finally, based
on the results and analytical formulations, a set of conclusions are drawn in Section 6.
2. Spectral decomposition of random fields

Problems of structural dynamics in which the uncertainty in specifying mass, damping and stiffness of the structure is
modeled within the framework of random fields can be treated using the stochastic finite element method, see for example
[32–38]. Here we consider that the difference between the measured data and the model arises from the differences
between the assumed values of the distributed parameters and the ‘true’ values. This difference, which is unknown a priori,
is distributed in nature and is modeled by random fields. To obtain a reliable statistical description of the random fields one
needs multiple measurements from nominally identical systems. When such multiple measurements are not available,
then the difference between the model outputs and the experiment can be considered due to a single realization of the
underlying random fields. The model updating approach proposed in this paper is based on this ideological framework.

Suppose Fðr; yÞ is a random field with a covariance function CF ðr1; r2Þ defined in a space D. Here y denotes an element of
the (random) sample space O so that y 2 O. Mathematically and numerically it is very difficult to deal with random fields
directly in the equations of motion which are often expressed by partial differential equations. For this reason it is required
to discretize a random filed in terms of random variables. Once this is done, then a wide range of mathematical and
numerical techniques can be used to solve the resulting discrete stochastic differential equations. Among the many
discretization techniques, the spectral decomposition of random fields using the Karhunen–Lo�eve expansion turns out to
be very useful in practice. In this paper this approach has been applied to model updating.

Since the covariance function is finite, symmetric and positive definite it can be represented by a spectral
decomposition. Using this spectral decomposition, the random field Fðr;yÞ can be expressed in a generalized Fourier
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type of series as

Fðr; yÞ ¼ F0ðrÞ þ
X1
j¼1

ffiffiffiffi
lj

q
xjðyÞjjðrÞ ð1Þ

where xjðyÞ are uncorrelated random variables and throughout the paper ð�Þ0 implies the deterministic part corresponding
to ð�Þ. The constants lj and functions jjðrÞ are eigenvalues and eigenfunctions satisfying the integral equationZ

D
CF ðr1; r2Þjjðr1Þdr1 ¼ ljjjðr2Þ; 8j ¼ 1;2; . . . ð2Þ

The spectral decomposition in Eq. (1), which discretizes a random field into random variables, is known as the
Karhunen–Lo�eve expansion. The series in Eq. (1) can be ordered in a decreasing series so that it can be truncated after a
finite number of terms with a desired accuracy. Fukunaga [20] and Papoulis and Pillai [21] and the references therein give
further discussions on the Karhunen–Lo�eve expansion.

In this paper one dimensional systems are considered. To demonstrate the approach a Gaussian random field with an
exponentially decaying autocorrelation function is considered. Such a model is representative of many physical systems
and closed form expressions for the Karhunen–Lo�eve expansion may be obtained. The autocorrelation function can be
expressed as

Cðx1; x2Þ ¼ e�jx1�x2 j=b ð3Þ

Here the constant b is known as the correlation length and it plays an important role in the description of a random field. If
the correlation length is very small, then the random field becomes close to a delta-correlated field, often known as white
noise. If the correlation length is very large compared to domain under consideration, then the random field effectively
becomes a random variable. Assuming the mean is zero, then the underlying random field Fðx; yÞ can be expanded using the
Karhunen–Lo�eve expansion [20,21] in the interval �arxra as

Fðx; yÞ ¼
X1
j¼1

xjðyÞ
ffiffiffiffi
lj

q
jjðxÞ ð4Þ

Using the notation c ¼ 1=b, the corresponding eigenvalues and eigenfunctions for odd j are given by

lj ¼
2c

o2
j þ c2

; jjðxÞ ¼
cosðojxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ
sinð2ojaÞ

2oj

s where tanðojaÞ ¼
c

oj
ð5Þ

and for even j are given by

lj ¼
2c

o2
j þ c2

; jjðxÞ ¼
sinðojxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�
sinð2ojaÞ

2oj

s where tanðojaÞ ¼
oj

�c
ð6Þ

These eigenvalues and eigenfunctions will now be used to obtain the element mass and stiffness matrices.
For all practical purposes, the infinite series in Eq. (4) needs to be truncated using a finite numbers of terms. The number

of terms could be selected based on the ‘amount of information’ to be retained. This in turn can be related to the number of
eigenvalues retained, since the eigenvalues, lj, in Eq. (4) are arranged in decreasing order. For example, if 90% of the
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Fig. 1. The eigenvalues of the Karhunen–Lo �eve expansion for different correlation lengths, b, and the number of terms, N, required to capture 90% of the

infinite series. An exponential correlation function with unit domain (i.e., a ¼ 1
2) is assumed for the numerical calculations. The values of N are obtained

such that lN=l1 ¼ 0:1 for all correlation lengths. Only eigenvalues greater than lN are plotted.
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information is to be retained, then one can choose the number of terms, N, such that lN=l1 ¼ 0:1. The value of N depends
on the correlation length of the underlying random field. In Fig. 1, the number of terms required to capture 90% of the
infinite series for different correlation lengths are shown. Observe that one needs more terms when the correlation length
is small. Intuitively this means that more independent variables are needed for fields with smaller correlation lengths and
vice versa.

