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Abstract This paper introduces damping amplifier friction vibration absorbers (DAF-
VAs), compound damping amplifier friction vibration absorbers (CDAFVAs), nested
damping amplifier friction vibration absorbers (NDAFVAs), and levered damping am-
plifier friction vibration absorbers (LDAFVAs) for controlling the structural vibrations
and addressing the limitations of conventional tuned mass dampers (TMDs) and friction-
tuned mass dampers (FTMDs). The closed-form analytical solution for the optimized
design parameters is obtained using the H2 and H∞ optimization approaches. The effi-
ciency of the recently established closed-form equations for the optimal design parameters
is confirmed by the analytical examination. The closed form formulas for the dynamic
responses of the main structure and the vibration absorbers are derived using the trans-
fer matrix formulations. The foundation is provided by the harmonic and random-white
noise excitations. Moreover, the effectiveness of the innovative dampers has been vali-
dated through numerical analysis. The optimal DAFVAs, CDAFVAs, NDAFVAs, and
LDAFVAs exhibit at least 30% lower vibration reduction capacity compared with the op-
timal TMD. To demonstrate the effectiveness of the damping amplification mechanism,
the novel absorbers are compared with a conventional FTMD. The results show that
the optimized novel absorbers achieve at least 91% greater vibration reduction than the
FTMD. These results show how the suggested designs might strengthen the structure’s
resilience to dynamic loads.
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1 Introduction

Mechanical vibrations are dampened in amplitude by a tuned mass damper (TMD). It can
be used in many different fields, such as electrical engineering, mechanical engineering, and civil
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engineering[1]. The fundamental ideas, design issues, uses, and most recent developments in
TMD technology will be examined in this literature review. The foundation of TMDs is the
concept of damping and resonance. A mass, a spring, and a damper comprise a TMD. The
device is tuned to the inherent frequency of the building that it is intended to safeguard[2]. The
damper dissipates vibrational energy and lowers oscillation amplitudes when the TMD resonates
out of phase with the vibrating structure. Finding the ideal mass ratio, tuning frequency, and
damping coefficient is the initial step in designing a TMD. These elements are essential to
guaranteeing the TMD’s effectiveness in lowering vibrations[3]. The TMD needs to represent
a moderate portion of the overall mass of the construction. Mass ratios typically fall between
1% and 10%. It is necessary to adjust the TMD to correspond with the primary structure’s
inherent frequency. The damper should dissipate enough energy without appreciably lessening
the sensitivity of the TMD. TMDs are frequently used to lessen vibrations caused by wind,
earthquakes, and human activity in a range of projects. According to many researchers, seismic
elements are commonly observed in skyscrapers, bridges, and sports stadiums[4]. Tall buildings’
sway caused by wind is lessened with the use of TMDs. Taipei 101 and Boston’s John Hancock
Tower are two notable examples. Equipment vibrations that can cause fatigue and failure are
reduced by TMDs. They are frequently used in precision devices and engines[5].

TMDs significantly lessen structural vibrations but come with a number of disadvantages.
The cost of designing, producing, and maintaining them is high. Design and integration are
challenging due to TMDs’ large footprint and structural weight[6]. Because of their narrow
frequency range efficiency, they are not appropriate for variable dynamic loads. Accurate ad-
justment is necessary, and any changes to the characteristics of the structure may reduce its
efficiency. The performance of TMDs can be impacted by temperature changes[7]. In addi-
tion, they might not be as predictable as vibrations caused by wind during complex earthquake
events. In older structures, retrofitting TMDs can be difficult and disruptive. Moreover, the
installation could obstruct a structure’s ability to function normally or its aesthetic appeal[8].
TMDs are nevertheless a useful tool for reducing vibration in a range of applications, despite
these drawbacks[9].

It will need a combination of technology improvement, legislative reform, and strategic
planning to overcome the issues with TMDs. Here are a few ways to deal with these prob-
lems. Make research investments to create materials that will require fewer replacements over
time and are less prone to environmental degradation[10]. Offer specialized isolation solutions
for different kinds of buildings, such as ones with asymmetrical or taller construction. Provide
readily adjustable, modular-TMD systems for retrofitting pre-existing structures. Provide basic
isolation solutions that are space-efficient and nevertheless function, like compact or low-profile
dampers[11]. High-tech seismic modeling and simulation tools can improve the accuracy of your
forecasts and planning for extreme events. Integrate TMDs with other earthquake mitigation
technologies, such as bracing systems or dampers, to maximize overall performance. Allow for
movable utility and service connections to enable base-isolated constructions[12]. Early in the
design process, confer with engineers and utility providers to make sure that all systems are
compatible with TMDs. Incorporate architectural strategies, including dampening devices, to
minimize swaying and restrict the visual movement of the building[13]. By providing analytical
closed-form solutions for the ideal damper design parameters when constructing the structures,
the bulk of the restrictions have been overcome. H2 is one of the optimization strategies. This
was used to analytically estimate the optimal design parameters for the dampers[14]. Stochastic
analysis is necessary to account for random excitation in the H2 optimization technique for
TMDs, such as seismic ground motions, which are regarded as random processes. This calls for
taking into account the statistical characteristics of the stimulus and the reactions[15]. This is
a comprehensive description of how H2 is used to maximize the TMD under random stimula-
tion. Reducing the mean-square reactivity, or energy, of a base-isolated structure to random
seismic excitations is a goal. Using random excitation, create frequency response functions
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(FRFs) that illustrate the structure and TMD system. Use stochastic processes to solve the H2

optimization issue[16]. Use performance evaluation techniques such as stochastic simulations
and frequency-domain analysis to confirm resilience. The optimized system exhibits reduced
peak and root-mean-square (RMS) responses in comparison with the non-optimized systems. In
order to increase robustness against worst-case disturbances, the H∞ optimization for TMDs
seeks to minimize the peak value of the system’s FRF[17]. The goal of this approach is to
reduce the H∞ norm, which represents the maximum system response at all frequencies, by
constructing and solving an optimization problem. TMD characteristics such as the mass ratio,
tuning frequency, and damping ratio are changed during the optimization process. Benefits
include better structural stability due to decreased peak reactions and greater performance[18].
It can, however, be computationally taxing and sensitive to changes in parameters. Vibration
control is enhanced in industries such as aerospace, automotive, and civil engineering by H∞
optimization[19].

