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H I G H L I G H T S

∙ Dynamic stiffness is developed for multimodal energy harvesting piezoelectric beams.

∙ Modeling technique is sufficient general to complex piezoelectric beam assemblies.

∙ Electrically-induced stiffness/damping introduced to characterize piezoelectric effects.

∙ Wittrick–Williams algorithm used in eigenvalue computation for efficient modal tuning.

∙ Energy harvesting analysis for beams with three typical tip attachments and circuits.
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A B S T R A C T

Piezoelectric vibration energy harvesting holds great potential for converting ambient vibrations into electrical 

energy. Establishing a suitable theoretical model to predict the performance of piezoelectric harvesters under 

base excitation is essential. This paper proposes a dynamic stiffness (DS) modeling technique to predict the elec-

tromechanical coupling responses of piezoelectric beams. The modeling technique is sufficiently general to be 

applied to a wide range of simple cantilever or generally complex piezoelectric beam structures. For demonstra-

tion purposes, this technique is applied to model beams equipped with three typical tip attachments and connected 

to three representative external circuits, enabling a comprehensive multimodal analysis. The Wittrick–Williams 

(WW) algorithm is employed to efficiently calculate the eigenvalues of DS matrices with any desired accuracy. 

This aids in tuning the natural frequency of piezoelectric beams to match the ambient environmental vibra-

tion frequency. The concepts of electrically-induced stiffness and electrically-induced damping are introduced to 

characterize the impact of energy harvesting circuits on natural frequencies and output voltage of piezoelectric 

harvesters. Theoretical research specifically conducted on piezoelectric beams explores the effects of material 

parameters, structural dimensions, load resistance, and base excitation on vibration energy harvesting. Finite 

element simulation confirms that the proposed DS model, based on the exact solution of governing differential 

equations, can accurately and effectively predict the output performance of piezoelectric harvesters. The proposed 

method can emerge as a powerful tool for the design and optimization of piezoelectric energy harvesters.

1. Introduction

Vibration energy harvesting has emerged as a critical technology 

for converting mechanical vibrations from ambient environment into 

electrical energy. The harvested and converted energy finds diverse

applications in powering ultra-low wireless sensors [1], structural health 

monitoring devices [2], wearable devices [3], implantable electronics 

[4], and Micro-Electro Mechanical Systems [5,6], effectively addressing 

power supply challenges. Generally, there are five energy conversion
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mechanisms: electrostatic [7,8], electromagnetic [9,10], piezoelectric 

[11–13], magnetostrictive [14,15], and triboelectric [16–18] transduc-

ers, as well as hybrid energy harvesting [19,20] that includes two or 

more of the above methods. Among these mechanisms, piezoelectric 

converters perform exceptionally well due to their simple structure, in-

finite lifespan, lower resonant frequencies, and no need for additional 

driving power.

It is well known that the peak output voltage of piezoelectric energy 

harvesters always occurs at their resonance frequencies. To enhance har-

vesting efficiency and broaden resonant frequency bandwidth, various 

piezoelectric structures have been proposed and optimized, includ-

ing T-shaped beams [21–23], L-shaped beams [24–26], tapered beams 

[27,28], and cantilever arrays [29–31]. In addition to modifying the har-

vesting structures, other approaches like elastic magnifiers and coupled 

impacted beams [32,33] can also be employed to achieve broadband 

energy harvesting capabilities. All of these optimized structures are de-

veloped based on the most common cantilevered piezoelectric beam 

[34–36], known for its ability to generate significant mechanical strain 

with vibrations. Researchers have developed substantial mathematical 

models [37–40] to predict the electromechanical coupling response of 

this cantilevered energy harvester under a given base excitation.

Umeda et al. [41] were among the pioneers in the study of piezo-

electric transducers and introduced an equivalent circuit model (ECM) 

to simulate energy generation mechanism of piezoelectric oscillators. In 

a subsequent work [42], they conducted a study on energy storage char-

acteristics of piezoelectric generators, providing a valuable reference for 

other scholars [43–45]. ECM simplified the harvesters as a single-degree-

of-freedom (SDOF) system using a direct electromechanical analogy 

which was only applicable to specific generators and could not adapt 

to higher frequency vibration modes. A more general model was pro-

posed by Elvin et al. [46,47] which was capable of accommodating 

multiple vibration modes but required accurate mode assumptions and 

significant computational expense. Another notable contribution was 

made by Yang et al. [48], who developed the ECM to connect structural 

and electrical simulation, providing a comprehensive representation of 

piezoelectric energy harvesters. Nevertheless, their model heavily re-

lied on finite element analysis to set correct circuit parameters. Lumped 

parameter model (LPM) also treats the harvester as an SDOF system, 

following pioneering work of Williams et al. [49] in modeling the elec-

tromagnetic harvesters. However, due to inherent differences between 

electromagnetic and piezoelectric conversion mechanisms, the applica-

bility of LPM to piezoelectric harvesters is limited [50–52]. Weinberg 

[53] developed this model tailored specifically to piezoelectric beams, 

providing a simplified representation of their behaviors. Nevertheless, 

their model neglects the electromechanical coupling and is limited to a 

single vibration mode. Accurately predicting the optimal coupled elec-

tromechanical output, as observed by Roundy et al. [54] and Dutoit et al. 

[55], remains a challenge. Erturk et al. [56] critically pointed out the in-

accuracies and limitations of the LPM and analyzed the specific reasons. 

In subsequent work, Erturk [57] proposed a generalized framework for 

the electromechanical modeling of piezoelectric energy harvesters using 

the assumed-modes method.

In recent years, the finite element method (FEM) has been widely 

used as a vital tool for solving complex mathematical physics problems 

due to the availability of commercial finite element software. Compared 

to previous SDOF models, FEM provides a more accurate and convenient 

prediction of output performances of piezoelectric beams. Wang et al. 

[58] created a simulation model for both static and dynamic analysis 

of bimorph piezoelectric beams using FEM. By dividing the thickness of 

the beam into smaller sections, they were able to determine the actual 

nonlinear distribution and predict both overall and localized responses. 

Thein et al. [59] followed a similar approach and developed an FE model 

for bimorph piezoelectric beams. They adjusted key terms to meet FEM 

requirements and formulated an output power formula based on the 

load voltage formula derived by Roundy et al. [60]. Poya et al. [34] 

proposed a general hp-FEM framework for linear piezoelectric beams,

handling both static and dynamic scenarios. Givois et al. [61] proposed a 

reduced-order modeling method based on a three-dimensional FE formu-

lation to predict the dynamics of piezoelectric structures with geometric 

nonlinearities, thereby simplifying the FEM. The use of FEM for geomet-

ric parameter design and structural optimization of piezoelectric energy 

harvesters has gained significant attention in recent years [62–64], 

driven by advancements in computational technology. Nevertheless, as 

a numerical method, FEM often cannot simultaneously achieve high 

efficiency and precision. Especially when simulating the coupled dy-

namic response of structures in the high-frequency range, there is a 

significant computational cost. Therefore, it is crucial to develop a more 

efficient analytical model for predicting the electromechanical response 

of piezoelectric beams.

To address the limitations mentioned above, it is necessary to estab-

lish a suitable and accurate model. Erturk et al. [65–67] proposed the 

distributed parameter model (DPM) for piezoelectric beams based on 

the analytical solution of coupled electromechanical system equations 

which can provide a more accurate representation of the behavior of 

piezoelectric beams. Abdelkef et al. [68] proposed a global nonlinear 

reduced-order model based on Galerkin discretization. However, the 

model could not accurately evaluate the performance of harvesters due 

to the neglect of piezoelectric properties and electric effects. Further re-

search and refinement of the model are necessary to account for these 

factors and improve the predictive capabilities of DPM. Carrera et al. 

[69] developed the FEM with node-dependent kinematics (NDK) by 

applying Carrera unified formulation (CUF) to the static analysis of 

piezoelectric beams. Building on this, Zappino et al. [70] extended the 

application of NDK to the dynamic analysis of such structures. Based 

on the CUF, the 3D displacement field can be elegantly expanded us-

ing generalized unknown variables of any order across the cross-section. 

Moreover, the order of expansions can be treated as an independent pa-

rameter, which is determined by the specific problem being considered. 

Bonello and Neubert et al. [71] have advocated for the dynamic stiffness 

method (DSM), also known as the spectral finite element method (SFEM) 

[72], or spectral element method (SEM) [73–75] as a powerful tool for 

deriving the frequency response function (FRF) of structural elements 

with constant cross-sections and their combinations [76–79]. DSM in-

volves the establishment of an element dynamic stiffness matrix based 

on the exact solutions of governing differential equations. The shape 

function of DSM is defined as the homogeneous solution of the governing 

differential equation in the frequency domain, in contrast to FEM where 

the basis function is typically composed of lower order polynomials. Lee 

et al. [73] developed a spectral finite element model for intelligent ma-

terial structures and derived the dynamic stiffness matrix for bimorph 

piezoelectric beams which can provide precise solutions while mitigat-

ing computational burdens. Park et al. [75] employed SFEM based on 

the Euler–Bernoulli beam and Timoshenko beam theories to analyze the 

dynamic response of bimorph piezoelectric beams and simulate the elec-

tromechanical coupling behavior of piezoelectric wafers, validating the 

effectiveness of SFEM through numerical examples in both time and 

frequency domains.