3. Parametric expansion of system matrices

The equation of motion of an undamped Euler–Bernoulli beam of length L with random bending stiffness and mass
distribution can be expressed as

@2

@x2
EIðx; yÞ

@2Yðx; tÞ

@x2

� �
þ rAðx; yÞ

@2Yðx; tÞ

@t2
¼ pðx; tÞ ð7Þ

Here Yðx; tÞ is the transverse flexural displacement, EIðxÞ is the flexural rigidity, rAðxÞ is the mass per unit length,
and pðx; tÞ is the applied forcing. It is assumed that the bending stiffness, EI, and mass per unit length, rA, are random fields
of the form

EIðx; yÞ ¼ EI0ð1þ e1F1ðx; yÞÞ ð8Þ

and

rAðx; yÞ ¼ rA0ð1þ e2F2ðx; yÞÞ ð9Þ

The subscript 0 indicates the mean values, 0oei51 ði ¼ 1;2Þ are deterministic constants and the random fields Fiðx; yÞ are
taken to have zero mean, unit standard deviation and covariance RijðxÞ. Since, EIðx; yÞ and rAðx; yÞ are strictly positive, Fiðx; yÞ
(i=1,2) are required to satisfy the conditions P½1þ eiFiðx; yÞr0� ¼ 0. This requirement, strictly speaking, rules out the use of
Gaussian models for these random fields. However, for small ei, it is expected that Gaussian models still can be used if the
primary interest of the analysis is to estimate the first few response moments and not the response behavior near tails of
the probability distributions.

For notational convenience, we express the shape functions for the finite element analysis of Euler–Bernoulli beams as

NðxÞ ¼ CsðxÞ ð10Þ

where

C ¼

1 0
�3

‘2
e

2

‘3
e

0 1
�2

‘e

1

‘2
e

0 0
3

‘2
e

�2

‘3
e

0 0
�1

‘e

1

‘2
e

2
66666666666664

3
77777777777775

and sðxÞ ¼ ½1; x; x2; x3�T ð11Þ

Using the expression for EIðx; yÞ given by Eq. (8), the element stiffness matrix can be obtained as

KeðyÞ ¼
Z ‘e

0
N00ðxÞEIðx; yÞN00T ðxÞdx ¼

Z ‘e

0
EI0ð1þ e1F1ðx; yÞÞN00ðxÞN00

T
ðxÞdx ð12Þ

Expanding the random field F1ðx; yÞ in the Karhunen–Lo�eve spectral decomposition given by Eq. (4) we have

KeðyÞ ¼ Ke0 þ DKeðyÞ ð13Þ

where the deterministic part is given by

Ke0 ¼ EI0

Z ‘e

0
N00ðxÞN00T ðxÞdx ð14Þ

and the random part is given by

DKeðyÞ ¼ e1

XNK

j¼1

xKjðyÞ
ffiffiffiffiffiffiffi
lKj

q
Kej ð15Þ

The constant NK is the number of terms retained in the Karhunen–Lo�eve expansion and xKjðyÞ are uncorrelated Gaussian
random variables with zero mean and unit standard deviation. The constant matrices Kej can be expressed as

Kej ¼ EI0

Z ‘e

0
jKjðxe þ xÞN00ðxÞN00T ðxÞdx ð16Þ
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where the functions jKj are defined in Eqs. (5) and (6), and xe is the position of the left node of the element. Closed-form
expressions of these matrices are derived in Appendix A.1.

Using the same approach, the mass matrix can be obtained as

MeðyÞ ¼Me0
þ DMeðyÞ ð17Þ

where the deterministic part is given by

Me0
¼ rA0

Z ‘e

0
NðxÞNT

ðxÞdx ð18Þ

and the random part is given by

DMeðyÞ ¼ e2

XNM

j¼1

xMjðyÞ
ffiffiffiffiffiffiffiffi
lMj

q
Mej ð19Þ

The constant NM is the number of terms retained in the Karhunen–Lo�eve expansion and the constant matrices Mej can be
expressed as

Mej ¼ rA0

Z ‘e

0
jMjðxe þ xÞNðxÞNT

ðxÞ dx ð20Þ

The closed-form expressions of these matrices are given in Appendix A.2.
Using the conventional approach, these element matrices can be assembled to form the global random stiffness and

mass matrices of the form

KðyÞ ¼ K0 þDKðyÞ ð21Þ

and

MðyÞ ¼M0 þDMðyÞ ð22Þ

Here the deterministic parts K0 and M0 are the usual global stiffness and mass matrices obtained from the conventional
finite element method. The random parts can be expressed as

DKðyÞ ¼ e1

XNK

j¼1

xKjðyÞ
ffiffiffiffiffiffiffi
lKj

q
Kj ð23Þ

and

DMðyÞ ¼ e2

XNM

j¼1

xMjðyÞ
ffiffiffiffiffiffiffiffi
lMj

q
Mj ð24Þ

and the element matrices Kej and Mej have been assembled into the global matrices Kj and Mj. The total number of random
variables depend on the number of terms used for the truncation of the infinite series, Eq. (4). This in turn depends on the
respective correlation lengths of the underlying random fields; the smaller the correlation length, the higher the number of
terms required and vice versa.

4. Eigen-sensitivity based model updating

Sensitivity based methods allow a wide choice of physically meaningful parameters and these advantages has led to
their widespread use in model updating. The approach is very general and relies on minimizing a penalty function, which
usually consists of the error between the measured quantities and the corresponding predictions from the model. Here we
consider natural frequencies as measured data. Parameters are then chosen that are assumed uncertain, and here we
choose the coefficients of the KL expansion. These are estimated by approximating the penalty function using a truncated
Taylor series and iterating to obtain a converged solution. If there are sufficient measurements and a restricted set of
parameters then the identification may be well-conditioned. Often some form of regularization must be applied [39], and
this is considered further in Section 4.2. Other optimization methods may be used, such as quadratic programming,
simulated annealing or genetic algorithms, but these are not considered further in this paper. Problems will also arise if an
incorrect or incomplete set of parameters is chosen, or even worse, if the structure of the model is wrong. Friswell and
Mottershead [1] discussed sensitivity based methods in detail.