By using their inertial characteristics, inertial amplifiers, also referred to as mass amplifica-
tion devices, increase forces or movements. This idea usually entails using mechanical leverage,
resonance, or inertia to amp up small input forces or displacements into bigger, more useful
outputs[20]. Here is a detailed description of the functions and uses of these devices. Tiny input
forces are amplified by inertial amplifiers through the use of the inertia of a mass. Usually, this
is achieved with mechanical systems that make use of the inertia of a bigger mass to produce
a force or displacement that is proportionately greater[21]. Mechanical leverage, a system of
levers or gears that transforms a small force exerted over a short distance into a bigger force
supplied over a longer distance, is something that these machines are capable of employing. An-
other technique is resonance, in which a system is engineered to oscillate at a specific frequency.
Modest periodic pressures applied at the resonant frequency have the potential to magnify the
input by causing the system to accumulate bigger oscillations[22]. By measuring and control-
ling vibrations in machinery and structures, these tools lessen damage and enhance engineering
performance. Inertial amplifiers are essential mass amplification devices in numerous scientific
and technical applications. These devices amplify small inputs into bigger, more useful outputs
through the utilization of resonance, mechanical leverage, and inertia. This makes it possible
to measure and regulate forces and motion with greater accuracy[23]. In practice, the vibra-
tion attenuation capacity of the amplifier can be improved by damping the inertially amplified
hosting structures. This leads to a change in the inertial amplifiers’ frequency and an increase
in effective damping, which could reduce the cost of producing vibration attenuation devices.
The quantity of material needed has decreased as a result of the use of these amplifiers. Damp-
ing amplifiers, however, are not mentioned in the current research review. Moreover, there are
currently no state-of-the-art damping amplifier friction vibration absorbers (DAFVAs) that can
address every drawback of TMDs.

In this paper, the DAFVAs are designed to overcome their limitations and enhance their
vibration reduction performance by inducing damping amplifiers inside the core material. Con-
sequently, DAFVAs, compound damping amplifier friction vibration absorbers (CDAFVAs),
nested damping amplifier friction vibration absorbers (NDAFVAs), and levered damping am-
plifier friction vibration absorbers (LDAFVAs) are shown. The closed-form analytic solution
for the ideally designed parameters is produced using the H2 and H∞ optimization techniques.
The effectiveness of the recently discovered closed-form equations for ideal design parameters
is confirmed by the analytical study. The dynamic responses of the damper and main structure
are found to have closed-form formulas through the use of the FRF. The basis excitations are
the random-white noise and harmonic excitations. The novel dampers’ ability to reduce vibra-
tion is contrasted with that of the conventional TMDs. The damping amplification mechanism
of the novel absorbers is evaluated through a comparison with a conventional friction-tuned
mass damper (FTMD) featuring a spring and dry friction damping[24].
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2 DAFVAs

Conventional vibration absorbers are tested with additional damping amplifiers in order to
overcome their existing drawbacks and enhance their performances. The structural diagrams of
the single degree of freedom (SDOF) systems controlled by the DAFVAs, CDAFVAs, NDAF-
VAs, and LDAFVAs subjected to base excitation are shown in Figs. 1(a)–1(d). An application
of Newton’s second law is required in order to determine the equations of motion that govern
the controlled system with an SDOF. It is possible to obtain the equations of motion for the
system with an SDOF as follows:

msẍs = −ks(xs − ug)− cs(ẋs − u̇g) + kd(xd − xs) + αmdgsgn(ẋd − ẋs) + cd(ẋd − ẋs), (1)

where xs and xd define the absolute displacements of the SDOF system and the novel dampers,
respectively. ug defines the base displacement. Now, consider ud = xd − xs and us = xs −
ug, which are defined as the relative displacements of the dampers and the SDOF system,
respectively. The relative displacements are substituted in Eq. (1),

msüs + csu̇s + ksus − αmdgsgn(u̇d)− cdu̇d − kdud = −msüg. (2)
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Fig. 1 The structural diagrams of the SDOF system controlled by the (a) DAFVA, (b) CDAFVA,
(c) NDAFVA, and (d) LDAFVA subjected to base excitation (color online)
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It is possible to obtain the equation of motion for the damper as

mdẍd = −αmdgsgn(ẋd − ẋs)− cd(ẋd − ẋs)− kd(xd − xs). (3)

Substituting the relative displacements into Eq. (3) yields

mdüd + mdüs + αmdgsgn(u̇d) + cdu̇d + kdud = −mdüg, (4)

where md, cd, and kd define the mass, damping, and stiffness of the DAFVAs, respectively. α
defines the friction coefficient. ud (= xd−xs) and us (= xs−ug) define the relative displacements
of the damper and the SDOF system, respectively. The statistical linearization method applied
to Eq. (1) is used to linearize each nonlinear element of the governing equation of motion in order
to apply the H2 optimization strategy. The H2 optimization approach is used to provide an
appropriate tuning of natural frequency to the controlled structures and to accurately determine
the closed-form expressions of the optimal damper design parameters while accounting for
the nonlinear hysteretic response of the controlled structure. The equivalent damping of the
dampers is computed as

ceq = E
(∂(αmdgsgn(u̇d))

∂u̇d

)
=

√
2
π

αmdg

σu̇d

. (5)

Initially, ceq has been considered zero to obtain the closed-form expression for σu̇d . For each
DAFVA, the value of cd has been derived as follows.

DAFVAs:

cd = c cot2 φ︸ ︷︷ ︸
ϑ

(6)

with φ defining the inertial angle.
CDAFVAs:

cd = c cot2 φ
( tan2 θ

4

)

︸ ︷︷ ︸
ϑ

(7)

with φ and θ defining the primary and secondary inertial angles, respectively.
NDAFVAs:

cd = c cot2 φ1 tan2 φ2 cot2 φ3︸ ︷︷ ︸
ϑ

(8)

with φ1, φ2, and φ3 defining the primary, secondary, and tertiary inertial angles, respectively.
LDAFVAs:

cd = c
( b1

a1

b2

a2

)2

︸ ︷︷ ︸
ϑ

, (9)

where
(

b1
a1

b2
a2

)
defines the lever arm length ratio. ϑ defines the damping amplification factor. The

value for c is derived as c = 2mdξbνb. The stiffness of the DADVAs is obtained as kd = mdν2
b.

As the controlled SDOF system is subjected to base excitation, it may produce steady-state
responses: us = Useiωt, ud = Udeiωt, and üg = Ugeiωt. We apply these steady-state responses
to the second expressions of Eq. (2) and Eq. (4), and as a result, a transfer matrix is derived to
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evaluate the displacement response of each unknown degree of freedom of the controlled SDOF
system.

