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A B S T R A C T

The nonlinear stiffened inertial amplifier tuned mass friction damper (NSIATMFD) is introduced in this paper
to address the limitations of the conventional tuned mass dampers such as narrow frequency ranges and
limited adaptability. In addition, three more novel dampers, such as nonlinear compound stiffened inertial
amplifier tuned mass friction dampers (NCSIATMFD), nonlinear nested stiffened inertial amplifier tuned mass
friction dampers (NNSIATMFD), and nonlinear levered stiffened inertial amplifier tuned mass friction dampers
(NLSIATMFD), are introduced by integrating stiffness and mass amplification mechanisms to increase their
vibration reduction capacities. These novel dampers are applied at the top of structures to control their dynamic
responses. Newton’s second law is followed to derive the governing equations of motion of the controlled
structures. 𝐻2 and 𝐻∞ optimisation strategies are utilised to derive the exact closed-form expressions for the
optimal design parameters of these dampers. The transfer function is developed to derive the frequency domain
responses by considering harmonic and random excitations. The frequency domain responses are further
validated through numerical studies conducted using the Newmark-beta method and near-field earthquake
records. Compared to the conventional tuned mass dampers (TMD), the proposed dampers achieve vibration
reduction improvements of 24.24 %, 24.64 %, 23.92 %, and 24.54 %, respectively. The integration of stiffness
elements significantly extends the frequency control range, while the frictional damping element enhances
energy dissipation capabilities. These results establish the novel designs as effective solutions for dynamic
environments, offering robust and adaptive vibration mitigation for structures exposed to diverse excitations,
including seismic loads. This research provides a significant advancement in TMD technology for modern
engineering applications.
1. Introduction

Vibration mitigation is an essential component of modern engi-
neering, applicable to civil structures [1], mechanical systems, and
precision equipment [2]. Tuned Mass Dampers (TMDs) are extensively
used to mitigate mechanical vibrations via the application of resonance
and damping principles [3]. A TMD generally comprises a mass, spring,
and damper arranged to resonate out of phase with the main structure,
thereby dissipating vibrational energy [4]. These systems have been
effectively used in buildings such as Taipei 101, bridges, and precision
instruments to mitigate vibrations induced by winds, earthquakes, and
operating stresses [5]. Nonetheless, despite their effectiveness, tradi-
tional TMDs face several limitations, including a narrow frequency
bandwidth, challenges in adapting to varying dynamic loads, and diffi-
culties in enhancing vibration mitigation capacity due to the increased
static mass of individual dampers or the cumulative weight of an array
of dampers [6].

Advances in TMD design focus on addressing these limitations
by incorporating innovative mechanisms and optimisation strategies.
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For instance, 𝐻2 optimisation is utilised to determine the optimal
tuning frequency and damping ratios of TMDs [7] based on the mean-
square dynamic responses under random excitations [8]. Similarly,
𝐻∞ optimisation is employed to derive these parameters from the
dynamic responses [9] of TMD-controlled structures subjected to har-
monic excitations [10]. While these optimisation techniques enhance
TMD performance, challenges related to spatial constraints and weight
remain unresolved.

Inertial amplifiers offer a promising solution to these challenges
by leveraging mechanical leverage and resonance to amplify inertial
forces, thereby enhancing vibration isolation [11]. Conventional iner-
tial amplifiers are designed to increase the effective mass of a system
without a proportional increase in static mass [12]. These devices typi-
cally utilise geometric configurations, such as rhombus-shaped four-bar
linkages, to amplify inertial forces acting on the system [13]. In par-
ticular, inertial amplifier-tuned mass dampers (IA-TMDs) specialise in
mass amplification without significantly affecting stiffness [14]. This
amplification is achieved through mechanisms like vertical spring-mass
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systems, which enhance the system’s dynamic mass response [15].
However, IA-TMDs are limited to positive dynamic mass amplification,
making them effective within specific frequency ranges [16]. Their
nability to influence the system’s stiffness restricts their applicability to
roader frequency control or variable excitation conditions [17]. As a
esult, their vibration mitigation capacity is best suited for predictable
ynamic systems where mass amplification alone suffices [18]. There-

fore, a new type of IA-TMDs needs to be developed with significant
effective stiffness amplification mechanisms [19]. In addition, the effec-
ive damping of the IA-TMDs needs to be enhanced significantly [20].

Therefore, a research gap has been identified.
To address the research gap, the nonlinear stiffened inertial ampli-

ier tuned mass friction dampers (NSIATMFD) are introduced in this
aper. These novel dampers incorporate both mass and stiffness ampli-
ication mechanisms. By adding stiffness components, they provide sig-
ificant control over dynamic stiffness. In addition, a frictional element
i.e., Coulomb-friction characteristics) is induced inside the core of
he NSIATMFDs to provide significant effective damping amplification.
hese novel dampers significantly outperform conventional IA-TMDs in
erms of frequency control, energy dissipation, and dynamic response

reduction, making them suitable for complex dynamic environments
uch as seismic applications or structures exposed to broadband exci-
ations. The integration of stiffness elements into the amplifier design

is the key innovation that differentiates NSIA-TMDs from their conven-
tional counterparts. In addition, three novel dampers, such as nonlinear
compound stiffened inertial amplifier tuned mass friction dampers
(NCSIATMFD), nonlinear nested stiffened inertial amplifier tuned mass
friction dampers (NNSIATMFD), and nonlinear levered stiffened inertial
amplifier tuned mass friction dampers (NLSIATMFD), are introduced
along with the NSIATMFDs to provide more advance design for over-
coming most of the significant drawbacks of the conventional dampers.
The equations of motion are derived by following Newton’s second
law. Advanced optimisation methods, such as 𝐻2 and 𝐻∞ optimisa-
tion schemes are applied to achieve precise system parameter tuning,
ensuring robust performance under diverse conditions. The transfer

atrix function is developed using Laplace transformation to obtain
ynamic responses in the frequency domain. Further, the frequency
omain results are validated through numerical study, considering the
ewmark-beta method. The harmonic, random-white noise (Clough–
enzien power spectrum), and Northridge earthquake (near-field with
ulses) are considered as loading functions. The vibration reduction
apacity of the novel damper is compared with the vibration reduction
apacity of the conventional dampers to find their superior vibration
eduction capacities.

2. Structural models and equations of motion

Four structures with the same system parameters are considered.
The structures are conceptualised as single degree of freedom (SDOF)
systems. The novel dampers such as NSIATMFD, NCSIATMFD, NNSI-
ATMFD, and NLSIATMFD are mounted at the top of the structures.
Each controlled structure is conceptualised as a two-degree-of-freedom
system and is shown in Fig. 1(a), Fig. 1(b), Fig. 1(c), and Fig. 1(d).
𝜙 defines the amplifier’s angle in NSIATMFD configuration. In NCSI-

TMFD, 𝜙 and 𝜃 define primary and secondary amplifier angles. 𝜙1,
2, 𝜙3 define the primary, secondary, and tertiary amplifier angles in
NSIATMFD. The length ratios

(

𝑏1∕𝑎1
) (

𝑏2∕𝑎2
)

are considered from
LSIATMFD configuration. Newton’s second law has been applied to
erive the governing equations of motion of the controlled SDOF
ystems subjected to base excitation and expressed as
𝑚𝑠𝑣̈𝑠 + 𝑐𝑠𝑣̇𝑠 + 𝑘𝑠𝑣𝑠 − 𝛽 𝑚𝑒𝑔 sgn

(

𝑣̇𝑑
)

− 𝑐𝑒𝑣̇𝑑 − 𝑘𝑒𝑣𝑑 = −𝑚𝑠𝑣̈𝑔 ,

𝑚𝑒𝑣̈𝑑 + 𝑚𝑒𝑣̈𝑠 + 𝛽 𝑚𝑒𝑔 sgn
(

𝑣̇𝑑
)

+ 𝑐𝑒𝑣̇𝑑 + 𝑘𝑒𝑣𝑑 = −𝑚𝑒𝑣̈𝑔 .
(1)

𝑣𝑑 = 𝑢𝑑 − 𝑢𝑠 and 𝑣𝑠 = 𝑢𝑠 − 𝑣𝑔 define the relative deflections of
ach damper and SDOF system. (∙) defines the time derivatives. 𝑚𝑠,
= 2𝑚 𝜉 𝜔 , and 𝑘 = 𝑚 𝜔2 define the mass, damping, and stiffness of
𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑠

2 
Table 1
The exact closed-form expressions for effective mass and stiffness of novel dampers.

damper Effective mass (𝑚𝑒) Effective stiffness (𝑘𝑒)

NSIATMFD
(

𝑚𝑑 + 𝑚𝑎

2
(1 + cot2 𝜙)

)

(

𝑘𝑑 + 𝑘𝑎 cot2 𝜙
)

NCSIATMFD
(

𝑚𝑑 + 𝑚𝑎

8
cot2 𝜙

(

1 + t an2 𝜃)
) (

𝑘𝑑 + 𝑘𝑎 cot2 𝜙
t an2 𝜃
4

)

NNSIATMFD
(

𝑚𝑑 + 𝑚𝑎

2

(

1 + cot2 𝜙3
)

cot2 𝜙1 t an2 𝜙2

)

(

𝑘𝑑 + 𝑘𝑎 cot2 𝜙1
(

t an2 𝜙2 cot2 𝜙3
))

NLSIATMFD
(

𝑚𝑑 + 𝑚𝑎

(

𝑏1
𝑎1

𝑏2
𝑎2

)2
) (

𝑘𝑑 + 𝑘𝑎
(

𝑏1
𝑎1

𝑏2
𝑎2

)2
)

the main structures. 𝑚𝑒, 𝑐𝑒 = 2𝑚𝑒𝜉𝑑𝜔𝑑 , and 𝑘𝑒 define the effective mass,
damping, and stiffness of the novel damper. The exact closed-form
xpressions for each damper’s effective mass and stiffness are listed in

Table 1. 𝛽 defines the friction coefficient. 𝑔 defines the acceleration of
gravity.