4.1. Parametric sensitivity of eigenvalues

The random eigenvalue problem corresponding to an undamped stochastic system can be expressed as

½K0 þDKðyÞ�/i ¼ o2
i ½M0 þ DMðyÞ�/i ð25Þ
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Several authors [40–50] proposed mean-centered perturbation methods. Recently Adhikari [51,52] and Adhikari and
Friswell [53] developed an asymptotic approach and an optimal series-expansion methods to obtain second and higher-
order joint statistics of eigenvalues. Here, the first-order perturbation approach is proposed for updating the system.

Following Fox and Kapoor [54] the derivative of an eigenvalue with respect to a general parameter a can be obtained as

@ðo2
i Þ

@a
¼ /T

0i

@K

@a
�o2

0i

@M

@a

� �
/0i ð26Þ

or

@oi

@a
¼

1

2
/T

0i

1

o0i

@K

@a
�o0i

@M

@a

� �
/0i ð27Þ

In the above expressions o0i and /0i correspond to the natural frequency and mass normalized mode shape of the
underlying baseline system satisfying

K0/0i ¼ o2
0iM0/0i and /T

0iM0/0i ¼ 1 8i ð28Þ

Using the Karhunen–Lo�eve expansion of the stiffness and mass matrix in Eqs. (21)–(24) and the first-order perturbation
method, each eigenvalue can be expressed as

oi � o0i þ
XNK

j¼1

@oi

@xKj
xKjðyÞ þ

XNM

j¼1

@oi

@xMj
xMjðyÞ ð29Þ

Noting that

@K

@xKj
¼ e1

ffiffiffiffiffiffiffi
lKj

q
Kj and

@M

@xMj
¼ e2

ffiffiffiffiffiffiffiffi
lMj

q
Mj ð30Þ

the derivative of the eigenvalues can be obtained using Eq. (27) as

@oi

@xKj
¼ sij ¼ e1

ffiffiffiffiffiffiffi
lKj

q /T
0iKj/0i

2o0i
ð31Þ

and

@oi

@xMj
¼ siðNKþjÞ ¼ �e2

1

2
o0i

ffiffiffiffiffiffiffiffi
lMj

q
/T

0iMj/0i ð32Þ

Suppose m number of natural frequencies have been measured. Combining the preceding four equations for all m we can
express

x � x0 þ Sn ð33Þ

Here the elements of the m� ðNK þ NMÞ sensitivity matrix S are given by Eqs. (31) and (32) and the ðNK þ NMÞ dimensional
vector of updating parameters n is

n ¼ ½xK1 xK2 . . . xKNK
xM1 xM2 . . . xMNM

�T ð34Þ

The vector n in Eq. (33) is a deterministic vector when a single structure is considered. However, it should be recalled from
the KL expansion that the elements of n are sampled from independent and identically distributed standard Gaussian
random variables (i.e., with zero-mean and unit standard deviation). Following the cumulative distribution function of the
Gaussian random variable, this in turn implies that there is about 99% probability that the elements of the vector n will lie
within three standard deviations of the mean. We now use Eq. (33) to update the system.

4.2. Optimization methods

Minimization of the error between the measured and predicted natural frequencies may be expressed as the
minimization of the cost function Je, defined as

JeðnÞ ¼ eT Wee ð35Þ

where

e ¼ xm �xðnÞ ð36Þ

and We is a weighting matrix. A suitable choice of weighting matrix is the inverse of the variance of the natural frequencies,
or a matrix with the inverse of natural frequency squared along the diagonal. xm is the vector of measured natural
frequencies corresponding to the predicted natural frequencies xðnÞ, n is the vector of unknown parameters, and e is the
modal residual vector.
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The modal residual in Eq. (36) is a nonlinear function of the parameters and the minimization is solved using a
truncated linear Taylor series and iteration. Suppose at the j th iteration the parameter estimate is nj and the corresponding
vector of natural frequencies is xj. The iteration is initialized with n0 ¼ 0. The truncated Taylor series centered on the
current parameter estimate is based on Eq. (33), and given by

x � xj þ Sjðn� njÞ ð37Þ

where Sj is the sensitivity matrix evaluated at the current parameter estimate nj. Assuming there are more measurements
than parameters then the updated parameter estimate njþ1 is obtained using the pseudo-inverse as

njþ1 ¼ nj þ ½S
T
j WeSj�

�1ST
j Weðxm �xjÞ ð38Þ

Often calculating the solution in Eq. (38) will be ill-conditioned, even if there are more measurements than parameters. In
this case the solution may be regularized. Since we know that the KL coefficients should be Gaussian with zero mean, a
suitable side constraint is

JpðnÞ ¼ nT Wpn ð39Þ

where the weighting matrix Wp will be chosen as the identity matrix here so that each parameter is equally weighted. A
combined penalty function is then defined based on the natural frequency residuals and the side constraint as

JðnÞ ¼ ð1� mÞJeðnÞ þ mJpðnÞ ð40Þ

where m 2 ½0 1� is a regularization parameter that determines the relative weight between the residual and the side
constraint. If m ¼ 0 then no weight is given to the parameter changes, and if m ¼ 1 the parameters are not updated so that
n ¼ 0. Minimizing Eq. (40) at the j th iteration, based on the Taylor series in Eq. (37), gives the updated parameter vector as

njþ1 ¼ nj þ ½ð1� mÞS
T
j WeSj þ mWp�

�1fð1� mÞST
j Weðxm �xjÞ � mWpnjg ð41Þ

We refer to Titurus and Friswell [39] for the derivation of the above result. The iterations continue until convergence, which
is determined when the change in parameters, Jnjþ1 � njJ, falls below a given constant.