(
2ξsνsq + ν2

s + q2 −2µdξbνbqϑ− µdν2
b

µdq2 2µdξbνbqϑ + µdν2
b + µdq2

)(
Us

Ud

)
= −

(
1
µd

)
Ug. (10)

The displacement of the SDOF system is derived as

Hs =
Us

Ug

∣∣∣∣
q=iω

=
−2µdξbνbqϑ− 2νbqξbϑ− µdν2

b − ν2
b − q2

∆f
. (11)

The displacement of the damper is derived as

Hd =
Ud

Ug

∣∣∣∣
q=iω

=
−2ξsνsq − ν2

s

∆f
. (12)

The denominator of Eq. (11) and Eq. (12) is obtained as

∆f = q4 + (2νbξbϑµd + 2νbξbϑ + 2ξsνs)q3 + (4νbνsξbξsϑ + µdν2
b + ν2

b + ν2
s )q2

+ (2νbν2
s ξbϑ + 2ν2

bνsξs)q + ν2
bν2

s , (13)

where q = iω, and i (=
√−1) defines the imaginary number. ω defines the excitation frequency.

µd (= md/ms) defines the damper mass ratio. ξs and ξb define the damping ratios of the SDOF
system and the absorber, respectively. νb and νs define the natural frequencies of the absorber
and SDOF system, respectively.
2.1 H2 optimization

The isolated SDOF system is subjected to random white excitation. H2 optimization is
applicable, and the standard deviation of the displacement of the SDOF system is derived
using Eqs. (11) and (13).
2.1.1 Derivation of the optimal design parameters by considering ξs 6= 0

The damping of the main structure is not considered zero for this study, i.e., ξs 6= 0. Equa-
tion (13) is a fourth-order polynomial equation, and the entire controlled SDOF system is
subjected to random white noise. Accordingly, H2 optimization is applicable. The standard
deviation of the displacement of the SDOF system is derived using Eqs. (11) and (13), which is
expressed as

σ2
us

=S0π(4ν2
s ξ3

bν2
bϑ3µ3

d + 4ξsνsν
3
bµ3

dξ2
bϑ2 + 12ν2

s ξ3
bν2

bϑ3µ2
d + 12ξsνsν

3
bµ2

dξ2
bϑ2 + 4ξsν

3
s νbµ2

dξ2
bϑ2

+ 12ν2
s ξ3

bν2
bϑ3µd + µ4

dν4
bξbϑ + 4ν2

s ξbν2
bϑξ2

s µ2
d + 12ξsνsν

3
bξ2

bϑ2µd + 8ξsν
3
s νbξ2

bϑ2µd

+ 4ν2
s ξ3

bν2
bϑ3 + 4µ3

dν4
bξbϑ + ν2

s ξbν2
bϑµ3

d + 8ν2
s ξbν2

bϑξ2
s µd + 4ξs νsν

3
bξ2

bϑ2 + 4ξsν
3
s νbξ2

bϑ2

+ ξsνsν
3
bµ3

d + 6µ2
dν4

bξbϑ + 4 ν2
s ξbν2

bϑξ2
s + 2ξsνsν

3
bµ2

d + ξsν
3
s νbµ2

d + 4µdν4
bξbϑ

− 3ν2
s ξbν2

bϑµd + ξsνsν
3
bµd + ξbϑν4

b − 2ν2
s ξbν2

bϑ + ν4
s ξbϑ)

/
(2ν3

s (4ξ3
bϑ3ξsν

2
s ν2

bµd

+ 4ξ2
s νsν

3
bξ2

bϑ2µd + 4ξ3
bϑ3ξsν

2
s ν2

b + 4ξ2
s νsν

3
bξ2

bϑ2 + 4νbν3
s ξ2

bξ2
s ϑ2 + µ2

dν4
bξbξsϑ

+ µdνbν3
s ξ2

bϑ2 + 4ξbϑξ3
s ν2

s ν2
b + 2µdν4

bξbξsϑ + ξ2
s νsν

3
bµd + ξbξsϑν4

b

− 2ξb ϑξsν
2
s ν2

b + ν4
s ξb ξsϑ)). (14)

The mathematical expressions to derive the closed-form expression for optimal damping ratio
and natural frequency are derived as

∂σu2
s

∂ξb
= 0,

∂σu2
s

∂νb
= 0. (15)
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Equation (14) is substituted into the first expression of Eq. (15), yielding

ξb =
(ν2

bµ2
d + 2µdν2

b − µdν2
s + ν2

b − 2ν2
s )ξs

2νbνsϑ(µd + 1)2
. (16)

Equation (16) is substituted into Eq. (14), and the modified version of the standard deviation
of displacement is derived as

σ2
us

=(3µ6
dν6

bξ2
s + µ7

dν6
b + 18µ5

dν6
bξ2

s − µ5
dν4

bν2
s ξ2

s + 7µ6
dν6

b + 2µ6
dν4

bν2
s + 45µ4

dν6
bξ2

s

− 12µ4
dν4

bν2
s ξ2

s − 3µ4
dν2

bν4
s ξ2

s + 21µ5
dν6

b + 6µ5
dν4

bν2
s + µ5

dν2
bν4
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dν6

bξ2
s

− 38µ3
dν4
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s − 10µ3
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s + µ3
dν6
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s )ξs). (17)

Equation (17) is substituted into the second expression of Eq. (15). Accordingly, the closed-form
expression for the optimal natural frequency of the damper is derived as

(νb)opt =

√
(2− µd)ν2

s

(µd + 1)2
. (18)

Equation (18) is substituted into Eq. (16). The optimal damping ratio of the damper is derived
as

(ξb)opt =
µdξs

ϑ(µd + 1)2
1√

(2−µd)
(µd+1)2

. (19)

By altering the damper’s mass ratio, the ideal frequency ratio can be visually shown. In
Fig. 2, the graphical representation is displayed. Utilizing Eq. (18), this graph is produced.
When the mass ratio of the isolator grows, the frequency ratio progressively rises. κb defines
the frequency ratio of the absorber. Concurrently, Eq. (19) is also used to build this kind of
parametric graph for the optimal damping ratio of the dampers. As a result, Fig. 3 displays the
variations in each damper’s ideal damping ratio. The numerical values of the damping ratio
undergo rapid changes when the structural damping ratio is included in the closed-form expres-
sion. In particular, the damper’s damping ratio degrades rapidly, which raises the possibility of
higher production costs. In fact, to achieve the robust performance from H2 optimized design
parameters, i.e., ξb and κb, including the damping ratio of the structure, i.e., ξs 6= 0, and to
properly tune the damper with the primary structure, the damping ratio of the structure needs
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Fig. 3 Variations in the optimal damping ratio of the (a) DAFVA, (b) CDAFVA, (c) NDAFVA, and
(d) LDAFVA as a function of the mass ratio of the damper (color online)