𝑚𝑑 and 𝑘𝑑 define the static mass and stiffness of the damper. 𝑚𝑎 and
𝑘𝑎 define the amplifier’s mass and stiffness. The statistical linearisation
method [8] is applied to linearise each nonlinear element of Eq. (1) and
expressed as

𝑐𝑒𝑞 = 𝐸

{

𝜕
(

𝛽 𝑚𝑒𝑔 sgn(𝑣̇𝑑 )
)

𝜕 ̇𝑣𝑑

}

=
√

2
𝜋
𝛽 𝑚𝑒𝑔
𝜎𝑣̇𝑑

. (2)

𝜎𝑣̇𝑑 defines the root mean square velocity of the damper. An error
may arise during the transition of the linearised term from the non-
linear damping factor via the statistical linearisation approach which
is quantified as

𝜖1 = 𝛽 𝑚𝑒𝑔 sgn(𝑣̇𝑑 ) −
√

2
𝜋
𝛽 𝑚𝑒𝑔
𝜎𝑣̇𝑑

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑐𝑒𝑞

𝑣̇𝑑
(3)

where 𝑐𝑒𝑞 defines the equivalent damping of the damper.
𝜕 𝜖21
𝜕 𝑐𝑒𝑞

= 𝐸

{

(

𝛽 𝑚𝑒𝑔 sgn(𝑣̇𝑑 ) − 𝑐𝑒𝑞 𝑣̇𝑑
)2
}

= 0 (4)

Therefore, no errors have been identified throughout the statistical lin-
earisation procedure. Eq. (2) is substituted in Eq. (1) and the governing
quations of motion of the controlled SDOF system have been written
s

𝑚𝑠𝑣̈𝑠 + 𝑐𝑠𝑣̇𝑠 + 𝑘𝑠𝑣𝑠 −
(

𝑐𝑒𝑞 + 𝑐𝑒
)

⏟⏞⏞⏟⏞⏞⏟
𝑐𝑓

𝑣̇𝑑 − 𝑘𝑒𝑣𝑑 = −𝑚𝑠𝑣̈𝑔 ,

𝑚𝑒𝑣̈𝑑 + 𝑚𝑒𝑣̈𝑠 +
(

𝑐𝑒𝑞 + 𝑐𝑒
)

⏟⏞⏞⏟⏞⏞⏟
𝑐𝑓

𝑣̇𝑑 + 𝑘𝑒𝑣𝑑 = −𝑚𝑒𝑣̈𝑔 .
(5)

The non-dimensional form of each element in Table 1 has been listed
in Table 2.

The steady-state solutions for Eq. (5) have been considered as 𝑣𝑠 =
𝑉𝑠𝑒i𝜔𝑡, 𝑣𝑑 = 𝑉𝑑𝑒i𝜔𝑡, and 𝑣̈𝑔 = 𝑉𝑔𝑒i𝜔𝑡. Accordingly, the transfer matrix has
een derived as

[

2𝑞 𝜉𝑠𝜔𝑠 + 𝑞2 + 𝜔2
𝑠 𝐴12

𝛾𝑑
(

𝜇 𝛾𝑚 + 1) 𝑞2 𝐴22

] {
𝑉𝑠
𝑉𝑑

}

= −
[

1
𝛾𝑑

(

𝜇 𝛾𝑚 + 1)
]

𝑉𝑔 ,

𝐴12 = −2𝛾𝑑
(

𝜇 𝛾𝑚 + 1) 𝜉𝑑𝜔𝑑𝑞 − 𝛾𝑑𝜔
2
𝑑
(

𝜅 𝛾𝑘 + 1) ,
𝐴22 = 𝛾𝑑

(

𝜇 𝛾𝑚 + 1) 𝑞2 + 2𝛾𝑑
(

𝜇 𝛾𝑚 + 1) 𝜉𝑑𝜔𝑑𝑞 + 𝛾𝑑𝜔
2
𝑑
(

𝜅 𝛾𝑘 + 1) .

(6)

The transfer function for the displacement of the SDOF system has been
derived as

𝑋𝑠 (𝑞) |𝑞=i𝜔 =
𝑉𝑠
𝑉𝑔

=

−2𝜇2𝑞 𝜉𝑑𝛾𝑑𝛾2𝑚𝜔𝑑 − 𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚𝜔2
𝑑 − 4𝜇 𝑞 𝜉𝑑𝛾𝑑𝛾𝑚𝜔𝑑 − 𝜅 𝛾𝑑𝛾𝑘𝜔2

𝑑
−2𝜇 𝑞 𝜉𝑑𝛾𝑚𝜔𝑑 − 𝜇 𝛾𝑑𝛾𝑚𝜔2

𝑑 − 𝜅 𝛾𝑘𝜔2
𝑑 − 𝜇 𝑞2𝛾𝑚 − 2𝑞 𝜉𝑑𝛾𝑑𝜔𝑑

−2𝑞 𝜉𝑑𝜔𝑑 − 𝛾𝑑𝜔2
𝑑 − 𝑞2 − 𝜔2

𝑑 .

(7)
𝛥𝑒
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Fig. 1. The structures are controlled by (a) NSIATMFD, (b) NCSIATMFD, (c) NNSIATMFD, and (d) NLSIATMFD subjected to base excitation.
The transfer function for the displacement of the damper has been
derived as

𝑋𝑑 (𝑞) |𝑞=i𝜔 =
𝑉𝑑
𝑉𝑔

=
−𝜔𝑠

(

2𝑞 𝜉𝑠 + 𝜔𝑠
) (

𝜇 𝛾𝑚 + 1)

𝛥𝑒
. (8)

The denominator of Eq. (7) and Eq. (8) has been derived as

𝛥𝑒 =

(

𝜇 𝛾𝑚 + 1) 𝑞4

+
(

2𝜇2𝜉𝑑𝛾𝑑𝛾2𝑚𝜔𝑑 + 4𝜇 𝜉𝑑𝛾𝑑𝛾𝑚𝜔𝑑 + 2𝜇 𝜉𝑑𝛾𝑚𝜔𝑑 + 2𝜇 𝜉𝑠𝛾𝑚𝜔𝑠
+2𝜉𝑑𝛾𝑑𝜔𝑑 + 2𝜉𝑑𝜔𝑑 + 2𝜔𝑠𝜉𝑠

)

𝑞3

+
(

𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚𝜔2
𝑑 + 4𝜇 𝜉𝑑𝜉𝑠𝛾𝑚𝜔𝑑𝜔𝑠 + 𝜅 𝛾𝑑𝛾𝑘𝜔2

𝑑 + 𝜇 𝛾𝑑𝛾𝑚𝜔2
𝑑

+𝜅 𝛾𝑘𝜔2
𝑑 + 𝜇 𝛾𝑚𝜔2

𝑠 + 4𝜉𝑑𝜉𝑠𝜔𝑑𝜔𝑠 + 𝛾𝑑𝜔2
𝑑 + 𝜔2

𝑑 + 𝜔2
𝑠

)

𝑞2

+
(

2𝜅 𝜉𝑠𝛾𝑘𝜔2
𝑑𝜔𝑠 + 2𝜇 𝜉𝑑𝛾𝑚𝜔𝑑𝜔2

𝑠 + 2𝜉𝑑𝜔𝑑𝜔2
𝑠 + 2𝜉𝑠𝜔2

𝑑𝜔𝑠
)

𝑞
+𝜅 𝛾𝑘𝜔2

𝑑𝜔
2
𝑠 + 𝜔2

𝑑𝜔
2
𝑠

.

(9)

The symbols 𝑉𝑠, 𝑉𝑑 , and 𝑉𝑔 represent the Laplace transforms of 𝑣𝑠, 𝑣𝑑 ,
and 𝑣̈𝑔 , respectively [21]. 𝑞 = i𝜔, where i =

√

−1 defines the imaginary
number and 𝜔 defines the excitation frequency. Eq. (7) and Eq. (9)
3 
are further utilised to derive the standard deviation of the dynamic
response of the main structure.

2.1. 𝐻2 optimisation

Considering a white-noise random excitation, the 𝐻2 optimisation
scheme is employed to derive the optimal frequency and damping ratios
of the novel dampers in terms of closed-form expressions from that
standard deviation of the structure. The damping ratio of the main
structure is considered zero (𝜉𝑠 = 0) when applying the 𝐻2 optimisation
scheme because this assumption simplifies the mathematical deriva-
tions and allows for closed-form analytical expressions for the optimal
tuning frequency and damping ratio of the dampers. By neglecting the
damping of the main structure, the focus shifts entirely to optimising
the performance of the damper itself, eliminating interference from the
structural damping effects. This approach isolates the contributions of
the damper to the overall vibration control and ensures that the derived
optimisation parameters are precise and effective. Therefore, 𝜉𝑠 = 0 is
substituted in Eq. (7) and Eq. (9). Accordingly, the dynamic response
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Table 2
The non-dimensional form of effective mass and stiffness of novel dampers.