Against the above context, this paper develops an exact and efficient 

analytical modeling approach to accurately predict the electromechan-

ical coupling response of piezoelectric beams based on the research 

of Bonello et al. [40]. The proposed method is employed for modal 

analysis and vibration energy harvesting analysis of the multimodal 

piezoelectric beams. The innovations of this paper include the follow-

ing key aspects: (i) The dynamic stiffness (DS) model for piezoelectric 

beams is developed based on exact solution of the governing differential 

equations, eliminating spatial discretization and significantly reduc-

ing DoFs to enhance computational efficiency. (ii) Compared to the 

research of other scholars [40,65,67,71,75], this paper proposes the 

DS model for the piezoelectric beams with three typical tip attach-

ments and external circuits, enabling a more comprehensive multimodal 

analysis of the harvesting structures. (iii) The Wittrick–Williams (WW) 

algorithm enables accurate eigenvalue computation with arbitrary
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Fig. 1. Cantilever structure of piezoelectric beams with (a) bimorph and (b) 

unimorph.

precision, efficiently handling complex boundary conditions and high-

order modes. This algorithm can be further employed to adjust the struc-

tural natural frequencies to match environmental vibration, thereby 

improving energy harvesting effect in a highly efficient and reliable 

manner. (iv) The electrically-induced stiffness and electrically-induced 

damping are introduced to facilitate the description of the impact 

of energy harvesting circuits on the piezoelectric structures. (v) The 

proposed method is applicable for analyzing the electromechanical cou-

pling output effects of piezoelectric beams under different structural 

and material parameters. Furthermore, the DSM can be extended to 

more complex energy harvesting structures and combined with high-

order beam models [80]. This enables accounting for the influence 

of thickness stretching of the piezoelectric structure on vibration en-

ergy harvesting and conducting a more comprehensive and accurate 

analysis of the electromechanical coupling response of piezoelectric 

beams.

This paper is structured into four sections, encompassing the intro-

duction above. Section 2 outlines the derivation of the DS matrices for 

piezoelectric beams and introduces the Wittrick–Williams algorithm for 

solving eigenvalues of the DS matrices. Section 3 validates the proposed 

models and explores the effects of different structures and parameters 

on the energy harvesting efficiency of piezoelectric beams. Lastly, the 

main conclusions of this paper are summarized in Section 4.

2. Theory

The dynamic stiffness method for the electromechanical coupling 

modeling of piezoelectric beams will be introduced in Section 2.1. Then 

the response analysis of piezoelectric beams under base excitation using 

the dynamic stiffness method will be conducted in Section 2.2. Lastly, 

the Wittrick–Williams (WW) algorithm will be developed in Section 2.3 

as a reliable method for resonant frequency computation. 

2.1. Dynamic stiffness modeling of piezoelectric beams

The dynamic stiffness (DS) matrices of piezoelectric beams with 

different tip attachments and external circuits will be derived in this 

section. In addition, the segmented-electrode piezoelectric beam will be 

taken as an example to introduce the assembly procedure of DS matrices, 

expanding the application scope of the proposed method. 

2.1.1. DS modeling of cantilevered piezoelectric beams with three different

tip attachments

Firstly, the cantilevered piezoelectric beams without external circuits 

as schematically depicted in Fig. 1 will be considered and the DS matri-

ces of piezoelectric beams with three different tip attachments will be 

derived.

The governing differential equation of piezoelectric beam can be 

rewritten as follows (see also Appendix A) 

(𝑌 𝐼) eff 

𝜕 

4 𝑤
𝜕𝑥 

4 

+ (𝜌𝐴) eff
𝜕 

2 𝑤
𝜕𝑡 

2
= 0 (1)

where 𝑤(𝑥, 𝑡) represents the displacement of piezoelectric beams at po-

sition 𝑥 and time 𝑡. 𝑌 , 𝐼 and 𝜌 represent the Young’s modulus, the 

cross-sectional moment of inertia, and density of the material, respec-

tively. (𝑌 𝐼) eff 

and (𝜌𝐴) eff respectively represent bending stiffness and

mass per unit length of the bimorph and unimorph piezoelectric beams, 

as shown below 

(𝑌 𝐼) 

b
eff

= 𝑌 b𝐼 

b 

b
+ 2𝑌 p𝐼 

b 

p , (𝜌𝐴)b
eff

= 𝑏(𝜌 b 

ℎ b 

+ 2𝜌 pℎ p 

) (2a)

(𝑌 𝐼)u
eff

= 𝑌 b𝐼 

u
b
+ 𝑌 p𝐼 

u
p , (𝜌𝐴)u

eff
= 𝑏(𝜌 b 

ℎ b 

+ 𝜌 pℎ p 

) (2b) 

where the subscripts (⋅) b 

and (⋅) p respectively represent the base beam 

and piezoelectric wafer. The superscripts (⋅) 

b and (⋅) 

u represent the bi-

morph and unimorph piezoelectric beams, respectively. Four moments 

of inertia about the neutral axis are shown as follows 

𝐼 

b 

b
= 𝑏ℎ b 

3∕12, 𝐼 

b
p = 𝑏 

[ 

(

ℎp + ℎ b 

∕2 

) 3 − 

( 

ℎ b 

∕2 

) 3
] 

∕3 (3a) 

𝐼 

u
b
= 𝑏(𝑝 b 

3 − 𝑝 a 

3)∕3, 𝐼 

u 

p = 𝑏(𝑝 c
3 − 𝑝 b 

3 )∕3 (3b) 

where 𝑝 a, 𝑝 b and 𝑝 c denote the locations of the bottom of the base beam,

the bottom of the piezo wafer and the top of the piezo wafer from the 

neutral axis, respectively, as shown below

𝑝 a = −
ℎ 

2
p + 2ℎ p 

ℎ b + 𝑛ℎ 

2
b

2
(

ℎ p + 𝑛ℎ b 

) , 𝑝 b 

=
ℎ 

2
p + 2 𝑛ℎ p 

ℎ b + 𝑛ℎ 

2
b

2
(

ℎp + 𝑛ℎ b 

) − ℎp,

𝑝 c =
ℎ 

2
p + 2 𝑛ℎ p 

ℎ b + 𝑛ℎ 

2
b

2 

( 

ℎ p 

+ 𝑛ℎ b 

) (4) 

Assuming a harmonic excitation with frequency 𝜔, let 𝑊 (𝜉) represent 

the complex amplitude of deflection 𝑤 as follows 

𝑤 (𝜉, 𝑡) = 𝑊 (𝜉) 𝑒 

𝑖𝜔𝑡 (5)

where 𝜉 = 𝑥∕𝐿. By substituting the time domain variable in Eq. (1) 

with the frequency domain variable in Eq. (5), the motion equation for 

piezoelectric beam can be represented as follows

𝑑 

4 𝑊
𝑑𝜉 

4
− 𝜆 

4 𝑊 = 0, 𝜆 = 4

√

𝜔 

2 𝐿 

4 (𝜌𝐴) eff

(𝑌 𝐼) eff 

(6)

Referencing the DS matrix in Appendix A, while adding boundary 

conditions for forces and displacements, and eliminating the constant 

vectors, the DS matrix for the piezoelectric beam can be derived as 

follows

𝐊 =

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣ 

𝑑 1 𝑑 2 𝑑 4 𝑑 5
𝑑 2 𝑑 3 −𝑑 5 

𝑑 6
𝑑 4 −𝑑 5 

𝑑 1 + △ −𝑑 2 

𝑑 5 𝑑 6 −𝑑 2 

𝑑 3

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦ 

(7)

where 𝑑 1 

∼ 𝑑 6 are frequency relevant terms which are provided in 

Appendix A.

Additionally, this paper has formulated DS matrices for the uni-

morph/bimorph piezoelectric beams with three different tip attach-

ments as illustrated in Table 1. Here, 𝑀 𝑇 

and 𝐾 𝑇 

represent lumped

mass attached above the beam and stiffness coefficient of the spring, 

respectively. 

In the case of a piezoelectric beam with a primary mass, the term

−𝜔2 

 𝑀 is𝑇  added to the degree of freedom (DoF) associated with the

transverse displacement of node 2. This adjustment takes into account
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the presence of a tip mass and modifies the DS matrix accordingly. 

Similarly, for a piezoelectric beam equipped with a tip spring of stiffness 

𝐾 𝑇 

, the spring stiffness coefficient 𝐾 𝑇 is incorporated into the relevant

DoF of node 2 to calculate the DS matrix. This incorporation ensures 

that the DS matrix accurately represents the impact of the tip mass and 

spring on the overall dynamic behavior of the piezoelectric beam.

