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Abstract: Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-
frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic
partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize
the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral
finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches
use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has
been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform
any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent
stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are
derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach. DOI: 10.1061/
(ASCE)AS.1943-5525.0000070. © 2011 American Society of Civil Engineers.
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Introduction

Spectral methods are widely used in various branches of science
and engineering. Because of their general nature, the meaning
of spectral methods can be very different depending on the appli-
cations and the disciplines. In spite of these differences, the unify-
ing factor among the spectral methods in different disciplines is
that, generally, they are very powerful tools for the analytical
and experimental treatments of wide ranging physical problems.
In the context of the stochastic finite-element method (see, for
example, Shinozuka and Yamazaki 1988; Ghanem and Spanos
1991; Kleiber and Hien 1992; Matthies et al. 1997; Manohar
and Adhikari 1998a, b; Adhikari and Manohar 1999, 2000; Haldar
and Mahadevan 2000; Sudret and Der-Kiureghian 2000; Nair and
Keane 2002; Elishakoff and Ren 2003; Sachdeva et al. 2006a, b;
Stefanou 2009), spectral methods have been used extensively to
analytically represent the random fields describing parametric un-
certainties of physical systems. In particular, we refer to the recent
paper by Nouy (2009). In the context of structural dynamics, spec-
tral methods have been used in random vibration problems (see, for
example, Nigam 1983; Lin 1967; Bolotin 1984) and for the discre-
tization of displacement fields in the frequency domain (Doyle
1989; Gopalakrishnan et al. 2007). In spite of the fact that both
approaches use spectral decomposition (one for the random fields
and the other for the dynamic displacement fields), very little over-
lap between them has been reported in literature. In this paper, these

two spectral techniques are unified with the aim that the unified
approach would perform better than any of the spectral methods
considered on their own.

In this paper, we focus our attention on structural dynamic
systems with parametric uncertainties. Uncertainties should be
accounted for by the credible prediction of numerical codes. In
the parametric approach, the uncertainties associated with the sys-
tem parameters, such as Young’s modulus, mass density, Poisson’s
ratio, damping coefficient, and geometric parameters are quantified
by using statistical methods and propagated, for example, by using
the stochastic finite-element method. The effect of uncertainty is
significant in the higher frequency ranges. In the higher frequency
ranges, as the wavelengths become smaller, a very fine (i.e., static)
mesh size is required to capture the dynamic behavior. As a result,
the deterministic analysis itself can pose significant computational
challenges. One way to address this problem is to use a spectral
approach in the frequency domain. The primary idea is that the
displacements within an element are expressed by frequency-
dependent shape functions. The shape functions adapt themselves
with increasing frequency, and consequently, displacements can be
obtained accurately without fine remeshing. The spectral approach
has the potential to be an efficient method for mid- and high-
frequency vibration problems provided the random fields describ-
ing parametric uncertainties can be efficiently accounted for. The
spectral decomposition of the random files is used in conjunction
with the spectral decomposition of the displacements field. It is
expected that the simultaneous use of these two types of spectral
decomposition will result in an efficient approach for distributed
dynamic systems with parametric uncertainties.

The outline of the paper is as follows. The spectral finite-
element method in the frequency domain is briefly discussed in
the next section. The essential background of spectral representa-
tion of stochastic fields is given in the section “Spectral Finite-
Element Method for Stochastic Field Problems.” The general
derivation of the element mass, stiffness, and damping matrices
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by using the doubly spectral stochastic finite-element method is
given in the section “General Derivation of Doubly Spectral-
Element Matrices.” In the section “DSSFEM for Damped Rods
in Axial Vibration,” this general theory is applied to axially vibrat-
ing rods with uncertain properties. The method is further applied to
bending vibration of Euler-Bernoulli beams with random properties
in the section “DSSFEM for Damped Beams in Bending Vibra-
tion.” Finally, some conclusions are drawn in the last section.

Spectral Finite-Element Method in the Frequency
Domain

Spectral methods for deterministic dynamic systems have been in
use for more than three decades (see, for example, Paz 1980). This
approach, or approaches very similar to this, are known by various
names such as the dynamic stiffness method (Banerjee and
Williams 1985, 1992, 1995; Banerjee 1989, 1997; Banerjee and
Fisher 1992; Ferguson and Pilkey 1993a, b), spectral finite-element
method (Doyle 1989; Gopalakrishnan et al. 2007), and dynamic
finite-element method (Hashemi et al. 1999; Hashemi and Richard
2000). Some of the notable features of the method are
• The mass distribution of the element is treated in an exact

manner in deriving the element dynamic stiffness matrix;
• The dynamic stiffness matrix of one dimensional structural

elements accounting for the effects of flexure, torsion, axial
motion, shear deformation effects, and damping are exactly de-
terminable, which, in turn, enables the exact vibration analysis
of skeletal structures by an inversion of the global dynamic stiff-
ness matrix;

• The method does not employ eigenfunction expansions and,
consequently, a major step of the traditional finite-element
analysis, namely, the determination of natural frequencies and
mode shapes, is eliminated, which automatically avoids the
errors attributable to series truncation; this makes the method
attractive for situations in which a large number of modes par-
ticipate in vibration;

• Because the modal expansion is not employed, ad hoc assump-
tions about the damping matrix proportional to mass and/or
stiffness are not necessary;

• The method is essentially a frequency domain approach suitable
for steady-state harmonic or stationary random excitation pro-
blems; the generalization to other types of problems, such as
aeroelastic problems and the dynamics of laminate composite
materials through the use of Laplace and Fourier transforms
is also available (Gopalakrishnan et al. 2007); and

• The static stiffness matrix and the consistent mass matrix appear
as the first two terms in the Taylor expansion of the dynamic
stiffness matrix in the frequency parameter.

Spectral Finite-Element Method for Stochastic Field
Problems

Problems of structural dynamics in which the uncertainty in speci-
fying the stiffness and mass of the structure are modeled within the
framework of random fields and can be treated by using the sto-
chastic finite-element method (Ghanem and Spanos 1991; Sudret
and Der-Kiureghian 2000; Stefanou 2009; Nouy 2009). The appli-
cation of the stochastic finite-element method to linear structural
dynamics problems typically consists of the following key steps:
1. The selection of appropriate probabilistic models for parameter

uncertainties and boundary conditions.
2. The replacement of the element property random fields by an

equivalent set of a finite number of random variables. This

step, known as the “discretisation of random fields,” is a major
step in the analysis.

3. The formulation of the system equations of motion of the form
DðωÞu ¼ f where DðωÞ is the random dynamic stiffness
matrix; u is the vector of random nodal displacement; and f
is the vector of applied forces. In general, DðωÞ is a random
symmetric complex matrix.

