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ABSTRACT  
This study conducts the dynamic analysis of a monopile-supported offshore wind turbine (MSWT) 
under ship impact in frequency domain analysis. The approach utilises dynamic stiffness 
formulation to capture the force-displacement relationship of both the tower and the monopile. 
The tower and the monopile are modelled using the Euler-Bernoulli beam theory, where the 
exact solutions for the non-uniform geometry of the tower are obtained using Bessel function 
solutions. The effect of fluid-structure interaction (FSI) and the soil-structure interaction (SSI) is 
incorporated using the hydrodynamic mass and viscoelastic springs distributed along the 
length of the monopile. The study focuses on capturing the dynamic response at the tower top 
within the frequency domain when subjected to impact loading at its base. A parametric 
analysis investigates how this response varies concerning ship mass, impact velocity, and water 
depth. Further, a simplified non-dimensional model is proposed, accounting for the tower’s 
non-uniformity and representing the foundation with lateral and rotational springs. Finally, an 
analytical, approximate, closed-form expression for natural frequency is developed, aiding in the 
preliminary design of beam-like structures with conical shapes and flexible supports. These 
analytical tools complement experiments and finite element studies, offering early insights into 
MSWT dynamics under impact. The proposed model effectively captures the dynamic response 
of MSWTs under varying impact energies and deformation modes from local indentations to 
global bending and incorporates foundation and geometric effects for diverse design scenarios.
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Nomenclature
FI Impact force
MR Mass of the RNA
Hs Height of monopile embedded in soil
At Cross-sectional area of the tower
Et Young’s modulus of the tower
It Second moment of area of the tower tTime
wt Transverse displacement of the tower xCo-ordi

nate axis of the tower ∂Partial differential operator
rt Density of the tower cConicity
Ht Height of the tower
rt Top outer radius of the tower
Dtt Top outer diameter of the tower
rb Bottom outer radius of the tower
Dtb Bottom outer diameter of the tower RRadius of the 

tower τThickness of the tower iComplex integer 
iyota

Wt Transverse displacement of the tower as a function 
of co-ordinate axis only ωExcitation frequency

In nth order modified Bessel functions of the first 
kind

Jn nth order Bessel functions of the first kind
Kn nth order modified Bessel functions of the second 

kind
Yn nth order Bessel functions of the second kind
Aj j number of arbitrary constants corresponding to 

the transverse equations of motion of the tower

ut Slope component of the tower
Mt Bending moment component of the tower
†( )I Partial differential concerning spatial coordinate

Vt Shear force component of the tower eExponential 
component

D Displacement vector of the tower
F Force vector of the tower
S Dynamic stiffness matrix of the tower
ks Stiffness of the viscoelastic springs
cs Damping of the viscoelastic springs
ws Transverse displacement of the monopile 

embedded in soil
Ws Transverse displacement of the monopile 

embedded in soil as a function of co-ordinate 
axis only

K Combined dynamic stiffness matrix considering 
the tower as well as the RNA

Ep Young’s modulus of the monopile
Ip Second moment of area of the monopile
rp Density of the monopile
Ap Cross-sectional area of the monopile
wf Transverse displacement of the monopile sub

merged in water
Wf Transverse displacement of the monopile sub

merged in water as a function of co-ordinate axis 
only

xf Co-ordinate axis of monopile submerged in water
uf Slope component of monopile submerged in water
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Hf Depth of the monopile submerged in water
rp Outside radius of the monopile
rw Water density mHydrodynamic mass, which rep

resents the lateral resistance of the water-pile 
interface

Mf Bending moment component of monopile sub
merged in water

Vf Shear force component of monopile submerged in 
water

Cl l number of arbitrary constants corresponding to 
the transverse equations of motion of the monopile 
element submerged in water αWave numbers of 
the monopile element submerged in water

Df Displacement vector of the monopile element sub
merged in water

Ff Force vector of the monopile element submerged 
in water

Sf Dynamic stiffness matrix of the monopile element 
submerged in water

DG Global displacement vector of the tower and 
monopile combined

FG Global force vector of the tower and monopile 
combined

SG Global dynamic stiffness matrix of the tower and 
monopile combined

xs Co-ordinate axis of monopile embedded in soil
us Slope component of monopile embedded in soil
Ms Bending moment component of monopile 

embedded in soil
Vs Shear force component of monopile embedded in 

soil
Gs Shear modulus of the soil medium
ms Poisson’s ratio of the soil medium βWave numbers 

of the monopile element embedded in soil
Dk k number of arbitrary constants corresponding to 

the transverse equations of motion of the monopile 
element embedded in soil

Sv̅xv̅y v̅, z( ) Spectral density of the turbulent gust drag force
ra Air density
U̅ z( ) Wind velocity
AT Average cross-sectional area of the tower
CD Drag coefficient of the wind turbine tower
CT Thrust coefficient
AR Cross-sectional area of the rotor χAerodynamic 

admittance
Suxuy v̅( ) Cross-power spectral density function of fluctuat

ing wind speed
Cm Inertia coefficient
SFF,waves v̅, zw( )Power spectrum of the wave force exerted on the 

monopile
DP Outer diameter of the monopile SMean sea depth 

ψWave number
Sww v̅( ) Ocean wave
RM Ratio of the mass of ship to the mass of MSWT
RH Ratio of the height of monopile submerged in 

water to the total height of monopile
RV Ratio of the impact velocity of the ship to the initial 

velocity of the ship
MS Mass of the ship
vI Impact velocity of the ship
v0 Initial velocity of the ship
HP Total height of the monopile
Es Young’s modulus of the soil
rs Density of the soil
x̅ Non-dimensional form of co-ordinate axis of the 

tower
t̅ Non-dimensional form of time
c̅ Non-dimensional form of conicity

w̅ Non-dimensional form of transverse displacement 
of the tower

W̅ Non-dimensional form of transverse displacement 
of the tower as a function of co-ordinate axis only 
ϖArbitrary constants bearing the units of dimen
sional quantity ηFrequency ratio

u̅ Non-dimensional form of the slope component of 
the tower

M̅ Non-dimensional form of the bending moment 
component of the tower

V̅ Non-dimensional form of the shear force com
ponent of the tower

KL Lateral spring stiffness coefficients
kL Non-dimensional form of lateral spring stiffness 

coefficients
KR Rotational spring stiffness coefficients
kR Non-dimensional form of rotational spring stiff

ness coefficients
St Non-dimensional form of dynamic stiffness matrix 

of the tower ρDensity of PLA EYoung’s Modulus of 
PLA HHeight of PLA tower DOuter diameter of 
PLA tower

τp Thickness of PLA tower
Mr Rigid Mass on top of PLA tower
Ma Mass on accelerometer
ve Natural frequency from experiment
vb Natural frequency from Bessel function solution
vn Natural frequency from Numerical simulation
Pss Static load in the lateral direction at the top of the 

monopile
Ps Static load in lateral direction at the top of the 

tower δFrequency ratio of the SDOF system
Mss Static Moment
Ke Equivalent stiffness of the SDOF system
Me Equivalent mass of the SDOF system
v1 Natural frequency of the SDOF system
gm Mass correction factor
gk Stiffness correction factor
TK Kinetic energy
hrat Ratio of natural frequency of flexible support to 

that of fixed support

1. Introduction

Rapid industrialisation has significantly increased global 
energy demands, accelerating the depletion of non- 
renewable fossil fuel resources, such as coal and oil 
(Freedman 2024). This surge in energy consumption 
has concurrently driven a notable increase in CO2 emis
sions, further exacerbating the challenges posed by cli
mate change (Shah et al. 2024). The strategy to 
achieve the sustainable development goals (SDGs), par
ticularly SDG7’s objective of net-zero emissions by 
2050, involves adopting renewable energy sources 
(Moreno et al. 2024). Among these, wind energy stands 
out as a leader due to its substantial production capacity 
and technological advancements (Ahmed et al. 2024). 
India, ranked as the fourth-largest global producer of 
wind energy, had exceeded 45 GW of production by 
January 2024, with projections surpassing 60 billion 
units (Musial et al. 2023). According to the National 
Electricity Plan of the central government for the period 
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ending 2032, India’s installed wind capacity is estimated 
to reach approximately 73 GW in 2026–2027 and 122  
GW by 2031–2032 (Anil Bindu and Thampatty 2024). 
In the late 1980s, wind turbines globally had a capacity 
of about 65 kW. Thanks to technological progress, 
today, wind turbines with 10 MW onshore and 15  
MW offshore capacities are being successfully deployed 
worldwide (Qin et al. 2023). Investing in offshore wind 
turbines (OWTs) is motivated by higher average wind 
speeds at sea, reduced turbulence, wind shear, and the 
conservation of onshore resources (Liu et al. 2024). 
The design of OWT foundations primarily addresses 
the challenge of lateral forces, with monopile foun
dations being preferred for approximately 80% of instal
lations (R. Das, Patro et al. 2024). The cost of these 
foundations constitutes about 34% of the total turbine 
investment (Pezeshki, Pavlou, Siriwardane et al. 2024).