Furthermore, in the context of a piezoelectric beam with a spring-

mass oscillator subjected to harmonic vibration, the interconnection 

between nodes 1 and 2 signifies the beam, while the interconnection 

between nodes 2 and 3 symbolizes the spring. By combining the DS ma-

trices of these two components, the DS matrix of the overall structure 

can be obtained and expressed as follows 

⎡ 

⎢ 

⎢ 

⎣

𝐹 𝑦2
𝑀 2
𝐹 𝑦3

⎤ 

⎥ 

⎥ 

⎦

=
⎡ 

⎢ 

⎢ 

⎣ 

𝑑 1 + 𝐾 𝑇 

−𝑑 2 −𝐾 𝑇
−𝑑 2 

𝑑 3 0
−𝐾 𝑇 0 𝐾 𝑇 − 𝜔 

2𝑀 𝑇

⎤ 

⎥ 

⎥ 

⎦

⎡ 

⎢ 

⎢ 

⎣

𝑊 𝑦2
𝜃 2
𝑊 𝑦3

⎤ 

⎥ 

⎥ 

⎦

(8)

Eq. (8) can also be expressed as a 2 × 2 matrix by converting the dis-

placement at node 3 in spring-mass system to node 2 as shown below

[

𝐹 𝑦2
𝑀 2

] 

=
⎡ 

⎢ 

⎢ 

⎣ 

𝑑 1 + 

−𝜔 

2 𝑀 𝑇 

𝐾 𝑇
𝐾 𝑇 −𝜔 

2𝑀 𝑇
−𝑑 2

−𝑑 2 

𝑑 3

⎤ 

⎥ 

⎥ 

⎦

[

𝑊 𝑦2
𝜃 2

] 

(9)

In summary, for piezoelectric beams with various tip attachments, 

the DS matrices only need to incorporate △ in Eq. (7) into the 

corresponding DoF linked to the transverse displacement of node 2. 

2.1.2. DS modeling of different vibration energy harvesting circuits

The DS modeling of piezoelectric beams with three representative 

external circuits as schematically depicted in Fig. 2 will be developed. 

It is assumed that the electrodes affixed uniformly to the beam are thin, 

flexible, highly conductive, and possess minimal resistance. 

Piezoelectric vibration energy harvesting is achieved through uti-

lization of positive piezoelectric effect exhibited by piezoelectric ma-

terials which is commonly described using four types of constitutive

Table 1 

The piezoelectric beams with different tip attachments.

equations [81]. In this paper, the modeling of energy harvesting beams 

is based on the type 𝑑 piezoelectric constitutive equation, represented as 

follows

𝛿 = 𝜎 𝑝 

∕𝑌 𝑝 

+ 𝑑 31 

𝐸 3 (10a) 

𝐷 3 

= 𝑑 31 

𝜎 𝑝 

+ 𝜀 

𝜎
33𝐸 3 

(10b) 

where 𝑌 𝑝 

, 𝑑 31 

, and 𝜀 

𝜎
33 represent the Young’s modulus, piezoelectric coef-

ficient, and permittivity at constant stress of the piezoelectric material, 

respectively. 𝐷 3 denotes the electric displacement, and 𝐸 3 represents the

electric field induced by deformation. The strain 𝛿 of the piezoelectric 

layer at a given distance 𝑧 from the neutral axis can be expressed as

𝛿 = −𝑧 𝜕 

2 𝑤
𝜕𝑥 

2
(11)

The stress of the piezoelectric wafer and base beam can be expressed 

as follows 

𝜎 𝑝 

= 𝑌 𝑝𝛿 − 𝑑 31 

𝑌 𝑝 

𝐸 3, 𝜎 𝑏 = 𝑌 𝑏𝛿 (12)

Then, the total stress 𝜎 can be expressed as the combination of 𝜎 𝑝 

and

𝜎 𝑏 

as follows

𝜎 = 𝜎 𝑝 + 𝜎 𝑏 

= −𝑧(𝑌 𝑝 + 𝑌 𝑏) 

𝜕 

2 𝑤
𝜕𝑥 

2 

− 𝑑 31 

𝑌 𝑝 

𝐸 3 (13)

where 𝐸 3 is the electric field which can be expressed by the generated 

voltage 𝑉 (𝑡)

𝐸 3 = − 

𝑉 (𝑡)
𝑎ℎ 𝑝

(14)

The value of 𝑎 is either 1 or 2 depending on the external circuits of the 

piezoelectric beam as shown in Table 2.

Substituting the stress 𝜎 𝑝 into Eq. (10b), and considering the strain 𝛿 

at the middle section of the piezo layer for ℎ 𝑝𝑚 

= (ℎ 𝑏 

+ℎ 𝑝 

)∕2, the electric

displacement 𝐷 3 

(𝑥, 𝑡) can be obtained as follows

𝐷 3 

(𝑥, 𝑡) = −𝑑 31 

𝑌 𝑝 

ℎ 𝑝𝑚
𝜕 

2 𝑤
𝜕𝑥 

2
− 𝜀 

𝑆
33
𝑉 (𝑡)
𝑎ℎ 𝑝 

(15)

where 𝜀 

𝑆
33 = 𝜀 

𝜎
33 − 𝑑 

2
31𝑌 𝑝 

. The charge generated by the polarization of

the piezoelectric material can be determined by integrating the electric

Table 2 

The piezoelectric beams with different circuits.

Different models 𝑎 𝑓 𝜗

Series bimorph 2 1 −𝑑 31 

𝑌 𝑝𝑏 

( 

ℎ 𝑝 

+ ℎ 𝑏 

) 

∕𝑎 

Parallel bimorph 1 2 −𝑑 31 

𝑌 𝑝𝑏 

( 

ℎ 𝑝 

+ ℎ 𝑏 

) 

∕𝑎 

Unimorph 1 1 −𝑑 31 

𝑌 𝑝𝑏
(

𝑝𝑐 2 − 𝑝2𝑏
) 

∕2ℎ 𝑝

Fig. 2. Base-excited piezoelectric energy harvesting beams with external circuits: (a) series-connected bimorph, (b) parallel-connected bimorph, and (c) unimorph.
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displacement 𝐃 with the outward unit normal 𝐧.

𝑞 (𝑡) = ∫ 𝐴
𝐃 ⋅ 𝐧𝑑𝐴 = −∫

𝐿

𝑥=0

 

𝑑 31 

𝑌 𝑝 

ℎ 𝑝𝑚𝑏 

𝜕 

2 𝑤
𝜕𝑥 

2
+ 𝜀 

𝑆
33𝑏 

𝑉 (𝑡)
𝑎ℎ 𝑝

 

𝑑𝑥 (16)

( )

The expression for the current 𝑖 in the external circuit can be derived by 

differentiating the generated charge 𝑞 (𝑡) with respect to time 𝑡

𝑖 (𝑡) =
𝑑𝑞 (𝑡)
𝑑𝑡

= 𝑓 −𝑑31 

𝑌 𝑝 

ℎ 𝑝𝑚𝑏∫

𝐿

0

𝜕 

3 𝑤
𝜕𝑥 

2 𝜕𝑡 

𝑑𝑥 −
𝜀 

𝑆
33𝑏𝐿
𝑎ℎ 𝑝

̇ 𝑉 

 

(17)

( )

where 𝑓 is either 1 or 2, depending on the external circuits of the 

piezoelectric beam as specified in Table 2. The output voltage of the 

piezoelectric cantilever beam can be calculated by multiplying the load 

impedance 𝑍 with the current 𝑖 (𝑡) as follows

𝑉 = 𝑖 (𝑡)𝑍 = 𝐺 ∫

𝐿

0
𝑤 

′′𝑑𝑥 = 𝐺 

( 

𝜃𝐿 

− 𝜃 0
) 

(18)

where 𝐺 is a complex number. It should be emphasized that 𝐺 can be

separated into the imaginary part 𝐺 𝑖 

and the real part 𝐺 𝑟 as depicted

below 

𝐺 = 

𝑖𝜔𝑓𝛽
𝑖𝜔 (𝑓 ∕𝑎) 𝐶 𝑝 

+ 1∕𝑍
= 𝐺 𝑟 + 𝑖𝐺 𝑖 

(19a) 

𝛽 = −𝑑 31 

𝑌 𝑝 

ℎ 𝑝𝑚𝑏, 𝐶 𝑝 = 𝜀 

𝑆
33𝑏𝐿∕ℎ 𝑝 (19b) 

where 𝐺 𝑖 

and 𝐺 𝑟 respectively introduce the electrically-induced damp-

ing and the electrically-induced stiffness to the piezoelectric energy 

harvesting beam, which will be explained in detail later.