The remaining question is how to choose the regularization parameter m. The procedure adopted here is to vary the
regularization parameter, while recording the cost functions Je and Jp representing the error in the natural frequencies and
the change in the parameters, respectively. These cost functions are then plotted to give the so-called L-curve [11]. This will
be a monotonic function and will often have a sharp corner that represents the optimum trade-off between the
minimization of the residual and the parameter changes. In the next section we apply this approach numerically as an
illustration.

5. Numerical example

We consider an Euler–Bernoulli beam with variability in the bending rigidity EIðxÞ only. The beam is assumed to be
clamped at one end. The unperturbed physical and geometrical properties of the beam are shown in Table 1. It is assumed
that the variations from the unperturbed value of EI can be modeled by a homogeneous Gaussian random field. For
numerical calculations we considered 20% variation with a correlation length of b ¼ L=3. Some random realizations of the
type of variability considered are shown in Fig. 2. Note that the deviations from the baseline value are distributed in nature.
The data were generated using 13 terms in the KL expansion. In this example we treat the first 16 natural frequencies
of the perturbed system as ‘measured’ values ðm ¼ 16Þ. This simulates a realistic situation where the true model
parameters (EI in this example) can deviate from the baseline assumed values in an a priori unknown manner. The
objective is to reconstruct the distributed EI function from the measured natural frequencies of a sample beam.

Before estimating the coefficients of the KL expansion the sensitivity matrix should be studied to understand any likely
ill-conditioning problems. This matrix is shown in Fig. 3 for 20 natural frequencies and 12 parameters. A number of
features are immediately apparent. There are several orders of magnitude difference in some sensitivities, and in particular
the natural frequencies are much more sensitive to the odd terms in the KL expansion than the even terms. For structures
with other boundary conditions this will not necessarily be the case. Second, the sensitivities vary smoothly with the mode
Table 1
Material and geometric properties of the beam considered in the example.

Beam properties Numerical values

Length (L) 1 m

Correlation length (b) L=3

Width 40 mm

Thickness 2 mm

Mass density (r) 7800 kg=m3

Young’s modulus (E) 2:0� 105 MPa



ARTICLE IN PRESS

1 2 3 4 5 6 7 8 9101112

5

10

15

20

−1

0

1

2

3

4

5

lo
g 1

0 
(a

bs
ol

ut
e 

se
ns

iti
vi

ty
) 

(x
10

6 )

Mode number
Parameter number

Fig. 3. The sensitivity of the natural frequencies to the coefficients in the KL expansion, normalized by the baseline eigenvalues and multiplied by 106.
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Fig. 2. Some random realizations of the bending rigidity EI of the beam for correlation length b ¼ L=3 and strength parameter e1 ¼ 0:2. Thirteen terms

have been used in the KL expansion.
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number, and the sensitivity is maximum when the correlation between the physical mode and the KL mode is greatest.
These two features mean that it is highly unlikely that the distributed EI can be accurately reconstructed from the lower
measured natural frequencies.

For a particular sample of the distributed EI, simulated using 13 terms in the KL expansion, updating is performed for a
variable number of parameters and various values of regularization parameter. The weighting matrix for the residuals, We,
is chosen as a matrix with the inverse of the measured natural frequencies squared along the diagonal, so that each natural
frequency is essentially weighted equally. The number of parameters is fixed and L-curves for 6, 8, 10 and 12 parameters are
shown in Fig. 4. For six and eight parameters there is a distinct corner to the L-curve that gives the optimum choice of
regularization parameter. The cross is placed at the corner of the L-curve for six parameters (where m ¼ 5:7� 10�5) and the
reconstructed EI based on the updated parameters is shown in Fig. 5. For higher numbers of parameters the corner of
the L-curve in Fig. 4 is not distinct, and giving less weight to the regularization term continues to slowly improve the fit to
the ‘measured’ data, at the expense of larger parameter values. A typical reconstructed EI based on updating 12 parameters
is shown in Fig. 5 (given as the circle on the L-curve in Fig. 4, where m ¼ 1:4� 10�5). Note that both reconstructed EI
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Table 2
Initial, measured and updated natural frequencies.

Natural frequencies (Hz)

Initial Measured Updated

Six parameters 12 parameters

10.262 (�2.8473) 9.9779 9.9923 (�0.1443) 9.9813 (�0.0341)

64.311 (3.0205) 66.314 66.288 (0.0392) 66.305 (0.0136)

180.07 (3.2090) 186.04 186.24 (�0.1075) 186.09 (�0.0269)

352.87 (3.6480) 366.23 365.44 (0.2157) 366.00 (0.0628)

583.32 (3.0160) 601.46 604.18 (�0.4522) 602.08 (�0.1031)

871.38 (4.1376) 908.99 902.48 (0.7162) 905.31 (0.4048)

1217.1 (3.1973) 1257.3 1260.4 (�0.2466) 1261.0 (�0.2943)

1620.3 (3.3638) 1676.7 1677.9 (�0.0716) 1678.2 (�0.0895)

2081.2 (3.3932) 2154.3 2155.0 (�0.0325) 2155.2 (�0.0418)

2599.8 (3.4034) 2691.4 2691.7 (�0.0111) 2691.8 (�0.0149)

3175.9 (3.4152) 3288.2 3288.1 (0.0030) 3288.2 (0.0000)

3809.7 (3.4223) 3944.7 3944.1 (0.0152) 3944.2 (0.0127)

4501.0 (3.4307) 4660.9 4659.7 (0.0257) 4659.8 (0.0236)

5250.1 (3.4340) 5436.8 5435.1 (0.0313) 5435.1 (0.0313)

6056.7 (3.4389) 6272.4 6270.0 (0.0383) 6270.1 (0.0367)

