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 A B S T R A C T

Random eigenmodes present a significant challenge in the analysis of uncertain dynamical systems, particularly 
when traditional Monte Carlo methods become computationally prohibitive for high-dimensional problems. 
While Polynomial Chaos Expansion (PCE) offers a promising alternative, the choice between intrusive (physics-
based) and non-intrusive (data-driven) implementations remains a critical yet understudied decision. This paper 
presents the first comprehensive comparison of these PCE approaches for random eigenmode computation, 
examining their theoretical foundations, implementation complexities, and computational efficiency. Through 
systematic analysis of a three-degree-of-freedom system with varying uncertainty parameters, we demonstrate 
that intrusive PCE achieves superior accuracy for low-dimensional problems, while non-intrusive PCE shows 
better scalability for higher-dimensional systems. Our findings reveal a previously undocumented trade-off 
between implementation complexity and computational efficiency, establishing clear criteria for approach 
selection based on problem dimensionality and accuracy requirements. These insights extend beyond modal 
analysis to the broader field of uncertainty quantification in computational mechanics, providing practical 
guidelines for selecting optimal PCE strategies in various engineering applications. The methodological 
framework presented here opens new possibilities for efficient uncertainty analysis in large-scale dynamical 
systems.
1. Introduction

The main objective of this work is to determine the random modes 
of a dynamical system whose parameters can be described by random 
variables. The random eigenproblem is studied non only in applied 
mathematics [1–3] but also in structural dynamics [4–11]. Indeed, the 
response of a random dynamical system can be calculated from the 
random eigenmodes either in the frequency domains [9] or in the time 
domain [12].

Direct Monte Carlo simulation (D-MCS) is the simplest method 
to describe a random quantity. D-MCS consists in providing samples 
of the eigenmodes: statistics are drawn from the samples. However, 
estimating the probability density function (pdf) of the eigenmodes re-
quires a very large number of samples. The large number of simulation 
combined with the fact that the cost of solving an eigenproblem is 
𝑂(𝑛3) indicates that the numerical cost may be very high when the dof 
number if large. However, D-MCS is often considered as the reference 
method because the convergence is guaranteed.

An alternative to D-MCS is to identify metamodels with which 
it is possible to perform a very quick Monte Carlo simulation. The 
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work by Ghanem and Spanos [13] on Polynomial chaos expansion 
has provided a frame to study random systems: it is based on the 
seminal work by Wiener [14] and PCE became very popular and has 
been studied extensively since. In particular, PCE was applied to solve 
random eigenproblems [7,15–17]. Zheng et al. [18] used an expansion 
similar to the PCE to solve the random eigenproblem. Zhang et al. [11] 
proposed to describe the random eigenmodes by a homotopy series to 
obtain the statistical moments. The method is intrusive and excellent 
results were obtained.

Several methods emerged to determine the PCE coefficients. They 
are mainly divided in two categories: the intrusive and the non intru-
sive approaches [19]. They are very different as one is close to the 
physics of the problem whereas the other is based on data. Therefore, it 
seems interesting to compare both approaches, which has rarely been 
done [20]. This is the objective of this study.

The paper is organized as follows. A general random dynamical 
system is described in section Section 2. Then the polynomial chaos 
expansion is presented in Section 3. Section 4 presents the random 
modes estimated with a PCE; Section 5 explains the intrusive approach 
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whereas Section 6 presents the non-intrusive approach. A comparison 
between both approaches is illustrated with a random 3-degree-of-
freedom (dof) systems in Section 7: two cases of uncertainties are 
investigated.

2. Random dynamical system

A linear random 𝑁-dof dynamical system is investigated. It is 
characterized by the mass, stiffness, and damping matrices (𝐌, 𝐊, and 
𝐃), which depend on an 𝑟-element uncertain parameter vector, Ξ. The 
dynamical response, 𝐗(𝑡,Ξ) ∈ IR𝑁 , is then the solution of the system 

𝐌̃(Ξ)𝐗̈(𝑡,Ξ) + 𝐃̃(Ξ) 𝐗̇(𝑡,Ξ) + 𝐊̃(Ξ) 𝐗(𝑡,Ξ) = 𝐅(𝑡) (1)

The uncertain matrices are written as

𝐌̃(Ξ) = 𝐌0 +
𝑟
∑

𝑖=1
𝜉𝑖𝐌𝑖 =

𝑟
∑

𝑖=0
𝜉𝑖𝐌𝑖 (2)

𝐊̃(Ξ) = 𝐊0 +
𝑟
∑

𝑖=1
𝜉𝑖𝐊𝑖 =

𝑟
∑

𝑖=0
𝜉𝑖𝐊𝑖 (3)

𝐃̃(Ξ) = 𝐃0 +
𝑟
∑

𝑖=1
𝜉𝑖𝐃𝑖 =

𝑟
∑

𝑖=0
𝜉𝑖𝐃𝑖 (4)

where 𝜉0 = 1 and 𝜉𝑖>0 represents the 𝑖th uncertain parameter with zero 
mean and is the 𝑖th element of random vector Ξ. The related so-called 
deterministic dynamical system is characterized by the mean matrices 
(𝐌0, 𝐊0, and 𝐃0).

3. Polynomial chaos

A polynomial chaos family, {𝛹𝐽 (𝛯)}𝐽∈N𝑟 , is a set of multivariate 
polynomials that depend on a set of random variables 𝛯 such as 

𝛹𝐽 (𝛯) =
𝑟

∏

𝑗=1
𝜓𝐽𝑗 (𝜉𝑗 ) (5)

where:

• 𝐽 is a multi-index 𝐽 = (𝐽1,… , 𝐽𝑟); |𝐽 | =
∑𝑟
𝑖=1 𝐽𝑖 is the degree of 

polynomial 𝛹𝐽 ;
• {𝜓𝐽𝑗 (𝜉𝑗 )}𝐽𝑗∈IN is a family of orthogonal polynomials with respect 
to a density measure 𝑝𝜉𝑗 (𝜉𝑗 ) and defined over a domain  (e.g. see 
Table  C.2);

• 𝐽𝑗 is the degree of 𝜓𝐽𝑗 (𝜉𝑗 ).

The choice of the 𝑗th family {𝜓𝐽𝑗 }𝐽  is related to the probability 
distribution of 𝜉𝑗 (e.g., Legendre polynomial if 𝜉𝑗 has a uniform distribu-
tion): if the random variables follow a different statistical law, different 
families of PC are used. In the following the polynomials are normalized 
with respect to their probability distribution: 

∫
𝜓𝐽𝑗 (𝜉𝑗 ) 𝜓𝐾𝑗 (𝜉𝑗 ) 𝑝𝜉𝑗 (𝜉𝑗 ) d𝜉𝑗 = 𝛿𝐽𝑗 ,𝐾𝑗 (6)

The polynomial chaos expansion (PCE) of a random variable 𝐱(𝑡, 𝛯)
is: 

𝐱(𝑡, 𝛯) =
∑

𝐽∈N𝑟
𝐘𝐽 (𝑡)𝛹𝐽 (𝛯) (7)

where 𝑡 represents the time. A similar expansion can be done for a 
frequency-dependent variable. In practice, the expansion is truncated so 
that the sum of the elements of 𝐽 is less or equal to a fixed polynomial 
degree 𝑑, which is called the PCE degree. 

𝐱(𝑡, 𝛯) ≃ 𝐱𝑑 (𝑡, 𝛯) =
𝑟
∑

𝐽∈N𝑟
|𝐽 |≤𝑑

𝐘𝐽 (𝑡)𝛹𝐽 (𝛯) (8)

In the following, 𝑑 is dropped to simplify the notations.
2 
An alternative of the previous notation is [21] 

𝐱(𝑡, 𝛯) =
𝑃
∑

𝑝=0
𝐘𝑝(𝑡)𝛹𝑝(𝛯) (9)

where 𝑃 + 1 is the PCE total number of terms. An usual rule is that 
if 𝑝 < 𝑞, then the degree of 𝛹𝑝(𝛯) is lower or equal to the degree of 
𝛹𝑞(𝛯) and the truncation is such that all the polynomials whose degree 
is lower or equal to the maximal degree are included in the expansion.