to be set to 0.2. This value is slightly higher and may increase the manufacturing cost. ξs has
a value between 0.05 and 0.2. It demonstrates that for all DAFVAs, the damping ratios are
progressively rising. For these specific graphs, the damping of the SDOF system is taken to
be 0.2, i.e., ξs = 0.2. The damping ratio variations for DAFVAs, CDAFVAs, NDAFVAs, and
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LDAFVAs with respect to the isolator mass ratio are shown in Figs. 3(a), 3(b), 3(c), and 3(d).
The damper damping ratio is a function of the variable damper mass ratio. In the case of the
DAFVAs, the damping ratio progressively rises with increasing damping amplifier angle and
falls with increasing isolator mass ratio. The CDAFVAs with the primary damping amplifier
angle exhibit the same properties. The robust value of the secondary damping amplifier angle is
evaluated as 64◦. Furthermore, the NDAFVA shares the same physical properties of the damp-
ing ratio as DAFVAs and CDAFVAs. The damping ratio of the TMD is influenced by three
amplifier angles: primary, secondary, and tertiary. For this graph, the secondary and tertiary
angles remain unchanged. Regarding applying the minimal lever arm ratio, the LDAFVA’s
characteristics differ slightly from those of the other three vibration absorbers. The value of
b1/a1 is maintained constant, i.e., b1/a1 = 1.0, to preserve the design’s simplicity. b2/a2 has a
value that ranges from 1 to 3. A greater value of the b2/a2 ratio dramatically reduces the ideal
damping ratio, making it unsuitable for use as a TMD. To obtain a strong vibration reduction
capacity from the LDAFVA, a lower value of b2/a2 is necessary for its ideal design.
2.1.2 Derivation of the optimal design parameters by considering ξs = 0

For this particular optimization study, the primary structure’s damping is now regarded as
zero, denoted by the expression ξs = 0. Both the closed-form formula for the standard deviation
and the optimum design parameters are undergoing changes at the same time. Therefore, in
order to achieve the outcomes that are wanted from this analysis, the values of ξs in Eq. (11)
and Eq. (13) are taken into consideration to be zero. In addition, the denominator of Eq. (13)
is a polynomial equation of the fourth order. With the use of the H2 optimization approach
for random white noise excitation, the standard deviation for the displacement of the SDOF
system is determined as follows:

σ2
us

=S0π(4µ3
dν2

bν2
s ξ2

bϑ2 + 12µ2
dν2

bν2
s ξ2

bϑ2 + 12µdν2
bν2

s ξ2
bϑ2 + µ4

dν4
b + 4ν2

bν2
s ξ2

bϑ2 + 4µ3
dν4

b

+ µ3
dν2

bν2
s + 6µ2

dν4
b + 4µdν4

b − 3µdν2
bν2

s + ν4
b − 2ν2

bν2
s + ν4

s )
/
(2νbξbϑµdν6

s ). (20)

Equation (20) is partially differentiated with respect to the damping ratio and natural frequency
of the damper to obtain their optimal values, and the corresponding mathematical expression
is derived as

∂σ2
us

∂ξb
= 0,

∂σ2
us

∂νb
= 0. (21)

Equation (20) is substituted into the first expression of Eq. (21) and the damping ratio of the
damper is derived as

ξb =
√

(µd + 1)(µ4
dν4

b + 4µ3
dν4

b + µ3
dν2

bν2
s + 6µ2

dν4
b + 4µdν4

b − 3µdν2
bν2

s + ν4
b − 2ν2

bν2
s + ν4

s )

/(2(µd + 1)2ϑνsνb). (22)

Equation (22) is substituted into Eq. (20). Accordingly, the modified version of Eq. (20) is
derived, which has only the natural frequency of the damper in terms of optimal governing
system parameters.

σ2
us

=
2((µd + 1)4ν4

b + ν2
s (µd − 2)(µd + 1)2ν2

b + ν4
s )S0(µd + 1)2π√

(µd + 1)((µd + 1)4ν4
b + ν2

s (µd − 2)(µd + 1)2ν2
b + ν4

s )ν5
s µd

. (23)

Equation (23) is substituted into the second expression of Eq. (21). As a result, the closed-form
expression for the optimal frequency of the damper is determined as

(νb)opt = νs

√
2− µd

2µ2
d + 4µd + 2

. (24)
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Equation (24) is substituted into Eq. (22), and the optimal closed-form solutions for the damping
ratio of the damper are derived as

(ξb)opt =

√
µd(µd + 1)(4− µd)

2ϑ(µd + 1)
√

4− 2µd
. (25)

The standard deviation of the velocity of the absorber is derived as

σ2
u̇d

=
S0π(µd + 1)
2νbξbϑµd

. (26)

The optimal frequency ratio can be found by treating the primary structure’s damping ratio
as zero. Compared with the prior one, where the damping of the fundamental structure is
not regarded as zero, it now has different physical features. Figure 4 displays a graph that
is created using Eq. (24) to pinpoint the precise changes. κb defines the frequency ratio of
the absorber. This means that each damper’s damping ratio has the same physical properties
as those displayed in Fig. 5. The numerical values of the damping ratio undergo significant
modifications when the structural damping ratio is not included in the closed-form expression.
A sufficient damping ratio can be achieved for these suggested dampers without using the
greater value of the damping ratio of the primary structure. If the primary structure’s damping
ratio, or ξs = 0, is not considered when doing the H2 optimization procedure, it will be easy
to attain robust performance from the suggested dampers. Figure 6 illustrates the variations
in the ideal damping ratio values for the isolators when non-zero and zero structure damping
are considered. In particular, the damper’s damping ratio degrades rapidly, which raises the
possibility of higher production costs when the primary structure’s damping ratio is considered
during the optimization procedure. To achieve the robust performance from H2 optimized
design parameters, i.e., ξb and κb, including the damping ratio of the structure, i.e., ξs 6= 0, and
to properly tune the damper with the primary structure, the damping ratio of the structure
needs to be set to 0.2. This value is higher and may increase the manufacturing cost. The
damping of the SDOF system is considered 0, i.e., ξs = 0 (see Fig. 5). The damping ratio
variations for DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs with respect to the damper
mass ratio are specifically displayed in Figs. 5(a), 5(b), 5(c), and 5(d). The damper damping
ratio is a function of the variable damper mass ratio. For the standard mass damper with a tuned
damping amplifier, the damping ratio progressively rises with the damping amplifier angle and
falls with each increment of the damper mass ratio. The CDAFVAs with the primary damping
amplifier angle exhibit the same properties. The value of the secondary damping amplifier angle
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is 64◦. In addition, like ordinary and compound vibration absorbers, the physical characteristics
of the damping ratio of the NDAFVAs are the same. Three amplifier angles affect the damping
ratio of the TMD, i.e., primary, secondary, and tertiary. The secondary and tertiary angles
are kept constant for this graph. Compared with the other three dampers, the characteristics
of the LDAFVAs are slightly different in terms of applying the minimum lever arm ratio. To
maintain the simplicity in the design, the value of b1/a1 is kept constant, i.e., b1/a1 = 1.0. The
value of b2/a2 varies from 1 to 3. The optimal damping ratio is drastically lowered for a higher
value of the b2/a2 ratio, which is unsuitable for these novel dampers. Therefore, a lower value
of b2/a2 is required to optimally design the LDAFVAs to achieve a robust vibration reduction
capacity from it.
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Fig. 5 Variations in the optimal damping ratio of the (a) DAFVA, (b) CDAFVA, (c) NDAFVA, and
(d) LDAFVA as a function of the mass ratio of the damper (color online)