6921.0 (3.4418) 7167.7 7164.7 (0.0419) 7164.8 (0.0405)

The percentage error with respect to the measured values are shown in brackets.
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Fig. 4. The L-curve for 6, 8, 10 and 12 parameters. The cross and circle represent the cases for 6 and 12 parameters for which the reconstructed EI is given

in Fig. 5.
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functions are smoother than the simulated function that generated the data. This is because the higher terms in the KL
expansion cannot be estimated from the data. The initial, measured and updated natural frequencies (for the two cases in
Fig. 5) are shown in Table 2.
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6. Conclusions

In this paper we proposed a new technique for updating of distributed parameters in structural dynamics. The proposed
approach is based on KL expansion and eigen-sensitivity analysis. The main motivation behind considering this approach is
arising from the fact that in many cases the deviations of the parameter values from the assumed constant values are
spatially distributed in nature. Such distributed deviations are a priori unknown and therefore may be considered to be
samples from a random field. Such random fields are discretized into random variables using the Karhunen–Lo�eve (KL)
expansion. A subset of these random variables are in turn considered as parameters for model updating. Some notable
features of the proposed method are
�
 The parameter selection process in the model updating becomes automatic and largely problem independent.

�
 The KL expansion automatically generates the basis matrices for the expansion of the mass and stiffness matrices.

�
 The variables to be updated are a set of abstract variables as opposed to physical variables (although the

underlying distributed parameters are physical parameters). These variables are naturally arranged in a decreasing
order.

�
 Since these variables are essentially samples from standard normal variables, they are generally expected to be within

the range 75. This may be used in the optimization problem (e.g. a constrained optimization can be used).

The proposed method is illustrated using an example of a beam with spatially varying bending rigidity. It was
demonstrated that the variability can be reconstructed using the proposed method. Further research is needed to apply,
extend, validate and test this method to complex dynamical systems.
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Appendix A. Stochastic parts of the element mass and stiffness matrices

This appendix derives closed-form expressions for the random part of the element stiffness and mass matrices.

A.1. Stochastic element stiffness matrix

Using the expression for jKj
from Eq. (5), the matrix Kej

can be expressed from Eq. (16) as

Kej
¼ EI0

Z ‘e

0
jKj
ðxe þ xÞN00ðxÞN00T ðxÞdx ðA:1Þ

¼
EI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ
sinð2ojaÞ

2oj

s C
Z ‘e

0
cosðojðxe þ xÞÞs00ðxÞs00T ðxÞdx

� �
CT

ðA:2Þ

¼
4EI0

o3
j ‘

6
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

sinð2ojaÞ

2oj

s ~Kej
ðA:3Þ

Here a ¼ L=2 where L is the length of the whole beam and

~Kej
¼
o3

j ‘
6
e

4
C
Z ‘e

0
cosðojðxe þ xÞÞs00ðxÞs00T ðxÞdx

� �
CT
¼
o3

j ‘
6
e

4
C
Z ‘e

0
cosðojðxe þ xÞÞ

0 0 0 0

0 0 0 0

0 0 4 12x

0 0 12x 36x2

2
6664

3
7775dx CT

ðA:4Þ

The elements of the symmetric matrix ~Kej
can be expressed as

~Kej
¼

K̂ ej11
K̂ ej12

�K̂ ej11
K̂ ej12

K̂ ej22
�K̂ ej12

K̂ ej23

K̂ ej11
�K̂ ej12

K̂ ej22

2
666664

3
777775 ðA:5Þ
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Performing the integrals appearing in Eq. (A.4), the expressions of the four independent terms appearing in Eq. (A.5)
are

K̂ ej11
¼ �9o2

j ‘
2
e sinðojxeÞ þ 9sinðoj‘e þojxeÞo2

j ‘
2
e þ 36oj‘ecosðojxeÞ þ 36cosðoj‘e þojxeÞoj‘e þ 72sinðojxeÞ

� 72sinðoj‘e þojxeÞ ðA:6Þ

K̂ ej12
¼ �3‘eð2o2

j ‘
2
e sinðojxeÞ � sinðoj‘e þojxeÞo2

j ‘
2
e � 7oj‘ecosðojxeÞ � 5cosðoj‘e þojxeÞoj‘e � 12sinðojxeÞ

þ 12sinðoj‘e þojxeÞÞ ðA:7Þ

K̂ ej22
¼ �‘2

e ð4o
2
j ‘

2
e sinðojxeÞ � sinðoj‘e þojxeÞo2

j ‘
2
e � 12oj‘ecosðojxeÞ � 6cosðoj‘e þojxeÞoj‘e � 18sinðojxeÞ

þ 18sinðoj‘e þojxeÞÞ ðA:8Þ

K̂ ej23
¼ 3‘eð2o2

j ‘
2
e sinðojxeÞ � sinðoj‘e þojxeÞo2

j ‘
2
e � 7oj‘ecosðojxeÞ � 5cosðoj‘e þojxeÞoj‘e � 12sinðojxeÞ

þ 12sinðoj‘e þojxeÞÞ ðA:9Þ

The term associated with the even elements of the spectral expansion of the element stiffness matrix can be obtained
from Eq. (16) as