The bending moment 𝑀 of the piezoelectric beam can be calculated 

by integrating the cross-sectional area 𝐴 with the product of stress 𝜎 and 

−𝑧 shown as follows

𝑀 (𝑥, 𝑡) = ∫ −𝜎𝑧𝑑𝐴 = (𝑌 𝐼)b
eff

𝜕 

2 𝑤
𝜕𝑥 

2 

+ 𝜗𝑉 (𝑡) (20)

where 𝜗 is depending on the type of energy harvesting circuits, as shown 

in Table 2. Thus, the DS matrix of the piezoelectric beam with energy 

harvesting circuits can be developed as

𝐊 =

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝑑 1 𝑑 2 𝑑 4 𝑑 5
𝑑 2 𝑑 3 −𝑑 5 𝑑 6
𝑑 4 −𝑑 5 𝑑 1 + △ −𝑑 2
𝑑 5 𝑑 6 −𝑑 2 𝑑 3

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

+ 𝜗𝐺

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

(21)

where the first matrix represents the physical stiffness matrix of the 

piezoelectric structure without considering piezoelectric effect, whereas 

the second matrix related to 𝜗𝐺 denoted by Eq. (19a) introduces the 

electrically-induced stiffness 𝜗𝐺 𝑟 

and electrically-induced damping 𝜗𝐺 𝑖
to the piezoelectric structure as shown below

𝜗𝐺 = 𝜗𝐺 𝑟 + 𝑖𝜗𝐺 𝑖 (22a)

𝜗𝐺 𝑖 = 

𝜗𝜔𝑓𝛽
1∕𝑍 + 𝜔 

2 (𝑓∕𝑎) 

2𝐶 

2
𝑝 𝑍 

, 𝜗𝐺 𝑟 

=
𝜗𝜔 

2𝑓 (𝑓∕𝑎) 𝛽𝐶 𝑝

1∕𝑍 

2 + 𝜔 

2(𝑓∕𝑎) 

2𝐶 

2
𝑝

(22b)

The expressions of 𝜗𝐺 𝑖 

and 𝜗𝐺 𝑟 clearly demonstrate that the load 

resistance 𝑍 has an impact on the electrically-induced stiffness and 

damping. As the load resistance increases, the stiffness demonstrates an 

upward trend, while the damping initially increases and then decreases. 

In other words, there exists a resistance value 𝑍 𝑚 

that optimizes the

electrically-induced damping. The formula for this resistance value is as 

follows:

𝑍 𝑚 = 

1
𝜔 

2 (𝑓∕𝑎) 

2𝐶 

2
𝑝

(23)

√

To provide clarity, we introduce the concepts of physical stiffness 

(𝑌 𝐼) eff, electrically-induced stiffness 𝜗𝐺 𝑟 

, and electrically-induced stiff-

ness 𝜗𝐺 𝑖 

. The physical stiffness is determined by the elastic modulus and

Fig. 3. Assembly diagram of dynamic stiffness matrices for segmented-electrode 

piezoelectric beams.

dimensions of the piezoelectric wafers and base beam. The electrically-

induced stiffness refers to the impact on the overall cantilever structure 

when a piezoelectric cantilever beam is connected to an external circuit, 

as compared to its stiffness without circuit. Electrically-induced damp-

ing is generated by converting mechanical energy into electrical energy 

through the piezoelectric energy harvester. Optimizing this equivalent 

damping enhances the energy harvesting efficiency. These concepts ex-

plain how the presence of piezoelectric wafers and external circuits 

affect the energy conversion efficiency of piezoelectric beams.

2.1.3. DS modeling of segmented-electrode piezoelectric beam

The dynamic stiffness method has significant advantages in the 

modeling of built-up beam structures and in conducting free vibration 

and modal response analysis. The DS formulation for the segmented-

electrode piezoelectric cantilever beam will be developed as an example 

to introduce the modeling and assembly process of DS matrices.

As shown in Fig. 3, when the range of PZT covering the elastic 

beam is from 𝑥 = 𝑥 1 

to 𝑥 = 𝑥 2 

instead of covering the entire length 

of beam, the DS matrix of each element can be obtained by divid-

ing the beam elements, and then the DS matrices can be assembled 

to form the global DS matrix for the segmented-electrode piezoelec-

tric beam. This assembly procedure allows each beam element to have 

different cross-sections and lengths, making it suitable for modeling 

segmented-electrode piezoelectric beams with any boundary conditions.

Firstly, the entire structure is divided into three sub-structures at the 

boundary of two cross-sections of the segmented-electrode piezoelectric 

beam. Next, the DS matrices of each beam element are derived. Element 

2 located between nodes 2 and 3 represents a piezoelectric beam, and 

its element DS matrix is shown in Eq. (21). Element 1 and 3 are single 

beams, and their DS matrix is shown in Eq. (7). Finally, the DS matrices 

of Element 1, 2 and 3 are assembled at the corresponding degrees of 

freedom to form an 8 × 8 global DS matrix. Due to the assembly process 

of the element DS matrices being similar to that of the FEM, the DSM 

can be extended to the modeling of other more complex built-up beam 

structures.

2.2. Response analysis of piezoelectric beam using dynamic stiffness method

The output voltage and tip displacement frequency response of piezo-

electric energy harvesting beam under a given base excitation can be 

analyzed by using both the dynamic stiffness method (DSM), as de-

scribed in this section compared to the dynamic flexibility method 

(DFM) [40], also described in Appendix B.
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The DS matrix of the piezoelectric beam, as depicted in Eq. (21), can 

be formulated as follows

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝐹 0 

𝑀 0
𝐹 𝐿
𝑀 𝐿

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

=

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝑘 11 𝑘 12 𝑘 13 𝑘 14
𝑘 21 𝑘 22 𝑘 23 𝑘 24
𝑘 31 𝑘 32 𝑘 33 𝑘 34
𝑘 41 𝑘 42 𝑘 43 𝑘 44

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝑊 0
𝜃 0 

𝑊 𝐿
𝜃 𝐿

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

(24)

where 𝑘 𝑖𝑗 

represents the element in the row 𝑖 and column 𝑗 of DS matrix 

𝐊. For the piezoelectric beam with base-excitation, there is no input 

excitation at the other tip, so set the 𝐹 𝐿 

and 𝑀 𝐿 

in the above formula

to zero and we can obtain

[

𝑊 𝐿
𝜃 𝐿

] 

= − 1
𝑘33𝑘44 − 𝑘 43 

𝑘 34 

[

𝑘 44 

𝑘 31 

− 𝑘 34 

𝑘 41 

𝑘 44 

𝑘 32 

− 𝑘 34 

𝑘 42
−𝑘 43 

𝑘 31 

+ 𝑘 33 

𝑘 41 

−𝑘 43 

𝑘 32 

+ 𝑘 33 

𝑘 42

]

× 

[

𝑊 0
𝜃 0

] 

(25)

Thus, the output voltage and displacement of the piezoelectric can-

tilever beam with a tip primary mass can be represented by base

excitation 𝑊 0 and 𝜃 0 

as follows

𝑉 = 𝐺 

 

𝑘 43 

𝑘 31 

− 𝑘 33 

𝑘 41
 

∕𝛼 

 

𝑊 0 + 𝐺 

 

𝑘 43𝑘 32 

− 𝑘 33 

𝑘 42 

− 𝛼 

 

∕𝛼 

 

𝜃 0 

(26a)

𝑊 𝐿 

= 

[ 

− 

( 

𝑘44 

𝑘 31 − 𝑘 34 

𝑘 41 

) 

∕𝛼 

] 

𝑊 0 

+ 

[ 

− 

( 

𝑘 44 

𝑘 32 

− 𝑘 34 

𝑘 42 

) 

∕𝛼 

] 

𝜃 0 (26b)

[( ) ] [( ) ]

where 𝛼 = 𝑘 33 

𝑘 44 

− 𝑘 43 

𝑘 34 

.

In comparison to the DFM [40], also outlined in Appendix B for 

analyzing the responses of piezoelectric cantilevered beam, the pro-

posed DSM presents significant advantages as it is stiffness based where 

the aforementioned electrically-induced stiffness and damping are in 

the form of dynamic stiffness with very clear physical meanings and 

the elements can be directly assembled to model generally complex 

beam built-up structures. Moreover, the DS matrix can be directly 

employed for eigenvalue computation by using the Wittrick–Williams 

algorithm, thereby obtaining the natural frequencies of the piezoelectric 

beam. In addition, unlike the DFM [40], which may encounter numer-

ical singularity issues in matrix inversion during the eigenvalue and 

response-solving processes, the DSM is proven to be robust against such 

numerical challenges. Consequently, the DSM emerges as a more reliable 

and efficient approach for tackling complex beam built-up structural 

analyses.

2.3. Wittrick–Williams algorithm for resonant frequency computation

Piezoelectric energy harvesters can achieve maximum output voltage 

when operating at their resonant frequency. Therefore, it is common 

practice to tune the natural frequency of the piezoelectric beam in 

the design of these energy harvesters to match the ambient vibration 

frequency. By deriving the DS matrices for piezoelectric beams with dif-

ferent tip attachments, both unimorph and bimorph, the eigenvalues 

of these matrices can be calculated using the Wittrick–Williams (WW) 

algorithm [82]. This algorithm, known for its accurate and efficient com-

putation of eigenvalues for DS matrices, provides a powerful tool for 

frequency tuning of piezoelectric energy harvesting beams.

The WW algorithm is commonly used for computing eigenvalues of 

Hermitian matrices, which refer to matrices where the elements on the 

main diagonal are real numbers and the matrix is self-conjugate. The DS 

matrix of the piezoelectric beam as represented in Eq. (21) is actually 

not a Hermitian matrix, as its main diagonals contain the electrically-

induced damping 𝜗𝐺 𝑖 

. Nevertheless, the impact of the imaginary part of 

𝜗𝐺 on the DS matrix can be ignored since it is negligible compared to 

the stiffness terms 𝑑 3 

and 𝜗𝐺 𝑟 

, which approach zero. It should be noted

that although the DS matrix ignores the electrically-induced damping, 

it still includes the electrically-induced stiffness. It will be demonstrated 

in Sections 3.1 and 3.2 that the absolute values of electrically-induced

damping 𝜗𝐺 𝑖 

is much smaller than the electrically-induced stiffness 𝜗𝐺 𝑟 

and the dynamic stiffness of the piezoelectric beams without considering 

piezoelectric effect. The superposition of the later two stiffnesses is 

essentially symmetric matrix, which is clear from Eqs. (21) and (22), 

whereas the imaginary term 𝑖𝜗𝐺 𝑖 

is too small for the modal analysis 

and can be neglected, which is expected. Therefore, the WW algorithm 

can be extended to solve eigenvalues of the DS matrix of piezoelectric 

beam, even though the diagonal terms of the DS matrix has complex 

values.