4. The solution of the set of the complex random algebraic
equation to obtain the statistics of the response vectors.
Alternatively, the response statistics can be obtained by solving
the underlying random eigenvalue problem (see, for example,
Scheidt and Purkert 1983; Adhikari and Friswell 2007;
Benaroya 1992; Adhikari 2007; and references therein).

We consider ðΘ;F ;PÞ a probability space with θ ∈ Θ denoting a
sampling point in the sampling space Θ; F is the complete
σ-algebra over the subsets of Θ; and P is the probability measure.
Suppose the spatial coordinate vector, r ∈ Rd, where d ∈ I ≤ 3 is
the spatial dimension of the problem. Consider H∶ðRd ×ΘÞ → R
is a random field with a covariance function, CH ∶ðRd × RdÞ → R,
defined in a space, D ∈ Rd. Because the covariance function is
finite, symmetric, and positive definite, it can be represented by
a spectral decomposition. By using this spectral decomposition,
the random process, Hðr; θÞ, can be expressed in a generalized
Fourier-type of series as

Hðr; θÞ ¼ H0ðrÞ þ
X∞
j¼1

ffiffiffiffi
λj

q
ξjðθÞφjðrÞ ð1Þ

where ξjðθÞ = uncorrelated random variables; and λj and φjðrÞ =
eigenvalues and eigenfunctions satisfying the integral equationZ

D
CHðr1; r2Þφjðr1Þdr1 ¼ λjφjðr2Þ ∀j ¼ 1; 2;… ð2Þ

The spectral decomposition in Eq. (1) is known as the Karhunen-
Loève expansion. The series in Eq. (1) can be ordered in a decreas-
ing series so that it can be truncated by using a finite number of
terms with a desired accuracy. We refer the books by Ghanem
and Spanos (1991), Papoulis and Pillai (2002), and references
therein for further discussions about the Karhunen-Loève
expansion.

In this paper, one-dimensional systems were considered. More-
over, Gaussian random fields with an exponentially decaying
autocorrelation function were considered. The autocorrelation
function can be expressed as

Cðx1; x2Þ ¼ e�cjx1�x2j ð3Þ

where the quantity 1=c = proportional to the correlation length, and
it plays an important role in the description of a random field. If the
correlation length is very small, then the random process becomes
close to a delta-correlated process, often known as white noise. If
the correlation length is very large compared to the domain under
consideration, the random process effectively becomes a random
variable. The underlying random process, Hðx; θÞ, can be expanded
by using the Karhunen-Loève expansion (Ghanem and Spanos
1991; Papoulis and Pillai 2002) in the interval �l ≤ x ≤ l as

Hðx; θÞ ¼
X∞
j¼1

ξjðθÞ
ffiffiffiffi
λj

q
φjðxÞ ð4Þ

Because Hðx; θÞ is assumed to be a Gaussian random variable,
without any loss of generality, we assumed the mean in zero in
Eq. (4). The eigenvalues and eigenfunctions for odd j are given by
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λj ¼
2c

α2
j þ c2

φjðxÞ ¼
cosðαjxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ sinð2αj lÞ

2αj

q ð5Þ

where tanðαjlÞ ¼ c=αj and for even j are given by

λj ¼
2c

α2
j þ c2

φjðxÞ ¼
sinðαjxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� sinð2αj lÞ

2αj

q ð6Þ

where tanðαjlÞ ¼ αj=ð�cÞ.
These eigenvalues and eigenfunctions will be used to obtain the

element mass, stiffness, and damping matrices. For all practical
purposes, the infinite series in Eq. (4) needs to be truncated by us-
ing a finite number of terms. The number of terms could be selected
from the “amount of information” to be retained. This, in turn, can
be related to the number of eigenvalues retained because the eigen-
values, λj, in Eq. (4) are arranged in decreasing order. For example,
if 90% of the information is to be retained, then one can choose the
number of terms, M, such that λM=λ1 ¼ 0:1. The value of M pri-
marily depends on the correlation length of the underlying random
field. One needs more terms for cases in which the correlation
length is small. Intuitively, this indicates that more independent
variables are needed for fields with smaller correlation lengths
and vice versa.

General Derivation of Doubly Spectral-Element
Matrices

A linear damped distributed parameter dynamic system in which
the displacement variable, Uðr; tÞ, where r ∈ Rd is the spatial
position vector, d ≤ 3 is the dimension of the model, and t is time,
specified in some domain D, as shown in Fig. 1, is governed by a
linear partial differential equation (Meirovitch 1997):

ρðr; θÞ ∂
2Uðr; tÞ
∂t2 þ L1ðθÞ

∂Uðr; tÞ
∂t þ L2ðθÞUðr; tÞ ¼ pðr; tÞ

r ∈ D t ∈ T
ð7Þ

with linear boundary-initial conditions of the form

M1j
∂Uðr; tÞ

∂t ¼ 0 M2jUðr; tÞ ¼ 0 r ∈ ∂D
t ¼ t0 j ¼ 1; 2;…

ð8Þ

specified on some boundary surface, ∂D. In Eq. (8), T ∈ R is the
domain of the time variable, t; ρðr; θÞ is the random mass distribu-
tion of the system; pðr; tÞ is the distributed time-varying forcing
function; L1 is the random spatial self-adjoint damping operator;

L2 is the random spatial self-adjoint stiffness operator; and M1j
and M2j are some linear operators defined on the boundary surface
∂D. When parametric uncertainties are considered, the mass
density ρðr; θÞ∶ðRd ×ΘÞ → R, and the damping and stiffness
operators involve random processes. Frequency-dependent random
element stiffness matrices were derived by various writers by using
the dynamic weighted integral approach (Manohar and Adhikari
1998a, b; Adhikari and Manohar 2000; Gupta and Manohar
2002), the energy operator approach (Ghanem and Sarkar 2003),
substructure approach (Sarkar and Ghanem 2003), and a series
expansion approach (Ostoja-Starzewski and Woods 2003). In
the context of uncertainty modeling with a fuzzy approach,
Nunes et al. (2006) have combined fuzzy sets with the spectral
approach. Moens and Vandepitte (2005, 2007), De Gersem et al.
(2005), and Giannini and Hanss (2008) have used a fuzzy para-
metric approach for uncertainty quantification of the dynamic
response.