2.2 H∞ optimization
Now, the controlled SDOF system is subjected to harmonic excitation. Therefore, H∞ opti-

mization is applicable. Equation (10) is non-dimensionalized in order to apply this optimization
method,

(
2iκξs + 1− κ2 −2iµdκbκξbϑ− µdκ2

b

−µdκ2 2iµdκbκξbϑ + µdκ2
b − µdκ2

)(
Us

Ud

)
= −

(
1
µd

)
Ug

ν2
s

. (27)

κ (= ω/νs) defines the excitation frequency ratio. The displacement of the SDOF system is
derived as

H̃s =
(Us

Ug

)
ν2
s =

µdκ2
b − κ2 + κ2

b + i(2µdκbκξbϑ + 2κξbκbϑ)
∆̃f

. (28)
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Fig. 6 Variations in the optimal damping ratio of the DAFVAs as a function of the mass ratio of
the damper may be observed when the damping ratio of the primary structure is considered
to be non-zero and zero, i.e., ξs 6= 0 and ξs = 0. Equations (19) and (25) are applied to
obtain this graph. The damping ratio of the primary structure is 0.20, i.e., ξs = 0.20, for
Eq. (19). The values of the damping amplifier angles for both optimal closed-form solutions
are considered the same, i.e., φ = 30o, to maintain a fair comparison between them and to
locate the exact changes in their physical characteristics. The transition between the primary
structure’s damping ratio and the optimal damping ratio of the TMD for its robust design,
as well as the requirement for its presence in the optimal closed-form solutions, is evaluated
using this graph (color online)

The displacement of the damper is derived as

H̃d =
(Ud

Ug

)
ν2
s =

2iκξs + 1
∆̃f

. (29)

The denominator of Eqs. (28) and (29) is obtained as

∆̃f =4κ2ξbξsκbϑ + κ2µdκ2
b − κ4 + κ2κ2

b + κ2 − κ2
b

+ i(2κ3µdξbκbϑ + 2κ3ξbκbϑ + 2κ3ξs − 2κξbκbϑ− 2κξsκ
2
b). (30)

The resultant of Eqs. (28) and (30) is written as

|H̃s| =
√

A2
1 + ξ2

bB2
1

C2
1 + ξ2

bD2
1

. (31)

The above equation formation is only achieved according to the H∞ optimization method/fixed
point theory when the damping ratio of the primary structure (i.e., SDOF system) is considered
zero, i.e., ξs = 0. After applying this condition to Eqs. (28) and (30), the closed-form expressions
for A1, B1, C1, and D1 are derived as

{
A1 = µdκ2

b − κ2 + κ2
b, B1 = 2κµdκbϑ + 2κκbϑ,

C1 = κ2µdκ2
b − κ4 + κ2κ2

b + κ2 − κ2
b, D1 = 2κ3µdκbϑ + 2κ3κbϑ− 2κκbϑ.

(32)

Two constraints are derived from Eq. (31) for deriving the optimal closed-form solutions for
governing system parameters of the damper.

∣∣∣A1

B1

∣∣∣
κj

=
∣∣∣ C1

D1

∣∣∣
κj

,
∣∣∣B1

D1

∣∣∣
κ1

=
∣∣∣B1

D1

∣∣∣
κ2

. (33)
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Equation (32) is substituted into the first expression of Eq. (33), yielding

(2µd + 2)κ4 + (−2µ2
dκ2

b − 4µdκ2
b − 2κ2

b − µd − 2)κ2 + 2µdκ2
b + 2κ2

b = 0. (34)

Equation (34) is written as

κ4 + (−κ2
1 − κ2

2)κ
2 + κ2

1κ
2
2 = 0. (35)

By comparing Eq. (34) with Eq. (35), the summation of the two roots, i.e., κ2
1,2, is derived as

κ2
1 + κ2

2 =
2(µd + 1)2κ2

b + µd + 2
2µd + 2

. (36)

Equation (32) is substituted into the second expression of Eq. (33), yielding

κ2
1 + κ2

2 =
2

1 + µd
. (37)

Equations (36) and (37) are equated to obtain the closed-form expression for the optimal natural
frequency of the damper and expressed as

(κb)opt =

√
2− µd

2µ2
d + 4µd + 2

. (38)

The value of each root, i.e., κ2
1 and κ2

2, is derived using Eq. (34) and Eq. (37).

κ2
1,2 =

1±
√

1− µ2
dκ2

b − 2µdκ2
b − κ2

b

µd + 1
. (39)

The closed-form expression for the optimal damping ratio of the damper is obtained by forming
an analytical equation,

∂|H̃s(κ)|2
∂κ2

∣∣∣
κ2
1,2

= 0, (ξb)opt =

√
ξ2
b1 + ξ2

b2

2
. (40)

The square of Eq. (31) is partially substituted by κ2. Accordingly, the closed-form expression
for the optimal damping ratio of the damper is derived as

P1ξ
4
b + P2ξ

2
b + P3 = 0, (ξb1,b2)2κ2

1,2
=
−P2 +

√
−4P1P3 + P 2

2

2P1
. (41)

The closed-form expressions for P1, P2, and P3 are derived as




P1 = − 32κ4
1,2κ

4
bϑ4(µd + 1)3(κ2

1,2µd + κ2
1,2 − 1),

P2 =(−16µ2
dκ2
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bϑ2 − 16κ2

bϑ2)κ8
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2
b − 2κ4

1,2 + 2κ2
1,2)((−1− µd)κ2

b + κ2
1,2)

((µd + 1)2κ4
b + ((−2µd − 2)κ2

1,2 + µd)κ2
b + κ4

1,2).