The fundamental principle of the WW algorithm is to determine the 

number of natural frequencies of structures below a given test frequency 

𝜔 

# . Its general formula can be expressed as follows

𝐽 

( 

𝜔 

# 

) 

= 𝐽 0 

( 

𝜔 

# 

) 

+ 𝑠 

{ 

𝐊 

( 

𝜔 

# 

)} 

(27)

Firstly, select a test frequency, represented as 𝜔 

# . Calculate the corre-

sponding DS matrix and apply the Gauss elimination method to convert 

the matrix into an upper triangular form. Next, count the number of el-

ements smaller than zero on the main diagonal of the matrix and record

it as the number of sign changes, denoted as 𝑠 

{ 

𝐊 

( 

𝜔 

# 

)} 

. This count in-

dicates the number of structural natural frequencies that are lower than 

the test frequency. 𝐽 0
(

𝜔 

#) 

represents the number of natural frequen-

cies or critical load factors that are lower than the test value when the 

structure is rigid, and it can be determined as follows

𝐽 0
( 

𝜔 

# 

) 

=
𝑚
∑ 

𝑖=1
𝐽 𝑖

( 

𝜔 

# 

) 

(28)

After calculating 𝐽 

( 

𝜔 

# 

) 

, the bisection method can be employed to 

iteratively approximate the natural frequency of the structure with any 

desired level of accuracy. The WW algorithm is a precise and effective 

method for solving eigenvalues. It employs a bisection method to system-

atically scan through frequencies, ensuring that no natural frequencies 

are missed during the solution process.

3. Results and discussions

The results of free vibration and frequency response of both the clas-

sical and segmented-electrode piezoelectric beams, calculated using the 

dynamic stiffness method (DSM) and the finite element method (FEM), 

will be presented in Section 3.1. Subsequently, the output voltage fre-

quency response functions (FRFs) of the piezoelectric beams with three 

typical tip attachments will be obtained in Section 3.2, and the influence 

of different factors on energy harvesting efficiency will be examined 

in Section 3.3. All results will be obtained using the same computer 

equipped with an 11th Gen Intel(R) Core(TM) i7-11800 H @2.30 GHz 

and 16GB of memory.

3.1. Comparative analysis of DSM and COMSOL results

The results of the modal vibration and frequency response of the 

classical bimorph piezoelectric cantilever beam and the segmented-

electrode piezoelectric beam, calculated using the DSM and FEM re-

spectively, will be presented in this section. The DSM results will 

be validated with FEM by using the commercial software COMSOL 

Multiphysics. Additionally, the influence of the electrically-induced stiff-

ness and damping on the piezoelectric beam will also be analyzed in this 

section.

3.1.1. Modal and response analysis of the classical piezoelectric cantilever

beams

The key dimensional and material parameters of the classical bi-

morph piezoelectric beam can be found in Table 3. Table 4 displays 

the first ten natural frequencies of piezoelectric beams, obtained using 

the DSM and FEM. Table 4 also presents the relative errors between 

the two sets of results which show that the two methods produce con-

sistent results. The slight disparities between the DSM and COMSOL
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Table 3 

Dimensional and material parameters of the piezoelectric beam.

Components Piezo layer Base beam Variables Unit

Material PZT-5 H Aluminium – –

Density 7800 2700 𝜌 𝑝∕𝜌 𝑏 kg/m 

3

Length 60 60 𝐿 mm

Thickness 0.267 0.3 ℎ 𝑝∕ℎ 𝑏 mm

Width 5 5 𝑏 mm

Elastic modulus 62 72 𝑌 𝑝∕𝑌 𝑏 GPa

Piezoelectric coefficient −320 – 𝑑 31 pm/V

Piezoelectric permittivity 3.363 × 10 

−8 – 𝜀 

𝑇
33 nF/m

can be attributed to the differences in the modeling approaches. In 

this paper, the DS modeling of the piezoelectric beams is based on the 

Euler–Bernoulli beam model, while in COMSOL, beam modeling relies 

on solid mechanics physical fields.

Our attention then shifts to the parallel-connected bimorph piezo-

electric cantilever beams with a tip mass, referred to as 𝑀 𝑇 = 0.5𝑚 𝑏 

, and

a pure resistance impedance of 𝑍 = 100 𝑘Ω. Fig. 4(a) shows the power 

frequency response functions (FRFs) of the piezoelectric beam gener-

ated per unit amplitude base acceleration by the DSM and COMSOL. 

Furthermore, Fig. 4(b) presents the tip displacement of the piezoelectric 

beam, also generated per unit amplitude base acceleration by the DSM 

and COMSOL. This displacement FRF represents the transmissibility

connecting 𝑊 𝐿 

and 𝑊 0.

The graphs clearly show that the piezoelectric beam’s peak output 

powers consistently occur at its natural frequencies, with a decline in 

amplitude as the frequency increases. It is worth noting that the DSM 

curve closely matches the FEM results near the natural frequencies. 

However, between the two peaks, the output power FRF of FEM is 

slightly higher than that of DSM. The output power and tip displace-

ment amplitudes of the piezoelectric beam at its three resonance peaks 

are presented in Table 5. It can be seen from the table that the amplitude 

results obtained by the DSM and the FEM are in excellent agreement, 

with a relative error of less than 5 %. In summary, compared to the FEM, 

the DSM reduces the calculated DoFs by 5 orders of magnitude, with a 

computation time only 0.5 % of that required for FEM which highlights 

the significant advantages of the DSM in terms of both computational 

efficiency and accuracy.

3.1.2. The impact of electrically-induced stiffness and electrically-induced 

damping

The WW algorithm is used to calculate the eigenvalues of DS matri-

ces, which allows for the determination of natural frequencies for six 

representative beam types. The natural frequencies of these beam types 

are listed in Table 6 and depicted in Fig. 5, including a single beam, 

unimorph and bimorph piezoelectric beams without an external circuit, 

unimorph piezoelectric beams with an external circuit, and series- and 

parallel-connected piezoelectric beams.

Additionally, we use the DSM to draw the output power FRF curve 

of the piezoelectric beams with three typical external circuits as shown

Table 4 

The influence of external circuit types on the natural frequency of piezoelectric beams (𝐻𝑧).

Circuit type Series bimorph Parallel bimorph Unimorph

Method DSM FEM DSM FEM DSM FEM

Mode order 𝑓 (Hz) 𝑓 (Hz) R.E. (%) 𝑓 (Hz) 𝑓 (Hz) R.E. (%) 𝑓 (Hz) 𝑓 (Hz) R.E. (%)

𝜔 1 71.007 71.819 −1.13 % 73.582 75.156 −2.09 % 54.389 54.478 −0.16 %

𝜔 2 591.32 593.09 −0.3 % 591.58 599.55 −1.33 % 448.33 452.5 −0.92 %

𝜔 3 1789.1 1800.4 −0.63 % 1789.2 1806.2 −0.94 % 1358 1375 −1.24 %

𝜔 4 3661.0 3682.3 −0.58 % 3661.0 3687.9 −0.73 % 2780.7 2814.4 −1.2 %

𝜔 5 6211.8 6237.9 −0.42 % 6211.8 6243.6 −0.51 % 4718.9 4771.8 −1.11 %

𝜔 6 9441.9 9456.3 −0.15 % 9441.9 9466.1 −0.26 % 7173.2 7242.6 −0.96 %

𝜔 7 13,352 13,342 0.075 % 13,352 13,346 0.045 % 10,144 10,194 −0.49 %

𝜔 8 17,941 17,868 0.41 % 17,941 17,873 0.38 % 13,631 13,745 −0.83 %

𝜔 9 23,210 23,029 0.79 % 23,210 23,033 0.77 % 17,635 17,732 −0.55 %

𝜔 10 29,159 28,809 1.2 % 29,159 28,814 1.19 % 22,155 22,216 −0.27 %

DoFs 4 449,384 – 4 456,235 – 4 288,302 –

Computing time 0.54 s 116 s – 0.53 s 119 s – 0.47 s 91 s –

Fig. 4. Output characteristic FRFs of parallel-connected bimorph piezoelectric beam by the proposed DSM and COMSOL.
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Table 5 

The response amplitudes of the parallel-connected bimorph piezoelectric beam 

at the first three frequencies.