Xiu and Karniadakis (2002, 2003) and Wan and Karniadakis
(2005) have proposed a generalized polynomial chaos approach
that can be used for the spectral decomposition of random displace-
ment fields. The method proposed is motivated by the energy
operator approach proposed by Sarkar and Ghanem (2002) and
Ghanem and Sarkar (2003) for the probabilistic case and the spec-
tral approach proposed by Nunes et al. (2006) for fuzzy uncertain
variables. Whereas numerical methods were used in these studies,
exact closed-form analytical expressions will be derived for the
element matrices in this paper. Suppose the underlying homo-
geneous system corresponding to System 7 without any forcing
(see, for example, Meirovitch 1997) is given by

ρ0
∂2Uðr; tÞ

∂t2 þ L10
∂Uðr; tÞ

∂t þ L20Uðr; tÞ ¼ 0 r ∈ D ð9Þ

together with a suitable homogeneous boundary and initial condi-
tions. Eq. (9) is a deterministic equation. Taking the Fourier trans-
form of Eq. (9) and considering zero initial conditions, one has

� ω2ρ0uðr;ωÞ þ iωL10fuðr;ωÞg þ L20fuðr;ωÞg ¼ 0 ð10Þ

where ω ∈ ½0;Ω� = frequency and Ω ∈ R = maximum frequency.
Like the classical finite-element method, suppose that

frequency-dependent displacement within an element is interpo-
lated from the nodal displacements as

ueðr;ωÞ ¼ NTðr;ωÞbueðωÞ ð11Þ

where bueðωÞ ∈ Cn = nodal displacement vector; Nðr;ωÞ ∈ Cn = the
vector of frequency-dependent shape functions; and n = number of
the nodal degrees-of-freedom. Suppose the sjðr;ωÞ ∈ C, j ¼
1; 2;…;m are the basis functions that exactly satisfy Eq. (10) where
m = order of the ordinary differential Eq. (10). The shape function
vector can be expressed as

Nðr;ωÞ ¼ ΓðωÞsðr;ωÞ ð12Þ

where the vector sðr;ωÞ ¼ fsjðr;ωÞgT ; ∀ j ¼ 1; 2;…;m; and the
complex matrix, ΓðωÞ ∈ Cn×m, depend on the boundary conditions.
The derivation of ΓðωÞ for the axial vibration of rods and bending
vibration of beams are given in the next two sections.

Extending the weak-form of the finite-element approach to the
complex domain, the frequency-dependent n × n complex random
stiffness, mass, and damping matrices can be obtained as

Keðω; θÞ ¼
Z
De

ksðr; θÞL2fNðr;ωÞgL2fNTðr;ωÞgdr ð13ÞFig. 1. Domain and boundary surface of differential operator describ-
ing stochastic dynamic system
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Meðω; θÞ ¼
Z
De

ρðr; θÞNðr;ωÞNTðr;ωÞdr ð14Þ

and

Ceðω; θÞ ¼
Z
De

cðr; θÞL1fNðr;ωÞgL1fNTðr;ωÞgdr ð15Þ

where ð•ÞT = matrix transpose; ksðr; θÞ∶ðRd ×ΘÞ → R = random
distributed stiffness parameter; L2f•g = strain energy operator;
and cðr; θÞ∶ðRd ×ΘÞ → R = energy dissipation operator. The
derivation of the element matrices follows a method similar to
the conventional spectral stochastic finite-element method (see,
for example, Ghanem and Spanos 1991). The primary difference
is that the real shape functions need to be replaced by the equivalent
complex shape functions given by Eq. (12). We refer to the papers
by Manohar and Adhikari (1998a) and Adhikari and Manohar
(1999) for further details, including the derivation of the complex
element matrices that use energy principles. In the previous
equations, De ∈ D is the domain of an element such that
D ¼ ⋃…⋃De and De ⋂De0 ¼ ∅; ∀e and e0. The random fields
ksðr; θÞ, ρðr; θÞ, and cðr; θÞ are expanded by using the Karhunen-
Loève expansion [Eq. (1)]. By using a finite number of terms, each
of the complex element matrices can be expanded in a spectral
series as

Keðω; θÞ ¼ K0eðωÞ þ
XMK

j¼1

ξKj
ðθÞKjeðωÞ ð16Þ

Meðω; θÞ ¼ M0eðωÞ þ
XMM

j¼1

ξMj
ðθÞMjeðωÞ ð17Þ

and

Ceðω; θÞ ¼ C0eðωÞ þ
XMC

j¼1

ξCj
ðθÞCjeðωÞ ð18Þ

The complex deterministic symmetric matrices, for example in the
case of the stiffness matrix, can be obtained as

K0eðωÞ ¼
Z
De

ks0ðrÞL2fNðr;ωÞgL2fNTðr;ωÞgdr ð19Þ

and

KjeðωÞ ¼
ffiffiffiffiffiffiffi
λKj

q Z
De

φKj
ðrÞL2fNðr;ωÞgL2fNTðr;ωÞgdr

∀j ¼ 1; 2;…;MK

ð20Þ

The equivalent terms corresponding to the mass and damping
matrices can also be obtained in a similar manner. Substituting the
shape function from Eq. (12), into Eqs. (19) and (20), one obtains

K0eðωÞ ¼ ΓðωÞ~K0eðωÞΓTðωÞ ð21Þ
and

KjeðωÞ ¼
ffiffiffiffiffiffiffi
λKj

q
ΓðωÞ~KjeðωÞΓTðωÞ ∀j ¼ 1; 2;…;MK ð22Þ

where

~K0eðωÞ ¼
Z
De

ks0ðrÞL2fsðr;ωÞgL2fsTðr;ωÞgdr ∈ Cmm ð23Þ

and

~KjeðωÞ ¼
Z
De

φKj
ðrÞL2fsðr;ωÞgL2fsTðr;ωÞgdr ∈ Cmm

∀j ¼ 1; 2;…;MK ð24Þ

The expressions of the eigenfunctions given in the previous section
are valid within the specific domains defined. One needs to change
the coordinateto use them in Eq. (24). Once the element stiffness,
mass, and damping matrices are obtained in this manner, calcula-
tions for the global matrices can be achieved by summing the
element matrices with suitable coordinate transformations as in
the standard finite-element method. A closed-form expression of
the eigenfunctions appearing in Eq. (24) are available for only a
few specific correlation functions and with simple boundaries only.
For such cases, shown subsequently, the integral in Eq. (24) may be
obtained in a closed-form. However, in general, the integral equa-
tion governing the eigenfunctions in Eq. (2) has to be solved
numerically. For such general cases, the element matrices should
be obtained by using numerical integration techniques.