Kej
¼ EI0

Z ‘e

0
jKj
ðxe þ xÞN00ðxÞN00T ðxÞdx ðA:10Þ

¼
EI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�
sinð2ojaÞ

2oj

s C
Z ‘e

0
sinðojðxe þ xÞÞs00ðxÞs00T ðxÞdx

� �
CT

ðA:11Þ

¼
4EI0

o3
j ‘

6
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�

sinð2ojaÞ

2oj

s ~Kej
ðA:12Þ

where

~Kej
¼
o3

j ‘
6
e

4
C
Z ‘e

0
sinðojðxe þ xÞÞs00ðxÞs00T ðxÞdx

� �
CT

ðA:13Þ

The elements of the symmetric matrix ~Kej
can be expressed as

~Kej
¼

K̂ ej11
K̂ ej12

�K̂ ej11
K̂ ej12

K̂ ej22
�K̂ ej12

K̂ ej23

K̂ ej11
�K̂ ej12

K̂ ej22

2
666664

3
777775 ðA:14Þ

Performing the integrals appearing in Eq. (A.13), the expressions of the four independent terms appearing in the preceding
equation can be obtained as

K̂ e11
¼ 9o2

j ‘
2
e cosðojxeÞ � 9cosðoj‘e þojxeÞo2

j ‘
2
e þ 36oj‘esinðojxeÞ þ 36sinðoj‘e þojxeÞoj‘e � 72cosðojxeÞ

þ 72cosðoj‘e þojxeÞ ðA:15Þ

K̂ e12
¼ 3‘eð2o2

j ‘
2
e cosðojxeÞ � cosðoj‘e þojxeÞo2

j ‘
2
e þ 7oj‘esinðojxeÞ þ 5sinðoj‘e þojxeÞoj‘e � 12cosðojxeÞ

þ 12cosðoj‘e þojxeÞÞ ðA:16Þ

K̂ e22
¼ ‘2

e ð4o
2
j ‘

2
e cosðojxeÞ � cosðoj‘e þojxeÞo2

j ‘
2
e þ 12oj‘esinðojxeÞ þ 6sinðoj‘e þojxeÞoj‘e � 18cosðojxeÞ

þ 18cosðoj‘e þojxeÞÞ ðA:17Þ

K̂ e23
¼ �3‘eð2o2

j ‘
2
e cosðojxeÞ � cosðoj‘e þojxeÞo2

j ‘
2
e þ 7oj‘esinðojxeÞ þ 5sinðoj‘e þojxeÞoj‘e � 12cosðojxeÞ

þ 12cosðoj‘e þojxeÞÞ ðA:18Þ
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A.2. Stochastic element mass matrix

Using the expression of jMj
from Eq. (5), the matrix Mej

can be expressed from Eq. (16) as

Mej
¼ m0

Z ‘e

0
jMj
ðxe þ xÞNðxÞNT

ðxÞdx ðA:19Þ

¼
m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ
sinð2ojaÞ

2oj

s C
Z ‘e

0
cosðojðxe þ xÞÞsðxÞsT ðxÞdx

� �
CT

ðA:20Þ

¼
m0

o7
j ‘

6
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

sinð2ojaÞ

2oj

s ~Mej
ðA:21Þ

where

~Mej
¼ ðo7

j ‘
6
e ÞC

Z ‘e

0
cosðojðxe þ xÞÞsðxÞsT ðxÞdx

� �
CT
¼ ðo7

j ‘
6
e ÞC

Z ‘e

0
cosðojðxe þ xÞÞ

1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

2
6664

3
7775dx CT

ðA:22Þ

The elements of the symmetric matrix ~Mej
can be expressed as

~Mej
¼

M̂ej11
M̂ej12

�M̂ej13
M̂ej14

M̂ej22
�M̂ej14

M̂ej24

M̂ej11
�M̂ej12

M̂ej22

2
666664

3
777775 ðA:23Þ

Performing the integrals appearing in Eq. (A.22), the expressions of the six independent terms appearing in the preceding
equation can be obtained as