FRF model Output power Tip displacement

Method DSM FEM DSM FEM

Mode order 𝑓 (Hz) 𝑓 (Hz) R.E. (%) 𝑓 (Hz) 𝑓 (Hz) R.E. (%)

1 5.43e−5 5.63e−5 3.6 15.9 15.4 3.2

2 1.85e−5 1.87e−5 1.1 46.9 48.5 3.3

3 1.09e−5 1.08e−5 0.9 88.5 91.6 3.4

in Fig. 6. By combining Figs. 5, 6 and Table 6, the following conclusions 

can be drawn: (i) Increasing the number of piezoelectric wafers on the 

base beam, from a single beam to a unimorph piezoelectric beam, and 

then to a bimorph piezoelectric beam, enhances the physical stiffness 

of the cantilevered structure. Consequently, the natural frequencies of 

the structure are elevated. (ii) The natural frequencies of unimorph and 

bimorph piezoelectric beams with circuits are higher than those with-

out circuits. This is due to the inclusion of electrically-induced stiffness 

in the overall structural stiffness. (iii) Different types of external cir-

cuits affect the natural frequencies of piezoelectric beams. Specifically, 

the natural frequency of series-connected bimorph is slightly lower 

than that of parallel-connected bimorph piezoelectric beams. This dif-

ference arises from the higher electrically-induced stiffness of parallel 

bimorph compared to series bimorph. (iv) The parallel bimorph piezo-

electric beam exhibits higher electrically-induced damping compared to 

the series bimorph, resulting in a decrease in the output power. This 

phenomenon can be observed in Fig. 6. (v) The electrically-induced stiff-

ness has a greater impact on low-order natural frequencies compared 

to high-order natural frequencies. Generally, the influence of physical 

stiffness on structural stiffness is relatively larger than the effect of 

electrically-induced stiffness.

3.1.3. Modal and response analysis of the segmented-electrode piezoelectric

beam

The total length of the segmented-electrode piezoelectric beam is 

110 mm. The upper and lower piezoelectric wafers are symmetrically 

laid, and their length is 60 mm. The distance from the left side of the 

piezoelectric wafer to the fixed end of the beam is 20 mm, and the 

distance from the right side to the free end of the beam is 30 mm. In ad-

dition, the material parameters and thickness of the piezoelectric beam 

are consistent with those of the classical bimorph piezoelectric cantilever 

beam in Section 3.1.1. The specific parameter values are shown in Table 

1. Table 7 shows the first ten modal shapes of the segmented-electrode 

piezoelectric beam plotted by the DSM and the FEM. It can be seen from 

the table that the modal shapes obtained by the DSM agree very well 

with those obtained by the FEM, and the error of the natural frequencies 

calculated by the two methods is within 2 %.

Fig. 5. Column schematic diagram of the first five natural frequencies of six 

different beam types.

The output power FRFs of the segmented-electrode piezoelectric 

beam are calculated by the DSM and FEM with a locally zoomed-in 

view near the first-order natural frequency, as shown in Fig. 7. It can 

be seen from the figure that the overall trends of the FRFs obtained 

by the two methods are consistent. However, there are some differ-

ences in the amplitudes at the natural frequencies. This is because the 

FEM is a numerical method and the factors such as mesh generation 

during the discretization process can lead to differences. Notably, an 

anti-resonance peak appears in the FRF between the second-order and 

third-order natural frequencies. This is due to the stiffness and mass dis-

tribution characteristics of the segmented-electrode piezoelectric beam 

and the electromechanical coupling effect of the piezoelectric material. 

These factors suppress the vibration energy of the system in this fre-

quency range, resulting in the formation of the anti-resonance peak. In 

terms of calculation time, the DSM is two orders of magnitude faster than 

the FEM. This fully demonstrates that the proposed DSM has significant 

advantages in analyzing such piezoelectric built-up beams. The proposed 

method can be further used to establish an optimization model for the 

segmented-electrode piezoelectric beam to fully leverage its advantages.

3.2. Theoretical analysis of the piezoelectric beams with different tip 

attachments

DS models of series-connected piezoelectric beams with different tip 

attachments will be established in this section. Additionally, the influ-

ence of different structures on the power frequency response function of 

piezoelectric beams will be analyzed.

Initially, the piezoelectric beam is carrying a moderately sized pri-

mary mass 𝑀 𝑇 = 0.5𝑚 𝑏 

at the tip with a pure resistance impedance

Table 6

The natural frequencies of different types of beams.

Beam types Single beam Unimorph Unimorph with circuit Bimorph Series bimorph Parallel bimorph

𝐵 𝑌𝑏𝐼𝑏 𝑌 𝑏 

𝐼 𝑏 

+ 𝑌 𝑝 

𝐼 𝑝 𝑌 𝑏 

𝐼 𝑏 

+ 2𝑌 𝑝 

𝐼 𝑝

𝜗𝐺 𝑟 – – 13.72𝜔 

2

10 

8+942𝜔 
2 – 12.11𝜔 

2

10 

8+236𝜔 
2

194.1𝜔 

2

10 

8+3768𝜔 
2

𝜗𝐺 𝑖 – – 4.47𝜔
10 

5+0.942𝜔 
2 – 7.91𝜔

10 

5+0.236𝜔 
2

31.64𝜔
10 

5+3.768𝜔 
2

Mode order 𝑓 (Hz) 𝑓 (Hz) 𝑓 (Hz) R.E. (%) 𝑓 (Hz) 𝑓 (Hz) R.E. (%) 𝑓 (Hz) R.E. (%)

𝜔 1 18.83 52.766 54.389 3.08 % 69.446 71.007 2.25 % 73.582 5.96 %

𝜔 2 310.67 442.31 448.33 1.36 % 582.12 591.32 1.58 % 591.58 1.63 %

𝜔 3 994.16 1353.0 1358.4 0.39 % 1780.7 1789.1 0.47 % 1789.2 0.48 %

𝜔 4 2067.4 2775.5 2780.7 0.19 % 3652.9 3661 0.22 % 3661 0.22 %

𝜔 5 3530.9 4713.8 4718.9 0.11 % 6203.8 6211.8 0.13 % 6211.8 0.13 %

𝜔 6 5384.7 7168.2 7173.2 0.07 % 9434.1 9441.9 0.08 % 9441.9 0.08 %

𝜔 10 16,703 22,150 22,155 0.02 % 29,152 29,159 0.02 % 29,159 0.02 %
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Fig. 6. Output power FRFs of the piezoelectric beam with different external circuits.

Table 7 

The first 10 mode shapes of the segmented-electrode piezoelectric beam.

𝑍 = 100 𝑘Ω. By varying the magnitude of tip mass of the piezoelectric 

beam, the output power FRF near the first-order natural frequency of the 

beam can be obtained, as shown in Fig. 8(a). From the graph, it is evi-

dent that the first natural frequency decreases as the tip mass increases. 

Moreover, the peak amplitude of the output power corresponding to the 

first natural frequency increases with the mass.

Next, we consider the case where a spring is attached to the tip 

of the piezoelectric beam. As depicted in Fig. 8(b), it is evident that 

increasing the spring stiffness coefficient causes the first natural fre-

quency of the piezoelectric beam to rise, while the peak output power 

remains relatively unchanged. In comparison to the scenario where the 

piezoelectric beam carries a tip mass, the output power frequency re-

sponse function (FRF) of the beam with a spring at the tip exhibits 

a decrease in first-order anti-resonance before reaching the first reso-

nance peak. Furthermore, as the spring stiffness coefficient increases, 

the anti-resonance peak gradually shifts towards the direction of the first 

resonance peak, resulting in a decrease in the gap between the peak and 

the valley.

The final case involves a piezoelectric cantilever beam with a spring-

mass oscillator at the tip. By independently varying the mass 𝑀 𝑇 

and 

the stiffness coefficient 𝐾 𝑇 

of the oscillator, the output power FRF can 

be obtained as shown in Fig. 9. From the graphs, it can be seen that 

compared to the first two cases, this structure exhibits an additional first-

order natural frequency, which corresponds to the natural frequency 

of the spring-mass oscillator. When the tip mass is changed individu-

ally, the first resonance peak changes similarly to the situation shown in 

Fig. 8(a), while the position of the second resonance peak and its corre-

sponding output power remain basically unchanged. When the stiffness 

coefficient of the spring is changed separately, the first two natural fre-

quencies show an upward trend. The first output power peak shows a 

decreasing trend, while the second output power peak remains basically 

unchanged as the stiffness coefficient increases.

3.3. Factors affecting the energy harvesting efficiency

The energy harvesting efficiency of piezoelectric beams can be in-

fluenced by both internal and external factors. In this section, we will
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Fig. 7. Output power FRF of the segmented-electrode piezoelectric beam.

Fig. 8. Output power FRF of the piezoelectric beam.

Fig. 9. Output power FRF of the piezoelectric beam carrying a spring-mass system.
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Fig. 10. Output power FRF of piezoelectric beams with different material parameters.

examine how various factors impact the energy harvesting of beams. 

The study focuses on the following factors: the piezoelectric material 

parameters, the structural dimensions of the beams, the load resistance, 

and the input base-excitation. Unless specified otherwise, the modeling 

in this section assumes that the piezoelectric beams are series-connected 

and have a tip mass at the tip.

3.3.1. Effect of piezoelectric material parameters

The piezoelectric coefficients 𝑑 31 

and piezoelectric permittivity 𝜀 33 

of various piezoelectric materials are different. Our attention turns to 

the influence of these two parameters on the energy harvesting of 

piezoelectric beams under a given input magnitude base-excitation.