The structural integrity of taller wind turbine towers, 
equipped with more powerful turbines and larger rotor 

diameters, faces heightened external forces, including 
those from wind, waves, and seismic activities (Gücüyen 
2017), as illustrated in Figure 1. Owing to their design 
and structural characteristics, OWTs are dynamically 
sensitive, as a significant rotating mass is mounted atop 
a long, slender column (James et al. 2024). Guided by 
the Limit State design philosophy, the structures must 
satisfy various limit states: Ultimate Limit State (ULS), 
Serviceability Limit State (SLS), Fatigue Limit State 
(FLS), and Accidental Limit State (ALS) (Bhattacharya 
2019). With the increasing number of offshore wind 
installations near maritime traffic routes, the likelihood 
of collision events with drifting ships and approaching 
service vessels increases, raising safety concerns among 
regulatory bodies and project stakeholders (Ladeira, Már
quez et al. 2023). At the turbine level, ensuring the crash- 
worthiness of the structure for a specified ALS requires 
structural analysts to employ a range of methodologies, 
typically based on non-linear finite element methods or 

Figure 1. Various forces exert influence on a wind turbine supported by a monopile (MSWT) DNV GL AS Oslo (2016). (This figure is 
available in colour online.)
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simplified analytical formulas, to assess potential damage 
and residual strength (Nie et al. 2024).

Minorsky (1958) was the first to investigate ship col
lisions in 1959 systematically. Later, Derucher (1982) 
converted the collision problem into an energy conver
sion problem, conceptualising the colliding object as 
part of a spring system. Building on this model, numer
ous researchers have examined various factors such as 
collision velocity, mass distribution above the tower, 
and water depth, to analyze the effects of ship impacts 
on different offshore wind turbine (OWT) foundations 
both analytically (Hsieh 2015; Le Sourne et al. 2016; 
Echeverry et al. 2017; Pire et al. 2018; Broersen 2020) 
and numerically (Bela et al. 2017; Hao and Liu 2017; 
Moulas et al. 2017; Gao and Zhang 2021; Zhang and 
Hu 2022). When an OWT is struck by a ship, it may 
experience local plastic indentation at the point of 
impact, leading to permanent deformations that weaken 
the tower’s structural integrity (Mehreganian et al. 
2024). The force of the collision can create a plastic 
hinge near the seabed due to excessive bending 
moments, potentially compromising stability (Ladeira, 
Jaramillo et al. 2023). Over time, cumulative damage 
from repeated impacts can initiate cracks and further 
reduce the turbine’s load-bearing capacity, necessitating 
careful evaluation to prevent catastrophic failure (Mou
las et al. 2017). These studies reveal that the dynamic 
response of the OWT reaches a peak at its resonant fre
quencies when subjected to ship impacts, making accu
rate determination of these frequencies crucial (Song 
et al. 2021). Moreover, the natural frequencies of the 
OWT system mustn’t coincide with excitation frequen
cies – such as wind, wave, the rotational frequency of the 
rotor (1P), and the blade passing frequency of a three- 
bladed wind turbine (3P) – to prevent resonance and 
mitigate extensive fatigue damage (Wan et al. 2023). 
Figure 2 depicts three zones during the design phase, 
labelled soft-soft, soft-stiff, and stiff-stiff, around these 

excitation frequencies (Arany et al. 2016). Thus, a vast 
body of literature employing both analytical (Arany, 
Bhattacharya, Adhikari et al. 2015; Darvishi-Alamouti 
et al. 2017; Ferreira et al. 2022; Pezeshki, Pavlou, Adeli 
et al. 2023; Yu and Amdahl 2023) and numerical methods 
(Ma et al. 2017; Bouzid et al. 2018; Bisoi and Haldar 2019; 
Alkhoury et al. 2021; Demirci et al. 2022) supports the 
estimation of natural frequencies in monopile-supported 
offshore wind turbines (MSWT).

Most of the methods mentioned previously either 
employ simplified analytical techniques or finite 
element methods (FEM) to estimate only the first natu
ral frequency of the monopile-supported offshore wind 
turbine (MSWT) (Moynihan et al. 2023). In these 
methods, the tower and the monopile are primarily 
modelled using the Euler Bernoulli beam theory due 
to their high slenderness ratio (Norén-Cosgriff and 
Kaynia 2021). However, for larger OWTs, the natural 
frequency of the entire system is significantly reduced, 
activating multiple structural resonance frequencies 
during operation (Meng and Zhangqi 2011). Conse
quently, a comprehensive method that considers var
ious natural frequencies and vibration modes is 
essential for reliable dynamic analysis (Gu et al. 
2021). Although few researchers have considered Ray
leigh–Ritz solutions to obtain multiple structural res
onance frequencies, the accuracy of higher-order 
modes depends heavily on the choice of assumed 
basis functions (Yu and Amdahl 2023). This increases 
the computational complexity due to the coupling 
between bending and torsion. Despite these challenges, 
a few researchers have adopted the Spectral Element 
Matrix (SEM) or Dynamic Stiffness Matrix (DSM) 
approaches to determine eigenfrequencies (Kleusberg 
2017; Adhikari and Bhattacharya 2021; Colherinhas 
et al. 2022). These frequency-domain approaches pro
vide exact solutions to the governing equations of 
motion, adhering to appropriate boundary conditions 
(Wang K et al. 2017). A distinctive advantage of the 
DSM is its precise treatment of mass distribution 
within the elements, enabling accurate modelling of 
both the tower and the monopile (Lee 2009). Unlike 
methods that expand eigenfunctions, this approach 
bypasses the traditional FEM step of calculating natu
ral frequencies and modal shapes, thus avoiding errors 
from series truncation (Leung 2012). Additionally, 
while the conventional analytical and numerical 
methods for assessing the dynamic response to OWT 
impacts rely on FEM or time-domain analysis, the 
importance of the frequency-domain approach, par
ticularly for addressing resonance frequencies of the 
OWT, should not be underestimated (Jahani et al. 
2022).