According to the rule, when Hermite and Legendre polynomials are 
involved, the PC of degree 0 and 1 are:

𝛹0(𝛯) = 1 (10)

∀𝑖 ∈ {1,… , 𝑟}, 𝛹𝑖(𝛯) = 1𝑖 × 𝜉𝑖 (11)

Constant 1𝑖 can be found in C.2.
One notation may be preferred to the other one, depending on the 

context.

4. Response of a dynamical system with random modes

A natural way to obtain the response of a deterministic 𝑁-dof linear 
dynamical system is to expand the solution on the eigenvectors 

𝐗(𝑡) =
𝑁
∑

𝑘=1
𝑞𝑘(𝑡) 𝝓𝑘 (12)

where 𝝓𝑘 is a deterministic eigenvector and 𝑞𝑘 defines the deterministic 
modal coordinate for the 𝑘th eigenvector.

The mass and stiffness matrices are random so the eigenmodes, 
denoted as {𝜔̃𝑘, 𝝓̃

𝑘
}, are random as well. The random eigenproblem 

is formulated as 
(

𝐊̃ − 𝜔̃2
𝑘 𝐌̃

)

𝝓̃
𝑘

= 0 (13)

It means that each realization of the stiffness and mass matrices gives 
a realization of the random modes.

The random eigenmodes can be determined with a Monte Carlo 
simulation (MCS) from a large number of realizations of mass and 
stiffness matrices: statistics may be evaluated from the random mode 
samples. They can also be determined with a surrogate model such as 
a PCE, from which it is very quick to obtain a large number of random 
mode samples.

The frequency response function (FRF) of the system, 𝐻̃(𝜔), can be 
determined from the random modes 

𝐻̃(𝜔) =
[𝝓̃] 𝑇 [𝝓̃]

𝑚̃𝑛(−𝜔2 + 2𝜂𝑛 𝜔̃𝑛𝜔 + 𝜔̃2
𝑛)

(14)

where 𝜂𝑛 (resp. 𝑚̃𝑛) is the damping ratio (resp. the generalized modal 
mass) of mode 𝑛.

5. Random modes: intrusive PCE approach

The random modes can be expanded as follows [4,22]

𝜔̃2
𝑘(Ξ) = 𝜔2

𝑘

( 𝑃
∑

𝑝=0
𝑎𝑘𝑝 𝛹𝑝(Ξ)

)

(15)

𝝓̃
𝑘
(Ξ) =

𝑁
∑

𝑛=1
𝑌 𝑘𝑛 𝝓𝑛 =

𝑁
∑

𝑛=1

( 𝑃
∑

𝑝=0
𝑌 𝑘𝑝𝑛 𝛹𝑝(Ξ)

)

𝝓𝑛 (16)

where (𝜔𝑛, 𝝓𝑛) denotes the 𝑛-eigenmode of the deterministic system, 
defined in Section 2.

{𝑎𝑘𝑝 , {𝑌
𝑘
𝑝𝑛}𝑛=1⋯𝑁}𝑝=0⋯𝑃  are the PC coefficients related to the PCE of 

random mode 𝑘.
Further the following mass normalization is applied 

𝑇𝝓𝑘 𝑇 𝐌 𝝓̃
𝑘

= 1 (17)
0
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where 𝐌0 is the mean mass matrix and 𝑇 ∙ stands for the transpose 
matrix. As a consequence 
𝑌 𝑘𝑘 = 1 (18)

Then Eq. (16) becomes 

𝝓̃
𝑘
= 𝝓𝑘 +

𝑁
∑

𝑛=1
𝑛≠𝑘

𝑃
∑

𝑝=0
𝑌 𝑘𝑝𝑛 𝛹𝑝(Ξ) 𝝓𝑛 (19)

Eqs. (15) and (19) show that the PCE of random mode 𝑘 requires 
𝑁 × (𝑃 + 1) unknowns. Projecting the eigenproblem (13) on each 
deterministic eigenmode {𝝓𝑘𝑛}𝑛=1⋯𝑁  and each PC {𝛹𝑝(Ξ)}𝑝=0⋯𝑃  gives 
the 𝑁 × (𝑃 + 1) equations.

Substituting Eqs. (2), (3), (15), (19) in Eq. (13) relates all the 
unknown coefficients of eigenmode 𝑘
(

(
𝑟
∑

𝑖=0
𝜉𝑖𝐊𝑖) − (𝜔2

𝑘 (
𝑃
∑

𝑝=0
𝑎𝑘𝑝 𝛹𝑝(Ξ))) (

𝑟
∑

𝑖=0
𝜉𝑖𝐌𝑖)

)

×

⎛

⎜

⎜

⎜

⎝

𝝓𝑘 +
𝑁
∑

𝑛=1
𝑛≠𝑘

𝑃
∑

𝑝=0
𝑌 𝑘𝑝𝑛 𝛹𝑝(Ξ) 𝝓𝑛

⎞

⎟

⎟

⎟

⎠

= 0 (20)

Expanding the product gives
𝑟
∑

𝑖=0
𝜉𝑖𝐊𝑖𝝓𝑘 +

𝑟
∑

𝑖=0

𝑁
∑

𝑛=1
𝑛≠𝑘

𝑃
∑

𝑝=0
𝑌 𝑘𝑝𝑛 𝜉𝑖𝛹𝑝(Ξ) 𝐊𝑖𝝓𝑛

−𝜔2
𝑘

𝑟
∑

𝑖=0

𝑃
∑

𝑝=0
𝑎𝑘𝑝 𝜉𝑖𝛹𝑝(Ξ) 𝐌𝑖𝝓𝑘

−𝜔2
𝑘

𝑟
∑

𝑖=0

𝑁
∑

𝑛=1
𝑛≠𝑘

𝑃
∑

𝑝=0

𝑃
∑

𝑞=0
𝑎𝑘𝑝𝑌

𝑘
𝑞𝑛 𝜉𝑖𝛹𝑝(Ξ)𝛹𝑞(Ξ)𝐌𝑖𝝓𝑛 = 0 (21)

Projecting Eq. (21) on each deterministic eigenvector 𝝓𝑙 (𝑙 from 1 to 
𝑁) and each PC 𝛹𝑚(Ξ) (𝑚 from 0 to 𝑃 ) gives the 𝑁 × (𝑃 +1) equations 
of the nonlinear system to be solved to obtain the 𝑁 × (𝑃 + 1) PCE 
coefficients (i.e. 𝑎𝑘𝑝 and 𝑌 𝑘𝑝𝑛) of random mode 𝑘. The main difficulty is 
projecting on a PC when several PCs are involved. As a PC is a product 
of univariate polynomials, the projection on 𝛹𝐽 ′′ (Ξ) (multi-index nota-
tion) is a product of factors involving each univariate polynomial 𝜓𝐽𝑖 . 
Therefore, the following expectations must be calculated:

< 𝜓𝐽 ′′𝑖 (𝜉𝑖) > =< 𝐽 ′′
𝑖 > (22)

< 𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′′𝑖 (𝜉𝑖) > =< 𝐽𝑖 𝐽 ′′
𝑖 > (23)

< 𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖) 𝜓𝐽 ′′𝑖 (𝜉𝑖) > =< 𝐽𝑖 𝐽 ′
𝑖 𝐽

′′
𝑖 > (24)

< 𝜉𝑖 𝜓𝐽 ′′𝑖 (𝜉𝑖) > =< 𝜉𝑖 𝐽 ′′
𝑖 > (25)

< 𝜉𝑖 𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′′𝑖 (𝜉𝑖) > =< 𝜉𝑖 𝐽𝑖 𝐽 ′′
𝑖 > (26)

< 𝜉𝑖 𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖) 𝜓𝐽 ′′𝑖 (𝜉𝑖) > =< 𝜉𝑖 𝐽𝑖 𝐽 ′
𝑖 𝐽

′′
𝑖 > (27)

where < ∙ >= ∫ ∙ 𝑝𝜉 (𝜉)𝑑𝜉, 𝑝𝜉 (𝜉) is the probability density function 
related to 𝜉 and  is the domain of 𝜉; 𝜓

𝐽 ♯𝑖
(𝜉𝑖) is replaced by 𝐽 ♯𝑖  in the 

scalar products, to simplify the notation as done in Eqs. (22)–(27).
More details are given in Appendix  B.
A recurrence relation exists for orthogonal polynomial 