The power FRF of the piezoelectric beams with different 𝑑 31 

and 𝜀 33 

is shown in Fig. 10. From the graph, it is evident that when the scan-

ning frequency matches the natural frequency of the beam, the output 

power will decrease monotonically with an increase in the modulus of

𝑑 31. However, the output power between each pair of peaks will increase

as the modulus of 𝑑 31 

increases. As seen in Fig. 10(b), when the scan-

ning frequency is lower than the first natural frequency, the change in 

piezoelectric permittivity 𝜀 33 

has little impact on the output power. On 

the other hand, when the scanning frequency corresponds to the second 

and third natural frequencies, the output power increases monotonically 

with an increase in 𝜀 33 

. Additionally, the influence of 𝑑 31 

and 𝜀 33 

on the 

first-order natural frequency of the beam is relatively small. However, 

the second-order natural frequencies of the beam are positively and 

negatively correlated with the modulus of 𝑑 31 

and 𝜀 33 

, respectively.

Based on the analysis above, it is clear that a comprehensive consid-

eration of the piezoelectric coefficient and piezoelectric permittivity is 

necessary in order to achieve a higher output power for the piezoelectric 

beams. By using piezoelectric materials with a larger 𝜀 33 

and a smaller 

modulus of 𝑑 31 

, a better energy harvesting effect can be achieved.

3.3.2. Effect of structural dimensions

Here we discuss the effect of the thickness of piezoelectric wafers, 

denoted as ℎ 𝑝 

, and base beam, denoted as ℎ 𝑏 

, on the efficiency of 

vibration energy harvesting. Fig. 11 shows the output voltage and tip-

to-base transmissibility FRFs of the piezoelectric beams with varying 

thicknesses.

It can be seen from the graphs that: (i) the natural frequencies of 

the beam exhibit an upward trend as the piezoelectric wafer thickness

ℎ 𝑝 

and the base beam thickness ℎ 𝑏 

increase, (ii) for the first two natural

frequencies, the output voltage shows distinct trends of gradual increase 

and decrease as ℎ 𝑝 

and ℎ 𝑏 

increase, respectively, (iii) overall, the change 

in piezoelectric wafer thickness ℎ 𝑝 

has a more substantial impact on the 

natural frequency, output voltage, and tip displacement of piezoelectric 

beams compared to the base beam thickness ℎ 𝑏 

.

The structural dimensions of the piezoelectric cantilever beams sig-

nificantly affect their energy harvesting efficiency. When determining 

the structural size parameters of these beams, it is important to consider 

not only the energy harvesting efficiency but also the cost of equipment 

production and the impact on the surrounding environment. While en-

suring safety and staying within budget, it is crucial to optimize the 

effect of vibration energy harvesting as much as possible.

3.3.3. Effect of load resistance

Fig. 12 displays the output voltage, current, and power FRFs under 

different resistance loads. From these graphical models, it can be seen 

that output voltage and current of the piezoelectric beams monotonically 

increase and decrease along with the rise in resistance, respectively, 

while the change in output power is not monotonic, and there is an 

optimal resistance value that maximizes the output power. The re-

sistance value corresponding to the peak output power is related to 

the structural and material parameters of the piezoelectric beam itself.
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Fig. 11. Output characteristic FRFs of the piezoelectric beams with different thicknesses.

Fig. 12. Output characteristic FRFs of the piezoelectric beams with different load resistances.

When these parameters change, this optimal resistance value will also 

change accordingly. The performance of the series-connected bimorph 

piezoelectric beam can be clearly understood to determine the opti-

mal resistance for vibration energy harvesting from the results and 

graphs.

3.3.4. Effect of base excitation

The input base excitation, represented by the coefficient 𝑈 0 in Eq. 

(26b), has no impact on the structural characteristics of the piezoelectric 

beam. Therefore, we will only concentrate on how the base excitation 

affects the output characteristics of the piezoelectric beams. Fig. 13(a)
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Fig. 13. Output power FRF of the piezoelectric beams with different input base excitation.

and Fig. 13(b) display the output voltage FRF of the piezoelectric beam 

under different base acceleration and rotation excitation, respectively. 

It is clear that the output voltage increases linearly as the external in-

put base acceleration changes. Similarly, an increase in external input 

rotation results in a linear increase in the output voltage of the beam.

4. Conclusion

This paper has developed the dynamic stiffness (DS) models for 

analyzing multimodal piezoelectric energy harvesting beams based 

on the Euler–Bernoulli beam theory and linear piezoelectric constitu-

tive equation. The Wittrick–Williams (WW) algorithm has been em-

ployed to solve the natural frequencies of energy harvesters considering 

electrically-induced stiffness for the first time, which has been proven 

to be an exact and powerful tool for resonance frequency calculation. 

Additionally, both the electrically-induced stiffness and electrically-

induced damping have been introduced to characterize the impact of 

energy harvesting circuits on the entire harvesters. The effect of differ-

ent structures and parameters on the energy harvesting efficiency of the 

piezoelectric beams has also been analyzed. The novel contributions of 

this paper can be summarized as follows:

1. The DS model of piezoelectric beams based on the exact solutions

of governing differential equations exhibits significantly fewer 

DoFs and can accurately predict the electromechanical coupling 

response of the beam. Moreover, as a replacement for traditional 

numerical modeling methods, the modeling technique has been 

applied to the comprehensive multimodal analysis of piezoelec-

tric beams equipped with different tip attachments and external 

circuits, as well as segmented-electrode piezoelectric beams. These 

applications demonstrate the wide applicability and high accuracy 

of the proposed method in studying various piezoelectric energy 

harvesting scenarios.

2. The electrically-induced stiffness and electrically-induced damp-

ing are introduced to describe the impact of energy harvesting 

circuits on the harvesters, both of which have clear physical 

meaning, where the stiffness increases natural frequencies and 

the damping represents energy dissipation during vibration-to-

electrical energy conversion. These concepts provide a clear and 

direct way of designing the energy harvesters.

3. As a highly efficient algorithm for accurately calculating eigen-

values, the WW algorithm has been introduced in this paper 

to calculate the eigenvalues of the DS matrices of piezoelectric

beams. This application of the WW algorithm enables precise fre-

quency tuning of the piezoelectric energy harvesting structures. 

The natural frequency of the beam can be adjusted to match the 

vibration frequency of the surrounding environment to achieve the 

best vibration energy harvesting effect, highlighting the potential 

of the WW algorithm in optimizing piezoelectric energy har-

vesting systems for better performance in diverse environmental 

conditions.

4. The electromechanical coupling responses of piezoelectric beams

under different structural and material parameters are analyzed 

using the DSM, and the influence of these factors on the energy 

harvesting efficiency of the beams has been discussed in this pa-

per. This study provides a powerful tool for dynamic design and 

adaptive optimization of piezoelectric intelligent structures.

In summary, the proposed method can efficiently and accurately 

calculate the natural frequencies of the beams and predict the output 

characteristic frequency response of the piezoelectric beams under base 

excitation. Future research will focus on further considering more com-

plex harvesting structures and nonlinear vibration energy harvesting for 

the design and optimization of piezoelectric energy harvesting devices. 

We will also establish a model of the piezoelectric intelligent structures 

based on high-order beam theory in the future, which will help analyze 

the impact of thickness stretching on the energy harvesting effect. Thus, 

a more comprehensive and accurate description of the mechanical and 

electrical behavior of the structure can be provided, and this description 

can serve as a powerful mathematical tool for designing piezoelectric 

energy harvesting structures with higher energy conversion efficiency.
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Fig. A.14. Boundary conditions for an Euler–Bernoulli beam in flexural 

vibration.
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Appendix A

All the models presented in this paper are based on the 

Euler–Bernoulli beam theory, excluding axial deformations. Therefore, 

we only derive the DS matrix of beam’s flexural deformations [83].

In Fig. A.14, the notations 𝑀 , 𝜃, 𝐹 and 𝑊 respectively correspond to

bending moments, rotations, shear forces and displacements. The sub-

scripts 1 and 2 will be used to represent the left and right end nodes of 

the beam, respectively. The deflection of the beam’s cross-section at po-

sition 𝑥 and time 𝑡 is denoted as 𝑤 (𝑥, 𝑡), and the governing differential 

bending motion equation of the beam is given by 

𝑌 𝐼 

𝜕 

4 𝑤
𝜕𝑥 

4
+ 𝜌𝐴 

𝜕 

2 𝑤 

𝜕𝑡 

2 

= 0 (A.29)

where 𝜌 and 𝑌 represent the density and Young’s modulus of the ma-

terial, respectively. 𝐼 and 𝐴 are the respectively moment of inertia and 

the area of beam section.

Assuming that the deflection 𝑤 does a simple harmonic motion with 

frequency 𝜔, so that it’s given by 

𝑤 (𝑥, 𝑡) = 𝑊 (𝜉) 𝑒 

𝑖𝜔𝑡 (A.30) 

where 𝜉 = 𝑥∕𝐿 and 𝑊 (𝜉) represents the amplitude of bending vibration. 

Substituting the deflection expression into the governing differential 

equation of the Bernoulli–Euler beam gives

𝑑 

4 𝑊
𝑑𝜉 

4
− 𝜆 

4 𝑊 = 0, 𝜆 = 4 𝑚𝜔 

2 𝐿 

4

𝑌 𝐼 

(A.31)

√

where 𝑚 represents the mass per unit length.