Figure 2. Frequency range of loads acting on wind turbines Ko 
(2020). (This figure is available in colour online.)
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In light of these limitations, the current study 
employs the DSM approach to establish the force-dis
placement relationship for the tower and monopile. A 
complete analytical methodology has been proposed 
for fluid-structure interaction (FSI) and soil-structure 
interaction (SSI). The FSI is incorporated through 
the hydrodynamic mass distributed along the mono
pile’s submerged length (Liaw and Chopra 1974; 
Goyal and Chopra 1989; Wang P et al. 2018), while 
SSI is modelled using viscoelastic springs along the 
embedded length of the monopile (Novak et al. 1978; 
Das R, Banerjee et al. 2023; Das R, Manna et al. 
2023). Further, this study conducts a dynamic analysis 
of the MSWT in the frequency domain when subjected 
to the combined action of wind, wave, and ship impact 
loading, considering variables such as the ship’s mass, 
impact velocity, and point of impact. Additionally, a 
sensitivity analysis using the Pearson correlation 
coefficient is performed to examine the sensitivity of 
the entire system’s natural frequency to variations in 
the geometric and material parameters of the tower, 
monopile, and soil. Based on the sensitivity analysis, 

a simplified non-dimensional model is also proposed, 
considering non-uniform geometry and representing 
the foundation with lateral and rotational springs. Fur
thermore, closed-form expressions for these springs 
have been derived as a function of the monopile and 
soil’s physical properties. Finally, an analytical 
approximation for a closed-form expression of the 
natural frequency has been developed. The closed- 
form expression of the natural frequency is validated 
both numerically and experimentally. A flow chart 
highlighting the complete outline of the present 
study is provided in Figure 3. This study can assist in 
the preliminary design of beam-like structures, consid
ering their conicity and flexible supports.

2. Problem statement

The current study is categorised into two main areas: 
(i) investigating the dynamic response of the MSWT 
under ship impact loading, depicted in Figure 4(a), 
and (ii) estimating the natural frequencies of the 
MSWT. A comprehensive analytical framework is 

Figure 3. Flow chart of the present study. (This figure is available in colour online.)
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adopted to model the MSWT, with detailed mathemat
ical formulations provided for both the superstructure 
and substructure in Subsections 3.1 and 3.2, respect
ively. The impact of ship loading is represented by 
the scenario shown in Figure 4(b), where an Impact 
force (FI) is applied at the top of the transition piece. 
The time and frequency domain plots for this impact 
load are depicted in Figure 4(c,d), respectively. The 
study evaluates the dynamic response at the tower’s 
top resulting from the ship’s impact loading. 

Determining the displacement at the top of a wind tur
bine tower is crucial for ensuring structural integrity, 
dynamic stability, and operational efficiency. All the 
dynamic complications occur at the top of the tower 
due to the RNA and blades at the top. Thus, when 
OWT is subjected to any dynamic loads, the displace
ment will be maximum at the top, and accurate displa
cement analysis optimises material use, reduces costs, 
and ensures the tower meets safety and performance 
criteria while maintaining aerodynamic efficiency 

Figure 4. The monopile-supported offshore wind turbine (MSWT) subjected to ship impact used in the present study: (a) Schematic 
model; (b) Mathematical model; (c) Time domain plot of the impact load; and (d) Corresponding frequency domain plot of the impact 
load. (This figure is available in colour online.)
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and longevity. A parametric analysis is also conducted 
to observe how variations in the ship’s physical prop
erties affect the maximum dynamic response at the 
MSWT’s top, detailed in Subsection 4.1. Also, the 
dynamic response due to the combined action of wind 
and wave load has been detailed in Subsection 4.2
Additionally, a sensitivity analysis is performed in Section 
5 to examine how changes in geometric and material 
properties of the MSWT impact its natural frequencies. 
Based on the insights gained from the sensitivity analysis, 
a simplified non-dimensional model is proposed to 
derive governing dimensionless parameters. Further
more, an approximate analytical expression for natural 
frequency is derived in Section 6 by converting the sim
plified non-dimensional model into a Single Degree of 
Freedom (SDOF) system.

3. Mathematical formulation

An offshore wind turbine typically comprises three 
distinct elements: the tower, the submerged section 
of the monopile, and the portion embedded within 
the soil, as illustrated in Figure 4(a). Each component 
is subject to different governing equations that reflect 
the varied mechanical properties encountered in each 
environment. Specifically, the tower and monopile are 
modelled as Euler–Bernoulli beams (Patro, Panda 
et al. 2024) due to their high slenderness ratio. The 
rotor nacelle assembly (RNA) and blades are rep
resented as a lumped mass positioned at the tower’s 
top (Arany et al. 2016). Incorporating fluid-structure 
interaction (FSI) and soil-structure interaction (SSI) 
is crucial for accurately modelling the submerged 
monopile section and the subsoil portion. FSI involves 
the application of rigid hydrodynamic masses on the 
submerged region’s surface to simulate the interaction 
between the structure and the surrounding water 
(Wang P et al. 2018). Soil behaviour is modelled 
using a combination of a spring and a dashpot to 
mimic its viscoelastic properties. This facilitates the 
analysis of dynamic interactions between the struc
ture and the soil (Das R, Manna et al. 2023). Conse
quently, the dynamics of the substructure can be 
conceptualised as akin to a beam vibrating on a visco
elastic foundation, with the addition of a hydrodyn
amic mass to represent submerged FSI adequately. 
Figure 4(b) outlines the mathematical model used 
for the MSWT in this study. For clarity and focus, 
the following assumptions have been made in the 
analysis:

. The tower and monopile are assumed to possess uni
form material properties throughout their length and 

cross-sections. Euler–Bernoulli beam theory is 
applied to model both structures to simplify the 
analysis. While some studies have considered the 
application of Timoshenko beam theory for model
ling the tower, this approach increases the system’s 
complexity without significantly improving the accu
racy of natural frequency predictions (Arany, Bhatta
charya, Adhikari et al. 2015; Bhattacharya 2019; 
Bozyigit et al. 2023).

. This investigation emphasises estimating the 
undamped natural frequency, presenting a more con
servative scenario, and helping to prevent resonance 
(Adhikari and Bhattacharya 2012). Given the primary 
objective of determining the undamped natural fre
quency of the complete system and the dynamic 
response to impact loading, it is presumed that defor
mations remain small, allowing for the application of 
linear theory (Damgaard and Andersen 2012).

. The RNA and blades are treated as a lumped mass at 
the top of the tower, primarily to enhance compu
tational efficiency, especially in managing complex 
fluid-structure interaction challenges. Similarly, the 
transition piece that connects the tower and mono
pile is simulated as an Euler–Bernoulli beam, with 
geometric and material characteristics assumed to 
be identical to those of the monopile for simplicity 
and ease of analysis (Darvishi Alamouti et al. 2020).

3.1. Analytical model of superstructure

This section presents a comprehensive analytical 
approach to model the tower and the RNA, deriving 
the dynamic stiffness matrix (DSM) to establish the 
force-displacement relationship. The Spectral Element 
Method (SEM) is employed herein to compute the 
DSM. Unlike the Finite Element Method (FEM), 
SEM uses a direct Fourier transform (DFT) to convert 
the tower and pile’s governing equation from the time 
domain to the frequency domain, rendering it a pre
ferable choice for this analysis (Adhikari and Bhatta
charya 2021). The mathematical representation of 
the wind turbine tower consists of a hollow tapered 
Euler-Bernoulli beam with a length denoted as Ht, 
depicted in Figure 4(b) (Deng et al. 2023). Conse
quently, the governing equations governing the 
tower’s transverse motion during free vibration are 
expressed as per Rao (2019):

∂2

∂x2 EtIt(x)
∂2wt(x, t)
∂x2

􏼚 􏼛

+ rtAt(x)
∂2wt(x, t)
∂t2 = 0 (1) 

In these equations, wt(x, t) represent the transverse 
displacements of the tower, respectively, both 
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dependent on the spatial coordinate x and time t. 
EtIt(x) and rtAt(x) denote the flexural rigidity and 
mass per unit length of the tower, respectively. In 
the case of a tapered section, the radius varies linearly 
as shown in Figure 4(b), leading to expressions for the 
area and second moment of area as a function of dis
tance x as follows:

R(x) = rt + rb − rt( ) x
Ht
= rt(1+ cx);

At(x) = 2pR(x)τ = 2prt(1+ cx)τ;
It(x) = pR3(x)τ = pr3

t (1+ cx)3τ

(2) 

where c = (rb− rt)
Ht 

is a constant used to account for 
cross-sectional variation, also referred to as conicity 
(Boiangiu et al. 2016). rb =