M̂ej11
¼ 24o3

j ‘
3
e cosðojxeÞ þ 1440cosðoj‘e þojxeÞoj‘e � 216o2

j ‘
2
e sinðojxeÞ þ 1440oj‘ecosðojxeÞ

þ 216sinðoj‘e þojxeÞo2
j ‘

2
e � 12o4

j ‘
4
e sinðojxeÞ � ‘

6
eo

6
j sinðojxeÞ � 2880sinðoj‘e þojxeÞ

þ 2880sinðojxeÞ ðA:24Þ

M̂ej12
¼ �‘eð12o3

j ‘
3
e cosðojxeÞ � 600cosðoj‘e þojxeÞoj‘e þ 192o2

j ‘
2
e sinðojxeÞ � 840oj‘ecosðojxeÞ

� 72sinðoj‘e þojxeÞo2
j ‘

2
e þ 4o4

j ‘
4
e sinðojxeÞ þ 1440sinðoj‘e þojxeÞ � 1440sinðojxeÞ þ ‘

5
eo

5
j cosðojxeÞÞ ðA:25Þ

M̂ej13
¼ �12cosðoj‘e þojxeÞo3

j ‘
3
e � 6sinðoj‘e þojxeÞo4

j ‘
4
e � 12o3

j ‘
3
e cosðojxeÞ � 1440cosðoj‘e þojxeÞoj‘e

þ 216o2
j ‘

2
e sinðojxeÞ � 1440oj‘ecosðojxeÞ � 216sinðoj‘e þojxeÞo2

j ‘
2
e þ 6o4

j ‘
4
e sinðojxeÞ

þ 2880sinðoj‘e þojxeÞ � 2880sinðojxeÞ ðA:26Þ

M̂ej14
¼ �2‘eðo4

j ‘
4
e sinðojxeÞ � 3o3

j ‘
3
e cosðojxeÞ þ 9cosðoj‘e þojxeÞo3

j ‘
3
e þ 36o2

j ‘
2
e sinðojxeÞ

� 96sinðoj‘e þojxeÞo2
j ‘

2
e � 300oj‘ecosðojxeÞ � 420cosðoj‘e þojxeÞoj‘e � 720sinðojxeÞ

þ 720sinðoj‘e þojxeÞÞ ðA:27Þ

M̂ej22
¼ 2‘2

e ð12sinðoj‘e þojxeÞo2
j ‘

2
e þ 240oj‘ecosðojxeÞ � 72o2

j ‘
2
e sinðojxeÞ þ 120cosðoj‘e þojxeÞoj‘e

þ 360sinðojxeÞ � 360sinðoj‘e þojxeÞ þo4
j ‘

4
e sinðojxeÞ � 12o3

j ‘
3
e cosðojxeÞÞ ðA:28Þ

M̂ej24
¼ �6‘2

e ðo
3
j ‘

3
e cosðojxeÞ þ cosðoj‘e þojxeÞo3

j ‘
3
e þ 12o2

j ‘
2
e sinðojxeÞ � 12sinðoj‘e þojxeÞo2

j ‘
2
e

� 60oj‘ecosðojxeÞ � 60cosðoj‘e þojxeÞoj‘e � 120sinðojxeÞ þ 120sinðoj‘e þojxeÞÞ ðA:29Þ
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The term associated with the even elements of the spectral expansion of the element stiffness matrix can be obtained
from Eq. (16) as

Mej
¼ m0

Z ‘e

0
jMj
ðxe þ xÞNðxÞNT

ðxÞdx ðA:30Þ

¼
m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�
sinð2ojaÞ

2oj

s C
Z ‘e

0
sinðojðxe þ xÞÞsðxÞsT ðxÞdx

� �
CT

ðA:31Þ

¼
m0

o7
j ‘

6
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�

sinð2ojaÞ

2oj

s ~Mej
ðA:32Þ

where

~Mej
¼ ðo7

j ‘
6
e ÞC

Z ‘e

0
sinðojðxe þ xÞÞsðxÞsT ðxÞ dx

� �
CT

ðA:33Þ

The elements of the symmetric matrix ~Mej
can be expressed as

~Mej
¼

M̂ej11
M̂ej12

�M̂ej13
M̂ej14

M̂ej22
�M̂ej14

M̂ej24

M̂ej11
�M̂ej12

M̂ej22

2
666664

3
777775 ðA:34Þ

Performing the integrals appearing in Eq. (A.33), the expressions of the six independent terms appearing in the preceding
equation can be obtained as

M̂e11
¼ �216cosðoj‘e þojxeÞo2

j ‘
2
e þ 1440sinðoj‘e þojxeÞoj‘e þo6

j ‘
6
e cosðojxeÞ þ 12‘4

eo
4
j cosðojxeÞ

þ 216o2
j ‘

2
e cosðojxeÞ þ 1440oj‘esinðojxeÞ þ 24‘3

eo
3
j sinðojxeÞ � 2880cosðojxeÞ þ 2880cosðoj‘e þojxeÞ ðA:35Þ

M̂e12
¼ �‘eð72cosðoj‘e þojxeÞo2

j ‘
2
e � 600sinðoj‘e þojxeÞoj‘e � 4‘4

eo
4
j cosðojxeÞ � 192o2

j ‘
2
e cosðojxeÞ

� 840oj‘esinðojxeÞ þ 12‘3
eo

3
j sinðojxeÞ þ 1440cosðojxeÞ � 1440cosðoj‘e þojxeÞ þo5

j ‘
5
e sinðojxeÞÞ ðA:36Þ

M̂e13
¼ 216cosðoj‘e þojxeÞo2

j ‘
2
e � 1440sinðoj‘e þojxeÞoj‘e � 12sinðoj‘e þojxeÞo3

j ‘
3
e � 6‘4

eo
4
j cosðojxeÞ

� 216o2
j ‘

2
e cosðojxeÞ � 1440oj‘esinðojxeÞ þ 6cosðoj‘e þojxeÞo4

j ‘
4
e � 12‘3

eo
3
j sinðojxeÞ þ 2880cosðojxeÞ

� 2880cosðoj‘e þojxeÞ ðA:37Þ

M̂e14
¼ 2‘eð‘

4
eo

4
j cosðojxeÞ þ 3‘3

eo
3
j sinðojxeÞ � 9sinðoj‘e þojxeÞo3

j ‘
3
e þ 36o2

j ‘
2
e cosðojxeÞ

� 96cosðoj‘e þojxeÞo2
j ‘

2
e þ 300oj‘esinðojxeÞ þ 420sinðoj‘e þojxeÞoj‘e � 720cosðojxeÞ

þ 720cosðoj‘e þojxeÞÞ ðA:38Þ

M̂e22
¼ �2‘2

e ð12cosðoj‘e þojxeÞo2
j ‘

2
e � 120sinðoj‘e þojxeÞoj‘e � 72o2

j ‘
2
e cosðojxeÞ � 240oj‘esinðojxeÞ

þ 12‘3
eo

3
j sinðojxeÞ þ 360cosðojxeÞ � 360cosðoj‘e þojxeÞ þ ‘

4
eo

4
j cosðojxeÞÞ ðA:39Þ

M̂e24
¼ �6‘2

e ð‘
3
eo

3
j sinðojxeÞ þ sinðoj‘e þojxeÞo3

j ‘
3
e � 12o2

j ‘
2
e cosðojxeÞ þ 12cosðoj‘e þojxeÞo2

j ‘
2
e

� 60oj‘esinðojxeÞ � 60sinðoj‘e þojxeÞoj‘e þ 120cosðojxeÞ � 120cosðoj‘e þojxeÞÞ ðA:40Þ
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[18] K. Karhunen, Über lineare methoden in der wahrscheinlichkeitsrechnung, Annales Academiae Scientiarum Fennicae Ser. A137.
[19] M. Lo�eve, Fonctions aleatoires du second ordre. Supplement to P. Levy, Processus Stochastic et Mouvement Brownien, Gauthier Villars, Paris, 1948.
[20] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, Boston, 1990.
[21] A. Papoulis, S.U. Pillai, Probability, Random Variables and Stochastic Processes, fourth ed., McGraw-Hill, Boston, USA, 2002.
[22] M. Khalil, S. Adhikari, A. Sarkar, Linear system identification using proper orthogonal decomposition, Mechanical System and Signal Processing 21 (8)