Because of the use of the spectral element in the frequency
domain, only one finite element is required per physical “element”
of a built-up system. For this reason, the dimension of the global
assembled matrices becomes small, even for cases in which high-
frequency vibration is considered. However, for the deterministic
system, the element matrices are not exact because the Karhunen-
Loève expansion [Eq. (1)] needs to be truncated after a finite
number of terms. The global spectral matrix can be expressed as

Dðω; θÞ ¼ �ω2Mðω; θÞ þ iωCðω; θÞ þKðω; θÞ ∈ CN×N ð25Þ
where N = dynamic degrees-of-freedom. Following the proposed
DSSFEM approach, in general, the matrixDðω; θÞ can be expressed
as

Dðω; θÞ ¼ D0ðωÞ þ
X
j

ξjðθÞDjðωÞ ð26Þ

In this equation D∶ðΩ ×ΘÞ → CN×N = complex random symmetric
matrix and it needs to be inverted for every ω to obtain the dynamic
response. In this case, Ω denotes the space of frequency. Unlike the
inversion of real symmetric random matrices or complex Hermitian
matrices, relatively little literature is available about complex sym-
metric matrices. Adhikari and Manohar (1999) and, more recently,
Ghanem and Das (2009) have considered complex random matri-
ces arising in structural dynamics. In principle, analytical ap-
proaches such as the perturbation-based methods (Kleiber and
Hien 1992) and projections methods (Ghanem and Spanos
1991) can be applied for the inversion of Dðω; θÞ. In practice, how-
ever, difficulties may arise because of the fact that Dðω; θÞ becomes
close to singular when ω approaches a system natural frequency.
This can be a major problem, particularly for cases in which the
damping of the system is low. Reliable and computationally
efficient methods for the derivation of dynamic response by using
the proposed DSSFEM approach is an outstanding problem and is
currently a limitation of this approach. It is beyond the scope of this
paper to address this issue in detail. In this paper, a direct Monte
Carlo simulation is used to obtain the response statistics in the
subsequent numerical examples.

DSSFEM for Damped Rods in Axial Vibration

Equation of Motion

The equation of motion of a damped stochastically nonhomogene-
ous rod under axial vibration is given by

∂
∂x

�
AEðxÞ ∂Uðx; tÞ

∂x þ c1
∂2Uðx; tÞ
∂x∂t

�
¼ mðxÞ ∂

2Uðx; tÞ
∂t2 þ c2

∂Uðx; tÞ
∂t ð27Þ
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where Uðx; tÞ = axial displacement; c1 = strain rate-dependent vis-
cous damping coefficient; and c2 = velocity-dependent viscous
damping coefficient. These quantities are assumed to be determin-
istic constants. The axial rigidity, AEðxÞ, and the mass per unit
length, mðxÞ, are assumed to be random fields of the following
form:

AEðx; θÞ ¼ AE0½1þ ϵAEHAEðx; θÞ� ð28Þ

mðxÞ ¼ m0½1þ ϵmHmðx; θÞ� ð29Þ
It is assumed that HAEðx; θÞ and Hmðx; θÞ are homogeneous
Gaussian random fields with a zero mean and an exponentially
decaying autocorrelation function of the form given by Eq. (3).
The “strength parameters” ϵAE and ϵm effectively quantify the
amount of uncertainty in the axial rigidity and mass per unit length
of the rod. The constants AE0 and m0 are the mass per unit length
and axial rigidity of the underlying baseline model, respectively.
The equation of motion of the baseline model is given by

AE0
∂2Uðx; tÞ

∂x2 þ c1
∂3Uðx; tÞ
∂x2∂t ¼ m0

∂2Uðx; tÞ
∂t2 þ c2

∂Uðx; tÞ
∂t ð30Þ

With the spectral expansion of the axial displacement, Uðx; tÞ, in
the frequency-wavenumber space, one has

Uðx; tÞ ¼ uðxÞeiωt ¼ ekxeiωt ð31Þ
where i ¼ ffiffiffiffiffiffiffi�1

p
and k = wavenumber for the baseline model

in Eq. (30). Substituting Uðx; tÞ from Eq. (31) in Eq. (30) and
simplifying, we have

k2 þ a2 ¼ 0 or k ¼ �ia ð32Þ
where

a2 ¼ m0ω2 � iωc2
AE0 þ iωc1

ð33Þ

An element for the damped axially vibrating rod is shown
in Fig. 2.

In view of the solutions in Eq. (32), the complex displacement
field within the element can be expressed by the linear combination
of the basic functions e�iax and eiax so that, in our notations,
sðx;ωÞ ¼ fe�iax; eiaxgT . We have expressed the KL expansion by
trigonometric functions in Eqs. (5) and (6). Therefore, it is more
convenient to express sðx;ωÞ with trigonometric functions. Consid-
ering e�iax ¼ cosðaxÞ � i sinðaxÞ, the vector sðx;ωÞ can be alterna-
tively expressed as

sðx;ωÞ ¼ sinðaxÞ
cosðaxÞ

� �
∈ C2 ð34Þ

Considering the unit axial displacement boundary condition as
uðx ¼ 0Þ ¼ 1 and uðx ¼ LÞ ¼ 1, after some elementary algebra,
the shape function vector can be expressed in the form of
Eq. (12) as

Nðx;ωÞ ¼ ΓðωÞsðx;ωÞ;

where ΓðωÞ ¼ � cotðaLÞ 1

cosecðaLÞ 0

" #
∈ C2×2σ

ð35Þ

Nowwe need to substitute sðx;ωÞ in Eqs. (23) and (24) to obtain the
deterministic and random part of the element matrices. In this
paper, damping is assumed to be deterministic. Therefore, only
the stiffness and mass matrices of the system will be derived.

Derivation of Element Stiffness and Mass Matrices

For the axial vibration, the stiffness operator is given by
L2ð•Þ ¼ ∂ð•Þ=∂x. Because constant nominal values are assumed,
we have ks0ðrÞ ¼ AE0. With these, from Eq. (23), one obtains

~K0eðωÞ ¼ AE0

Z
L

x¼0

�∂sðx;ωÞ
∂x

��∂sðx;ωÞ
∂x

�
T
dx ð36Þ

¼ AE0a
2

csþ aL �1þ c2

�1þ c2 aL� cs

� �
ð37Þ

where
c ¼ cosðaLÞ and s ¼ sinðaLÞ ð38Þ

The deterministic part of the stiffness matrix can be obtained from
Eq. (21) by using the ΓðωÞ matrix defined in Eq. (35). The termeM0eðωÞ can be obtained in a similar way as

~M0eðωÞ ¼ m0

Z
L

x¼0
sðx;ωÞsTðx;ωÞdx ð39Þ

¼ m0

2a
aL� cs 1� c2

1� c2 csþ aL

� �
ð40Þ

The deterministic mass matrix can be obtained from Eq. (40)
as M0eðωÞ ¼ ΓðωÞ ~M0eðωÞΓTðωÞ.