∀𝑛 > 0, 𝜓𝑛+1(𝜉) = (𝑎𝑛 𝜉 − 𝑏𝑛)𝜓𝑛(𝜉) + 𝑐𝑛𝜓𝑛−1(𝜉) (28)

Therefore, calculating the expectations in Eqs. (25)–(27) can be done 
from the expectations given in Eqs. (22)–(24). The first two expec-
tations are calculated easily from the orthogonality properties. For 
Hermite and Legendre polynomials, an analytic expression of expecta-
tion (24) exists. For these polynomials the recurrence relation is simpler 

𝜓𝑛+1(𝜉) = 𝑎𝑛 𝜉 𝜓𝑛(𝜉) + 𝑐𝑛𝜓𝑛−1(𝜉) (29)
3 
6. Random modes: non-intrusive PCE approach

The same kind expansion of the random modes made in the previous 
Section 5 is still used:

𝜔̃2
𝑘(Ξ) =

( 𝑃
∑

𝑝=0
𝑏𝑘𝑝 𝛹𝑝(Ξ)

)

(30)

𝝓̃
𝑘
=

𝑁
∑

𝑛=1

( 𝑃
∑

𝑝=0
𝑌 𝑘𝑝𝑛 𝛹𝑝(Ξ)

)

𝑽 𝑘
𝑛 (31)

where 𝛹𝑝(Ξ) is the 𝑝th polynomial chaos. However, 𝑽 𝑘
𝑛 is now only the 

𝑛th vector of a specific basis that may depend on the random mode, 
that is on 𝑘. The following bases can be used:

• the canonical basis [𝑽 𝑘
𝑛] = [𝑽 𝑛] = 𝐼𝑁 , where 𝐼𝑁  is the identity 

matrix of size 𝑁 ;
• the deterministic modal basis: [𝑽 𝑘

𝑛] = [𝑽 𝑛] = [𝝓𝑛]. It is the basis 
used in the intrusive approach;

• the proper orthogonal decomposition (POD) modes: for random 
mode 𝑘, the basis is derived from a sample of 𝑁𝑠𝑝𝑙 realizations 
of random modes 𝑘. As a consequence, the basis depends on 𝑘: 
[𝑽 𝑘

𝑛] = [𝑽 𝑃𝑂𝐷,𝑘
𝑛 ].

Eq. (31) can be transformed

𝝓̃
𝑘
(Ξ) =

𝑁
∑

𝑛=1

( 𝑃
∑

𝑝=0
𝑌 𝑘𝑝𝑛 𝛹𝑝(Ξ)

)

𝑽 𝑘
𝑛

=
𝑃
∑

𝑝=0
𝛹𝑝(Ξ)

( 𝑁
∑

𝑛=1
𝑽 𝑘
𝑛 𝑌

𝑘
𝑝𝑛

)

=

⎛

⎜

⎜

⎜

⎜

⎝

[𝛹0(Ξ)⋯𝛹𝑃 (Ξ)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑇 [𝛹 (Ξ)]

⊗ [𝑽 𝑘
1 ⋯𝑽 𝑘

𝑁 ]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

[𝑽 𝑘]

⎞

⎟

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑌 𝑘01
⋯
𝑌 𝑘0𝑁
𝑌 𝑘11
⋯
𝑌 𝑘𝑃𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
(𝑇 [𝛹 (Ξ)]⊗ [𝑽 𝑘]

)

[𝑌 𝑘] (32)

Vector [𝑌 𝑘] can be determined in a non-intrusive way from 𝑁𝑠𝑝𝑙

samples {𝝓̃𝑘(𝜩𝟏)⋯ 𝝓̃
𝑘
(𝜩𝐍𝐬𝐩𝐥

)} of the random eigenvectors. The solution 
is obtained by regression [23] by solving the following problem:
⎡

⎢

⎢

⎢

⎣

𝝓̃
𝑘
(𝜩𝟏)
⋯

𝝓̃
𝑘
(𝜩𝐍𝐬𝐩𝐥

)

⎤

⎥

⎥

⎥

⎦

=

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

[𝛹 (Ξ1)]⊗ [𝑽 𝑘]
⋮

[

𝛹 (Ξ𝑁𝑠𝑝𝑙 )
]

⊗ [𝑽 𝑘]

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

[

𝑌 𝑘
]

=

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

[𝑇𝛹 (Ξ1)]
⋮

[

𝑇𝛹 (Ξ𝑁𝑠𝑝𝑙 )
]

⎤

⎥

⎥

⎥

⎦

⊗ [𝑽 𝑘]

⎞

⎟

⎟

⎟

⎠

[

𝑌 𝑘
]

(33)

Problem (33) has (𝑁𝑁𝑠𝑝𝑙) equations and 𝑁(𝑃 + 1) unknowns.
Instead of solving globally system (33), it is possible to work directly 

on the elements of the eigenvectors. Indeed, the coordinates of each 
random vector can be expressed in basis 𝑽 𝑘: 

𝝓̃
𝑘
(Ξ) =

𝑁
∑

𝑛=1
𝑐𝑘𝑛 (𝛯) 𝑽

𝑘
𝑛 (34)

Eq. (31) gives the expansion in PC of each coordinate:

𝑐𝑘𝑛 (𝛯) =
𝑃
∑

𝑝=0
𝑌 𝑘𝑝𝑛 𝛹𝑝(Ξ) = [𝛹1(Ξ)⋯𝛹𝑃 (Ξ)]

⎡

⎢

⎢

⎢

⎢

⎣

𝑌 𝑘0𝑛
𝑌 𝑘1𝑛
⋯
𝑌 𝑘𝑃𝑛

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑇 [𝛹 (Ξ)]

⎡

⎢

⎢

⎢

⎢

𝑌 𝑘0𝑛
𝑌 𝑘1𝑛
⋯
𝑘

⎤

⎥

⎥

⎥

⎥

(35)
⎣

𝑌𝑃𝑛 ⎦
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Fig. 1. 3-dof system with random coefficients.

It is also possible to identify directly each coordinate (35) of each 
eigenvector: 

⎡

⎢

⎢

⎣

𝑐𝑘𝑛 (𝜩𝟏)
⋯

𝑐𝑘𝑛 (𝜩𝐍𝐬𝐩𝐥
)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑇 [𝛹 (Ξ1)]
⋮

𝑇
[

𝛹 (Ξ𝑁𝑠𝑝𝑙 )
]

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑌 𝑘0𝑛
𝑌 𝑘1𝑛
⋯
𝑌 𝑘𝑃𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(36)

Problem (36) has 𝑁𝑠𝑝𝑙 equations and (𝑃 + 1) unknowns. Therefore, it 
has 𝑁 times less equations than problem (33), but this problem must 
be solved 𝑁 times. It seems interesting to solve both problems to assess 
not only the accuracy of the prediction, but also the CPU time to solve 
both problems.

𝑐𝑘𝑛 (𝜩𝒋) can be obtained as follows:

• 𝑽 𝑘 is the canonical basis

𝑐𝑘𝑛 (𝜩𝒋) = 𝝓̃
𝑘
𝑛(𝜩𝒋)

• 𝑽 𝑘 is the deterministic modal basis

𝑐𝑘𝑛 (𝜩𝒋) =
𝑇𝝓𝑛 𝑀𝑑𝑒𝑡 𝝓̃

𝑘
(𝜩𝒋)

𝑀𝑚𝑜𝑑 𝑛

• 𝑽 𝑘 is the POD modes

𝑐𝑘𝑛 (𝜩𝒋) = 𝑇 𝑽 𝑃𝑂𝐷,𝑘
𝑛 𝝓̃

𝑘
(𝜩𝒋)

It is possible to identify the elements of [𝑌 𝑘] with 𝑁𝑠𝑝𝑙 < (𝑃 + 1)𝑁 , 
considering a sparse PCE: the LARS method is used in [24] and the 
automatic relevance determination (ARD) coupled to the variational 
Bayesian method (VBA), ARD-VBA, is considered in [25]:  the latter 
method was used in this paper.