Damper Effective mass ratio
(𝛾𝑒 = 𝑚𝑒∕𝑚𝑠)

Effective stiffness
(𝑘𝑒∕𝑚𝑠)

NSI-
ATMFD

𝛾𝑑

⎛

⎜

⎜

⎜

⎝

1 + 𝛾𝑚 (1 + cot2 𝜙)∕2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝜇

⎞

⎟

⎟

⎟

⎠

𝛾𝑑𝜔2
𝑑

⎛

⎜

⎜

⎜

⎝

1 + 𝛾𝑘 cot2 𝜙
⏟⏟⏟

𝜅

⎞

⎟

⎟

⎟

⎠

NCSI-
ATMFD

𝛾𝑑

⎛

⎜

⎜

⎜

⎝

1 + 𝛾𝑚
(

cot2 𝜙
(

1 + t an2 𝜃)) ∕8
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜇

⎞

⎟

⎟

⎟

⎠

𝛾𝑑𝜔2
𝑑

⎛

⎜

⎜

⎜

⎜

⎝

1 + 𝛾𝑘 cot2 𝜙
t an2 𝜃
4

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜅

⎞

⎟

⎟

⎟

⎟

⎠

NNSI-
ATMFD

𝛾𝑑

⎛

⎜

⎜

⎜

⎝

1 + 𝛾𝑚
(

1 + cot2 𝜙3
)

cot2 𝜙1 t an2 𝜙2∕2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜇

⎞

⎟

⎟

⎟

⎠

𝛾𝑑𝜔2
𝑑

⎛

⎜

⎜

⎜

⎝

1 + 𝛾𝑘 cot2 𝜙1
(

t an2 𝜙2 cot2 𝜙3
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜅

⎞

⎟

⎟

⎟

⎠

NLSI-
ATMFD

𝛾𝑑

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 + 𝛾𝑚

(

𝑏1
𝑎1

𝑏2
𝑎2

)2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜇

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝛾𝑑𝜔2
𝑑

⎛

⎜

⎜

⎜

⎜

⎝

1 + 𝛾𝑘

(

𝑏1
𝑎1

𝑏2
𝑎2

)2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜅

⎞

⎟

⎟

⎟

⎟

⎠

𝛾𝑑 = 𝑚𝑑∕𝑚𝑠 defines the mass ratio of the damper to the SDOF system.
𝛾𝑚 = 𝑚𝑎∕𝑚𝑑 defines the mass ratio of amplifier to the damper.
𝛾𝑚 has also been represented as 𝛾𝑚 = 𝛾𝑎∕𝛾𝑑 .
𝛾𝑎 = 𝑚𝑎∕𝑚𝑠 defines the mass ratio of amplifier to the SDOF system.
𝛾𝑘 = 𝑘𝑎∕𝑘𝑑 defines the stiffness ratio of amplifier stiffness to the damper.
𝜇 = Mass amplification factor of the dampers.
𝜅 = Stiffness amplification factor of the dampers.
Fig. 2. Contours of the optimal frequency ratio of (a) NSIATMFD, (b) NCSIATMFD, (c) NNSIATMFD, and (d) NLSIATMFD. Eq. (16) has been applied to these graphs. The values
of other system parameters are considered: 𝛾𝑘 = 0.1 and 𝛾𝑎 = 0.01.
4 
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of the main structure has been modified as

𝑋𝑠 =
𝑉𝑠

𝑉𝑔
=

−2𝜇2𝑞 𝜉𝑑𝛾𝑑𝛾2𝑚𝜔𝑑 − 𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚𝜔2
𝑑 − 4𝜇 𝑞 𝜉𝑑𝛾𝑑𝛾𝑚𝜔𝑑 − 𝜅 𝛾𝑑𝛾𝑘𝜔2

𝑑
−2𝜇 𝑞 𝜉𝑑𝛾𝑚𝜔𝑑 − 𝜇 𝛾𝑑𝛾𝑚𝜔2

𝑑 − 𝜅 𝛾𝑘𝜔2
𝑑 − 𝜇 𝑞2𝛾𝑚 − 2𝛾𝑑𝜉𝑑𝜔𝑑𝑞

−2𝜉𝑑𝜔𝑑𝑞 − 𝛾𝑑𝜔2
𝑑 − 𝑞2 − 𝜔2

𝑑

𝛥𝑒
.

(10)

The denominator of Eq. (10) has been derived as

𝛥𝑒 =

(

𝜇 𝛾𝑚 + 1) 𝑞4
+
(

2𝜇2𝜉𝑑𝛾𝑑𝛾2𝑚𝜔𝑑 + 4𝜇 𝜉𝑑𝛾𝑑𝛾𝑚𝜔𝑑 + 2𝜇 𝜉𝑑𝛾𝑚𝜔𝑑 + 2𝜉𝑑𝛾𝑑𝜔𝑑 + 2𝜉𝑑𝜔𝑑

)

𝑞3

+

(

𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚𝜔2
𝑑 + 𝜅 𝛾𝑑𝛾𝑘𝜔2

𝑑 + 𝜇 𝛾𝑑𝛾𝑚𝜔2
𝑑 + 𝜅 𝛾𝑘𝜔2

𝑑 + 𝜇 𝛾𝑚𝜔2
𝑠 + 𝛾𝑑𝜔2

𝑑

+𝜔2
𝑑 + 𝜔2

𝑠

)

𝑞2

+
(

2𝜇 𝜉𝑑𝛾𝑚𝜔𝑑𝜔2
𝑠 + 2𝜉𝑑𝜔𝑑𝜔2

𝑠

)

𝑞 + 𝜅 𝛾𝑘𝜔2
𝑑𝜔

2
𝑠 + 𝜔2

𝑑𝜔
2
𝑠

.

(11)

Therefore, utilising the above expressions, the standard deviation of the
dynamic response of the main structure has been derived as

𝜎2𝑋𝑠
=

𝑆0𝜋

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

1 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
)4 (𝜅 𝛾𝑘 + 1)2 𝜔4

𝑑

+4
⎛

⎜

⎜

⎝

(

𝜇 𝛾𝑚 + 1)
(

𝜇 𝜉2𝑑𝛾𝑚 + 1
4𝜅 𝛾𝑘 + 𝜉2𝑑 + 1

4

)

𝛾𝑑

+𝜇 𝜉2𝑑𝛾𝑚 − 𝜅 𝛾𝑘
2 + 𝜉2𝑑 − 1

2

⎞

⎟

⎟

⎠

𝜔2
𝑠
(

𝜇 𝛾𝑚 + 1) (1 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
)2 𝜔2

𝑑

+𝜔4
𝑠
(

𝜇 𝛾𝑚 + 1)2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2𝜔𝑑𝜉𝑑
(

𝜇 𝛾𝑚 + 1)3 𝛾𝑑𝜔6
𝑠

.

(12)

Eq. (12) has been differentiated with respect to the damping ratio and
atural frequency of the dampers and the mathematical expressions are

derived as
𝜕 𝜎2𝑋𝑠

𝜕 𝜉𝑑
= 0 and

𝜕 𝜎2𝑋𝑠

𝜕 𝜔𝑑
= 0. (13)

Eq. (12) has been substituted in the first expression of Eq. (13). The
xact closed-form expression for the damping ratio of the damper has
een derived as

𝜉𝑑 =

√

√

√

√

√

√

√

√

√

√

√

√

(

1 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
)4 (𝜅 𝛾𝑘 + 1)2 𝜔4

𝑑

+
(

−2 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
) (

𝜇 𝛾𝑚 + 1) (1 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
)2 𝜔2

𝑠

(

𝜅 𝛾𝑘 + 1)𝜔2
𝑑

+𝜔4
𝑠

(

𝜇 𝛾𝑚 + 1)2

4𝜔2
𝑠𝜔

2
𝑑

(

𝜇 𝛾𝑚 + 1)2 (𝜇 𝛾𝑑𝛾𝑚 + 𝛾𝑑 + 1)3
.

(14)

Eq. (14) represents the closed-form expression of the damping ratio of
the novel dampers and this expression has been substituted in Eq. (12).
Accordingly, the modified standard deviation of the dynamic response
f the main structure has been derived as

𝜎2𝑋𝑠
=

2𝑆0𝜋

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

1 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
)4 (𝜅 𝛾𝑘 + 1)2 𝜔4

𝑑

+
(

−2 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
) (

𝜇 𝛾𝑚 + 1)
(

1 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
)2 𝜔2

𝑠
(

𝜅 𝛾𝑘 + 1)𝜔2
𝑑

+𝜔4
𝑠
(

𝜇 𝛾𝑚 + 1)2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜔𝑑
(

𝜇 𝛾𝑚 + 1)3 𝛾𝑑𝜔6
𝑠

√

√

√

√

√

√

√

√

√

√

√

√

√

√

(

1 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
)4 (𝜅 𝛾𝑘 + 1)2 𝜔4

𝑑

+
(

−2 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
) (

𝜇 𝛾𝑚 + 1)
(

1 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
)2 𝜔2

𝑠
(

𝜅 𝛾𝑘 + 1)𝜔2
𝑑

+𝜔4
𝑠
(

𝜇 𝛾𝑚 + 1)2
𝜔2
𝑠𝜔2

𝑑 (𝜇 𝛾𝑚+1)2(𝜇 𝛾𝑑 𝛾𝑚+𝛾𝑑+1)3

.

(15)

Eq. (15) has been substituted in the second expression of the Eq. (13).
Accordingly, the optimal natural frequency of the damper has been
5 
derived and expressed as

(

𝜔𝑑
)

opt =

√

2
(

𝜅 𝛾𝑘 + 1) (2 − 𝜇2𝛾𝑑𝛾2𝑚 − 2𝜇 𝛾𝑑𝛾𝑚 + 2𝜇 𝛾𝑚 − 𝛾𝑑
)

𝜔𝑠

2
(

𝜅 𝛾𝑘 + 1) (𝜇 𝛾𝑑𝛾𝑚 + 𝛾𝑑 + 1) . (16)

Eq. (16) has been substituted in Eq. (14) to derive the exact closed-form
xpression for the optimal damping ratio of the damper and expressed

as

(

𝜉𝑑
)

opt =

√

2
√

(𝜅 𝛾𝑘+1)(𝜇 𝛾𝑑 𝛾𝑚+𝛾𝑑−4)𝛾𝑑
(𝜇 𝛾𝑑 𝛾𝑚+𝛾𝑑−2)(𝜇 𝛾𝑑 𝛾𝑚+𝛾𝑑+1)

4
.