To obtain the matrices associated with the random components,
for each j, two different matrices correspond to the two eigenfunc-
tions defined in Eqs. (5) and (6). Following Eq. (16), we can
express the element stiffness matrix as

Keðω; θÞ ¼ K0eðωÞ þΔKeðω; θÞ ð41Þ
where ΔKeðω; θÞ = random part of the matrix. Following Eq. (22),
this matrix can be conveniently expressed as

ΔKeðω; θÞ ¼ ΓðωÞgΔKeðω; θÞΓTðωÞ ð42Þ
The matrix gΔKeðωÞ can be expanded by using the Karhunen-Loève
expansion as

gΔKeðω; θÞ ¼
XMK

j¼1

ξKj
ðθÞ

ffiffiffiffiffiffiffi
λKj

q eKjeðωÞ ð43Þ

where ffiffiffiffiffi
λKj

p = eigenvalues corresponding to the random field

HAEðx; θÞ. The matrices eKjeðωÞ can be obtained by using the inte-
grals of Eq. (24). By using the expression of the eigenfunction for
the odd values of j, as in Eq. (5), one has

~KjeðωÞ

¼
Z

L

0

ϵAEAE0 cos½αjð�L=2þ xÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=2þ sinðαjLÞ

2αj

q �∂sðx;ωÞ
∂x

��∂sðx;ωÞ
∂x

�
T
dx

ð44Þ

dof  1, x=0 dof  2, x= L

1 ,c 2cAE (x), m(x),

Fig. 2. Element for axially vibrating rod with damping; axial rigidity,
AEðxÞ, and mass per unit length, mðxÞ, are assumed to be random
fields; strain rate-dependent viscous damping coefficient, c1, and
velocity-dependent viscous damping coefficient, c2, are assumed to be
deterministic; element has two degrees-of-freedom and displacement
field within element is complex and frequency-dependent
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¼ ϵAEAE0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL=2þ cαsα=αjÞ
p a2

αjð4a2 � α2
j Þ

×
2αjacαj

csþ ð�α2
j þ 4a2 � α2

j c
2Þsαj

ð�2αjaþ 2αjac2Þcαj
þ α2

j sαj
cs

ð�2αjaþ 2αjac2Þcαj
þ α2

j sαj
cs �2αjacαj

csþ ð4a2 � α2
j þ α2

j c
2Þsαj

" #
ð45Þ

In Eq. (45),

cαj
¼ cosðαjL=2Þ and sαj

¼ sinðαjL=2Þ ð46Þ

and the eigenvalues αj should be obtained by solving the transcen-
dental Eq. (5) with l ¼ L=2. In Eq. (44), the KL eigenfunction is
shifted to account for the fact that Eq. (5) is defined for �L=2 ≤
x ≤ L=2 whereas the element shape functions are defined over
0 ≤ x ≤ L. In Eq. (44), we have used the identity sinðαjLÞ ¼
2 cosðαjL=2Þ sinðαjL=2Þ ¼ 2cαsα. In a similar manner, by using
the expression of the eigenfunction for the even values of j, as
in Eq. (6), one has

~KjeðωÞ

¼
Z

L

0

ϵAEAE0 sin½αjð�L=2þ xÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=2� sinðαjLÞ

2αj

q �∂sðx;ωÞ
∂x

��∂sðx;ωÞ
∂x

�
T
dx

ð47Þ

¼ ϵAEAE0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL=2� cαsα=αjÞ
p a2

αjð4a2 � α2
j Þ

×
ð�α2

j þ α2
j c

2Þcαj
þ 2αjasαj

cs �α2
j cαj

csþ 2αjasαj
c2

�α2
j cαj

csþ 2αjasαj
c2 ðα2

j � α2
j c

2Þcαj
� 2αjasαj

cs

" #
ð48Þ

The mass matrix can also be represented as Eqs. (41)–(43). The
eigenvalues and eigenfunctions corresponding to the random field
Hmðx; θÞ need to be used to obtain the elements of ~MjeðωÞ. By using
the expression of the eigenfunction for the odd values of j, as in
Eq. (5), one has

~MjeðωÞ ¼
Z

L

0

ϵmm0 cos½αjð�L=2þ xÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=2þ sinðαjLÞ

2αj

q sðx;ωÞsTðx;ωÞdx ð49Þ

¼ ϵmm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL=2þ cαsα=αjÞ
p 1

αjð4a2 � α2
j Þ

×
�2αjacαj

csþ ð4a2 � α2
j þ α2

j c
2Þsαj

ð2αja� 2αjac2Þcαj
� α2

j sαj
cs

ð2αja� 2αjac2Þcαj
� α2

j sαj
cs 2αjacαj

csþ ð�α2
j þ 4a2 � α2

j c
2Þsαj

" #
ð50Þ

In Eq. (50), the eigenvalues αj should be obtained by solving the
transcendental Eq. (5). In a similar manner, by using the expression
of the eigenfunction for the even values of j ,as in Eq. (6), one has

~MjeðωÞ ¼
Z

L

0

ϵmm0 sin½αjð�L=2þ xÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=2� sinðαjLÞ

2αj

q sðx;ωÞsTðx;ωÞdx ð51Þ

¼ ϵmm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL=2� cαsα=αjÞ
p 1

αjð4a2 � α2
j Þ

×
ðα2

j � α2
j c

2Þcαj
� 2αjasαj

cs α2
j cαj

cs� 2αjasαj
c2

α2
j cαj

cs� 2αjasαj
c2 ð�α2

j þ α2
j c

2Þcαj
þ 2αjasαj

cs

" #
ð52Þ

Eqs. (44)–(51) completely define the random parts of the element
stiffness and mass matrices. The exact closed-form expression of
the elements of these four matrices further reduces the computa-
tional cost in deriving these matrices.

Numerical Illustrations

We consider a numerical example to illustrate the application of the
expressions derived in the previous subsection. The mean material
properties are considered ρ0 ¼ 2;700 kg=m3 and E0 ¼ 69 GPa,
values corresponding to aluminum. The length and cross-section
of the rod are L ¼ 30 m and A0 ¼ 1 cm2, respectively. By using
these values, we have AE0 ¼ 6:9 × 106 and m0 ¼ ρ0A0 ¼ 0:27.

A clamped-free boundary condition is considered. The standard
deviations of both the random fields are assumed to be 10% of
the mean values of the random fields, that is, ϵAE ¼ 0:1AE0 and
ϵm ¼ 0:1m0. The damping coefficients are assumed to be c1 ¼
1:5 × 10�5AE0 and c2 ¼ 11:15m0. The correlation length of the
random fields describing AEðxÞ and mðxÞ is assumed to be L=5.
We consider the response at the free end of the rod attributable
to the unit harmonic force at that end. The response is calculated
up to 500 Hz covering the first six vibration modes of the system.
The response of the deterministic system, the mean, and the
standard deviation of the absolute value of the response are shown
in Fig. 3.