(42)
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The H∞ optimization technique is used to obtain the frequency ratio variations. These
variations are shown in Fig. 7, which is derived using Eq. (38). This graph indicates that
the ideal frequency ratio drops as the damper mass ratio increases, giving the damper more
flexibility while maintaining a high enough load-bearing capability during vibration. This kind
of parametric graph is also produced concurrently with the use of Eq. (41) and Eq. (42) for
the evaluation of the optimal damping ratio of the damper. As a result, Fig. 8 displays the
variations in each damper’s ideal damping ratio. Figures 8(a)–8(d) illustrate the variations in
the damping ratio for the DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs in relation to the
damper mass ratio. The variable damper mass ratio determines the damper’s damping ratio.
The damping ratio gradually increases with increasing damping amplifier angle and decreases
with increasing isolator mass ratio in the case of the DAFVAs. The same characteristics are
shown by the CDAFVAs with the primary damping amplifier angle. 64◦ is the value of the
secondary damping amplifier angle. Furthermore, the physical characteristics of the damping
ratio of ordinary and compound vibration absorbers are also shared by the NDAFVAs. The
primary, secondary, and tertiary amplifier angles have an impact on the damper’s damping
ratio. The tertiary and secondary angles on this graph remain constant. The features of the
LDAFVAs are marginally different from those of the other three dampers when it comes to
applying the minimal lever arm ratio. To keep the design simple, the value of b1/a1 is kept
constant, that is, b1/a1 = 1.0. The number for b2/a2 can be between 1 and 3. An increase
in the b2/a2 ratio leads to a significant decrease in the optimal damping ratio, rendering it
unfit for application as a damper. A lower value of b2/a2 is required for the ideal design of the
LDAFVAs in order to achieve a great vibration reduction capability.
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Fig. 7 Variations in the optimal frequency ratio of the dampers as a function of the mass ratio of
the damper

3 Dynamic response evaluation

The newly developed damping-amplifier base isolators and vibration absorbers are applied
to the SDOF systems to achieve their vibration reduction performance. The governing system
parameters are considered the same for all controlled SDOF systems. The harmonic excitation
is applied at the base of the controlled structures. As a result, the dynamic responses are
generated by the controlled structures. The detailed analysis of dynamic response evaluation
is illustrated in the following subsections.
3.1 Novel vibration absorbers installed in the SDOF systems

Every suggested mass damper with a tuned damping amplifier is applied at the top of the
systems with an SDOF that is excited harmonically at the base. To find out how well the
damper is reducing the vibration of the SDOF systems, the H2 optimized vibration absorbers
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Fig. 8 Variations in the optimal damping ratio of the (a) DAFVA, (b) CDAFVA, (c) NDAFVA, and
(d) LDAFVA as a function of the mass ratio of the damper (color online)

are first deployed. Tables 1 and 2 contain the governing system parameters for the H2 optimized
vibration absorbers and the SDOF systems. These optimal design parameters and the FRFs
created in the preceding sections are used to derive the optimal displacements of the controlled
SDOF systems. The optimum conventional vibration absorbers are used to estimate the superior
vibration reduction performance of the novel dampers. The conventional TMD’s controlling
system parameters are borrowed from two reputable articles. In Table 2, the paper is cited. To
conduct a fair comparison between the vibration reduction performances of the novel vibration
absorbers and the conventional vibration absorbers, the mass ratios of both are kept exactly the
same. Currently, after employing all system parameters, the differences between the frequency
ratio and the optimal displacements of the SDOF systems controlled by the H2 optimized
DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs are obtained and graphically displayed in
Figs. 9(a), 9(b), 9(c), and 9(d), respectively.

Table 1 The structural system parameter for the SDOF system

Primary structure Governing system parameter Value ξs

SDOF Damping ratio 0.01

Using the FRF, the maximum displacement response of the uncontrolled SDOF system is
likewise calculated analytically; the value achieved is 50. The SDOF systems controlled by
H2 optimized DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs yield the following maximum
displacement response: 6.476 1. Meanwhile, 8.017 7 and 7.505 5 are the maximum displacement
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Table 2 The novel and conventional TMD’s H2 optimized design parameters

System Reference
H2 optimization

κb ξb

DAFVA Present 0.940 401 0.077 313 2
CDAFVA Present 0.940 401 0.073 566 0
NDAFVA Present 0.940 401 0.077 313 2
LDAFVA Present 0.940 401 0.109 806 0

Conventional TMD1 Refs. [25] and [26] 1√
1+µ̃d

√
µ̃d
2

Conventional TMD2 Refs. [25] and [27] 1
1+µ̃d

√
2+µ̃d

2

√
µ̃d(4+3µ̃d)

8(1+µ̃d)(2+µ̃d)

Conventional TMD1: damper mass ratio (µ̃d) = 0.05; conventional TMD2: damper mass ratio (µ̃d) = 0.05;
DAFVAs: damper mass ratio (µd) = 0.05, φ = 40o; CDAFVAs: µd = 0.05, φ = 40o, θ = 64o; NDAFVAs:
µd = 0.05, φ1 = 40o, φ2 = 45o, φ3 = 45o; LDAFVAs: µd = 0.05, b1/a1 = 1, b2/a2 = 1
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responses of the systems with an SDOF that is controlled using a conventional TMD. The
vibration reduction capacities of the novel vibration absorbers are derived with respect to the
conventional TMD, and the mathematical expression for the required derivation is as follows:

Hdr =
( (Hs(κ))conventional − (Hs(κ))novel

(Hs(κ))conventional

)
× 100%, (43)

where (Hs(κ))conventional and (Hs(κ))novel define the maximum displacements of the SDOF
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system controlled by the conventional and the novel vibration absorbers, respectively. The
maximum displacement responses of the SDOF systems isolated by H2 optimized DAFVAs,
CDAFVAs, NDAFVAs, and LDAFVAs are applied to Eq. (43). Accordingly, the vibration re-
duction capacities of the DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs are 19.23% and
13.71 %, superior to the conventional vibration absorbers one and two. Similarly, this vibration
reduction capacity is derived for the H∞ novel vibration absorbers. To perform the analytical
study, the H∞ optimized design parameters for the novel vibration absorbers are derived using
Eq. (38), Eq. (39), Eq. (40), Eq. (41), and Eq. (42). The design parameters for the conventional
vibration absorbers are obtained from published journals. The details of all system parameters
for optimum novel and conventional vibration absorbers are listed in Table 3. To conduct a
fair comparison between the vibration reduction performances of the novel vibration absorbers
and the conventional vibration absorbers, the mass ratios of both are kept exactly the same.
The differences in the optimal displacements of the SDOF systems controlled by the H∞ opti-
mized DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs in relation to the frequency ratio are
now obtained and graphically presented in Figs. 10(a)–10(d) after all system parameters have
been applied. The FRF is also used to analytically determine the maximum displacement re-
sponse of the uncontrolled SDOF system, and the result is 50. The H∞ optimized DAFVAs,
CDAFVAs, NDAFVAs, and LDAFVAs controlled SDOF systems yield the following maximum
displacement responses: 6.171 2. The SDOF system controlled by the conventional vibration
absorbers yields the maximum displacement responses of 6.632 5 and 6.621 5. Using Eq. (43),
the vibration reduction capacities of the suggested vibration absorbers are calculated in relation
to the conventional vibration absorbers. As a result, the H∞ optimized DAFVAs, CDAFVAs,
NDAFVAs, and LDAFVAs are 6.95% and 6.8% more capable of reducing vibration than the
conventional vibration absorbers.