(17)

Further, Eq. (8), with 𝜉𝑠 = 0 and Eq. (11) are utilised to derive
he standard deviation of the velocity response of novel dampers and
xpressed as

𝜎2𝑣̇𝑑 =

(

𝜇 𝛾𝑚𝛾𝑑 + 𝛾𝑑 + 1)𝑆0𝜋

2
(

𝜇 𝛾𝑚 + 1) 𝜉𝑑𝛾𝑑𝜔𝑑
. (18)

Eq. (16) is utilised to conduct a parametric study for the tuning ratio of
each novel damper. The contour plots in Fig. 2 illustrate the optimal fre-
quency ratio for various designs of inertial amplifier friction tuned mass
ampers under different configurations. In Fig. 2(a) and Fig. 2(b), the

NSIATMFD and NCSIATMFD reveal that increasing the amplifier angle
leads to higher optimal frequency ratios, indicating better performance.
Fig. 2(c), which represents the NNSIATMFD, shows that the angle of
the primary amplifier and the angle of the secondary influence signifi-
cantly the optimal frequency ratio. Fig. 2(d) highlights the NLSIATMFD,

here the amplification factor has a dominant influence on frequency
atio, exhibiting an increasing trend as the factor grows. Across all

configurations, the damper mass ratio consistently impacts the optimal
requency ratio, with higher mass ratios generally enhancing damping
erformance. These results underscore the importance of tuning the
esign parameters to achieve optimal vibration mitigation, with each
ype of damper exhibiting unique sensitivities to the amplifier and
ystem parameters. The inertial amplification factor for NCSIATMFD
s derived as

𝛤𝑐 =
𝑚e
𝑚𝑑

= 1 + 𝛾𝑚
8

(

cot2 𝜙
(

1 + t an2 𝜃)) . (19)

The inertial amplification factor for conventional amplifier [22] is
derived as

𝛤𝑑 =
𝑚e
𝑚𝑑

= 1 + 𝛾𝑚
2

(

1 + cot2 𝜙) . (20)

Eq. (20) and Eq. (19) have been compared. The condition for the
NCSIATMFD to surpass the conventional amplifier can be expressed
as 𝛤𝑐 > 𝛤𝑑 . Substituting the respective expressions, this condition
ecomes:
(

cot2 𝜙
(

1 + t an2 𝜃))

8
>

(1 + cot2 𝜙)
2

. (21)

From Eq. (21), the necessary condition for the secondary amplifier
ngle of NCSIATMFD 𝜃 has been derived as:

t an2 𝜃 > (

3 + 4 t an2 𝜙) . (22)

This condition is in addition to 𝜙 < 45◦, which is required for inertial
amplification in the conventional amplifier, as the primary amplifier
angle is typically chosen to be small, t an2 𝜙 ⇝ 0. Hence, the base value
f 𝜃 required for the NCSIATMFD to exceed the performance of the
onventional amplifier is:
t an 𝜃 >

√

3 or 𝜃 > 60◦. (23)

In Fig. 3, the inertial amplification factor of the compound amplifier
is analysed for various parameter values, focusing on the effect of
the secondary amplifier angle, 𝜃. The results indicate that when 𝜃 >
60◦, the compound amplifier outperforms the conventional design in
terms of amplification. Additionally, the figure reveals a unique design
advantage: for a specific target inertial amplification, such as 30, there
exists a range of 𝜙 and 𝜃 combinations capable of achieving the desired
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Fig. 3. Inertial amplification as a function of primary amplifier angle 𝜙 for the
CSIATMFD across different combinations of 𝜃. The mass factor 𝛾𝑚 is valued at 0.1.

Eq. (19) is employed to achieve this graph.

Fig. 4. Inertial amplification as a function of primary amplifier angle 𝜙1 for the
NSIATMFD across different combinations of 𝜙2 and 𝜙3. The mass factor 𝛾𝑚 is valued
t 0.1. Eq. (25) is employed to achieve this graph.

outcome. This design flexibility provides greater freedom in addressing
practical limitations while maintaining optimal performance.

The primary amplifier angle is often selected to be minimal, re-
ulting in t an2 𝜙1 ⇝ 0 to achieve significant amplification from the

NNSIATMFD. Consequently, the values of 𝜙2 and 𝜙3, necessary for the
nested amplifier to surpass the conventional amplifier, are

t an𝜙2 ≥ 1 or 𝜙2 ≥ 45◦ and cot 𝜙3 ≥ 1 or 𝜙3 ≤ 45◦. (24)

In addition to the requirement 𝜙1 < 45◦ for inertial amplification in
a conventional amplifier [22], these conditions must also be satisfied.
The inertial amplification factor of the NNSIATMFD has been derived
as

𝛤𝑛 =
𝑚𝑒
𝑚𝑑

= 1 + 𝛾𝑚
2

(

1 + cot2 𝜙3
)

cot2 𝜙1 t an2 𝜙2. (25)

The inertial amplification factor of the NNSIATMFD is compared
or various parameter values in Fig. 4. Amplifications for three distinct

combinations of the angles 𝜙2 and 𝜙3 are shown. The findings unequiv-
ocally demonstrate that when 𝜙 ≥ 45◦ and 𝜙 ≤ 45◦, the amplification
2 3

6 
of the nested amplifier significantly exceeds that of its traditional
quivalent. The findings in Fig. 4 provide an intriguing alternative

that is unattainable with the standard amplifier. For a specified goal
inertial amplification of 30, many combinations of 𝜙1, 𝜙2, and 𝜙3 may
be chosen. This provides more potential for the design to meet any
ractical limitations.

The contour plots in Fig. 5 illustrate the optimal damping ratio
for different types of inertial amplifier friction tuned mass dampers,
demonstrating the influence of design parameters on damping effi-
ciency. In Fig. 5(a), the NSIATMFD shows a significant increase in the
ptimal damping ratio with larger amplifier angles and higher damper
ass ratios. Similarly, in Fig. 5(b), the NCSIATMFD reveals a similar

rend, with larger amplifier angles leading to higher damping ratios,
articularly for higher damper mass ratios. Fig. 5(c) highlights the
NSIATMFD, where the primary amplifier angle is a critical parameter,
ith the contours showing a steep gradient in optimal damping as

t increases. Lastly, in Fig. 5(d), the NLSIATMFD demonstrates that
ncreasing the amplification factor positively influences the damping
atio, particularly at lower damper mass ratios. Overall, these results
mphasise the necessity of fine-tuning amplifier angles, mass ratios,
nd amplification factors to achieve the desired damping performance
cross various damper configurations. Each design presents unique
ensitivities, offering flexible options for vibration control.

2.2. 𝐻∞ optimisation

Further, the exact closed-form expressions for the optimal design
parameters of the damper are derived using the 𝐻∞ optimisation
method. It is considered that the controlled structure is subjected to
armonic excitation. To perform that the transfer function in Eq. (6)

has been non-dimensionalised by dividing it by 𝜔2
𝑠 and expressed as

[

−𝜂2 + 1 𝐴12
−𝛾𝑑

(

𝛾𝑚𝜇 + 1) 𝜂2 𝐴22

] {
𝑉𝑠
𝑉𝑑

}

= −
[

1
𝛾𝑑

(

𝜇 𝛾𝑚 + 1)
]

𝑉𝑔
𝜔2
𝑠
,

𝐴12 = −2 i𝛾𝑑
(

𝛾𝑚𝜇 + 1) 𝜉𝑑𝜂𝑑𝜂 − 𝛾𝑑𝜂
2
𝑑
(

𝛾𝑘𝜅 + 1) ,
𝐴22 = −𝛾𝑑

(

𝛾𝑚𝜇 + 1) 𝜂2 + 2 i𝛾𝑑
(

𝛾𝑚𝜇 + 1) 𝜉𝑑𝜂𝑑𝜂 + 𝛾𝑑𝜂
2
𝑑
(

𝛾𝑘𝜅 + 1) .

(26)

where 𝜂 = 𝜔∕𝜔𝑠 defines the frequency ratio. The dynamic response of
the main structure has been derived as

𝑋𝑠 =
(

𝑉𝑠
𝑉𝑔

)

𝜔2
𝑠

=

𝜂2𝑑𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚 + 𝜂2𝑑𝜅 𝛾𝑑𝛾𝑘 + 𝜂2𝑑𝜇 𝛾𝑑𝛾𝑚 − 𝜂2𝜇 𝛾𝑚 + 𝜂2𝑑𝜅 𝛾𝑘
+𝜂2𝑑𝛾𝑑 − 𝜂2 + 𝜂2𝑑

+i𝜉𝑑
(

2𝜂 𝜂𝑑𝜇2𝛾𝑑𝛾2𝑚 + 4𝜂 𝜂𝑑𝜇 𝛾𝑑𝛾𝑚 + 2𝜂 𝜂𝑑𝜇 𝛾𝑚 + 2𝜂 𝜂𝑑𝛾𝑑 + 2𝜂𝑑𝜂
)

𝛥𝑒
.

(27)

The dynamic response of the damper has been derived as

𝑋𝑑 =
(

𝑉𝑑
𝑉𝑔

)

𝜔2
𝑠 =

𝛾𝑚𝜇 + 1
𝛥𝑒

. (28)

The denominator of Eq. (27) and Eq. (28) has been derived as

𝛥𝑒 =

𝜂2𝜂2𝑑𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚 + 𝜂2𝜂2𝑑𝜅 𝛾𝑑𝛾𝑘 + 𝜂2𝜂2𝑑𝜇 𝛾𝑑𝛾𝑚 − 𝜂4𝜇 𝛾𝑚 + 𝜂2𝜂2𝑑𝜅 𝛾𝑘
+𝜂2𝜂2𝑑𝛾𝑑 − 𝜂4 + 𝜂2𝜂2𝑑 + 𝜂2𝜇 𝛾𝑚 − 𝜂2𝑑𝜅 𝛾𝑘 + 𝜂2 − 𝜂2𝑑

+i𝜉𝑑

(

2𝜂3𝜂𝑑𝜇2𝛾𝑑𝛾2𝑚 + 4𝜂3𝜂𝑑𝜇 𝛾𝑑𝛾𝑚 + 2𝜂3𝜂𝑑𝜇 𝛾𝑚
+2𝜂3𝜂𝑑𝛾𝑑 + 2𝜂3𝜂𝑑 − 2𝜂 𝜂𝑑𝜇 𝛾𝑚 − 2𝜂𝑑𝜂

) . (29)