Dtb− τ
2 and rt =

Dtt − τ
2 are 

the tower’s outside bottom and top radii. Similarly, 
Dtb and Dtt are the tower’s outside bottom and top 
diameter. Additionally, τ and Ht represent the thick
ness and height of the tower section. For solving 
Equation (1), a harmonic solution can be assumed, 
represented as wt(x, t) =Wt(x)e− ivt, following the 
approach outlined in (Kreyszig et al. 2008). Here, ω 
denotes the excitation frequency, and i signifies the 
imaginary unit. By substituting Equation (2) and the 
harmonic solutions into Equation (1), we obtain:

∂2

∂x2 (1+ cx)3 ∂
2Wt(x)
∂x2

􏼒 􏼓

−
2v2rt
Etr2

t
(1+ cx)Wt(x)

= 0 (3) 

By employing Bessel functions (Bowman 2012), sol
utions for Equation (3) can be derived using mathemat
ical software Maple (Gander and Hrebicek 2004). The 
expressions are outlined as follows:

Wt(x) =
���������

c
(1+ cx)

􏽲

{I1 1( )A1 + J1 1( )A2 + K1 1( )A3 + Y1 1( )A4}

=
􏽘4

j=1
fj(x)Aj

(4) 

where Aj are the arbitrary constants corresponding to 
the tower’s transverse and axial equations of motion 
as given in Equation (3). The terms In(1) and Kn(1) 
denote the nth order modified Bessel functions of the 
first and second kinds, respectively, while Jn(1) and 
Yn(1) represent the nth order Bessel functions of the 
first and second kinds, respectively. Moreover, 

1 = 2
c

2rt
Etr2

t

􏼐 􏼑1
4 �����������

v(1+ cx)
√

. The state vectors, namely 

rotation (ut), bending moment (Mt) and shear force 
(Vt) associated with a single end of the tower as depicted 
in Figure 5(b), can be expressed as functions of 

transverse displacement as follows:
ut(x, t) =WI

t (x)e− ivt,
Mt(x, t) = EtIt(x)WII

t (x)e− ivt,

Vt(x, t) =
∂Mt(x, t)
∂x

= EtII
t (x)WII

t (x)e− ivt

+ EtIt(x)WII
t (x)e− ivt

(5) 

In this context, (†)I represents the partial differentiation 
with respect to spatial coordinates. By substituting 
Equations (4) into (5), the spectral nodal displacement 
and slope can be connected to the displacement field 
as follows:

wt(x, t) x=0|

ut(x, t) x=0|

wt(x, t) x=Ht

􏼌
􏼌

ut(x, t) x=Ht

􏼌
􏼌

⎧
⎪⎪⎨

⎪⎪⎩

⎫
⎪⎪⎬

⎪⎪⎭

􏽼��������􏽻􏽺��������􏽽
D

=

f1(x) x=0| f2(x) x=0| f3(x) x=0| f4(x) x=0|

fI
1(x) x=0| fI

2(x) x=0| fI
3(x) x=0| fI

4(x) x=0|

f1(x) x=Ht

􏼌
􏼌 f2(x) x=Ht

􏼌
􏼌 f3(x) x=Ht

􏼌
􏼌 f4(x) x=Ht

􏼌
􏼌

fI
1(x) x=Ht

􏼌
􏼌 fI

2(x) x=Ht

􏼌
􏼌 fI

3(x) x=Ht

􏼌
􏼌 fI

4(x) x=Ht

􏼌
􏼌

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

􏽼������������������������������􏽻􏽺������������������������������􏽽
H

A1

A2

A3

A4

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

􏽼��􏽻􏽺��􏽽
Q

e− ivt

(6) 

Similarly, substituting Equations (4) in (5), the force state 
vectors for the tower element shown in Figure 4(b) can 
be defined as follows:

Vt(x, t)|x=0

Mt(x, t)|x=0

Vt(x, t)|x=Ht

Mt(x, t)|x=Ht

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

􏽼���������􏽻􏽺���������􏽽
F

=

EtIt(x)|x=0 EtII
t (x)

􏼌
􏼌

x=0 00
0 − EtIt(x)|x=0 00
0 0− EtIt(x)|x=Ht − EtII

t (x)
􏼌
􏼌
x=Ht

0 00 EtIt(x)|x=Ht

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

􏽼����������������������������􏽻􏽺����������������������������􏽽
X

×

fIII
1 (x)

􏼌
􏼌

x=0 fIII
2 (x)

􏼌
􏼌
x=0 fIII

3 (x)
􏼌
􏼌
x=0 fIII

4 (x)
􏼌
􏼌

x=0

fII
1 (x)

􏼌
􏼌

x=0 fII
2 (x)

􏼌
􏼌

x=0 fII
3 (x)

􏼌
􏼌

x=0 fII
4 (x)

􏼌
􏼌
x=0

fIII
1 (x)

􏼌
􏼌

x=Ht
fIII

2 (x)
􏼌
􏼌
x=Ht

fIII
3 (x)

􏼌
􏼌

x=Ht
fIII

4 (x)
􏼌
􏼌

x=Ht

fII
1 (x)

􏼌
􏼌

x=Ht
fII

2 (x)
􏼌
􏼌

x=Ht
fII

3 (x)
􏼌
􏼌
x=Ht

fII
4 (x)

􏼌
􏼌

x=Ht

⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎦

􏽼���������������������������������􏽻􏽺���������������������������������􏽽
G

A1

A2

A3

A4

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

􏽼��􏽻􏽺��􏽽
Q

e− ivt

(7) 
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Substituting Equations (6) in (7), the force-displace
ment relationship between the two ends of the tower 
element can be defined as follows:

F = XGQ = XGH− 1D = SD (8) 

In this context, [S]4×4 represents the dynamic stiffness 
matrix (DSM), also referred to as the Spectral Element 
Matrix (SEM) of the tower. This matrix facilitates estab
lishing a relationship between the forces and displace
ments at the two ends of the tower (Lee 2009). The 
subsequent section elaborates on deriving the DSM of 
the substructure, considering the monopile, soil, and 
fluid components.

3.2. Analytical model of substructure

This subsection presents a comprehensive analytical 
approach to model the monopile, considering the 

interactions between fluid and SSI. Additionally, it 
establishes the DSM of the monopile by defining the 
force-displacement relationship between its two ends. 
The mathematical representation of the monopile com
prises a hollow Euler-Bernoulli beam with a length 
denoted as Hf +Hs, maintaining uniform geometry 
throughout its height, as depicted in Figure 6(a). Conse
quently, the governing equations governing the mono
pile’s transverse motion when submerged in water are 
provided by Liaw and Chopra (1974):

EpIp
∂4wf (xf , t)

∂x4
f
+ rpAp +m(xf )
􏽮 􏽯 ∂2wf (xf , t)

∂t2 = 0 (9) 

Here, EpIp(xf ) and rpAp(xf ) denote the flexural rigidity 
and mass per unit length of the monopile, respectively. 
wf (xf , t) represents the transverse displacement of the 
monopile submerged in water. The term m(xf ) signifies 

Figure 5. (a) Schematic model of the tower having eccentrically attached rigid body of RNA; (b) Schematic depicting the free body 
diagram of the tower and (c) Illustration displaying the free body diagram of the rigid body representing the RNA. (This figure is avail
able in colour online.)
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the hydrodynamic mass, which characterises the lateral 
resistance at the water-pile interface (Goyal and Chopra 
1989). This mass is dependent on the coordinate axis 
(xf ) and is expressed using Bessel functions, with its cal
culation defined by the following equation (Wang P 
et al. 2018):

m(xf ) =
16rwHf rp

p

􏽘1

j=1

( − 1) j− 1

(2j − 1)2

K1(Grp)
K0(Grp)+ K2(Grp)

cos (Gxf )

(10) 

Here, Hf represents the depth of the monopile sub
merged in water, rw denotes the density of water, rp sig
nifies the outside radius of the monopile, and 
G =