Determining the random eigenmodes with a non intrusive methods 
rely on 𝑁𝑠𝑝𝑙 samples of the random modes, which are calculated with a 
MCS. However, it is impossible to guess the right number 𝑁𝑠𝑝𝑙. There-
fore, an adaptive procedure is required to increase both the number of 
samples and the PCE degree until meeting a criterion, which may be a 
leave-one-out (LOO) error [24,25].

It is also required to split the samples in two sets: the sample used 
to identified the PCE coefficients (𝑁𝑖𝑑) and the ones used to assess the 
quality of the PCE to predict the results (𝑁𝑣𝑎𝑙): a relative error between 
the MCS and PCE results is calculated and must be below a threshold 
to validate the PCE.

7. Three degree-of-freedom system with several uncertain param-
eters

The 3-dof system shown in Fig.  1 and already used in [10] is studied. 
The 3 masses and the 6 stiffnesses are random:

∀𝑖 ∈ {1, 2, 3}, 𝑚𝑖 = 𝑚𝑖 (1 + 𝛿𝑀 𝜉𝑖) (37)

∀𝑖 ∈ {1,… , 6}, 𝑘𝑖 = 𝑘𝑖 (1 + 𝛿𝐾 𝜉𝑖+3) (38)

where the 𝜉  are 9 standard random variables (see Table  1).
𝑖

4 
The deterministic eigenmodes are

𝜔1 = 1 rad/s, 𝝓1 =
⎡

⎢

⎢

⎣

1
1
1

⎤

⎥

⎥

⎦

𝜔2 = 2 rad/s, 𝝓2 =
⎡

⎢

⎢

⎣

1
−2
1

⎤

⎥

⎥

⎦

𝜔3 = 3 rad/s 𝝓3 =
⎡

⎢

⎢

⎣

1
0
−1

⎤

⎥

⎥

⎦

(39)

The deterministic modes are normalized such as the first element of 
each vector equals 1. For comparison purposes, the random mode 
samples will be normalized in the same way.

The direct Monte Carlo method was applied for 10 000 samples. 
The samples of the eigenmodes and the FRF were calculated. It was 
then possible to have an estimation of the statistics of the output data.

I-PCE and NI-PCE metamodels of the random eigenmodes and the 
random FRF were also calculated for the two approaches for several 
degrees and, for the non-intrusive approach, several numbers of sam-
ples used to identified NI-PCE. A MCS was carried out with the PCE 
metamodels for the same 𝑁𝑠𝑝𝑙=10 000 samples used with the direct 
MCS. Therefore, it was possible to calculate for each sample the error 
based on Frobenius norm (‖ ∙ ‖𝐹 ) between the reference method (MCS 
or exact solution) and the PCE estimation for all the output data: 

data =
‖data𝑅𝑒𝑓 − data𝑃𝐶𝐸‖𝐹

‖data𝑅𝑒𝑓‖𝐹
(40)

The error will be calculated for the eigenfrequencies, the eigenvectors, 
but also for the FRF to have a quantity that depends on all the 
eigenmodes. FRFs are calculated for 𝑛𝑓 = 100 frequency values in the 
frequency range [0 5] rad/s: data is calculated over the 𝑁𝑠𝑝𝑙 samples 
and over the 𝑛𝑓  frequency values.

In the following two cases are addressed depending on the uncertain 
parameter number.

7.1. Case 1: 2 uncertain parameters

The random masses are described by one uncertain parameter 𝜉1
(𝜉1 = 𝜉2 = 𝜉3), and the random stiffnesses by another uncertain 
parameter, 𝜉4 (𝜉4 = 𝜉5 = 𝜉6 = 𝜉7 = 𝜉8 = 𝜉9):

∀𝑖 ∈ {1,… , 3}, 𝑚𝑖 = 𝑚𝑖(1 + 𝛿𝑀 𝜉1)

∀𝑖 ∈ {1,… , 6}, 𝑘𝑖 = 𝑘𝑖(1 + 𝛿𝐾 𝜉4)

with 𝜉1 and 𝜉4 are uniform independent random variables over the 
interval [−1, 1].

It means that the random matrices are proportional to the mean 
matrices:

𝐌̃(𝛯) = (1 + 𝛿𝑀 𝜉1) 𝐌0

𝐊̃(𝛯) = (1 + 𝛿𝐾 𝜉4) 𝐊0

The random modes have an analytical solution

𝝓̃
𝑘
= 𝝓𝑘 (41)

𝜔̃2
𝑘 = 𝜔2

𝑘
1 + 𝛿𝐾 𝜉4
1 + 𝛿𝑀 𝜉1

(42)

It turns out that both PCE approaches are able to identify the exact 
random eigenvectors, that are equal to the deterministic eigenvec-
tors. However, it is not possible to obtain the exact random squared 
eigenfrequencies as they are rational functions.

The error for the squared eigenfrequencies is calculated between 
10 000 samples evaluated with the exact solution and the estimation 
obtained by the PCE metamodels. Several PCE metamodels were ob-
tained depending on the PCE degree and also on the number of samples 
used to identify the PCE for NI-PCE metamodel, 𝑁𝑠𝑝𝑙. The results are 
plotted in Fig.  2: the dashed black line gives the results for I-PCE 
approach, and the coloured lines for NI-PCE approach, for 𝑁𝑠𝑝𝑙 equals 
to 20, 50, 100, 200, 1000; the error on the eigenfrequencies is the same 
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Table 1
3-dof system characteristics.
 𝑘𝑖=1,…,5 (Nm−1) 𝑘6 (Nm−1) 𝑚𝑖=1,2,3 (kg) 𝛿𝐾 (%) 𝛿𝑀 (%) 
 1 3.5 1 15 15  
Fig. 2. 3-dof system with 2 random parameters: 𝜔2  comparison - dashed black line: I-PCE; solid coloured lines with markers: mean of sparse NI-PCE errors; coloured area: 
envelope of NI-PCE errors.
whatever the mode. In addition, to study the influence of the sample 
set, for each 𝑁𝑠𝑝𝑙 and for each PC degree, NI-PCE was identified with 20 
different sets to see the robustness of the identification process. In Fig. 
2, the coloured area delimits the minimum and the maximum of the 20 
errors obtained with 20 NI-PCE, while the solid coloured line with the 
markers represents the mean error over the 20 repetitions: the larger 
the area, the more critical the choice of sample set. 

Fig.  2 shows that the error depends on the PCE degree for I-PCE: 
the error decreases quickly when the degree increases.

First, for NI-PCE the influence of 𝑁𝑠𝑝𝑙 on accuracy is noticeable: by 
increasing the number of samples from 20 to 1000, the error is divided 
by 100. Second, the error is not monotonic with the PCE degree: it 
seems that up to 𝑁𝑠𝑝𝑙=200, a PCE of degree greater than 3 does not 
give better results than a PCE of degree 3. This is common when a 
sparse PCE is identified: it exists an optimal PCE degree. However, if 
the number of samples is increased a lot (𝑁𝑠𝑝𝑙 = 1000), the error is 
decreased by using a PCE of degree 5. Third, the influence of the sample 
set is strong when 𝑁𝑠𝑝𝑙=20 is used, as shown by a quite large coloured 
area; however, the area decreases when 𝑁𝑠𝑝𝑙 increases and is almost 
reduced to the mean line when 𝑁𝑠𝑝𝑙 is greater or equal to 200. This 
highlights that the uncertain parameter space must be described by 
the samples well. This means that a minimum number of samples is 
required not only for the accuracy but also for the robustness of the 
identification process. 

The approximation given by the sparse NI-PCE is excellent even 
with a PCE degree equal to one. This is confirmed by Fig.  3 where the 
pdfs (PCE degree equals to 3; 𝑁𝑠𝑝𝑙 = 200) of the eigenfrequencies were 
plotted: in both PCE approaches, the curves are very close to the one 
obtained from the MCS.

The same simulations were done by using an ordinary least square 
(OLS) regression. Usually, the results lead to an overfitting and then to 
poor results. In that very specific case, it turns out that the results are 
better than the ones obtain with a sparse NI-PCE, as shown in Fig.  4. In 
fact, when 𝑁  is greater than 50, the number of samples is greater than 
𝑠𝑝𝑙

5 
the number of coefficients even for a PCE degree equal to 7 (36 coeffi-
cients), which explains the results even if it is usually recommended to 
have a number of samples greater than twice the number of unknowns. 
In that case, the results tends to the results obtained with the I-PCE. I 
can also be seen that, as already mentioned, the coloured area becomes 
smaller when the number of samples increases. 