The resultant of Eq. (27) has been applied to derive constraints and
expressed as

|𝑋𝑠| =

√

√

√

√

𝑅2
1 + 𝜉2𝑑𝑅

2
2 . (30)
𝑅2
3 + 𝜉2𝑑𝑅

2
4
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Fig. 5. Contours of the optimal damping ratio of (a) NSIATMFD, (b) NCSIATMFD, (c) NNSIATMFD, and (d) NLSIATMFD. Eq. (17) has been applied for these graphs. The values
of other system parameters are considered: 𝛾𝑘 = 0.1 and 𝛾𝑎 = 0.01.
The closed-form expressions for 𝑅1 to 𝑅4 have been derived as

𝑅1 = 𝜂2𝑑𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚 + 𝜂2𝑑𝜅 𝛾𝑑𝛾𝑘 + 𝜂2𝑑𝜇 𝛾𝑑𝛾𝑚 − 𝜂2𝜇 𝛾𝑚 + 𝜂2𝑑𝜅 𝛾𝑘 + 𝜂2𝑑𝛾𝑑 − 𝜂2 + 𝜂2𝑑 ,

𝑅2 = 2𝜂 𝜂𝑑𝜇2𝛾𝑑𝛾
2
𝑚 + 4𝜂 𝜂𝑑𝜇 𝛾𝑑𝛾𝑚 + 2𝜂 𝜂𝑑𝜇 𝛾𝑚 + 2𝜂 𝜂𝑑𝛾𝑑 + 2𝜂 𝜂𝑑 ,

𝑅3 =
𝜂2𝜂2𝑑𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚 + 𝜂2𝜂2𝑑𝜅 𝛾𝑑𝛾𝑘 + 𝜂2𝜂2𝑑𝜇 𝛾𝑑𝛾𝑚 − 𝜂4𝜇 𝛾𝑚 + 𝜂2𝜂2𝑑𝜅 𝛾𝑘

+𝜂2𝜂2𝑑𝛾𝑑 − 𝜂4 + 𝜂2𝜂2𝑑 + 𝜂2𝜇 𝛾𝑚 − 𝜂2𝑑𝜅 𝛾𝑘 + 𝜂2 − 𝜂2𝑑
,

𝑅4 =
2𝜂3𝜂𝑑𝜇2𝛾𝑑𝛾2𝑚 + 4𝜂3𝜂𝑑𝜇 𝛾𝑑𝛾𝑚 + 2𝜂3𝜂𝑑𝜇 𝛾𝑚
+2𝜂3𝜂𝑑𝛾𝑑 + 2𝜂3𝜂𝑑 − 2𝜂 𝜂𝑑𝜇 𝛾𝑚 − 2𝜂 𝜂𝑑

.

(31)

Two constraints are derived as follows.

𝑅1
𝑅2

|

|

|

|

|𝜂𝑗

=
𝑅3
𝑅4

|

|

|

|

|𝜂𝑗

and
𝑅3
𝑅4

|

|

|

|

|𝜂1

=
𝑅3
𝑅4

|

|

|

|

|𝜂2

. (32)

Eq. (31) has been substituted in the first constraint of Eq. (32). As a
result, an equation has been derived which contains the optimal natural
frequency of the dampers and expressed as

(

2𝜇2𝛾𝑑𝛾2𝑚 + 4𝜇 𝛾𝑑𝛾𝑚 + 2𝜇 𝛾𝑚 + 2𝛾𝑑 + 2) 𝜂4+
⎛

⎜

⎜

⎜

⎝

−2𝜂2𝑑𝜅 𝜇2𝛾2𝑑𝛾𝑘𝛾
2
𝑚 − 4𝜂2𝑑𝜅 𝜇 𝛾2𝑑𝛾𝑘𝛾𝑚 − 2𝜂2𝑑𝜇2𝛾2𝑑𝛾

2
𝑚 − 4𝜂2𝑑𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚

−2𝜂2𝑑𝜅 𝛾2𝑑𝛾𝑘 − 4𝜂2𝑑𝜇 𝛾2𝑑𝛾𝑚 − 4𝜂2𝑑𝜅 𝛾𝑑𝛾𝑘 − 4𝜂2𝑑𝜇 𝛾𝑑𝛾𝑚 − 𝜇2𝛾𝑑𝛾2𝑚
−2𝜂2𝑑𝜅 𝛾𝑘 − 2𝜂2𝑑𝛾2𝑑 − 4𝜂2𝑑𝛾𝑑 − 2𝜇 𝛾𝑑𝛾𝑚 − 2𝜂2𝑑 − 2𝜇 𝛾𝑚 − 𝛾𝑑 − 2

⎞

⎟

⎟

⎟

⎠

𝜂2+

2𝜂2𝑑𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚 + 2𝜂2𝑑𝜅 𝛾𝑑𝛾𝑘 + 2𝜂2𝑑𝜇 𝛾𝑑𝛾𝑚 + 2𝜂2𝑑𝜅 𝛾𝑘 + 2𝜂2𝑑𝛾𝑑 + 2𝜂2𝑑

= 0.
(33)
7 
The summation of two roots from the Eq. (33) has been derived as

𝜂21 + 𝜂22 =

⎛

⎜

⎜

⎜

⎝

2𝜂2𝑑
(

𝜇 𝛾𝑚 + 1)2 (𝜅 𝛾𝑘 + 1) 𝛾2𝑑
+
(

𝜇 𝛾𝑚 + 1) (𝜇 𝛾𝑚 + 1 + (

4𝜅 𝛾𝑘 + 4) 𝜂2𝑑
)

𝛾𝑑
+2𝜇 𝛾𝑚 + 2 + (

2𝜅 𝛾𝑘 + 2) 𝜂2𝑑

⎞

⎟

⎟

⎟

⎠

2
(

1 + (

𝜇 𝛾𝑚 + 1) 𝛾𝑑
) (

𝜇 𝛾𝑚 + 1) . (34)

Eq. (31) has been substituted in the second constraint of Eq. (32) and
as a result, the summation of two roots is derived as

𝜂21 + 𝜂22 = 2
𝜇 𝛾𝑑𝛾𝑚 + 𝛾𝑑 + 1 . (35)

Eq. (34) and Eq. (35) are equated and the exact closed-form expression
for the optimal natural frequency of the damper has been derived
as
(

2𝜅 𝜇2𝛾2𝑑𝛾𝑘𝛾
2
𝑚 + 4𝜅 𝜇 𝛾2𝑑𝛾𝑘𝛾𝑚 + 2𝜇2𝛾2𝑑𝛾

2
𝑚 + 4𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚 + 2𝜅 𝛾2𝑑𝛾𝑘

+4𝜇 𝛾2𝑑𝛾𝑚 + 4𝜅 𝛾𝑑𝛾𝑘 + 4𝜇 𝛾𝑑𝛾𝑚 + 2𝜅 𝛾𝑘 + 2𝛾2𝑑 + 4𝛾𝑑 + 2

)

𝜂2𝑑

+ 𝜇2𝛾𝑑𝛾
2
𝑚 + 2𝜇 𝛾𝑑𝛾𝑚 − 2𝜇 𝛾𝑚 + 𝛾𝑑 − 2 = 0,

(

𝜂
)

=

√

4 − 2𝜅 𝜇2𝛾𝑑𝛾𝑘𝛾2𝑚 − 4𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚 − 2𝜇2𝛾𝑑𝛾2𝑚 + 4𝜅 𝜇 𝛾𝑘𝛾𝑚
−2𝜅 𝛾𝑑𝛾𝑘 − 4𝜇 𝛾𝑑𝛾𝑚 + 4𝜅 𝛾𝑘 + 4𝜇 𝛾𝑚 − 2𝛾𝑑

( ) ( ) .
𝑑 opt 2 𝜅 𝛾𝑘 + 1 𝜇 𝛾𝑑𝛾𝑚 + 𝛾𝑑 + 1
(36)
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Fig. 6. Contours of the optimal frequency ratio of (a) NSIATMFD, (b) NCSIATMFD, (c) NNSIATMFD, and (d) NLSIATMFD. Eq. (36) has been applied for these graphs. The values
of other system parameters are considered: 𝛾𝑘 = 0.1 and 𝛾𝑎 = 0.01.
The individual expression for each root, i.e. 𝜂21 and 𝜂22 , has been derived
as

𝜂21,2 =

1 + 𝜇 𝛾𝑚 ±

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

−𝜂2𝑑𝜅 𝜇3𝛾2𝑑𝛾𝑘𝛾
3
𝑚 − 3𝜂2𝑑𝜅 𝜇2𝛾2𝑑𝛾𝑘𝛾

2
𝑚 − 𝜂2𝑑𝜇

3𝛾2𝑑𝛾
3
𝑚

−2𝜂2𝑑𝜅 𝜇2𝛾𝑑𝛾𝑘𝛾2𝑚 − 3𝜂2𝑑𝜅 𝜇 𝛾2𝑑𝛾𝑘𝛾𝑚 − 3𝜂2𝑑𝜇2𝛾2𝑑𝛾
2
𝑚

−4𝜂2𝑑𝜅 𝜇 𝛾𝑑𝛾𝑘𝛾𝑚 − 2𝜂2𝑑𝜇2𝛾𝑑𝛾2𝑚 − 𝜂2𝑑𝜅 𝜇 𝛾𝑘𝛾𝑚
−𝜂2𝑑𝜅 𝛾2𝑑𝛾𝑘 − 3𝜂2𝑑𝜇 𝛾2𝑑𝛾𝑚 − 2𝜂2𝑑𝜅 𝛾𝑑𝛾𝑘 − 2𝜂2𝑑𝛾𝑑
−4𝜂2𝑑𝜇 𝛾𝑑𝛾𝑚 − 𝜂2𝑑𝜅 𝛾𝑘 − 𝜂2𝑑𝜇 𝛾𝑚 − 𝜂2𝑑𝛾

2
𝑑 + 𝜇2𝛾2𝑚

−𝜂2𝑑 + 2𝜇 𝛾𝑚 + 1
𝜇2𝛾𝑑𝛾2𝑚 + 2𝜇 𝛾𝑑𝛾𝑚 + 𝜇 𝛾𝑚 + 𝛾𝑑 + 1 .