These results are obtained by using a Monte Carlo simulation
with 4,000 samples. In total, 36 terms are used for the KL
expansion. With this number of terms, the last eigenvalue of the
KL expansion becomes less than 5% of the first eigenvalue. The
element matrices associated with 36 random variables are obtained
by using the closed-form expression derived in the previous sec-
tion. The phase of the frequency response function at the free
end of the rod is shown in Fig. 4.

The phase does not change sign because we are considering the
driving point response. In both Figs. 3 and 4, the mean curve is
different from the deterministic curve. This difference is larger
at higher frequencies. At lower frequencies, the standard deviation
is biased by the mean. But as the frequency increases, the standard
deviation curve flattens. These results are obtained by using a sin-
gle spectral element, although six modes of vibration exist within
the frequency range considered.
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DSSFEM for Damped Beams in Bending Vibration

Equation of Motion

The equation of motion of a damped stochastically nonhomogene-
ous Euler-Bernoulli beam under bending vibration is given by

∂2

∂x2
�
EIðxÞ ∂

2Yðx; tÞ
∂x2 þ c3

∂3Yðx; tÞ
∂x2∂t

�
þ mðxÞ ∂

2Yðx; tÞ
∂t2 þ c4

∂Yðx; tÞ
∂t ¼ 0 ð53Þ

where Yðx; tÞ = transverse flexural displacement; c3 = strain
rate-dependent viscous damping coefficient; and c4 = velocity-
dependent viscous damping coefficient. These quantities are as-
sumed to be deterministic constants. The mass per unit length,
mðxÞ, is assumed to be a random field of the form given by
Eq. (29), and the bending rigidity, EIðxÞ, is assumed to be

EIðx; θÞ ¼ EI0½1þ ϵEIHEIðx; θÞ� ð54Þ

As in the case of the axially vibrating rod, we consider that
HEIðx; θÞ is a homogeneous Gaussian random field with a zero
mean and an exponentially decaying autocorrelation function of
the form given by Eq. (3). The “strength parameter” ϵEI quantifies
the amount of uncertainty in the bending rigidity of the beam. The
constant EI0 is the bending rigidity of the underlying baseline
model. The equation of motion of the baseline model is given by

EI0
∂4Yðx; tÞ

∂x4 þ c3
∂5Yðx; tÞ
∂x2∂t þ m0

∂2Yðx; tÞ
∂t2 þ c4

∂Yðx; tÞ
∂t ¼ 0

ð55Þ

By using the spectral representation of the transverse displacement,
Yðx; tÞ, one has

Yðx; tÞ ¼ yðxÞeiωt ¼ ekxeiωt ð56Þ

where k = wavenumber for the baseline model in Eq. (55). Substi-
tuting Yðx; tÞ from Eq. (56) in Eq. (55) we have

k4 � b4 ¼ 0 or k ¼ �ib � b ð57Þ

where

b4 ¼ m0ω2 � iωc4
EI0 þ iωc3

ð58Þ

An element for the damped beam under bending vibration is
shown in Fig. 5. The degrees-of-freedom for each nodal point
include a vertical and a rotational degrees-of-freedom.

In view of the solutions in Eq. (57), the displacement field with
the element can be expressed by a linear combination of the basic
functions e�bx, ebx, e�ibx, and eibx so that, in our notations,
sðx;ωÞ ¼ fe�bx; ebx; e�ibx; eibxgT . We have expressed the KL ex-
pansions by trigonometric functions in Eqs. (5) and (6). Therefore,
as in the previous section, we aim to express sðx;ωÞ with trigono-
metric functions. Considering e�ibx ¼ cosðbxÞ � i sinðbxÞ and
e�bx ¼ coshðbxÞ � i sinhðbxÞ, the vector sðx;ωÞ can be alterna-
tively expressed as

sðx;ωÞ ¼
sinðbxÞ
cosðbxÞ
sinhðbxÞ
coshðbxÞ

8>><>>:
9>>=>>; ∈ C4 ð59Þ

The displacement field within the element can be expressed as

yðxÞ ¼ sðx;ωÞTye ð60Þ

where ye ∈ C4 = vector of constants to be determined from the
boundary conditions.
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Fig. 3. Amplitude of frequency response function at free end of
damped axially vibrating rod with random properties
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Fig. 4. Phase of frequency response function at free end of damped
axially vibrating rod with random properties

x=0
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1

2

3

4

Fig. 5. Element for damped beam under bending vibration; bending
rigidity, EIðxÞ, and mass per unit length, mðxÞ, are assumed to be ran-
dom fields; strain rate-dependent viscous damping coefficient, c3, and
velocity-dependent viscous damping coefficient, c4, are assumed to be
deterministic; element has four degrees-of-freedom and displacement
field within element is complex and frequency-dependent
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The relationship between the shape functions and the boundary
conditions can be represented as in Table 1, in which the boundary
conditions in each column give rise to the corresponding shape
function.

Writing Eq. (60) for the four sets of boundary conditions, one
obtains

½R�½y1e ; y2e ; y3e ; y4e � ¼ Iμ ð61Þ
where

R ¼

s1ð0Þ s2ð0Þ s3ð0Þ s4ð0Þ
ds1
dx ð0Þ ds2

dx ð0Þ ds3
dx ð0Þ ds4

dx ð0Þ
s1ðLÞ s2ðLÞ s3ðLÞ s4ðLÞ
ds1
dx ðLÞ ds2

dx ðLÞ ds3
dx ðLÞ ds4

dx ðLÞ

266664
377775 ð62Þ

and yke = vector of constants, giving rise to the kth shape function.
In view of the boundary conditions represented in Table 1 and
Eq. (61), the shape functions for the bending vibration can be given
by Eq. (12) where

ΓðωÞ ¼ ½y1e ; y2e ; y3e ; y4e �T ¼ ½R�1�T

¼

1
2
cSþCs
cC�1 � 1

2
1þsS�cC
cC�1 � 1

2
cSþCs
cC�1

1
2
cCþsS�1
cC�1

1
2
cCþsS�1
bðcC�1Þ

1
2
�CsþcS
bðcC�1Þ � 1

2
1þsS�cC
bðcC�1Þ � 1

2
�CsþcS
bðcC�1Þ

� 1
2

Sþs
cC�1

1
2
C�c
cC�1

1
2

Sþs
cC�1 � 1

2
C�c
cC�1

1
2

C�c
bðcC�1Þ � 1

2
S�s

bðcC�1Þ � 1
2

C�c
bðcC�1Þ � 1

2
S�s

bðcC�1Þ

2666664

3777775 ð63Þ

where

C ¼ coshðbLÞ c ¼ cosðbLÞ
S ¼ sinhðbLÞ s ¼ sinðbLÞ

ð64Þ

are frequency-dependent quantities because b is a function of ω. We
need to substitute sðx;ωÞ in Eqs. (23) and (24) to obtain the deter-
ministic and random part of the element matrices. Because damp-
ing is assumed to be deterministic, we will only derive the stiffness
and mass matrices of the system.