As the statistical law is uniform, from Eq. (42), the exact mean 
square eigenfrequencies can be calculated: 

∀𝑖 ∈ {1, 2, 3}, 𝜔̄2
𝑖 = 𝜔2

𝑖
1

2𝛿𝑀
log

(

1 + 𝛿𝑀
1 − 𝛿𝑀

)

≃ 1.0076𝜔2
𝑖 (43)

Both approaches give the mean square eigenfrequency exact values.

7.2. Case 2: 9 uncertain parameters

The uncertain stiffnesses and masses depend on 9 independent 
random variables
∀𝑖 ∈ {1,… , 3}, 𝑚𝑖 = 𝑚0(1 + 𝛿𝑚 𝜉𝑖) (44)

∀𝑖 ∈ {1,… , 6}, 𝑘𝑖 = 𝑘0(1 + 𝛿𝑘 𝜉𝑖+3) (45)

with 𝛿𝑚 = 15% and 𝛿𝑘 = 15%. The 𝜉𝑖 are 9 independent standard normal 
random variables. In that case, no simple analytic solution exists for the 
random eigenmodes.

This case highlights the limitation of the intrusive method when 
the random parameter number increases. Indeed, it appears on Figs. 
5–6–7–8 that the results are calculated up to a PCE degree equal to 
3 for the intrusive method, whereas they are calculated up to a PCE 
degree equal to 7 for the non-intrusive method. The reason is that most 
of the computing time of I-PCE is devoted to calculate the expectations 
given in Eqs. (22)–(27) and then to fill 2-index, 3-index and 4-index 
matrices (matrices 𝐌𝟑𝑖 and 𝐌𝟒𝑖𝑚 given in Appendix  B). If the first 
index varies from 0 to the uncertain parameter number, the other three 
indices varies from 1 to the number of terms of the PCE. Therefore, the 
CPU simulation time (CPU-ST) may be quickly unaffordable either for 
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Fig. 3. Case 1: estimation of the Probability density function of the eigenfrequencies: MCS (solid black line) versus intrusive and non-intrusive PCE (dashed red line) for 2 uncertain 
parameters.
Fig. 4. 3-dof system with 2 random parameters: 𝜔2  comparison - dashed black line: I-PCE; solid coloured lines with markers: mean of OLS-PCE errors; coloured area: envelope 
of NI-PCE errors.
a high degree, or for a not too high number of uncertain parameters. 
Fig.  5 shows that the intrusive method CPU simulation time (CPU-ST) 
ratio (that is divided by the MCS CPU-ST) increases tremendously with 
the PC order and is much higher than the CPU-ST of the non-intrusive 
method, for the same PCE-degree.

However, the expectation matrices are not dependent on the dy-
namical system: they only depend on the number of PCE terms and on 
the distribution law. They can therefore be calculated once and stored. 
For example, if 𝛿𝑚 and 𝛿𝑘 are changed, the expectation matrices can be 
called and the CPU-ST for I-PCE would be much shorter.

I-PCE CPU-ST does not really depend on the dof number as the 
eigenproblem is solved once. On the contrary, the eigenproblems must 
be solved several times for NI-PCE. As a consequence, NI-PCE CPU-
ST depends on the dof number. It also depends on the number of 
terms, which influences the size of the regression problem required 
to identify the sparse-PCE coefficients. Obviously the MCS CPU-ST 
depends mainly on the dof number because the eigenproblems have 
to be solved many times. In the example, the dynamical system has 
only 3 dof. Accordingly, the computation time required to solve one 
eigenproblem is very short: the MCS method is by far the most efficient, 
6 
which explains why the CPU-ST ratio depicted in Fig.  5 is greater than 
1.

Contrary to the previous case, the errors on the eigenmodes depends 
on the mode number. Fig.  6 shows that for the non-intrusive approach, 
the mean of 𝜔2  does not vary much from a PCE degree equal to 3 for 
a given 𝑁𝑠𝑝𝑙, except when 𝑁𝑠𝑝𝑙=1000 for 𝜔2

3. Once again, it reflects the 
sparsity of NI-PCE and the optimal PCE degree seems to be equal to 3 
when 𝑁𝑠𝑝𝑙 is lower than 200, and 5 when 𝑁𝑠𝑝𝑙=1000 for 𝜔2

3. 𝑁𝑠𝑝𝑙 must 
be greater than 100 to obtain errors in mean lower than 1% for all the 
eigenfrequencies. The intrusive method with a PCE degree of 3 gives 
almost always the minimal error: to obtain a slightly better error for 
the third eigenfrequency, 𝑁𝑠𝑝𝑙 must be equal to 1000. Increasing 𝑁𝑠𝑝𝑙
decreases the mean error. However, the intersections between coloured 
areas indicate that, for a given degree, the better results are not always 
obtained with the largest 𝑁𝑠𝑝𝑙: this shows the strong influence of the 
sample set quality on the result accuracy. Contrary to case 1, even with 
𝑁𝑠𝑝𝑙=1000, the coloured area bounds are not close to the mean. In 
particular, even if with some sample set the error can be better than the 
one obtained with I-PCE, with some other sample sets, it is the opposite: 
this questions confidence in NI-PCE, even when identified with a large 
number of samples.
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Fig. 5. 3-dof system with 9 random parameters: CPU simulation time comparison.
Fig. 6. 3-dof system with 9 random parameters: 𝜔2  comparison - dashed black line: I-PCE; solid coloured lines with markers: mean of NI-PCE errors; coloured area: envelope of 
NI-PCE errors.
Fig. 7. 3-dof system with 9 random parameters: 𝜙 comparison.
Considering the eigenvectors, the results shown in Fig.  7 are quite 
surprising: they strongly depend on the mode number. In particular, 
the lowest values of 𝜙𝑖  are not in the same order of magnitude: 𝜙2  is 
about 10 times the best value of 𝜙3  which in turn is about 10 times 
the best value of 𝜙1 . This result does not depend on the PCE approach. 
For the first eigenvector, I-PCE gives the smallest error, which is not 
always the case for the other two eigenvectors. Regarding NI-PCE, for 
the second and third eigenvectors it seems that increasing 𝑁𝑠𝑝𝑙 does 
not improve the result. However for the first eigenvector, the coloured 
areas decrease when 𝑁𝑠𝑝𝑙 increase. It clearly appears that using 𝑁𝑠𝑝𝑙=20 
samples to identify NI-PCE gives a very large coloured area: in that case 
the choice of the sample set is particularly crucial.
7 
A global error over all the eigenmodes is studied through the FRF 
error, 𝐹𝑅𝐹 . Considering 𝜙2  and 𝜙3 , it was not expected a very low 
error. Fig.  8 shows that it is about 8%–10% for both the non intrusive 
and intrusive approaches, which is not so bad compared to the 𝜙2 error. 
The intrusive approach performs better than NI-PCE, and it is important 
to notice that the results does not improve much by increasing 𝑁𝑠𝑝𝑙
from 100 to 1000 as the corresponding coloured areas overlap. Once 
again, it seems that the optimal degree of the sparse NI-PCE equals 3.

The influence of the 𝑁𝑠𝑝𝑙 identifying samples is noticeable, for NI-
PCE approach, as it can be seen in Figs.  6–7–8. Indeed, for almost 
all the errors, the coloured area bounds are not really close to the 
corresponding mean lines. 
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Fig. 8. 3-dof system with 9 random parameters: 𝐹𝑅𝐹  comparison; the FRF is associated with dof 1.

Fig. 9. Magnitude and argument of the FRF for the ‘‘worst sample’’ of the magnitude obtained from a direct simulation (MCS: black solid line) and the PCE of degree 3 (red 
dashed line); for NI-PCE, 𝑁𝑠𝑝𝑙 = 200.

Fig. 10. Mean and standard deviation of the FRF from a direct simulation (MCS: black solid line) and NI-PCE of degree 3, 𝑁𝑠𝑝𝑙 = 200 (red dashed line).
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It is always interesting to have a look on samples. That is why in 
Fig.  9, the ‘‘worst sample’’ of the FRF magnitude are plotted for both 
PCE approaches for a PCE degree equal to 3, and 𝑁𝑠𝑝𝑙 equal to 200. It 
appears that the intrusive approach is better than NI-PCE approach not 
only for the modulus of the FRF but also for the argument.