The solution to the above differential equation can be given 

𝑊 (𝜉) = 𝐶 1 cos 𝜆𝜉 + 𝐶 2 sin 𝜆𝜉 + 𝐶 3 cosh 𝜆𝜉 + 𝐶 4 

sinh 𝜆𝜉 (A.32)

where 𝐶 1 

− 𝐶 4 are constants. The rotation angle, bending moment and

shear force at the left end of the beam can be expressed as follows

𝜃 = 1
𝐿 

𝑑𝑊 

𝑑𝜉 

= 

𝜆
𝐿
(−𝐶 1 sin 𝜆𝜉 + 𝐶 2 cos 𝜆𝜉 + 𝐶 3 

sinh 𝜆𝜉 + 𝐶 4 

cosh 𝜆𝜉) (A.33a) 

𝑀 = −𝑌 𝐼
𝐿 

2 

𝑑 

2 𝑊
𝑑𝜉 

2 

= 

𝑌 𝐼
𝐿 

2
𝜆 

2 (𝐶 1 

cos 𝜆𝜉 + 𝐶 2 

sin 𝜆𝜉 − 𝐶 3 

cosh 𝜆𝜉 − 𝐶 4 

sinh 𝜆𝜉)

(A.33b) 

𝐹 = 

𝑌 𝐼
𝐿 

3
𝑑 

3 𝑊
𝑑𝜉 

3
= 

𝑌 𝐼
𝐿 

3
𝜆 

3(𝐶 1 sin 𝜆𝜉 − 𝐶 2 

cos 𝜆𝜉 + 𝐶 3 

sinh 𝜆𝜉 + 𝐶 4 

cosh 𝜆𝜉)

(A.33c)

Referring to Fig. A.14, the end conditions for the displacements and 

forces can be expressed as follows 

At 𝑥 = 0, 𝑊 = 𝑊 1 

, 𝜃 = 𝜃 1 

, 𝐹 = 𝐹 𝑦1, 𝑀 = 𝑀 1 

(A.34a) 

At 𝑥 = 𝐿, 𝑊 = 𝑊 2, 𝜃 = 𝜃 2, 𝐹 = −𝐹 𝑦2, 𝑀 = −𝑀 2 (A.34b) 

Substituting above end conditions into Eq. (A.33), the following ma-

trices can be obtained for displacements and forces, in terms of the 

constants 𝐶 1 

− 𝐶 4

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝑊 1
𝜃 1 

𝑊 2
𝜃 2

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

=

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

1 0 1 0
0 𝜆∕𝐿 0 𝜆∕𝐿
𝐶 𝜆 

𝑆 𝜆 

𝐶 ℎ𝜆 

𝑆 ℎ𝜆
−𝜆𝑆 𝜆∕𝐿 𝜆𝐶 𝜆∕𝐿 𝜆𝑆 ℎ𝜆∕𝐿 𝜆𝐶 ℎ𝜆∕𝐿

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝐶 1
𝐶 2
𝐶 3
𝐶 4

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

(A.35)

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝐹 𝑦1
𝑀 1
𝐹 𝑦2
𝑀 2

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

=

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

0 −𝑉 3 

𝜆 

3 0 𝑉 3𝜆 

3 

𝑉 2 

𝜆 

2 0 −𝑉 2 

𝜆 

2 0
−𝑉 3 

𝜆 

3 𝑆 𝜆 

𝑉 3𝜆 

3 𝐶 𝜆 

−𝑉 3 

𝜆 

3 𝑆 ℎ𝜆 −𝑉 3 

𝜆 

3 𝐶 ℎ𝜆
−𝑉 2𝜆 

2 𝐶 𝜆 −𝑉 2𝜆 

2 𝑆 𝜆 

𝑉 2 

𝜆 

2 𝐶 ℎ𝜆 

𝑉 2 

𝜆 

2 𝑆 ℎ𝜆

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝐶 1
𝐶 2
𝐶 3
𝐶 4

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦ 

(A.36)

where 

𝐶 𝜆 = cos 𝜆, 𝑆 𝜆 = sin 𝜆, 𝐶 ℎ𝜆 = cosh 𝜆, 𝑆 ℎ𝜆 = sinh 𝜆 (A.37)

𝑉 1 = 

𝑌 𝐼 

𝐿 

, 𝑉 2 = 

𝑌 𝐼
𝐿 

2
, 𝑉 3 = 

𝑌 𝐼
𝐿 

3
(A.38)

Eliminating 𝐶 1 −𝐶 4 to obtain the fourth order stiffness matrix of the 

beam in bending vibration 

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣ 

𝐹 𝑦1
𝑀 1
𝐹 𝑦2
𝑀 2

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

=

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝑑 1 𝑑 2 𝑑 4 𝑑 5
𝑑 2 𝑑 3 

−𝑑 5 

𝑑 6 

𝑑 4 −𝑑 5 

𝑑 1 −𝑑 2 

𝑑 5 𝑑 6 

−𝑑 2 

𝑑 3

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝑊 1
𝜃 1 

𝑊 2
𝜃 2

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

(A.39)

where

𝑑 1 =
𝑊 3𝜆 (𝑆 𝜆 

𝐶 ℎ𝜆 + 𝐶 𝜆 

𝑆 ℎ𝜆)
Δ

𝑑 2 =
𝑊 2𝜆 𝑆 𝜆 

𝑆 ℎ𝜆
Δ 

(A.40a)

𝑑 3 =
𝑊 1𝜆(𝑆 𝜆 

𝐶 ℎ𝜆 − 𝐶 𝜆 

𝑆 ℎ𝜆)
Δ 

𝑑 4 = −
𝑊 3𝜆 

3 (𝑆 𝜆 + 𝑆 ℎ𝜆)
Δ

(A.40b)

𝑑 5 =
𝑊 2𝜆 

2(𝐶 ℎ𝜆 − 𝐶 𝜆)
Δ

𝑑 6 = 

𝑊 1𝜆(𝑆 ℎ𝜆 − 𝑆 𝜆)
Δ 

(A.40c)

3 2

where Δ = 1 − 𝐶 𝜆 

𝐶 ℎ𝜆 

. Eq. (A.39) can also be expressed as a simplified

matrix form as shown below 

𝐟 = 𝐊𝐝 (A.41) 

where 𝐟 and 𝐝 are the force and displacement vector respectively, and 

𝐊 is the frequency dependent 4 × 4 dynamic stiffness matrix. 

Appendix B

DF matrix 𝐫 of the piezoelectric system can be obtained from the 

inverse matrix of DS matrix 𝐊 as shown below [40] 

𝐫 = 𝐊 

−1 = 

 

𝑟 𝑖𝑗 

 

(B.42)
{ }

The relationship between displacements and forces of the piezoelectric 

beam can be expressed by the flexibility matrix as follows:

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝑊 0
𝜃 0 

𝑊 𝐿
𝜃 𝐿

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

=

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝑟 11 

𝑟 12 

𝑟 13 

𝑟 14
𝑟 21 

𝑟 22 

𝑟 23 

𝑟 24
𝑟 31 

𝑟 32 

𝑟 33 

𝑟 34
𝑟 41 

𝑟 42 

𝑟 43 

𝑟 44

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦ 

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝐹 0 

𝑀 0 

𝐹 𝐿
𝑀 𝐿

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

(B.43)

where 𝑟 𝑖𝑗 

represents the element in the Row 𝑖 and Column 𝑗 of DF matrix 

𝐫. By setting 𝐹 𝐿 and 𝑀 𝐿 to zero and eliminating 𝐹 0 and 𝑀 0, one can
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express the tip displacement 𝑊 𝐿 

and rotation 𝜃 𝐿 

in terms of 𝑊 0 and 𝜃 0
as follows

[

𝑊 𝐿
𝜃 𝐿

]

= 

1
𝑟 11 

𝑟 22 

− 𝑟 21 

𝑟 12 

[

𝑟31𝑟22 − 𝑟 32 

𝑟 21 −𝑟 31 

𝑟 12 + 𝑟32𝑟11
𝑟41𝑟22 − 𝑟 42 

𝑟 21 −𝑟 41 

𝑟 12 + 𝑟42𝑟11

] [

𝑊 0
𝜃 0 

]

(B.44)

Then, the voltage and displacement of the piezoelectric beam can be 

expressed in terms of 𝑊 0 

and 𝜃 0 

as

𝑉 = 𝐺 

 

𝑟 41 

𝑟 22 

− 𝑟 42 

𝑟 21
 

∕𝛾 

 

𝑊 0 

+ 𝐺 −𝑟 41𝑟 12 

+ 𝑟 42 

𝑟 11 

− 𝛾 

 

∕𝛾 

 

𝜃 0 (B.45a)

𝑊 𝐿 

= 

[( 

𝑟31 

𝑟 22 

− 𝑟 32 

𝑟 21
) 

∕𝛾 

] 

𝑈 0 

+ 

[( 

−𝑟 31 

𝑟 12 + 𝑟 32 

𝑟 11 

) 

∕𝛾 

] 

𝜃 0 (B.45b)

[( ) ] [( ) ]

where 𝛾 = 𝑟 11 

𝑟 22 

− 𝑟 12 

𝑟 21 

.
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