(2j− 1)p
2Hf

. Utilizing the harmonic solution, namely 

wf (xf , t) =Wf (xf )e− ivt , and substituting it into 

Equation (9), we obtain:

EpIp
∂4Wf (xf )
∂x4

f
− v2 rpAp +m(xf )

􏽮 􏽯
Wf (xf ) = 0 (11) 

Assuming a uniform section, where both EpIp and rpAp 

remain constant throughout the beam’s entire length, 
the solution to the transverse equation can be formu
lated using hyperbolic trigonometric functions 
(Kreyszig 2013) as follows:

Wf (xf ) = C1 sin (axf )+ C2 cos (axf )

+ C3 sinh (axf )+ C4 cosh (axf ) (12) 

where C1 through C4 represent unknown arbitrary con
stants for the transverse equation of motion of the 
monopile submerged in water. α represents the wave 
numbers for the monopile element submerged in 

Figure 6. (a) Schematic diagram illustrating the monopile model, accounting for both soil-structure interaction and fluid-structure 
interaction effects; (b) Illustration showing the free body diagram of the monopile incorporating hydrodynamic mass; (c) Schematic 
depicting the free body diagram of the monopile equipped with viscoelastic springs. (This figure is available in colour online.)
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water. By substituting Equations (12) in (11), the wave 
number α can be expressed as a function of the exci
tation frequency ω as follows:

EpIpa
4Wf (xf ) − v2 rpAp +m(xf )

􏽮 􏽯
Wf (xf ) = 0

⇒ a =
�
[

􏽰
4]
v2 rpAp +m(xf )
􏽮 􏽯

EpIp
(13) 

Similar to Equation (5), the state vectors associated with 
one end of the monopile element submerged in water, as 
depicted in Figure 6(b), can be expressed in terms of 
transverse displacement wf (xf , t) as follows:

uf (xf , t)=WI
f (xf )e− ivt , Mf (xf , t)=EpIp(xf )WII

f (xf )e− ivt ,

Vf (xf , t)=EpIp(xf )WIII
f (xf )e− ivt

(14) 

Substituting Equations (12) in (14), the displacement 
and force state vectors can be written in matrix form as 
follows:  

and,  

Now, using Equations (15) and (16), the force- 
displacement relationship between the two ends of 
the monopile element submerged in water can be 
defined as:

Ff = XpGfQf = XpGf Kf
− 1Df = Sf Df (17) 

Here, [Sf ]4×4 is the DSM for the monopile element 
submerged in water, which is expressed as follows:

Sf =

S f11 S f12 S f13 S f14

S f12 S f22 − S f22 S f24

S f13 − S f14 S f11 − S f12

S f14 S f24 − S f12 S f22

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦ (18) 

where,

S f11 = −
EpIpa

3 cosh (aHf ) sin (aHf )+cos (aHf ) sinh (aHf )( )
cos (aHf ) cosh (aHf )− 1

S f12 = −
EpIpa

2 sin (aHf ) sinh (aHf )
cos (aHf ) cosh (aHf )− 1

S f13 =
EpIpa

3 sin (aHf )+sinh (aHf )( )
cos (aHf ) cosh (aHf )− 1

S f14 =
EpIpa

2 cos (aHf )− cosh (aHf )( )
cos (aHf ) cosh (aHf )− 1

S f22 =
EpIpa cos (aHf ) sinh (aHf )− cosh (aHf ) sin (aHf )( )

cos (aHf ) cosh (aHf )− 1

S f24 =
EpIpa

2 cos (aHf )− cosh (aHf )( )
cos (aHf ) cosh (aHf )− 1

(19) 

Now, to model the monopile embedded in the soil, 
the governing differential equation for the transverse 
motion can be defined as follows (Das R, Banerjee 
et al. 2023):

EpIp
∂4ws(xs, t)
∂x4

s
+ rpAp

∂2ws(xs, t)
∂t2

+ ks + ics( )ws(xs, t)

= 0 (20) 

Here, ws(xs, t) represents the transverse displacement of the 
monopile embedded in the soil. The parameters ks and cs 
denote the viscoelastic properties of the spring-dashpot sys
tem in terms of stiffness and dashpot coefficients, specifi
cally ks = GsSu1 and cs = GsSu2. Here, Gs stands for the 
shear modulus of the soil medium. At the same time, Su1 
and Su2 represent solutions to the viscoelastic equation of 
motion of the soil, expressed in cylindrical coordinate sys
tem terms. These parameters primarily function the exci
tation frequency ω and Poisson’s ratio ms. Further details 
regarding Su1 and Su2 can be found in (Novak 1974). Similar 
to previous instances, a harmonic solution to Equation (20) 
can be assumed as ws(xs, t) =Ws(xs)e− ivt and substituted 

wf (xf , t)
􏼌
􏼌

xf=0

uf (xf , t)
􏼌
􏼌

xf=0

wf (xf , t)
􏼌
􏼌

x=Hf

uf (xf , t)
􏼌
􏼌
x=Hf

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

􏽼����������􏽻􏽺����������􏽽
Df

=

0 1 0 1
a 0 a 0

sin (aHf ) cos (aHf ) sinh (aHf ) cosh (aHf )
a cos (aHf ) − a sin (aHf ) a cosh (aHf ) a sinh (aHf )

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

􏽼���������������������������������������􏽻􏽺���������������������������������������􏽽
Kf

C1
C2
C3
C4

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

􏽼��􏽻􏽺��􏽽
Qf

e− ivt (15) 

Vf (xf , t)
􏼌
􏼌

xf=0

Mf (xf , t)
􏼌
􏼌

xf=0

Vf (xf , t)
􏼌
􏼌

xf=Hf

Mf (xf , t)
􏼌
􏼌

xf=Hf

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

􏽼����������􏽻􏽺����������􏽽
Ff

=

EpIp 00 0
0 − EpIp 00
0 0− EpIp 0
0 00 EpIp

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

􏽼������������􏽻􏽺������������􏽽
Xp

×

− a3 0a3 0
0 − a2 0a2

− a3 cos(aHf ) a3 sin(aHf ) a3 cosh(aHf ) a3 sinh(aHf )
− a2 sin(aHf ) − a2 cos(aHf ) a2 sinh(aHf ) a2 cosh(aHf )

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

􏽼���������������������������������������􏽻􏽺���������������������������������������􏽽
Gf

C1

C2

C3

C4

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

􏽼��􏽻􏽺��􏽽
Qf

e− ivt

(16) 
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into Equation (20) to obtain:

EpIp
∂4Ws(xs)
∂x4

s
+ ks + ics − v2rpAp

􏼐 􏼑
Ws(xs) = 0 (21) 

Similar to Equation (12) trigonometric hyperbolic sol
utions can be obtained to Equation (21) as follows:

Ws(xs) = D1 sin (bxs)+ D2 cos (bxs)

+ D3 sinh (bxs)+ D4 cosh (bxs) (22) 

where D1 through D4 represent unknown arbitrary con
stants for the transverse equation of motion of the 
monopile embedded in the soil. β represents the wave 
numbers for the monopile element embedded in the 
soil. By substituting Equations (12) in (11), the wave 
number β can be expressed as a function of the exci
tation frequency ω as follows:

EpIpb
4Ws(xs)+ ks + ics − v2rpAp

􏼐 􏼑
Ws(xs) = 0

⇒ b =
�
[

􏽰
4]
v2rpAp − (ks + ics)

EpIp
(23) 

Similarly, employing Equations (14)–(19), the DSM for the 
monopile element embedded in the soil can be derived. 
To thoroughly investigate the dynamic behaviour of the 
entire monopile, the DSM of the monopile embedded in 
soil and submerged in water is combined into a unified glo
bal matrix. The process of globalising the force vectors, dis
placement vectors, and DSM is established using the finite 
element concept (Cook 2007) and can be expressed as fol
lows:

Vf (xf , t) x f=0

􏼌
􏼌
􏼌

Mf (xf , t) x f=0

􏼌
􏼌
􏼌

Vf (xf , t) xf=Hf

􏼌
􏼌
􏼌 + Vs(xs, t) xs=0

􏼌
􏼌

Mf (xf , t) xf=Hf

􏼌
􏼌
􏼌 +Ms(xs, t) xs=0

􏼌
􏼌

Vs(xs, t) xs=Hs

􏼌
􏼌

Ms(xs, t) xs=Hs

􏼌
􏼌

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

S f11 S f12 S f13 S f14 0 0
S f12 S f22 − S f14 S f24 0 0
S f13 − S f14 S f11 + Ss11 − S f12 + Ss12 Ss13 Ss14

S f11 S f24 − S f12 + Ss12 S f22 + Ss22 − Ss14 Ss24

0 0 Ss13 − Ss14 Ss11 − Ss12

0 0 Ss14 Ss24 − Ss12 Ss22

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

×

wf (xf , t) x f=0

􏼌
􏼌
􏼌

uf (xf , t) x f=0

􏼌
􏼌
􏼌

wf (xf , t) xf=Hf

􏼌
􏼌
􏼌 + ws(xs, t) xs=0

􏼌
􏼌

uf (xf , t) xf=Hf

􏼌
􏼌
􏼌 + us(xs, t) xs=0

􏼌
􏼌

ws(xs, t) xs=Hs

􏼌
􏼌

us(xs, t) xs=Hs

􏼌
􏼌

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24) 

The subsequent section of this chapter presents the deri
vation of the global DSM, which combines the contributions 
from the tower, RNA, and monopile. Additionally, it out
lines a methodology to incorporate the boundary conditions 
and to evaluate the dynamic response of the MSWT due to 
the impact loading.

3.3. Boundary conditions and impact loading

This section provides a comprehensive analytical meth
odology to obtain the dynamic response of the MSWT 
subjected to impact loading. Initially, by utilising 
Equations (24) and (8), the global DSM integrating con
tributions from the tower and monopile can be derived 
as follows:

Vt(x, t) x=0|

Mt(x, t) x=0|

..

.

Vs(xs, t) xs=Hs

􏼌
􏼌

Ms(xs, t) xs=Hs

􏼌
􏼌

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
8×1􏽼������������􏽻􏽺������������􏽽

FG

=

S11 S12 · · · 0 0
S12 S22 · · · 0 0

..

. ..
. . .

. ..
. ..

.

0 0 · · · Ss11 − Ss12

0 0 · · · − Ss12 Ss22

⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎦

8×8􏽼�������������������􏽻􏽺�������������������􏽽
SG

wt(x, t) x=0|

ut(x, t) x=0|

..

.

ws(xs, t) xs=Hs

􏼌
􏼌

us(xs, t) xs=Hs

􏼌
􏼌

⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎦

8×1􏽼�����������􏽻􏽺�����������􏽽
DG

(25) 

Here, [SG]8×8 denotes the global dynamic stiffness 
matrix (DSM) or global Spectral Element Matrix 
(SEM), which establishes the global frequency 
dependent force-displacement relationship across 
the entire MSWT. Due to the lumped mass at the 
top of the tower, as shown in Figure 5(b), an 
additional shear force will act, which is defined as 
follows:

Vt(x, t)|x=0= − MRv
2wt(x, t)|x=0

= − SMRwt(x, t)|x=0 (26) 

Additionally, due to the impact load at the top of the 
monopile as shown in Figure 4(b), a forcing term of FI 
will be applied in the force matrix, and all other shear 
forces and bending moments in the forcing matrix 
will be zero. Thus, the dynamic response of the 
MSWT can be obtained by modifying Equation (25) 
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as follows:

0
0
FI
0
0
0
0
0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

􏽼��􏽻􏽺��􏽽
FG

=

S11 − SMR S12 · · · 0 0
S12 S22 · · · 0 0

..

. ..
. . .

. ..
. ..

.

0 0 · · · Ss11 − Ss12

0 0 · · · − Ss12 Ss22

⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎦

8×8􏽼�����������������������􏽻􏽺�����������������������􏽽
SG

wt(x, t)|x=0
ut(x, t)|x=0

..

.

ws(xs, t)|xs=Hs

us(xs, t)|xs=Hs

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

8×1􏽼�����������􏽻􏽺�����������􏽽
DG

⇒DG= S− 1
G FG

(27) 

Here, DG(1, 1) represents the dynamic response at the 
tower top. Since the displacement at the RNA is 
expected to be at its peak under impact loading, 
this study will focus on analyzing the maximum dis
placement observed at the top of the tower. The sub
sequent section provides the details of wind and 
wave loads applied to the wind turbine.

3.4. Wind and wave loads

This study represents wind and wave loads by their 
respective power spectral densities (PSD), as shown 

in Figure 7. The Kaimal spectrum (Kaimal et al. 
1972) represents the wind load, while the JONSWAP 
spectrum (Isherwood 1987) represents the wave 
loads. The spectral density of the turbulent gust drag 
force, which incorporates spatial correlation infor
mation, can be defined following Patro, Panda et al. 
(2024)

Sv̅xv̅y v̅, z( ) = raU̅(z)
( 􏼁2 A2

TC2
D + C2

TA2
R

( 􏼁
Suxuy v̅( )x

2 v̅( )

(28) 

Here, ra is the air density, U̅(z) is the wind velocity at 
z = Ht − x, AT denotes the average cross-sectional 
area of the tower, CD represents the drag coefficient 
of the wind turbine tower, CT is the thrust coefficient, 
and AR stands for the cross-sectional area of the rotor. 
χ represents aerodynamic admittance and Suxuy (v̅) is 
the cross-power spectral density function of fluctuat
ing wind speed. More details on Suxuy (v̅) can be 
found in Patro, Panda et al. (2024). Similarly, the 
expression of the power spectrum of the wave force 
exerted on the monopile can be defined as follows:

SFF,waves(v̅, zw) = C2
mr

2
w

D4
Pp

6

4xf

v̅4

sinh2(cS)

S
2c
−

1
2c2

􏼒 􏼓

ecS −
S

2c
+

1
2c2

􏼒 􏼓

e− cS +
1
c2

􏼚 􏼛2

Sww(v̅)

(29) 

In this equation, Cm represents the inertia coefficient, 
rw is the water density, DP denotes the outer diameter 
of the monopile, xf is the vertical coordinate of the 
submerged monopile in water, S is the mean sea 

Figure 7. (a) and (b) Variation of forcing spectrum with excitation frequency for wind and wave load. These spectra are shown as 
mudline moment spectra validated with Arany, Bhattacharya, Macdonald et al. (2015) for (a) Kaimal Spectrum and (b) JONSWAP Spec
trum. (This figure is available in colour online.)
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depth and ψ signifies the wave number. The term 
Sww(v̅) characterises the ocean wave, defined as a 
zero-mean stationary stochastic process, also referred 
to as a PSD function. More details on Sww(v̅) can 
be found in Patro, Panda et al. (2024). The subsequent 
section provides the variation of the ship’s different 
physical properties with the dynamic response of the 
MSWT.

4. Dynamic response analysis

4.1. Ship impact only

In Figure 8(a), the graph illustrates how the displace
ment response at the RNA varies with the excitation fre
quency across different Relative mass (RM) values, 
defined as the ratio of the ship’s mass to the MSWT’s 
mass. The ship’s mass is critical in MSWT dynamic 
analysis, as a higher mass translates to a more significant 
impact. The Vestas V90 3 MW wind turbine (Romero 
et al. 2016) model is considered in the present study, 
and its geometric and material properties are given in 
Table 1. In this study, the ship’s mass ranges from 0.5 
to 5 times that of the MSWT. The graph in 
Figure 8(a) indicates a direct correlation between the 

dynamic response of the MSWT and the variation in 
RM. Peaks in the displacement response across all RM 
values signify the natural frequency of the MSWT. Fur
thermore, Figure 8(d) displays the variation of peak dis
placement response for different RM values. Notably, 
while the peak displacement response increases with 
RM, the rate of increase gradually slows down, even
tually reaching a constant.