Table 3 The values of each H∞ optimized design parameter for conventional and novel vibration
absorbers

System Reference
H∞ optimization

κb ξb

DAFVA Present 0.940 401 0.095 286 4
CDAFVA Present 0.940 401 0.090 668 1
NDAFVA Present 0.940 401 0.095 286 4
LDAFVA Present 0.940 401 0.135 333 0

Conventional TMD1 Refs. [28] and [29] 1
1+µ̃d

√
3µ̃d

8(1+µ̃d)

Conventional TMD2 Ref. [30] 1
1+µ̃d

√
µ̃d

2(1+µ̃d)

Conventional TMD1: damper mass ratio (µ̃d) = 0.05; conventional TMD2: damper mass ratio (µ̃d) = 0.05;
DAFVAs: damper mass ratio (µd) = 0.05, φ = 40o; CDAFVAs: µd = 0.05, φ = 40o, θ = 64o; NDAFVAs:
µd = 0.05, φ1 = 40o, φ2 = 45o, φ3 = 45o; LDAFVAs: µd = 0.05, b1/a1 = 1, b2/a2 = 1

The additional tests are intended to validate the proposed methodology in a wider variety
of seismic excitation conditions. In order to do this, the Clough-Penzien power spectrum, a
modified variant of the well-known Kanai-Tajimi spectrum, might serve as the study’s ground
acceleration. The process is distinct since it makes use of a one-sided power spectral density,

Uüg = S0
ε4f + 4ζ2

f ε2f ω
2

(ε2f − ω2)2 + 4ζ2
f ε2f ω

2

ω4

(ε2g − ω2)2 + 4ζ2
g ε2gω

2

= S0
ε4f − 4ζ2

f ε2f q
2

(ε2f + q2)2 − 4ζ2
f ε2f q

2

q4

(ε2g + q2)2 − 4ζ2
g ε2gq

2
, (44)

where the constant power spectral density for random white noise excitation is defined by
S0, and q = iω. The well-known Kanai-Tajimi model’s filter parameters are εf for the soil
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layer’s natural frequency and ζf for the soil layer’s damping capacity. A second filter with the
parameters εg and ζg produces a limited power output for the ground displacement. The second
filter only takes into account very low range frequencies since the second quotient εg ¿ εf hits
unity very quickly. Reference [31] provides the filter parameter values for the research locations
with firm, medium, and soft soils. In this study, firm soil is considered.

The variations of optimal displacements of the SDOF systems controlled by the H2 opti-
mized DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs as a function of the frequency ratio
under the random-white excitation have been shown in Fig. 11(a). The maximum displace-
ment of the uncontrolled structure is obtained as 1.411 3 × 106 dB/Hz. The maximum dis-
placements of the structure controlled by conventional TMD1, conventional TMD2, DAFVAs,
CDAFVAs, NDAFVAs, and LDAFVAs are obtained as 1.234 8×106 dB/Hz, 1.068 6×106 dB/Hz,
8.153 8×105 dB/Hz, 9.613 7×105 dB/Hz, 8.242 5×105 dB/Hz, and 7.924 3×105 dB/Hz. Hence,
the DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs are 33.96%, 22.14%, 33.24%, and 35.82%
superior to the conventional TMDs. The variations of optimal displacements of the SDOF
systems controlled by the H∞ optimized DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs as a
function of the frequency ratio under the random-white excitation have been shown in Fig. 11(b).
The maximum displacement of the uncontrolled structure is obtained as 1.482 7 × 106 dB/Hz.
The maximum displacements of the structure controlled by conventional TMD1, conventional
TMD2, DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs are obtained as 9.063 × 105 dB/Hz,
8.912 5× 105 dB/Hz, 7.168 3× 105 dB/Hz, 7.616× 105 dB/Hz, 7.765× 105 dB/Hz, and 8.505×
105 dB/Hz. Hence, the DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs are 20.9%, 15.96%,
14.31%, and 6.15% superior to the conventional TMDs. To highlight the advantages of the
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damping amplification mechanism of the novel absorbers, a comparison is conducted with a
conventional vibration absorber containing a spring and dry friction damping[24]. The optimal
design parameters of FTMD are taken from a published paper and listed in Table 4. The total
mass of each damper is considered the same. The variations in the optimal displacements of
the SDOF systems controlled by the H2 and H∞ optimized DAFVA, CDAFVA, NDAFVA,
and LDAFVA as a function of the frequency ratio under the harmonic excitation are shown in
Figs. 12(a), 12(b), 12(c), and 12(d), respectively. α is set to 0.2. The maximum displacement of
an uncontrolled SDOF system is determined as 50. The maximum displacement of the SDOF
system controlled by the FTMD is determined as 21.191 6. The maximum displacements of
the SDOF system controlled by H2 and H∞ optimized DAFVAs are determined as 6.455 4 and
6.166 6. Accordingly, the H2 and H∞ optimized DAFVAs are 69.537 9% and 70.900 6% supe-
rior to the FTMD. The maximum displacements of the SDOF system controlled by H2 and
H∞ optimized CDAFVAs are determined as 6.455 4 and 6.166 6. Accordingly, the H2 and H∞
optimized CDAFVAs are 69.537 9% and 70.900 6% superior to the FTMD. The maximum dis-
placements of the SDOF system controlled by H2 and H∞ optimized NDAFVAs are determined
as 6.455 4 and 6.166 6. Accordingly, the H2 and H∞ optimized NDAFVAs are 69.537 9% and
70.900 6% superior to the FTMD. The maximum displacements of the SDOF system controlled
by H2 and H∞ optimized LDAFVAs are determined as 6.455 4 and 6.166 6. Accordingly, the
H2 and H∞ optimized LDAFVAs are 69.537 8% and 70.900 7% superior to the FTMD.
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Table 4 The optimal design parameters of FTMD

System Reference
Optimal parameter

κb ξb

FTMD Ref. [24] 1 0.029 1

The random excitation is applied at the base of the controlled structures to simulate real-
world dynamic loads, such as seismic ground motion and environmental vibrations. This ap-
proach helps assess the effectiveness of control strategies in mitigating structural responses
under uncertain and unpredictable loading conditions. The variations in the optimal displace-
ments of the SDOF systems controlled by the H2 and H∞ optimized DAFVAs, CDAFVAs,
NDAFVAs, and LDAFVAs as a function of the frequency ratio under the random excitation
are shown in Figs. 13(a), 13(b), 13(c), and 13(d). The maximum displacement of an uncon-
trolled SDOF system is determined as 3.261 7× 107 dB/Hz. The maximum displacement of the
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frequency ratio under the harmonic excitation (color online)