Derivation of Element Stiffness and Mass Matrices

For the bending vibration, the stiffness operator can be given as
L2ð•Þ ¼ ∂2ð•Þ=∂x2. Because constant nominal values are assumed,
we have ks0ðrÞ ¼ EI0. By using these, from Eq. (23), one obtains

~K0eðωÞ ¼ EI0

Z
L

x¼0

�∂2sðx;ωÞ
∂x2

��∂2sðx;ωÞ
∂x2

�
T
dx ð65Þ

¼ EI0b3

2

bL� cs 1� c2 cS� sC �1þ cC � sS
1� c2 csþ bL 1� cC � sS �cS� sC
cS� sC 1� cC � sS CS� bL �1þ C2

�1þ cC � sS �cS� sC �1þ C2 CSþ bL

2664
3775 ð66Þ

The deterministic part of the stiffness matrix can be obtained from
Eq. (21) by using the ΓðωÞ matrix defined in Eq. (63). The term
~M0eðωÞ can be obtained in a similar way as

~M0eðωÞ ¼ m0

Z
L

x¼0
sðx;ωÞsTðx;ωÞdx ð67Þ

¼ m0

2b

bL� cs 1� c2 � cSþ sC 1� cC þ sS
1� c2 csþ bL � 1þ cC þ sS cSþ sC

�cSþ sC � 1þ cC þ sS CS� bL � 1þ C2

1� cC þ sS cSþ sC � 1þ C2 CSþ bL

2664
3775

ð68Þ
The deterministic mass matrix can be obtained from Eq. (68)
as M0eðωÞ ¼ ΓðωÞ ~M0eðωÞΓTðωÞ.

To obtain the matrices associated with the random components,
for each j, there will be two different matrices corresponding to the
two eigenfunctions defined in Eqs. (5) and (6). As in the case of the
axial vibration of rods, the element stiffness matrix can be ex-
pressed as Eq. (42) whereas the matrix ~ΔKeðωÞ can be expanded
with the Karhunen-Loève expansion as Eq. (43).

The matrices ~KjeðωÞ can be obtained by using the integrals of
the form Eq. (24). By using the expression of the eigenfunction for
the odd values of j, as in Eq. (5), one has

~KjeðωÞ

¼
Z

L

0

ϵEIEI0 cos½αjð�L=2þ xÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=2þ sinðαjLÞ

2αj

q �∂2sðx;ωÞ
∂x2

��∂2sðx;ωÞ
∂x2

�
T
dx

¼ ϵEIEI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL=2þ cαsα=αjÞ
p bKj ð69Þ

where cα and sα = defined in Eq. (46); and bKj ∈ C4×4 = symmetric
matrix obtained in the appendix. In a similar manner, by using the
expression of the eigenfunction for the even values of j, as in
Eq. (6), one has

~KjeðωÞ

¼
Z

L

0

ϵEIEI0 sin½αjð�L=2þ xÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=2� sinðαjLÞ

2αj

q �∂2sðx;ωÞ
∂x2

��∂2sðx;ωÞ
∂x2

�
T
dx

¼ ϵEIEI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL=2� cαsα=αjÞ
p bKj ð70Þ

The mass matrix can also be represented as Eq. (70). The eigen-
values and eigenfunctions corresponding to the random field
Hmðx; θÞ need to be used to obtain the elements of ~MjeðωÞ. By using
the expression of the eigenfunction for the odd values of j, as in

Table 1. Relationship between Boundary Conditions and Shape Functions
for Bending Vibration of Beams

N1ðx;ωÞ N2ðx;ωÞ N3ðx;ωÞ N4ðx;ωÞ
yð0Þ 1 0 0 0

ðdy=dxÞð0Þ 0 1 0 0

yðLÞ 0 0 1 0

ðdy=dxÞðLÞ 0 0 0 1
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Eq. (5), one has

~MjeðωÞ ¼
Z

L

0

ϵmm0 cos½αjð�L=2þ xÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=2þ sinðαjLÞ

2αj

q sðx;ωÞsTðx;ωÞdx

¼ ϵmm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL=2þ cαsα=αjÞ
p bMj ð71Þ

In the Eq. (71), the eigenvalues αj should be obtained by solving
the transcendental Eq. (5). In a similar manner, by using the expres-
sion of the eigenfunction for the even values of j, as in Eq. (6),
one has

~MjeðωÞ ¼
Z

L

0

ϵmm0 sin½αjð�L=2þ xÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=2� sinð2αjaÞ

2αj

q sðx;ωÞsTðx;ωÞdx

¼ ϵmm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL=2� cαsα=αjÞ
p bMj ð72Þ

Eqs. (69)–(72) completely define the random parts of the
element stiffness and mass matrices. The definite integrals appear-
ing in these expressions can be evaluated in closed form. This
further reduces the computational cost in deriving the element
matrices. The exact closed-form expression of the elements of these
four matrices are given in the appendix.

Numerical Illustrations

A simple numerical example is considered to illustrate the appli-
cation of the matrices derived for the Euler-Bernoulli beam. The
mean material properties are considered as ρ0 ¼ 7;800 kg=m3

and E0 ¼ 210 GPa, values corresponding to steel. The length of
the beam is L ¼ 1:5 m and the rectangular cross section has a
width of 40.06 mm and a thickness of 2.05 mm. The area moment
of inertia of the cross section I ¼ 2:876 × 10�11 m4. A clamped-
free boundary condition is considered for this example. By using
these values, we have EI0 ¼ 5:752 Nm2 and m0 ¼ ρ0A0 ¼
0:6406 kg=m. The standard deviations of both the random fields
are assumed to be 10% of their mean values, that is, ϵEI ¼
0:1EI0 and ϵm ¼ 0:1m0. The damping coefficients are assumed
to be c1 ¼ 6:15 × 10�5EI0 and c2 ¼ 0:09m0. The correlation
length of the random fields describing EIðxÞ and mðxÞ is assumed
to be L=2. We consider the displacement response at the free end of
the beam attributable to a unit harmonic vertical force at that end.
The response is calculated up to 200 Hz covering the first 10
vibration modes of the system. The response of the deterministic
system, the mean, and the standard deviation of the absolute value
of the response are shown in Fig. 6.

These results are obtained by using a Monte Carlo simulation
with 4,000 samples. In total, 18 terms are used for the KL expan-
sion. With this number of terms, the last eigenvalue of the KL ex-
pansion becomes less than 5% of the first eigenvalue. The element
matrices associated with 18 random variables are obtained by using
the closed-form expression derived the previous section. The phase
of the frequency response function at the free end of the beam is
shown in Fig. 7.