(37)

The closed-form expression for the optimal damping ratio of the damper
has been derived by formulating a mathematical expression and ex-
pressed as

𝜕|𝑋𝑠|
2

𝜕 𝜂2
|

|

|

|

|𝜂21,2

= 0 and
(

𝜉𝑑
)

opt =

√

𝜉2𝑑1 + 𝜉2𝑑2
2

. (38)

Eq. (30) has been substituted in the first expression of Eq. (38) and the
closed-form expression for optimal damping ratio of the damper has
been derived as
𝑍1𝜉

4
𝑑 +𝑍2𝜉

2
𝑑 +𝑍3 = 0,

(

𝜉
)2 =

−𝑍2 ±
√

𝑍2
2 − 4𝑍1𝑍3

.
(39)
𝑑1,𝑑2 𝜂21,2 2𝑍1

8 
The closed-form expressions for 𝑍1, 𝑍2, and 𝑍3 have been derived
and listed in Appendix. Fig. 6 illustrates the contours of the optimal
frequency ratio across four configurations of novel dampers: Fig. 6(a)
NSIATMFD, Fig. 6(b) NCSIATMFD, Fig. 6(c) NNSIATMFD, and Fig. 6(d)
NLSIATMFD. Each plot evaluates the interplay between the damper
mass ratio and design parameters such as the amplifier angle or am-
plification factor. The results reveal that higher damper mass ratios
generally lead to an increased optimal frequency ratio, improving
the system’s vibration mitigation capabilities. Specifically, the NSI-
ATMFD and NCSIATMFD configurations show smoother transitions in
frequency ratio contours, indicating a more robust performance over a
range of amplification parameters. In contrast, the NNSIATMFD con-
figuration demonstrates sharp gradients, suggesting greater sensitivity
to variations in the primary amplifier angle, especially when 𝜙2 = 70◦
and 𝜙3 = 15◦. The NLSIATMFD achieves the highest optimal frequency
ratio (∼ 1) at high amplification factors, highlighting its superior tuning
capability for larger vibration amplitudes. Overall, these findings em-
phasise the critical role of system design parameters in optimising the
performance of novel dampers, providing a valuable guide for tailored
vibration control applications.

The contours in Fig. 7 present the optimal damping ratio for dif-
ferent configurations of novel dampers: Fig. 7(a) NSIATMFD, Fig. 7(b)
NCSIATMFD, Fig. 7(c) NNSIATMFD, and Fig. 7(d) NLSIATMFD. The
damping ratio contours are mapped as a function of the damper mass
ratio and system-specific parameters such as amplifier angle or ampli-
fication factor. Across all configurations, the damping ratio improves
with higher values of the damper mass ratio, confirming its crucial
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Fig. 7. Contours of the optimal damping ratio of (a) NSIATMFD, (b) NCSIATMFD, (c) NNSIATMFD, and (d) NLSIATMFD. Eq. (38) has been applied for these graphs. The values
f other system parameters are considered: 𝛾𝑘 = 0.1 and 𝛾𝑎 = 0.01.
=
N
a
v
f

0

role in energy dissipation. The NSIATMFD and NCSIATMFD show
smoother contour transitions, demonstrating consistent damping be-
haviour over wider ranges of amplifier angles, with the NCSIATMFD
achieving slightly better damping efficiency at specific amplifier angles
𝜃 = 64◦). The NNSIATMFD configuration exhibits a sharp reduction
n damping efficiency outside certain critical primary amplifier an-
les, making its performance highly sensitive to design variations. The
LSIATMFD configuration highlights a nearly uniform improvement

n the damping ratio with increasing amplification factor, achieving
 maximum damping ratio of ∼ 0.2 for high amplification factors.
hese observations emphasise the design flexibility of NLSIATMFD for
ffective damping in diverse structural applications.

3. Dynamic response evaluation

The efficiency of the optimal design parameters is investigated by
obtaining dynamic responses of the controlled structures where the
optimal tuning and damping ratios are applied inside the govern-
ing equations of motion. In addition, the damping ratio of the main
structure is considered as 0.01, i.e., 𝜉𝑠 = 0.01 (see Table 3).

3.1. Frequency domain responses

First, harmonic excitation is applied at the base. The 𝐻2 and 𝐻∞
optimised conventional tuned mass dampers are considered in this
study to conduct a comparative study between the novel and conven-
tional dampers in terms of vibration reduction. The total static mass
9 
Table 3
The structural parameter of the main structure.
Main structure Governing system parameter Value

𝜉𝑠
SDOF system Damping ratio 0.01

of all dampers is maintained the same to make a fair comparison,
i.e., Conventional tuned mass damper one (TMD1): damper mass ratio
(𝛾̃𝑑) = 0.09, Conventional tuned mass damper two (TMD2): damper
mass ratio (𝛾̃𝑑) = 0.09, NSIATMFD: damper mass ratio (𝛾𝑑) = 0.07, (𝛾𝑎)
 0.01 𝜙 = 40𝑜; NCSIATMFD: 𝛾𝑑 = 0.07, (𝛾𝑎) = 0.01, 𝜙 = 40𝑜, 𝜃 = 64𝑜;
NSIATMFD: 𝛾𝑑 = 0.07, (𝛾𝑎) = 0.01, 𝜙1 = 40𝑜, 𝜙2 = 45𝑜, 𝜙3 = 45𝑜,
nd NLSIATMFD: 𝛾𝑑 = 0.08, (𝛾𝑎) = 0.01, 𝑏1∕𝑎1 = 1, 𝑏2∕𝑎2 = 1. These
alues are substituted in Eq. (16) and Eq. (17) to obtain the optimal
requency and damping ratios of the 𝐻2 optimised novel dampers. To

obtain optimal design parameters for the conventional dampers, the
value of 𝛾̃𝑑 is substituted into the well-established closed-form expres-
sions derived by Warburton et al. [23], Zilletti [24], Iwata [25], and
Warburton et al. [23]. Accordingly, The governing system parameters
of the 𝐻2 optimised tuned mass dampers are listed in Table 4.

Further, for 𝐻∞ optimised dampers, the total static mass of all
dampers is maintained the same to make a fair comparison, i.e., Con-
ventional tuned mass damper one (TMD1): damper mass ratio (𝛾̃𝑑) =
.09, Conventional tuned mass damper two (TMD2): damper mass ratio

(𝛾̃ ) = 0.09, NSIATMFD: damper mass ratio (𝛾 ) = 0.07, (𝛾 ) = 0.01
𝑑 𝑑 𝑎
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Table 4
𝐻2 optimised design parameters.
System Introduced by 𝐻2 optimisation

𝜂𝑑 𝜉𝑑
NSIATMFD Eq. (16) and Eq. (17) 0.917102 0.137348
NCSIATMFD Eq. (16) and Eq. (17) 0.901185 0.137912
NNSIATMFD Eq. (16) and Eq. (17) 0.926457 0.137253
NLSIATMFD Eq. (16) and Eq. (17) 0.924723 0.13489
TMD1 Warburton et al [23],Zilletti [24] 1

√

1+𝛾̃𝑑

√

𝛾̃𝑑
2

TMD2 Iwata [25], Warburton et al [23] 1
1+𝛾̃𝑑

√

2+𝛾̃𝑑
2

√

𝛾̃𝑑 (4+3𝛾̃𝑑 )
8(1+𝛾̃𝑑 )(2+𝛾̃𝑑 )

Conventional tuned mass damper one (TMD1): damper mass ratio (𝛾̃𝑑 ) = 0.09, Con-
ventional tuned mass damper two (TMD2): damper mass ratio (𝛾̃𝑑 ) = 0.09, NSIATMFD:
damper mass ratio (𝛾𝑑 ) = 0.07, (𝛾𝑎) = 0.01 𝜙 = 40𝑜; NCSIATMFD: 𝛾𝑑 = 0.07, (𝛾𝑎) = 0.01,
𝜙 = 40𝑜, 𝜃 = 64𝑜; NNSIATMFD: 𝛾𝑑 = 0.07, (𝛾𝑎) = 0.01, 𝜙1 = 40𝑜, 𝜙2 = 45𝑜, 𝜙3 = 45𝑜, and
NLSIATMFD: 𝛾𝑑 = 0.08, (𝛾𝑎) = 0.01, 𝑏1∕𝑎1 = 1, 𝑏2∕𝑎2 = 1.

Table 5
𝐻∞ optimised design parameters.
System Introduced by 𝐻∞ optimisation

𝜂𝑑 𝜉𝑑
NSIATMFD Eq. (36) and

Eq. (38)
0.679318 0.183966

NCSIATMFD Eq. (36) and
Eq. (38)

0.691957 0.186608

NNSIATMFD Eq. (36) and
Eq. (38)

0.742293 0.181565

NLSIATMFD Eq. (36) and
Eq. (38)

0.859795 0.144566

TMD1 Ormondroyd and
Den Hartog [26]
Nishihara and
Asami [27]

1
1+𝛾̃𝑑

√

3𝛾̃𝑑
8(1+𝛾̃𝑑 )

TMD2 Krenk [28] 1
1+𝛾̃𝑑

√

𝛾̃𝑑
2(1+𝛾̃𝑑 )

Conventional tuned mass damper one: damper mass ratio (𝛾̃𝑑 ) = 0.09, Conventional
tuned mass damper two: damper mass ratio (𝛾̃𝑑 ) = 0.09, NSIATMFD: damper mass
ratio (𝛾𝑑 ) = 0.07, (𝛾𝑎) = 0.01 𝜙 = 10𝑜; NCSIATMFD: 𝛾𝑑 = 0.07, (𝛾𝑎) = 0.01, 𝜙 = 10𝑜,
𝜃 = 64𝑜; NNSIATMFD: 𝛾𝑑 = 0.07, (𝛾𝑎) = 0.01, 𝜙1 = 10𝑜, 𝜙2 = 45𝑜, 𝜙3 = 45𝑜, and
NLSIATMFD: 𝛾𝑑 = 0.08, (𝛾𝑎) = 0.01, 𝑏1∕𝑎1 = 1, 𝑏2∕𝑎2 = 2.