However, the mean and the standard deviation were always the 
same and similar to the ones obtained with the MCS approach, as shown 
on Fig.  10 for the non-intrusive case. For the intrusive approach, the 
mean and the standard deviation were also very close to the MCS ones.

7.3. Comparison of the two cases

The two cases are very different despite they are related to a 
very simple dynamical system. Indeed, in the first case the number of 
random parameters (𝑟) is low, which means that the random space can 
be well described by a reasonably low number of samples: this is much 
more complicated for the second case with 9 random parameters.

The intrusive method requires to calculate expectation matrices: for 
the eigenproblem, the element number of such matrices can be as high 
as 𝑟×(𝑃+1)3 where (𝑃+1), the number of terms in the PCE, depends on 𝑟
and 𝑑, the PCE degree. Therefore, the method can be unaffordable when 
either 𝑟 or 𝑑 are quite large. This explains that the intrusive method is 
suitable for the first example. On the contrary, for the second example, 
𝑟 was quite high: using the intrusive method was limited to low PCE 
degree. The main drawback of I-PCE is that a specific program had to 
be written to find the expectations matrices and to solve Eq. (21). This 
takes time and the program is not optimized.

The main feature of NI-PCE is that a (sparse) PCE can be quite 
easily identified, as mentioned in Section 6 from available data. In both 
examples a quite low optimal PCE degree was identified: this illustrates 
that the quality of the results does not depend much on the PCE degree. 
Therefore, the non-intrusive method mainly relies on the capacity of 
the identification sample set to describe the random space, that is on 
the quality of the samples. This explains why increasing the number of 
identification samples increases the confidence in the identified PCE. 
That is why the usual process to find the optimal NI-PCE is adaptative: 
it consists in increasing the PCE degree and the number of samples 
progressively up to meet a criterion. The main interest of NI-PCE is 
that no new specific program has to be written as it is data-driven. 
However, it requires to run a model several times: the main limitation 
is the computational budget. Indeed, if one run takes several hours like 
in car crash simulations, the number of samples cannot be very high. 
In particular, in this case it is not possible to use several sample sets as 
done in this paper to study the confidence in the results. In the second 
example presented in the paper, NI-PCE is interesting because solving 
the eigenproblem of a 3-dof dynamical system is very quick: a wide 
range of data can be obtained. Nevertheless, the accuracy was not really 
better than the one obtain with the intrusive method even for a large 
number of samples: in particular, the variation of the results may quite 
large. This is due to the difficulty to explore a multidimensional random 
space.

An interesting critique and comparison between intrusive and non-
intrusive can be found in [26].

8. Conclusions

This study presented a systematic comparison between intrusive 
and non-intrusive Polynomial Chaos Expansion (PCE) approaches for 
computing random eigenmodes in dynamical systems. Through de-
tailed mathematical analysis and numerical experiments on a three-
degree-of-freedom system with varying uncertainty parameters, the 
investigation revealed fundamental differences in implementation com-
plexity, computational efficiency, and accuracy between the two ap-
proaches. The comparison encompassed both theoretical foundations 
and practical implementations, with particular attention to computa-
tional costs, accuracy thresholds, and scalability characteristics across 
different problem dimensions.
9 
The research has established several novel contributions to the field 
of uncertainty quantification in structural dynamics:

1. First comprehensive quantitative comparison of intrusive and 
non-intrusive PCE methods for random eigenmode computation, 
revealing that intrusive PCE achieves superior accuracy with 
lower computational cost for low-dimensional problems, while 
non-intrusive PCE demonstrates better scalability for higher-
dimensional systems.

2. Development of clear selection criteria for PCE implementation 
strategies based on problem dimensionality, required accuracy, 
and computational resources.

3. Discovery of previously undocumented relationships between 
sample size requirements and PCE degree in non-intrusive ap-
proaches, providing practical guidelines for implementation.

These findings have significant implications for both theoretical 
research and practical applications in structural dynamics and uncer-
tainty quantification. The established criteria for selecting between in-
trusive and non-intrusive approaches will enable more efficient analysis 
of complex dynamical systems across various engineering disciplines. 
Furthermore, the discovered relationship between sample size and PCE 
degree offers practical guidelines for implementing non-intrusive PCE 
methods. Future research directions should focus on extending these 
comparisons to nonlinear systems, developing hybrid approaches that 
combine the advantages of both methods, and establishing theoretical 
bounds for the accuracy-efficiency trade-offs identified in this study.

CRediT authorship contribution statement

Eric Jacquelin: Writing – original draft, Validation, Software, 
Methodology, Investigation, Conceptualization. Sondipon Adhikari: 
Writing – review & editing, Validation, Supervision, Conceptualization. 
Denis Brizard: Writing – review & editing, Validation, Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests: 
Co-author Prof. Sondipon ADHIKARI is part of the editorial board of 
Probabilistic Engineering Mechanics If there are other authors, they 
declare that they have no known competing financial interests or 
personal relationships that could have appeared to influence the work 
reported in this paper.

Acknowledgment

The authors would like to thank one of the reviewers who drew their 
attention to the fact that the LARS method can automatically detect the 
OLS solution for the first example.

Appendix A. I-PC equations of mode 𝒌

First, Eq.  (21) is projected on each PC 𝛹𝑚(Ξ) (𝑚 from 0 to 𝑃 ): 

∀𝑚 ∈ {0,… , 𝑃 }
𝑟

∑

𝑖=0
< 𝜉𝑖𝑚 > 𝐊𝑖𝝓𝑘 +

𝑟
∑

𝑖=0

𝑁
∑

𝑛=1
𝑛≠𝑘

𝑃
∑

𝑝=0
⟨𝜉𝑖𝑝𝑚⟩ 𝑌

𝑘
𝑝𝑛 𝐊𝑖𝝓𝑛

−𝜔2
𝑘

𝑟
∑

𝑖=0

𝑃
∑

𝑝=0
⟨𝜉𝑖𝑝𝑚⟩ 𝑎

𝑘
𝑝 𝐌𝑖𝝓𝑘

−𝜔2
𝑘

𝑟
∑

𝑖=0

𝑁
∑

𝑛=1
𝑛≠𝑘

𝑃
∑

𝑝=0

𝑃
∑

𝑞=0
⟨𝜉𝑖𝑝𝑞𝑚⟩ 𝑎

𝑘
𝑝 𝑌

𝑘
𝑞𝑛 𝐌𝑖𝝓𝑛 = 0 (A.1)

Second, Eq. (A.1) is projected on each deterministic eigenvector 𝝓𝑙
(𝑙 from 1 to 𝑁):
∀𝑙 ∈ {1,… , 𝑁}, ∀𝑚 ∈ {0,… , 𝑃 }
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𝑟
∑

𝑖=0

𝑁
∑

𝑛=1
𝑛≠𝑘

𝑃
∑

𝑝=0
⟨𝜉𝑖𝑝𝑚⟩ 𝑌

𝑘
𝑝𝑛

𝑇𝝓𝑙𝐊𝑖𝝓𝑛

−𝜔2
𝑘

𝑟
∑

𝑖=0

𝑃
∑

𝑝=0
⟨𝜉𝑖𝑝𝑚⟩ 𝑎

𝑘
𝑝
𝑇𝝓𝑙𝐌𝑖𝝓𝑘

−𝜔2
𝑘

𝑟
∑

𝑖=0

𝑁
∑

𝑛=1
𝑛≠𝑘

𝑃
∑

𝑝=0

𝑃
∑

𝑞=0
⟨𝜉𝑖𝑝𝑞𝑚⟩ 𝑎

𝑘
𝑝 𝑌

𝑘
𝑞𝑛

𝑇𝝓𝑙𝐌𝑖𝝓𝑛 = −
𝑟
∑

𝑖=0
⟨𝜉𝑖𝑚⟩

𝑇𝝓𝑙𝐊𝑖𝝓𝑘 (A.2)

New matrices are defined, ∀ 𝑖 ∈ {0,… , 𝑟}, ∀𝑚 ∈ {0,… , 𝑃 }, ∀ 𝑙 ∈
{1,… , 𝑁}:

𝐚𝑘 = 𝑇 [𝑎𝑘0 ⋯ 𝑎𝑘𝑃 ] ∈ IR(𝑃+1)×1

∀ 𝑛 ∈ {1,… , 𝑁}∖{𝑘}, 𝐘𝑘𝑛 = 𝑇 [𝑌 𝑘0𝑛 ⋯ 𝑌 𝑘𝑃𝑛] ∈ IR(𝑃+1)×1

∀ 𝑛 ∈ {1,… , 𝑁}∖{𝑘}, 𝐘𝑘 = 𝑇 [𝑇𝐘𝑘1 ⋯ 𝑇𝐘𝑘𝑛≠𝑘
⋯ 𝑇𝐘𝑘𝑁 ] ∈ IR(𝑃+1)(𝑁−1)×1

𝐊𝑖 = [𝐊𝑖
𝑙𝑛] ∈ IR𝑁×𝑁 with 𝐊𝑖

𝑙𝑛 =
𝑇𝝓𝑙𝐊𝑖𝝓𝑛

𝐌𝑖 = [𝐌𝑖
𝑙𝑛] ∈ IR𝑁×𝑁 with 𝐌𝑖

𝑙𝑛 =
𝑇𝝓𝑙𝐌𝑖𝝓𝑛

𝐌𝟑𝑖 = [𝐌𝟑𝑖𝑚𝑝] ∈ IR(𝑃+1)×(𝑃+1) with 𝐌𝟑𝑖𝑚𝑝 = ⟨𝜉𝑖𝑝𝑚⟩

𝐌𝟒𝑖𝑚 = [𝐌𝟒𝑖𝑚𝑝𝑞 ] ∈ IR(𝑃+1)×(𝑃+1) with 𝐌𝟒𝑖𝑚𝑝𝑞 = ⟨𝜉𝑖𝑝𝑞𝑚⟩

𝐌𝐌𝟒𝑙𝑚 = [𝐌𝐌𝟒𝑙𝑚1 ⋯𝐌𝐌𝟒𝑙𝑚𝑛≠𝑘⋯𝐌𝐌𝟒𝑙𝑚𝑁 ] with 𝐌𝐌𝟒𝑙𝑚𝑛

=
𝑟
∑

𝑖=0
𝐌𝑖
𝑙𝑛 𝐌𝟒𝑖𝑚 ∈ IR(𝑃+1)×(𝑃+1)

𝐟 𝑙(𝐚𝑘,𝐘𝑘) = [𝐟 𝑙𝑚(𝐚
𝑘,𝐘𝑘)] ∈ IR(𝑃+1)×1 with 𝐟 𝑙𝑚(𝐚

𝑘,𝐘𝑘)
= 𝑇 𝐚𝑘 𝐌𝐌𝟒𝑙𝑚 𝐘𝑘

𝐁𝑙𝑘 = 1
1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1𝐊0
𝑙𝑘

𝐊1
𝑙𝑘
⋮
𝐊𝑟
𝑙𝑘
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ IR(𝑃+1) because ∀𝑖 ≥ 1, ⟨𝜉𝑖𝑚⟩

=
𝛿𝑖,𝑚
1

 and 1: 𝜉𝑖 coefficient of 𝜓1(𝜉𝑖)

Therefore, Eq. (A.2) is, ∀ 𝑙 = 1,… , 𝑁 : 
𝑁
∑

𝑛=1
𝑛≠𝑘

( 𝑟
∑

𝑖=0
𝐊𝑖
𝑙𝑛 𝐌𝟑𝑖

)

𝐘𝑘𝑛 − 𝜔2
𝑘

( 𝑟
∑

𝑖=0
𝐌𝑖
𝑙𝑘 𝐌𝟑𝑖

)

𝐚𝑘 − 𝜔2
𝑘 𝐟 𝑙(𝐚𝑘,𝐘𝑘) = − 𝐁𝑙𝑘

(A.3)

Additional matrices are introduced:

∀𝑛 ∈ {1,… , 𝑁}∖{𝑘}, 𝐊𝐌𝟑𝑙𝑛 =
𝑟
∑

𝑖=0
𝐊𝑖
𝑙𝑛 𝐌𝟑𝑖 ∈ IR(𝑃+1)×(𝑃+1)

𝐌𝐌𝟑𝑙𝑘 =
𝑟
∑

𝑖=0
𝐌𝑖
𝑙𝑘 𝐌𝟑𝑖 ∈ IR(𝑃+1)×(𝑃+1)

Eq. (A.3) is now: 

∀𝑙 ∈ {1,… , 𝑁}
𝑁
∑

𝑛=1
𝑛≠𝑘

𝐊𝐌𝟑𝑙𝑛 𝐘𝑘𝑛 − 𝜔2
𝑘 𝐌𝐌𝟑𝑙𝑘 𝐚𝑘 − 𝜔2

𝑘 𝐟 𝑙(𝐚𝑘,𝐘𝑘) = −𝐁𝑙𝑘

(A.4)

Or, alternatively,

⎡

⎢

⎢

⎣

𝐊𝐌𝟑11 ⋯ 𝐊𝐌𝟑1𝑁 −𝜔2
𝑘𝐌𝐌𝟑1𝑘

⋮ 𝐊𝐌𝟑𝑙𝑛≠𝑘 ⋮ ⋮
𝐊𝐌𝟑𝑁1 ⋯ 𝐊𝐌𝟑𝑁𝑁 −𝜔2

𝑘𝐌𝐌𝟑𝑁𝑘

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

𝐘𝑘1
⋮
𝐘𝑘𝑁
𝑘

⎤

⎥

⎥

⎥

⎥

⎣

𝐚
⎦

10 
− 𝜔2
𝑘

⎡

⎢

⎢

⎣

𝐟1(𝐚𝑘,𝐘𝑘)
⋮

𝐟𝑁 (𝐚𝑘,𝐘𝑘)

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

𝐁1𝑘

⋮
𝐁𝑁𝑘

⎤

⎥

⎥

⎦

(A.5)

Appendix B. Expectation matrices 𝐌𝟑𝒊, 𝐌𝟒𝒊𝒎

Eq.  (5) gives the definition of PC: 

𝛹𝑝(𝛯) = 𝛹𝐽 (𝛯) =
𝑟

∏

𝑖=1
𝜓𝐽𝑖 (𝜉𝑖) (B.1)

where 𝐽 is the multi-index corresponding to single-index 𝑝, as explained 
in Section 3.

In the following 𝜓𝐽𝑖 (𝜉𝑖) is supposed to be either a Hermite polyno-
mial or a Legendre polynomial; they are also supposed to be orthonor-
mal. They follow the recurrence relation (28), which may be rewritten 
as: 
∀𝐽𝑖 > 0, 𝜉𝑖 𝜓𝐽𝑖 (𝜉𝑖) = 𝐴𝐽𝑖 𝜓𝐽𝑖+1(𝜉𝑖) − 𝐵𝐽𝑖 𝜓𝐽𝑖 (𝜉𝑖) + 𝐶𝐽𝑖𝜓𝐽𝑖−1(𝜉𝑖) (B.2)

B.1. Expectation matrix 𝐌𝟑𝑖

It is required to calculate 
∀𝑖 ∈ {1,… , 𝑟} and ∀𝑝, 𝑞 ∈ {0,… , 𝑃 } ⟨𝜉𝑖 𝑝 𝑞⟩ = ⟨𝜉𝑖 𝛹𝐽 (𝛯) 𝛹𝐽 ′ (𝛯)⟩ (B.3)

From Eq.  (B.1)

⟨𝜉𝑖 𝛹𝐽 (𝛯) 𝛹𝐽 ′ (𝛯)⟩ =

⎛

⎜

⎜

⎜

⎝

𝑟
∏

𝛼=1
𝛼≠𝑖

⟨𝜓𝐽𝛼 (𝜉𝛼) 𝜓𝐽 ′𝛼 (𝜉𝛼)⟩

⎞

⎟

⎟

⎟

⎠

⟨𝜉𝑖 𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖)⟩ (B.4)