(2007) 3123–3145.
[23] M. Khalil, A. Sarkar, S. Adhikari, Nonlinear filters for chaotic oscillatory systems, Nonlinear Dynamics 55 (1–2) (2009) 113–137.
[24] M. Khalil, A. Sarkar, S. Adhikari, Tracking noisy limit cycle oscillation with nonlinear filters, Journal of Sound and Vibration, accepted for publication.
[25] C.L.Y. Yeong, S. Torquato, Reconstructing random media. ii. Three-dimensional media from two-dimensional cuts, Physical Review E 58 (1) (1998)

224–233.
[26] C.L.Y. Yeong, S. Torquato, Reconstructing random media, Physical Review E 57 (1) (1998) 495–506.
[27] D. Cule, S. Torquato, Generating random media from limited microstructural information via stochastic optimization, Journal of Applied Physics 86

(6) (1999) 3428–3437.
[28] A. Rigopoulos, Y. Arkun, F. Kayihan, Identification of full profile disturbance models for sheet forming processes, AIChE Journal 43 (3) (1997) 727–739.
[29] H.M. Park, D.H. Cho, The use of the Karhunen–Lo�eve decomposition for the modeling of distributed parameter systems, Chemical Engineering

Science 51 (1) (1996) 81–98.
[30] K. Krischer, R. Rico-Martinez, I.G. Kevrekidis, H.H. Rotermund, G. Ertl, J.L. Hudson, Model identification of a catalytic spatiotemporally varying

reaction, AIChE Journal 39 (1) (1993) 89–98.
[31] C. Qi, H.-X. Li, A Karhunen–Lo�eve decomposition-based wiener modeling approach for nonlinear distributed parameter processes, Industrial &

Engineering Chemistry Research 47 (12) (2008) 4184–4192.
[32] M. Kleiber, T.D. Hien, The Stochastic Finite Element Method, Wiley, Chichester, 1992.
[33] A. Haldar, S. Mahadevan, Reliability Assessment Using Stochastic Finite Element Analysis, Wiley, New York, USA, 2000.
[34] B. Sudret, A. Der-Kiureghian, Stochastic finite element methods and reliability, Technical Report UCB/SEMM-2000/08, Department of Civil and

Environmental Engineering, University of California, Berkeley, November 2000.
[35] C.S. Manohar, S. Adhikari, Dynamic stiffness of randomly parametered beams, Probabilistic Engineering Mechanics 13 (1) (1998) 39–51.
[36] C.S. Manohar, S. Adhikari, Statistical analysis of vibration energy flow in randomly parametered trusses, Journal of Sound and Vibration 217 (1)

(1998) 43–74.
[37] S. Adhikari, C.S. Manohar, Dynamic analysis of framed structures with statistical uncertainties, International Journal for Numerical Methods in

Engineering 44 (8) (1999) 1157–1178.
[38] S. Adhikari, C.S. Manohar, Transient dynamics of stochastically parametered beams, ASCE Journal of Engineering Mechanics 126 (11) (2000)

1131–1140.
[39] B. Titurus, M.I. Friswell, Regularization in model updating, International Journal for Numerical Methods in Engineering 75 (4) (2008) 440–478.
[40] J.D. Collins, W.T. Thomson, The eigenvalue problem for structural systems with statistical properties, AIAA Journal 7 (4) (1969) 642–648.
[41] T.K. Hasselman, G.C. Hart, Modal analysis of random structural system, ASCE Journal of Engineering Mechanics 98 (EM3) (1972) 561–579.
[42] G.C. Hart, Eigenvalue uncertainties in stressed structure, ASCE Journal of Engineering Mechanics 99 (EM3) (1973) 481–494.
[43] S.A. Ramu, R. Ganesan, Stability analysis of a stochastic column subjected to stochastically distributed loadings using the finite element method,

Finite Elements in Analysis and Design 11 (1992) 105–115.
[44] S.A. Ramu, R. Ganesan, Stability of stochastic Leipholz column with stochastic loading, Archive of Applied Mechanics 62 (1992) 363–375.
[45] S.A. Ramu, R. Ganesan, A Galerkin finite element technique for stochastic field problems, Computer Methods in Applied Mechanics and Engineering

105 (1993) 315–331.
[46] S.A. Ramu, R. Ganesan, Parametric instability of stochastic columns, International Journal of Solids and Structures 30 (10) (1993) 1339–1354.
[47] T.S. Sankar, S.A. Ramu, R. Ganesan, Stochastic finite element analysis for high speed rotors, ASME Journal of Vibration and Acoustics 115 (1993)

59–64.
[48] D. Song, S. Chen, Z. Qiu, Stochastic sensitivity analysis of eigenvalues and eigenvectors, Computer and Structures 54 (5) (1995) 891–896.
[49] B.V. den Nieuwenhof, J.-P. Coyette, Modal approaches for the stochastic finite element analysis of structures with material and geometric

uncertainties, Computer Methods in Applied Mechanics and Engineering 192 (33–34) (2003) 3705–3729.
[50] S. Adhikari, Complex modes in stochastic systems, Advances in Vibration Engineering 3 (1) (2004) 1–11.
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