𝜙 = 40𝑜; NCSIATMFD: 𝛾𝑑 = 0.07, (𝛾𝑎) = 0.01, 𝜙 = 40𝑜, 𝜃 = 64𝑜;
NSIATMFD: 𝛾𝑑 = 0.07, (𝛾𝑎) = 0.01, 𝜙1 = 40𝑜, 𝜙2 = 45𝑜, 𝜙3 = 45𝑜,
nd NLSIATMFD: 𝛾𝑑 = 0.08, (𝛾𝑎) = 0.01, 𝑏1∕𝑎1 = 1, 𝑏2∕𝑎2 = 1. These
alues are substituted in Eq. (36) and Eq. (38) to obtain the optimal

frequency and damping ratios of the 𝐻∞ optimised novel dampers.
o obtain optimal design parameters for the conventional dampers,

the value of 𝛾̃𝑑 is substituted into the well-established closed-form
expressions derived by Ormondroyd and Den Hartog [26], Nishihara
nd Asami [27], and Krenk [28]. Accordingly, the governing system
arameters of 𝐻∞ optimised novel and conventional dampers are listed

in Table 5.

The frequency domain responses are obtained using the above-
entioned design parameters and forming frequency response func-

ion. Accordingly, the dynamic responses of the structures controlled
y the 𝐻2 and 𝐻∞ optimised novel and conventional dampers are
hown in Fig. 8(a) and Fig. 8(b). The maximum displacement of

the uncontrolled structure has been derived as 50. In Fig. 8(a), the
aximum displacements of the main structures are controlled by
2 optimised TMD1, TMD2, NSIATMFD, NCSIATMFD, NNSIATMFD,

nd NLSIATMFD have been determined as 6.8995, 6.3272, 5.3477,
5.4196, 5.2974, and 5.7782. Hence, 𝐻2 optimised NSIATMFD, NC-
IATMFD, NNSIATMFD, and NLSIATMFD are significantly 22.49%,
1.45%, 23.22%, and 16.25% superior to the 𝐻2 optimised conven-
ional TMD. In addition, according to Fig. 8(b), the maximum displace-
ents of the main structures are controlled by 𝐻∞ optimised TMD1,
MD2, NSIATMFD, NCSIATMFD, NNSIATMFD, and NLSIATMFD have
een determined as 5.4249, 5.3939, 4.4027, 4.2034, 3.8777, and
.2111. Hence, 𝐻 optimised NSIATMFD, NCSIATMFD, NNSIATMFD,
∞

10 
and NLSIATMFD are significantly 18.84%, 22.52%, 28.52%, and 3.94%
superior to the 𝐻∞ optimised conventional TMD.

Now, Clough–Penzien power spectrum, which is a modified version
f the popular Kanai–Tajimi spectrum, is considered for the loading
unction to represent the base excitation. This consideration is helping
o validate the performed methodology across a broader range of
eismic excitation scenarios.

𝑣̈𝑔 = 𝑆0

𝜀4𝑓 + 4𝜁2𝑓 𝜀2𝑓𝜔2

(

𝜀2𝑓 − 𝜔2
)2

+ 4𝜁2𝑓 𝜀2𝑓𝜔2

𝜔4
(

𝜀2𝑔 − 𝜔2
)2

+ 4𝜁2𝑔 𝜀2𝑔𝜔2

= 𝑆0

𝜀4𝑓 − 4𝜁2𝑓 𝜀2𝑓 𝑞2
(

𝜀2𝑓 + 𝑞2
)2

− 4𝜁2𝑓 𝜀2𝑓 𝑞2
𝑞4

(

𝜀2𝑔 + 𝑞2
)2

− 4𝜁2𝑔 𝜀2𝑔𝑞2

(40)

where 𝑆0 and 𝑞 = i𝜔 define the power spectral density for random
noise. 𝜁𝑓 and 𝜀𝑓 define the damping capacity and natural frequency
of the soil layer. A second filter gives a limited power output for the
round displacement by using the parameters 𝜀𝑔 and 𝜁𝑔 . Since the
econd quotient 𝜀𝑔 ≪ 𝜀𝑓 reaches unity very soon, the second filter only
ffects very low-range frequencies. The filter parameter values to study

locations with firm, medium, and soft soils are taken from [29]. Firm
oil is considered for this study.

The dynamic responses of the structures controlled by the 𝐻2 and
𝐻∞ optimised novel and conventional dampers subjected to random
excitation are shown in Fig. 9(a) and Fig. 9(b). In Fig. 9(a), the
maximum displacements of the main structures are controlled by 𝐻2
optimised TMD1, TMD2, NSIATMFD, NCSIATMFD, NNSIATMFD, and
NLSIATMFD have been determined as 1.0690 × 107 dB/Hz, 8.3528 ×
106 dB/Hz, 5.8581 × 106 dB/Hz, 6.1718 × 106 dB/Hz, 6.5892 × 106 dB/Hz,
and 7.3794 × 106 dB/Hz. Hence, 𝐻2 optimised NSIATMFD, NCSIATMFD,
NNSIATMFD, and NLSIATMFD are significantly 45.20%, 42.26%,
38.36%, and 30.96% superior to the 𝐻2 optimised conventional TMD.
In addition, according to Fig. 9(b), the maximum displacements of
the main structures are controlled by 𝐻∞ optimised TMD1, TMD2,
NSIATMFD, NCSIATMFD, NNSIATMFD, and NLSIATMFD have been de-
termined as 1.6444 × 107 dB/Hz, 6.1116 × 106 dB/Hz, 6.3325 × 106 dB/Hz,
4.4208 × 106 dB/Hz, 3.9661 × 106 dB/Hz, and 3.3336 × 106 dB/Hz.
Hence, 𝐻∞ optimised NSIATMFD, NCSIATMFD, NNSIATMFD, and
NLSIATMFD are significantly 27.66%, 35.10%, 45.45%, 2.86% superior
to the 𝐻∞ optimised conventional TMD.

In addition, it is observed that the controlled curves start so high
with respect to the uncontrolled response in Fig. 9. The high starting
point of the controlled curves in Fig. 9 compared to the uncontrolled
response can be attributed to the nature of the input excitation and
the immediate engagement of the dampers. Specifically, the Clough–
Penzien power spectrum introduces a broad frequency range with
varying amplitudes, simulating seismic excitations that activate the
dampers immediately. The initial high response reflects the transient
phase, during which the dampers adapt to the input energy distribution.
To provide further clarity, Fig. 10 has been included. It demonstrates
the dynamic responses of the uncontrolled and controlled structures
with and without the influence of the Clough–Penzien power spectrum.
Fig. 10(a) depicts the system’s response with the Clough–Penzien power
spectrum, which models realistic seismic ground motion, accounting for
both soil damping and filtering effects. This power spectrum introduces
 broader frequency range and amplitude variations, reflecting the

complexity of actual seismic excitations. The dampers are shown to
effectively suppress vibrations, with their performance influenced by
the characteristics of the input excitation. In contrast, Fig. 10(b) shows
hat the controlled curves start with the same amplitudes with respect

to the uncontrolled response. For this figure, it is considered that
the controlled structures are subjected to random excitations without
considering the Clough–Penzien spectrum. Here, the response lacks
the specific spectral characteristics imparted by the power spectrum,
offering a baseline comparison of the dampers’ performance under
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Fig. 8. The dynamic responses of the main structure are controlled by the (a) 𝐻2 and (b) 𝐻∞ optimised dampers subjected to harmonic excitation.

Fig. 9. The dynamic responses of the main structure are controlled by the (a) 𝐻2 and (b) 𝐻∞ optimised dampers subjected to random excitation.

Fig. 10. The dynamic responses of the main structures are controlled by the dampers subjected to (a) with and (b) without Clough–Penzien power spectrum for random excitations.
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Table 6
The near-field earthquake records.

Earthquake Year 𝑀𝑤 Recording station 𝑉 𝑠30 (m/s) Component 𝐸𝑠 (km) PGA,g

Irpinia, Italy-01 1980 6.9 Sturno 1000 MUL009 30.4 0.31
Superstition Hills-02 1987 6.5 Parachute Test Site 349 SUPERST 16.0 0.42
Loma Prieta 1989 6.9 LOMAP 371 HEC000 27.2 0.38
Erzican, Turkey 1992 6.7 Erzincan 11 275 ERZIKAN 9.0 0.49
Cape Mendocino 1992 7.0 CAPEMEND 713 NIS090 4.5 0.63
Landers 1992 7.3 Lucerne 685 LANDERS 44.0 0.79
Northridge-01 1994 6.7 Rinaldi Receiving Sta 282 NORTHR 10.9 0.87
Kocaeli, Turkey 1999 7.5 Izmit 811 KOCAELI 5.3 0.22
Chi-Chi, Taiwan 1999 7.6 TCU065 306 CHICHI 26.7 0.82
Chi-Chi, Taiwan 1999 7.6 TCU102 714 CHICHI 45.6 0.29
Duzce, Turkey 1999 7.1 Duzce 276 DUZCE 1.6 0.52
c
s
t
S
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t
t
T
N
e
A
t
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i
c
n

Fig. 11. The response spectra of near-field earthquake records.

simplified random input. The Clough–Penzien power spectrum signifi-
antly affects the vibration mitigation capacity by simulating realistic
eismic conditions. The inclusion of this spectrum demonstrates the
ampers’ robustness and adaptability to real-world scenarios, highlight-
ng their superior performance in attenuating vibrations under complex
eismic loads.