The phase does not change sign because we are considering the
driving point response. In both Figs. 6 and 7, the mean curve is
different from the deterministic curve. This difference is larger
at higher frequencies. At lower frequencies, the standard deviation
is biased by the mean. But as we approach the higher frequencies,
the standard deviation curve flattens. These results are obtained by
using a single spectral element, although 10 modes of vibration
exist within the frequency range considered.

Conclusions

The basic formulation for a doubly spectral stochastic finite-
element method (DSSFEM) for damped linear dynamic systems
with distributed parametric uncertainty was derived. This new
approach simultaneously uses the spectral representations in the
frequency and random domains. The spatial displacement fields
were discretized by using frequency-adaptive complex shape func-
tions; the spatial random fields were discretized by using the
Karhunen-Loève expansion. The frequency-adaptive shape func-
tions were obtained from the spectral analysis of the underlying
deterministic system; the Karhunen-Loève expansion was obtained
from the spectral decomposition of the autocorrelation function of
the spatial random field. In spite of the fact that these two spectral
approaches existed for well over three decades, not been much
overlap between them was in literature. In this paper, these two
spectral techniques were unified with the aim that the unified ap-
proach would outperform any of the spectral methods considered
on their own. The resulting frequency-dependent random element
matrices, in general, turned out to be complex symmetric matrices.
The primary computational advantage of the proposed approach
is that the fine spatial discretization is not necessary for high
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Fig. 6. Amplitude of displacement frequency response function at free
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and mid-frequency vibration analyses. This, in turn, results in
smaller matrices to be inverted. The detailed derivations for rods
in axial vibration and beams in bending vibration were given.
Closed-form expressions of the element stiffness and mass matrices
were derived for the stochastic parametric fields with an exponen-
tial autocorrelation function. Numerical examples were given to
illustrate the applicability of the proposed method.

The calculation of the dynamic response by using the DSSFEM
requires the inversion of a complex random symmetric matrix for
every frequency. A limitation of the proposed method is that a
Monte Carlo simulation is necessary for this step. Although the
matrix sizes are smaller by using the DSSFEM than by using
the conventional SFEM, this step still requires considerable

computational effort. Further research is necessary to develop ana-
lytical methods in this direction. Further research is also necessary
to extract eigenvalues from the complex random matrices obtained
by using the proposed method.

Appendix. Expression of Spectral-Element Matrices
Associated with KL Expansion for Bending
Vibration of Beam

This appendix gives the explicit expressions for the spectral stiff-
ness and mass matrices associated with the KL expansion for the
bending vibration of beam. The elements of the stiffness matrix
associated with the odd values of j in Eq. (69) can be obtained as

bK11 ¼
4b6sαj

� 2b5αjcαj
csþ ð�α2

j þ α2
j c

2Þsαj
b4

�α3
j þ 4αjb2

bK12 ¼
ð2� 2c2Þcαj

b5 � b4αjsαj
cs

�α2
j þ 4b2

bK13 ¼
ð2cS� 2sCÞcαj

b7 þ ð2αj þ 2αjCcÞsαj
b6 þ ð�α2

j Cs� α2
j cSÞcαj

b5 � b4α3
j sαj

Ss

4b4 þ α4
j

bK14 ¼
ð�2Ss� 2þ 2CcÞcαj

b7 þ 2b6αjsαj
cSþ ð�α2

j Ssþ α2
j � α2

j CcÞcαj
b5 � b4α3

j Csαj
s

4b4 þ α4
j

bK22 ¼
4b6sαj

þ 2b5αjcαj
csþ ð�α2

j � α2
j c

2Þsαj
b4

�α3
j þ 4αjb2

bK23 ¼
ð2� 2Ss� 2CcÞcαj

b7 � 2b6αjCsαj
sþ ð�α2
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j Þcαj
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j sαj
cS

4b4 þ α4
j

bK24 ¼
ð�2cS� 2sCÞcαj

b7 � 2b6αjsαj
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j Cs� α2
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b4
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�4b6sαj

þ 2b5αjSCcαj
þ ðα2

j C
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b4
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b4
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j

The subscript j is omitted in bK for notational convenience. Because the matrix is symmetric, only the upper triangular part is shown. All the
terms appearing in these expressions have been defined in the body of the paper. The elements of the stiffness matrix associated with the even
values of j in Eq. (70) can be obtained as
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The elements of the mass matrix associated with the odd values of j in Eq. (71) can be obtained as
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The elements of the mass matrix associated with the even values of j in Eq. (72) can be obtained as
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Notation

The following symbols are used in this paper:
AEðxÞ = axial rigidity;

a = constant for axial vibration;
b = constant for bending vibration;
C = space of complex numbers;

CHðr1; r2Þ = covariance function of random field H;
Cn×m = space n × m complex matrices;

c = inverse of correlation length;
cðr; θÞ = random distributed damping parameter;
c1, c3 = strain rate-dependent viscous damping coefficients;
c2, c4 = velocity-dependent viscous damping coefficients;

D = space of random field H;
Dðω; θÞ = global dynamic stiffness matrix;

d = spatial dimension, d ¼ 1, 2, or 3;
EIðxÞ = bending rigidity;

f = forcing function of discretized system;
I = space of integers;
k = wave number;

ksðr; θÞ = random distributed stiffness parameter;
L = length of element;
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L1ð•Þ = damping operator;
L2ð•Þ = stiffness operator;

l = domain for KL expansion;
Mð•Þ = number of terms in KL expansion of (•);
m = order of governing differential equation;
N = dimension of global matrices;

Nðr;ωÞ = shape function vector;
n = dimension of element matrices;
r = spatial coordinate vector;

sðr;ωÞ = a vector of elementary functions for shape functions;
T = domain of time variable t;
t = time;

Uðr; tÞ = general response variable;
Uðx; tÞ = axial displacement;

u = response vector of discretized system;
ueðr;ωÞ = displacement variable within an element;
ûeðωÞ = nodal displacement vector for an element;

x = length variable;
Yðx; tÞ = transverse flexural displacement;
ΓðωÞ = constant matrix for shape functions;
∂D = boundary surface of domain D;
ϵð•Þ = standard deviation of random field (•);
Θ = sample space;
θ = elements of sample space Θ;
λj = jth eigenvalue corresponding to autocovariance

kernel;
ξjðθÞ = uncorrelated Gaussian random variables;

ρðr; θÞ = random mass density;
φjðrÞ = jth eigenfunction corresponding to autocovariance

kernel;
Ω = maximum frequency;
ω = frequency;

ð•ÞT = matrix transposition;
ð•Þ0 = deterministic part corresponding to (•); and
→ = maps into.
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