SDOF system controlled by the FTMD is determined as 6.249 7 × 106 dB/Hz. The maximum
displacements of the SDOF system controlled by H2 and H∞ optimized DAFVAs are deter-
mined as 5.711 5×105 dB/Hz and 5.637 7×105 dB/Hz. Accordingly, the H2 and H∞ optimized
DAFVAs are 90.861 1% and 90.979 2% superior to the FTMD. The maximum displacement of
the SDOF system controlled by the FTMD is determined as 6.081 7×106 dB/Hz. The maximum
displacements of the SDOF system controlled by H2 and H∞ optimized CDAFVAs are deter-
mined as 6.564 8× 105 dB/Hz and 5.402× 105 dB/Hz. Accordingly, the H2 and H∞ optimized
CDAFVAs are 89.205 8% and 91.117 7% superior to the FTMD. The maximum displacement
of the SDOF system controlled by the FTMD is determined as 6.602 8 × 106 dB/Hz. The
maximum displacements of the SDOF system controlled by H2 and H∞ optimized NDAFVAs
are determined as 6.034 9× 105 dB/Hz and 5.503 5× 105 dB/Hz. Accordingly, the H2 and H∞
optimized NDAFVAs are 90.860 1% and 91.664 9% superior to the FTMD. The maximum dis-
placement of the SDOF system controlled by the FTMD is determined as 6.128 6× 106 dB/Hz.
The maximum displacements of the SDOF system controlled by H2 and H∞ optimized LDAF-
VAs are determined as 5.816 8× 105 dB/Hz and 5.144 8× 105 dB/Hz. Accordingly, the H2 and
H∞ optimized LDAFVAs are 90.508 8% and 91.605 3% superior to the FTMD. Figures 14(a),
14(b), 14(c), and 14(d) illustrate the variations in optimal displacements of SDOF systems
controlled by different absorber configurations: DAFVA, CDAFVA, NDAFVA, and LDAFVA.

The structural displacement is plotted against the frequency ratio, revealing how different
parameter choices influence vibration mitigation. In DAFVA, CDAFVA, and NDAFVA, in-
creasing φ and φ1 generally reduces the resonance peak, with φ = 40◦ and φ1 = 40◦ showing
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Fig. 13 Variations in the optimal displacements of the SDOF systems controlled by the (a) H2

and (b) H∞ optimized DAFVA, CDAFVA, NDAFVA, and LDAFVA as a function of the
frequency ratio of the random excitation (color online)

the most effective suppression. LDAFVA, on the other hand, is analyzed for different values of
L2, where lower values significantly dampen the peak displacement, demonstrating its superior
ability to mitigate vibrations. Comparatively, LDAFVA exhibits the most effective perfor-
mance in resonance suppression, followed by NDAFVA and CDAFVA, while DAFVA shows the
highest peak, indicating lower efficiency. Overall, the results emphasize the importance of pa-
rameter tuning, where increasing φ, φ1, and decreasing L2 enhance the absorber’s effectiveness
in reducing structural vibrations.

4 Summary and conclusions

The paper introduces and analyzes a novel class of DAFVAs to enhance vibration mitiga-
tion in structural systems. Using H2 and H∞ optimization approaches, closed-form analytical
solutions for optimal design parameters are derived, and their effectiveness is verified through
numerical simulations. The results demonstrate that the proposed absorbers significantly out-
perform conventional FTMDs and traditional TMDs, achieving superior vibration reduction
while maintaining robustness across various dynamic conditions. The paper introduces an in-
novative vibration control mechanism by integrating damping amplification into friction-based
vibration absorbers, offering a significant advancement over conventional TMDs. The study
introduces a key innovation by incorporating damping amplifiers into conventional vibration
absorbers, which fundamentally enhances their energy dissipation capacity. The distinct nov-
elty of our approach is as follows:
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(i) Nonlinear damping amplification: unlike traditional Voigt-type dynamic vibration ab-
sorbers, which rely on increasing both static damping and mass to enhance vibration attenu-
ation, our proposed absorbers leverage damping amplification mechanisms to achieve superior
performances without such increases. Conventional Voigt-type dynamic vibration absorbers
exhibit limited vibration reduction capacity when static damping remains low, often neces-
sitating multiple absorbers to achieve effective mitigation. In contrast, our novel absorbers
efficiently enhance vibration attenuation through amplified damping effects, enabling a single
unit to provide robust vibration control while maintaining a compact and efficient design.

(ii) Multiple configurations for enhanced performance: the four proposed absorbers, i.e.,
DAFVAs, CDAFVAs, NDAFVAs, and LDAFVAs utilize distinct amplification strategies, each
tailored to optimize vibration reduction performance. These configurations introduce varying
degrees of frequency tuning and damping enhancement, allowing for greater adaptability to
different structural requirements. By leveraging unique damping amplification mechanisms,
each design provides a tailored approach to improving vibration mitigation efficiency beyond
conventional absorbers.

(iii) Closed-form optimized design: unlike traditional dynamic vibration absorbers, which
rely on empirical tuning, our approach derives closed-form analytical expressions for optimal
damping and stiffness parameters using H2 and H∞ optimization techniques. These formula-
tions enable precise tuning, ensuring optimal vibration suppression across both harmonic and
random excitations. By providing mathematically rigorous design parameters, our method
enhances performance predictability and efficiency, eliminating the trial-and-error approach
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commonly associated with conventional absorbers.
(iv) Superior vibration reduction performance: the effectiveness of our proposed designs

is rigorously validated through comprehensive analytical and numerical studies, demonstrat-
ing a substantial improvement over conventional TMDs. Specifically, our optimized absorbers
achieve 91.605 3% greater vibration attenuation compared with the best-performing conven-
tional FTMD, highlighting their enhanced efficiency and robustness in mitigating structural
vibrations.

(v) Nonlinear frictional damping contribution: our proposed absorbers utilize a frictional ele-
ment to generate nonlinear frictional forces, enhancing vibration attenuation through controlled
energy dissipation. This nonlinear damping mechanism significantly improves performance un-
der broadband excitations, enabling superior vibration reduction compared with conventional
absorbers that rely solely on linear damping. By effectively leveraging frictional damping, our
design achieves optimal vibration control while maintaining structural efficiency.

In summary, while the fundamental layout of a vibration absorber remains, this study con-
tributes significantly by incorporating damping amplification mechanisms, providing closed-
form optimal design solutions, and demonstrating superior vibration reduction capabilities.
The proposed DAFVAs offer a transformative approach to structural vibration control, po-
tentially reducing material costs, improving structural resilience, and extending the lifespan
of engineering structures. Their adaptability to different vibration conditions makes them a
viable alternative to conventional TMDs, bridging the gap between theoretical advancements
and real-world applications in infrastructure. The future work will involve prototype fabrica-
tion, experimental testing, and comparison with the theoretical and numerical results to further
confirm the effectiveness of the proposed method.
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