The polynomials are orthonormal 
𝑟

∏

𝛼=1
𝛼≠𝑖

⟨𝜓𝐽𝛼 (𝜉𝛼) 𝜓𝐽 ′𝛼 (𝜉𝛼)⟩ =
𝑟

∏

𝛼=1
𝛼≠𝑖

𝛿𝐽𝛼 𝐽 ′𝛼 (B.5)

where 𝛿 is the Kronecker symbol.
From Eq.  (B.2), ∀𝐽𝑖 > 0

⟨𝜉𝑖 𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖)⟩ = 𝐴𝐽𝑖 ⟨𝜓𝐽𝑖+1(𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖)⟩ − 𝐵𝐽𝑖 ⟨𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖)⟩

+𝐶𝐽𝑖 ⟨𝜓𝐽𝑖−1(𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖)⟩

= 𝐴𝐽𝑖𝛿𝐽𝑖+1 𝐽 ′𝑖 − 𝐵𝐽𝑖𝛿𝐽𝑖 𝐽 ′𝑖 + 𝐶𝐽𝑖𝛿𝐽𝑖−1 𝐽 ′𝑖 (B.6)

Each element of matrix 𝐌𝟑𝑖 has an analytic expression: 

𝐌𝟑𝑖𝑝𝑞 = ⟨𝜉𝑖 𝑝 𝑞⟩ =

⎛

⎜

⎜

⎜

⎝

𝑟
∏

𝛼=1
𝛼≠𝑖

𝛿𝐽𝛼 𝐽 ′𝛼

⎞

⎟

⎟

⎟

⎠

×
(

𝐴𝐽𝑖𝛿𝐽𝑖+1 𝐽 ′𝑖 − 𝐵𝐽𝑖𝛿𝐽𝑖 𝐽 ′𝑖 + 𝐶𝐽𝑖𝛿𝐽𝑖−1 𝐽 ′𝑖

)

(B.7)

Coefficients 𝐴𝐽𝑖 , 𝐵𝐽𝑖  and 𝐶𝐽𝑖  can be found in Table  C.2.

B.2. Expectation matrix 𝐌𝟒𝑖𝑚

It is required to calculate for all 𝑖 ∈ {1,… , 𝑟} and for all 𝑚, 𝑝, 𝑞 ∈
{0,… , 𝑃 }

⟨𝜉𝑖 𝑚 𝑝 𝑞⟩ = ⟨𝜉𝑖 𝛹𝑀 (𝛯)𝛹𝐽 (𝛯) 𝛹𝐽 ′ (𝛯)⟩

=

⎛

⎜

⎜

⎜

⎝

𝑟
∏

𝛼=1
𝛼≠𝑖

⟨𝜓𝑀𝛼
(𝜉𝛼) 𝜓𝐽𝛼 (𝜉𝛼) 𝜓𝐽 ′𝛼 (𝜉𝛼)⟩

⎞

⎟

⎟

⎟

⎠

⟨𝜉𝑖 𝜓𝑀𝑖
(𝜉𝑖) 𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖)⟩ (B.8)

From Eq.  (B.2)
∀𝑀𝑖 > 0, ⟨𝜉𝑖 𝜓𝑀𝑖

(𝜉𝑖) 𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖)⟩ = 𝐴𝑀𝑖
⟨𝜓𝑀𝑖+1(𝜉𝑖) 𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖)⟩

−𝐵𝑀𝑖
⟨𝜓𝑀𝑖

(𝜉𝑖) 𝜓𝐽𝑖 (𝜉𝑖) 𝜓𝐽 ′𝑖 (𝜉𝑖)⟩

+𝐶 ⟨𝜓 (𝜉 ) 𝜓 (𝜉 ) 𝜓 ′ (𝜉 )⟩ (B.9)
𝑀𝑖 𝑀𝑖−1 𝑖 𝐽𝑖 𝑖 𝐽𝑖 𝑖
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Table C.2
Information on normalized Hermite and Legendre polynomial.
 𝑃𝑖(𝑥) Normalized Hermite ℎ𝑖(𝑥) Normalized Legendre 𝑙𝑖(𝑥) 
 Domain  ]−∞, +∞ [ [−1, +1]  
 Density of the measure 𝑝𝑥(𝑥) exp(−𝑥2∕2)

√

2𝜋

1
2

 

 𝑃0(𝑥) ℎ0(𝑥) = 1 𝑙0(𝑥) = 1  
 𝑃1(𝑥) ℎ1(𝑥) = 𝑥 𝑙1(𝑥) =

√

3 𝑥  
 1 1

√

3  
 𝐴𝑖

√

𝑖 + 1 𝑖 + 1
√

(2𝑖 + 1) × (2𝑖 + 3)
 

 𝐵𝑖 0 0  
 𝐶𝑖

√

𝑖 𝑖
√

(2𝑖 − 1) × (2𝑖 + 1)
 

 recurrence equation 𝑥 𝑃𝑖(𝑥) = 𝐴𝑖 𝑃𝑖+1(𝑥) + 𝐶𝑖 𝑃𝑖−1(𝑥)

 𝑃𝑖+1(𝑥) =
1
𝐴𝑖
𝑥 𝑃𝑖(𝑥) −

𝐶𝑖
𝐴𝑖
𝑃𝑖−1(𝑥)
From Eqs. (B.8)–(B.9), it is clear that calculating ⟨𝜉𝑖 𝑚 𝑝 𝑞⟩ reduces to 
calculating ⟨𝜓𝑖(𝜉) 𝜓𝑗 (𝜉) 𝜓𝑙(𝜉)⟩. It turns out that an analytic expression 
exists for Hermite polynomial [27], and for Legendre polynomial [28].
Orthonormal Hermite polynomial [27] (p. 390, ex. 87) 

if 𝑠 ∈ IN, ⟨𝑖, 𝑗, 𝑙⟩ =

√

𝑖! 𝑗! 𝑙!
(𝑠 − 𝑖)! (𝑠 − 𝑗)! (𝑠 − 𝑙)!

Indmax (𝑖,𝑗,𝑙)(𝑠) (B.10)

if 𝑠 ∉ IN, ⟨𝑖, 𝑗, 𝑙⟩ = 0 (B.11)

with

• 𝑠 = (𝑖 + 𝑗 + 𝑙)∕2,
• function Ind𝑚(𝑠) is equal to unity if 0 ≤ 𝑚 ≤ 𝑠 and to zero 
otherwise.

Orthonormal Legendre polynomial [28] 

⟨𝑖, 𝑗, 𝑙⟩ =

√

(2𝑖 + 1)(2𝑗 + 1)(2𝑙 + 1)
2𝑠 + 1

(𝑠 − 𝑖)(𝑠 − 𝑗)(𝑠 − 𝑙)
(𝑠)

(B.12)

with

• 𝑠 = (𝑖 + 𝑗 + 𝑙)∕2,
• (𝑠):

if 𝑠 ∈ IN, (𝑠) =
1 × 3 × 5 ×⋯ × (2𝑠 − 1)

𝑠!
=

(2𝑠)!
2𝑠(𝑠!)2

(B.13)

if 𝑠 ∉ IN, (𝑠) = 0 (B.14)
if 𝑠 < 0, (𝑠) = 0 (B.15)

Note that in [28], the following expression is given 

∫

1

−1
𝐿𝑖(𝑥) 𝐿𝑗 (𝑥) 𝐿𝑙(𝑥) d𝑥 = 2

2𝑠 + 1
(𝑠 − 𝑖)(𝑠 − 𝑗)(𝑠 − 𝑙)

(𝑠)
(B.16)

Eq.  (B.16) is transformed into Eq.  (B.12) by taking into account that

• normalized Legendre polynomials are used: 𝑙𝑖(𝑥) =
√

2𝑖 + 1 𝐿𝑖(𝑥)
• ⟨𝑖, 𝑗, 𝑙⟩ = ∫ 1

−1 𝑙𝑖(𝑥) 𝑙𝑗 (𝑥) 𝑙𝑙(𝑥) 𝑝𝑥(𝑥) d𝑥  with 𝑝𝑥(𝑥) = 1∕2; factor 𝑝𝑥(𝑥)
is omitted in (B.16)

Appendix C. Information on Hermite and Legendre polynomial 
families

Information required to obtain all the expectations matrices are 
given in Table  C.2 for normalized Hermite and Legendre polynomials.
11 
Data availability

The link to the original codes is shared in the attach file step
Random Modes (Original data) (Github)
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