3.2. Time history results

The real earthquake ground motions are considered to validate
the performed methodology across a broader range of actual seismic
excitation scenarios. The primary structure has a mass of 3000 tons,
represented as 𝑚𝑠 = 3000 tons. The structure’s time period is specified as
0.5 s, represented as 𝑇𝑠 = 0.5 seconds. The calculation of the structure’s
natural frequency relies on its time period, represented as 𝜔𝑠 = 2𝜋∕𝑇𝑠.
The viscous damping ratio of the fundamental structure is assumed to
be 0.01, represented as 𝜉𝑠 = 0.01. The near-field earthquake record
with pulses is selected from PEER Database [30] and the details are
isted in Table 6. Near-field earthquakes with pulses provide a greater
anger to buildings than far-field earthquakes. Consequently, the nu-

merical analysis intended to assess the vibration attenuation efficacy of
each damper utilises near-field earthquake recordings characterised by
pulses with a prominent vertical component. The near-field earthquake
records with pulses spectra are shown in Fig. 11 and the damping factor
is considered 5%. The displacement responses of the main structures
are controlled by the NSIATMFD, NCSIATMFD, NNSIATMFD, and NL-
IATMFD subjected to Northridge earthquake have been obtained and
hown in Fig. 12(a), Fig. 12(b), Fig. 12(c), and Fig. 12(d). Accord-
ng to these figures, the maximum displacements of the uncontrolled
tructures are evaluated as 0.0143 m. The maximum displacement
12 
of the structures controlled by the TMD is evaluated as 0.0141 m.
The maximum displacements of the main structures controlled by the
NSIATMFD, NCSIATMFD, NNSIATMFD, and NLSIATMFD have been
evaluated as 0.0134 m, 0.0134 m, 0.0135 m, and 0.0134 m. After
omparing the results of conventional and novel damper’s controlled
tructures, it has been found that the novel dampers are 4.96% superior
o the conventional dampers in terms of vibration reduction capacity.
imilarly, the displacement responses are also evaluated for other
onsidered earthquakes and listed in Table 7.

The average maximum displacement amplitude of structures con-
trolled by the conventional and novel dampers are compared from
Table 7 and substituted in Eq. (41) to obtain the displacement response
reduction capacity of each novel damper.

𝐷𝑣𝑠 (%) =
(
(

𝑣𝑚𝑎𝑥𝑠
)𝐶 𝐷 −

(

𝑣𝑚𝑎𝑥𝑠
)𝑁 𝐷

(

𝑣𝑚𝑎𝑥𝑠
)𝐶 𝐷

)

× 100 (41)

where
(

𝑣𝑚𝑎𝑥𝑠
)𝐶 𝐷 and

(

𝑣𝑚𝑎𝑥𝑠
)𝑁 𝐷 define the maximum displacements of

the structures controlled by the conventional and novel dampers. After
the substitution, it has been found that the NSIATMFD, NCSIATMFD,
NNSIATMFD, and NLSIATMFD have 15.30%, 15.16%, 15.59%, and
15.59% more displacement reduction capacity than the conventional
dampers. The acceleration responses of the main structures are con-
trolled by the NSIATMFD, NCSIATMFD, NNSIATMFD, and NLSIATMFD
subjected to Northridge earthquake have been obtained and shown
in Fig. 13(a), Fig. 13(b), Fig. 13(c), and Fig. 13(d). According to
these figures, the maximum accelerations of the uncontrolled struc-
ures are evaluated as 2.3913 m∕s2. The maximum displacement of
he structures controlled by the TMD is evaluated as 1.6662 m∕s2.
he maximum displacements of the main structures controlled by the
SIATMFD, NCSIATMFD, NNSIATMFD, and NLSIATMFD have been
valuated as 1.2623 m∕s2, 1.2555 m∕s2, 1.2675 m∕s2, and 1.2573 m∕s2.
fter comparing the results of conventional and novel damper’s con-

rolled structures, it has been found that the novel dampers are 24.24%,
4.64%, 23.92%, and 24.54% superior to the conventional dampers
n terms of vibration reduction capacity. The average maximum ac-
eleration amplitude of structures controlled by the conventional and
ovel dampers are compared from Table 8 and substituted in Eq. (42)

to obtain the acceleration response reduction capacity of each novel
damper.

𝐴𝑣̈𝑠 (%) =
(
(

𝑣̈𝑚𝑎𝑥𝑠
)𝐶 𝐷 −

(

𝑣̈𝑚𝑎𝑥𝑠
)𝑁 𝐷

(

𝑣̈𝑚𝑎𝑥𝑠
)𝐶 𝐷

)

× 100 (42)

where
(

𝑣̈𝑚𝑎𝑥𝑠
)𝐶 𝐷 and

(

𝑣̈𝑚𝑎𝑥𝑠
)𝑁 𝐷 define the maximum accelerations of

the structures controlled by the conventional and novel dampers. After
the substitution, it has been found that the NSIATMFD, NCSIATMFD,
NNSIATMFD, and NLSIATMFD have 17.61%, 17.49%, 17.70%, and
17.52% more acceleration reduction capacity than the conventional
dampers.
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Fig. 12. The displacement responses of the main structures are controlled by the (a) NSIATMFD, (b) NCSIATMFD, (c) NNSIATMFD, and (d) NLSIATMFD subjected to Northridge
earthquake. .
Table 7
The maximum displacement responses of the uncontrolled structure and structures controlled by conventional, novel dampers.

Earthquake 𝑣𝑚𝑎𝑥𝑠 (m)

Uncontrolled TMD NSIATMFD NCSIATMFD NNSIATMFD NLSIATMFD

Irpinia, Italy-01 0.0059 0.0051 0.0043 0.0043 0.0042 0.0043
Superstition Hills-02 0.0082 0.0055 0.0040 0.0041 0.0040 0.0041
Loma Prieta 0.0055 0.0040 0.0034 0.0034 0.0034 0.0034
Erzican, Turkey 0.0066 0.0064 0.0055 0.0055 0.0054 0.0055
Cape Mendocino 0.0117 0.0082 0.0080 0.0080 0.0080 0.0080
Landers 0.0041 0.0035 0.0024 0.0024 0.0024 0.0024
Northridge-01 0.0143 0.0141 0.0135 0.0134 0.0135 0.0134
Kocaeli, Turkey 0.0044 0.0039 0.0023 0.0024 0.0023 0.0024
Chi-Chi, Taiwan 0.0088 0.0069 0.0051 0.0051 0.0050 0.0051
Chi-Chi, Taiwan 0.0063 0.0051 0.0043 0.0043 0.0043 0.0043
Duzce, Turkey 0.0110 0.0072 0.0064 0.0064 0.0065 0.0064

Average 0.007891 0.006355 0.005382 0.005391 0.005364 0.005391
4. Summary and conclusions

This paper introduces innovative nonlinear stiffened inertial am-
lifier tuned mass friction dampers (NSIATMFDs) and their three ad-
anced variants: nonlinear compound (NCSIATMFD), nested (NNSI-
TMFD), and levered (NLSIATMFD) designs. These novel dampers

ntegrate stiffness and mass amplification mechanisms to overcome
he limitations of conventional tuned mass dampers (TMDs) in terms
f narrow frequency bandwidth and limited adaptability. Through 𝐻2
nd 𝐻∞ optimisation strategies, exact closed-form solutions for the
ptimal parameters of these dampers were derived. Frequency domain
13 
responses under harmonic and random noise excitations, validated
using the Newmark-beta method, demonstrated significant improve-
ments in vibration mitigation capabilities. Comparative analyses using
near-field earthquake records further highlighted their effectiveness in
reducing structural responses. The proposed designs consistently out-
performed conventional TMDs in terms of vibration reduction capacity,
with improvements of up to 24.54% under seismic excitations.

Key contributions of this research include:

• Integration of stiffness amplification elements for extended fre-
quency control.
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Fig. 13. The acceleration responses of the main structures are controlled by the (a) NSIATMFD, (b) NCSIATMFD, (c) NNSIATMFD, and (d) NLSIATMFD subjected to Northridge
earthquake.
Table 8
The maximum acceleration responses of the uncontrolled structure and structures controlled by conventional, novel dampers.

Earthquake 𝑣̈𝑚𝑎𝑥𝑠 (𝑚∕𝑠2)

Uncontrolled TMD NSIATMFD NCSIATMFD NNSIATMFD NLSIATMFD

Irpinia, Italy-01 0.7932 0.4229 0.4159 0.4180 0.4144 0.4174
Superstition Hills-02 1.1648 1.0516 0.7295 0.7321 0.7273 0.7315
Loma Prieta 0.8531 0.7244 0.6050 0.6053 0.6049 0.6052
Erzican, Turkey 0.9524 0.7843 0.7653 0.7663 0.7645 0.7661
Cape Mendocino 1.6169 1.5511 1.4517 1.4532 1.4506 1.4528
Landers 1.2678 1.0256 0.8429 0.8463 0.8404 0.8454
Northridge-01 2.3913 1.6662 1.2623 1.2555 1.2675 1.2573
Kocaeli, Turkey 0.7072 0.6311 0.4008 0.4012 0.4002 0.4011
Chi-Chi, Taiwan 1.3977 0.8792 0.6945 0.6994 0.6909 0.6981
Chi-Chi, Taiwan 0.8644 0.5646 0.4984 0.5020 0.4958 0.5011
Duzce, Turkey 1.8135 1.0309 0.8457 0.8449 0.8463 0.8451

Average 1.256573 0.939264 0.773818 0.774927 0.772982 0.774645
14 
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• Enhanced energy dissipation through frictional damping mecha-
nisms.

• Robust performance across diverse dynamic conditions, including
seismic applications.

These findings establish the proposed dampers as a promising solu-
tion for modern engineering challenges, offering efficient and adaptive
vibration control for structures subjected to broadband and unpre-
ictable excitations. Future work may explore applications to multi-
egree-of-freedom systems to expand their applicability further.
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Appendix. The closed-form expressions of 𝒁𝟏, 𝒁𝟐, and 𝒁𝟑 from
q. (39)

The closed-form expressions of 𝑍1, 𝑍2, and 𝑍3 from Eq. (39) are
isted below.

𝑍1 = −32𝜂4𝑑𝜂41,2
(

𝜇 𝛾𝑚 + 1)4 (𝜇 𝛾𝑑𝛾𝑚 + 𝛾𝑑 + 1)3
(

𝜇 𝜂21,2𝛾𝑑𝛾𝑚 + 𝜂21,2𝛾𝑑 + 𝜂21,2 − 1
)

.

(A.1)
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