In Figure 8(b), the graph depicts how the displace
ment response at the RNA varies with excitation fre
quency across different Relative height (RH) values, 
representing the ratio of the submerged monopile 
height to its total height. The variation in water 
depth determines the impact location, with water 
height ranging from 0.05 to 0.5 times the monopile’s 
total height in this study. Observing Figure 8(b), it’s 
evident that the MSWT’s dynamic response is directly 
proportional to changes in RH . Additionally, there’s a 
noticeable leftward shift in the peak displacement 
response at the RNA with increasing RH values. This 
shift indicates a decrease in the MSWT’s natural fre
quency as RH increases. The higher water depth 
leads to greater hydrodynamic mass, reducing the sys
tem’s natural frequency. Furthermore, Figure 8(e) 
illustrates the variation in peak displacement response 

Figure 8. Variation of the ship’s different physical properties with the dynamic response of the MSWT: (a)–(c) Displacement response 
at RNA with excitation frequency for different (a) Relative mass (ratio of the mass of ship to the mass of MSWT); (b) Relative height 
(ratio of the height of monopile submerged in water to the total height of monopile); (c) Relative velocity (ratio of the impact velocity 
of the ship to the initial velocity of the ship); (d)–(f) Maximum displacement response with (d) Relative mass; (e) Relative height; and (f) 
Relative velocity. (This figure is available in colour online.)
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for different RH values. Here, the rate of increase 
gradually diminishes and stabilises as water depth 
increases.

Finally, Figure 8(c) shows the variation of displace
ment response at RNA with excitation frequency for 
different values of Relative velocity (RV ), which is 
defined as the ratio of the impact velocity of the ship 
(vI) to the initial velocity (v0) of the ship (Bela et al. 
2017). The impact velocity and the mass of the ship 
(MS) directly influence the impact force with the help 
of the following equation:

FI =
MS × (vI − v0)

Dt
(30) 

Here, Dt represents the time the impact occurs. Hence, 
the dynamic response profile for Relative velocity (RV ) 
is expected to resemble that of Relative mass (RM), as 

illustrated in Figure 8(c). In this study, the initial vel
ocity of the ship (v0) is set at 1 m/s, while the ship’s 
impact velocity (vI) is varied from 1.5 to 5 times v0. 
The impact velocity can exceed its initial velocity due 
to elastic collisions, external forces (e.g. propulsion or 
waves), or energy transfer from the impacted object 
(Pedersen et al. 1993). The time duration of impact, 
denoted as Dt, is kept constant at 0.1 seconds. Similar 
to the preceding cases, the variations in peak displace
ment response across different RV values are depicted 
in Figure 8(d).

4.2. Combined action of wind and wave loading

In this section, the dynamic response of the MSWT is 
obtained when subjected to the combined action of 
ship impact, wind loads, and wave loads, as shown in 
Figure 9. The dynamic wind and wave forces as a func
tion of excitation frequency are calculated using 
Equations (28) and (29). In Figure 9(a), a single peak 
is observed, corresponding to the natural frequency of 
the entire system. However, in Figure 9(b), an additional 
peak is observed apart from the resonant frequency, pri
marily due to the peak frequency of the wave load.

5. Eigenvalues and simplified analytical 
model of MSWT

From Figure 8, it is observed that the maximum 
dynamic response occurs at the resonant frequency of 
the MSWT for all the cases of ship loading. Thus, cor
rectly estimating the natural frequency of the entire 

Figure 9. Dynamic response of MSWT is obtained when subjected to the combined action of (a) Wind + Ship impact and (b) Wind + 
Wave + Ship Impact. (This figure is available in colour online.)

Table 1. Physical properties of the Vestas V90 3 MW wind 
turbine (Romero et al. 2016).
Components Properties Values

Tower Length, Ht (m) 80
Top outside diameter, Dtt (m) 2.31
Bottom outside diameter, Dtb (m) 4.2
Wall thickness, τ (mm) 30
Young’s modulus, Et (GPa) 210
Density, rt (kg/m3) 7850
RNA mass, MR (tonne) 111

Monopile Length, Hp (m) 28
Outside diameter, Dp (m) 4.3
Wall thickness, tp (mm) 45
Density, rp (kg/m3) 7850
Young’s modulus, Ep (GPa) 210
Mean sea depth, Hf (m) 8

Soil Young’s modulus, Es (MPa) 20
Density, rs (kg/m3) 1500
Poisson’s ratio, ms 0.3

SHIPS AND OFFSHORE STRUCTURES 15



system is highly necessary. Subsequently, this section 
provides the details for calculating the natural frequency 
of the entire system by conducting the eigenvalue analy
sis. To conduct the eigenvalue analysis, the determinant 
of [SG]8×8 is equated to zero. Since [SG]8×8 is a function 
of ω, solving the expression of |SG| enables us to identify 
the system’s eigenfrequencies (Das A et al. 2024). The 
first eigenfrequency corresponds to the natural fre
quency of the entire system. Moreover, a sensitivity 
analysis has investigated the natural frequency variation 
concerning geometric and material parameters outlined 
in Table 3. The sensitivity analysis uses Pearson corre
lation, as illustrated in Figure 10. In the Pearson corre
lation graph presented in Figure 10, parameters 
exhibiting positive values indicate a direct relationship 
with the natural frequency and vice versa (Panda et al. 
2023). Higher absolute values (positive or negative) of 
parameters suggest a greater sensitivity towards the 

natural frequency and vice versa. From the sensitivity 
analysis, it’s observed that the mass of the RNA (MR) 
and the bottom diameter of the tower (Dtb) exhibit 
more sensitivity towards the natural frequency. Hence, 
emphasising these parameters in the MSWT design pro
cess is crucial. However, parameters such as the depth of 
the monopile submerged in water (Hf ) exhibit negligible 
influence on the natural frequency. Consequently, a 
simplified model has been proposed in subsequent sub
sections to reduce the computational complexity and 
time associated with the current analytical model.

This subsection converts the existing analytical 
model illustrated in Figure 11(a) into a simplified 
model depicted in Figure 11(b). In this simplified 
model, the RNA is represented as a lumped mass posi
tioned at the top of the tower. In contrast, the effects of 
Fluid-Structure Interaction (FSI) and soil-structure 
interaction (SSI) are modelled using a two-spring 

Figure 10. Natural frequency variation with different geometric and material parameters given in Table 3. (This figure is available in 
colour online.)
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substructure approach with lateral and rotational 
degrees of freedom. Due to the inclusion of a lumped 
mass at the top in the simplified model, only transverse 
displacement is considered to model the tower, i.e. 
according to Equation (1). Now, by introducing non- 
dimensional parameters for space, time, and transverse 
displacement, denoted as x̅ = x

Ht
, t̅ = vnt, and w̅ = wt

4
, 

respectively, and substituting them into Equation (1), 
the non-dimensionalized differential equation for the 
tower can be formulated as follows:

∂2

∂x̅2 1+ c̅x̅( )3
∂2w̅ x̅, t̅

( 􏼁

∂x̅2

􏼔 􏼕

+ 1+ c̅x̅( )
∂2w̅ x̅, t̅

( 􏼁

∂̅t2 = 0 (31) 

where, ϖ and vn =

�����
Etr2

t
2rtH4

t

􏽱

represent arbitrary constants 
bearing the units of dimensional quantity, while ̅c = cHt 
denotes the non-dimensional conicity. The ϖ value is 

assumed to be unity to simplify calculations. Further
more, introducing a non-dimensional form of the har
monic solution, i.e. w̅(x̅, t̅) = W̅(x̅)e− iht̅, and 
substituting this solution into Equation (31), the differ
ential equation can be converted into the spatial domain 
as follows:

∂2

∂x̅2 1+ c̅x̅( )3
∂2W̅(x̅)
∂x̅2

􏼔 􏼕

− h2 1+ c̅x̅( )W̅(x̅) = 0 (32) 

Here, h = v
vn

, also referred to as the frequency ratio, and 
W̅(x̅) represents the non-dimensional form of displace
ment amplitude. To address Equation (32), solutions 
based on Bessel functions, as defined in Equation (4), 
are employed. To derive the tower’s DSM, the state vec
tors – rotation, bending moment, and shear force – are 
considered from Equation (5). Utilizing the 

Figure 11. (a) The mathematical model depicting an eccentric rigid body and accounting for the effects of FSSI; (b) A simplified sys
tem incorporating a lumped mass and a two-spring substructure system. (This figure is available in colour online.)
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aforementioned non-dimensional parameters, the state 
vectors in Equation (5) can be expressed in non-dimen
sional terms as follows:

u̅ x̅, t̅
( 􏼁

= ut(x, t)Ht =
∂W̅(x̅)
∂x̅

e− iht̅, M̅ x̅, t̅
( 􏼁

= Mt(x, t)

H2
t

EtIt(x)
=
∂2W̅(x̅)
∂x̅2 e− iht̅ ,

V̅ x̅, t̅
( 􏼁

= Vt(x, t)
H3

t
EtIt(x)

= hc x̅( )
∂2W̅(x̅)
∂x̅2 +

∂3W̅(x̅)
∂x̅3

􏼒 􏼓

e− iht̅

(33) 

Here, hc(x̅) = 3c̅
1+c̅x̅ represents the conicity ratio. By sub

stituting the non-dimensional form of Equations (4) 
into (33), and then expressing the non-dimensional 
forms of Equations (6) and (7) in matrix form for the 
transverse direction, the DSM for the tower in the trans
verse direction can be obtained. To account for the 

effect of the lumped mass in the DSM, the shear forces 
at the top of the tower can be defined as follows:

Vt(x, t) − MR
∂2wt(x, t)
∂t2

􏼒 􏼓􏼌
􏼌
􏼌
􏼌
x=0
= 0

⇒ V̅ x̅, t̅
( 􏼁􏼌

􏼌
x̅=0 = − g

∂2w̅ x̅, t̅
( 􏼁

∂̅t2

􏼌
􏼌
􏼌
􏼌

x̅=0
(34) 

Here, g = MR
2prtτHtrt 

is the ratio of the mass of the RNA to 
that of the mass of the tower. Similarly, the effect of lat
eral and rotational spring stiffness can be incorporated 
at the bottom of the tower as follows:

Mt(x, t) − KRut(x, t)( )|x=Ht = 0⇒ M̅ x̅, t̅
( 􏼁􏼌

􏼌
x̅=1

= kRu̅ x̅, t̅
( 􏼁􏼌

􏼌
x̅=1 (35) 

Figure 12. (a) Discretization of wind turbine system using OpenSEES (n = 500); (b) Reduced scaled model of a wind turbine tower. 
(This figure is available in colour online.)
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and,

Vt(x, t)+ KLwt(x, t)( )|x=Ht = 0⇒ V̅ x̅, t̅
( 􏼁􏼌

􏼌
x̅=1

= − kLw̅ x̅, t̅
( 􏼁􏼌

􏼌
x̅=1 (36) 

where KL and KR denote the lateral and rotational spring 
stiffness coefficients, respectively, which primarily 
depend on the geometric and material properties of 
the monopile and soil. A closed-form expression for 
KL and KR as a function of the geometric and material 
properties of the monopile and the soil are derived in 
the subsequent subsections. Additionally, 
kL =

KL4L3

pEr3
t (1+c)3τ

and kR =
KRL

pEr3
t (1+c)3τ

represent the non- 

dimensional forms of spring coefficients, commonly 
known as the lateral stiffness ratio and rotational stiff
ness ratio, respectively. Now, by substituting the bound
ary conditions derived from Equations (34) to (36) at 
both ends of the beam into Equation (33), the non- 
dimensional form of the SEM can be modified as 
follows:

st =

St11 − gh2 St21 St31 St14

St21 St22 St23 St24

St31 St32 St33 − kL St34

St14 St42 St43 St44 + kR

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦ (37) 

Now, eigenvalue analysis can be performed by equating 
the determinant of St to zero. The subsequent subsection 
outlines a procedure to obtain a closed-form expression of 
the lateral stiffness KL as a function of the geometric and 
material properties of the monopile and the soil.

5.1. Expression for lateral spring stiffness

To obtain a closed-form expression of lateral spring 
stiffness (KL), the monopile is subjected to static load 
(Pss), and the corresponding deflection is calculated. 
The closed-form expression of KL as a function of the 
physical properties of monopile and soil can be 
expressed as follows:

KL =
EpIpl

3
ss cos lssHs( ) cosh lssHs( ) − 1{ }

cos lssHs( ) sinh lssHs( ) − cosh lssHs( ) sin lssHs( )

(38) 

where, lss =
�
[
√

4]− (ks+ics)
EpIp

. The entire derivation for the 
expression of KL is given in Appendix 1. Similarly, the 
next subsection outlines a procedure to obtain a 
closed-form expression of the rotational stiffness (KR).

5.2. Expression for rotational spring stiffness

Similarly, to obtain the closed-form expression of the 
rotational spring stiffness (KR) as a function of geometric 

and material properties of the monopile and the soil, the 
monopile is subjected to static moment (Mss) at the top 
and the corresponding deflection is calculated. The 
closed-form expression can be obtained as follows:

KR =
EpIplss cos lssHs( ) cosh lssHs( ) − 1{ }

cos lssHs( ) sinh lssHs( ) + cosh lssHs( ) sin lssHs( )

(39) 

The entire derivation for the expression of KR is given in 
Appendix 2. The subsequent subsections simplify the 
model shown in Figure 11 into a single degree of freedom 
system to derive a closed-form approximate expression of 
the natural frequency.

6. Approximate closed-form expression of 
natural frequency

This subsection outlines the derivation of an approxi
mate expression for the natural frequency, following 
the methodology given in Adhikari and Bhattacharya 
(2011). The simplified mathematical model depicted in 
Figure 11 is converted into an equivalent Single Degree 
of Freedom (SDOF) system, characterised by equivalent 
stiffness (Ke) and equivalent mass (Me). For this equiv
alent SDOF system, the first natural frequency is 
expressed as follows:

v1 =

����
Ke

Me

􏽲

(40) 

The equivalent mass can be obtained for a uniform 
cantilever beam carrying a tip mass from Blevins and 
Plunkett (1980) as follows:

Me = MR + 0.24rtAt(x)Ht (41) 

The factor 0.24 on the right-hand side of Equation (41) 
can be replaced by the mass correction factor (gm) 
because the tower is non-uniform along its length and 
has elastic supports. Henceforth, the natural frequency 
of the system can be expressed as follows:

v1 =

����
Ke

Me

􏽲

=

��������������
Ke

MR + rtLHt

􏽳

(42) 

where L = 2prtτgm bearing the units of the cross- 
sectional area, also known as the equivalent area. Further 
sub-subsections derive the closed-form expression for 
equivalent stiffness and equivalent mass.

6.1. Equivalent stiffness

The equivalent stiffness (Ke) can be obtained by apply
ing a static load (Ps) at the beam’s free end and 
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calculating its corresponding deflection similar to the 
methodology discussed in Subsection 5.1. The closed- 
form expression of Ke can be defined as follows:

Ke =
pEtr3

t τ

H3
t

gk (43) 

where gk is the stiffness correction factor defined as 
follows:

gk =
V1

V2 +V3 − V4 +V5
(44) 

where, V1 =
6c̅4kLkR (̅c+1)4

1+c̅ , V2 = 2c̅3kR(1 − 2c̅), 
V3 =

6c̅4(̅c+1)(kL+kR)
1+c̅ , V4 =

3c̅kLkR(2c̅+7c̅2+8c̅3+3c̅4)
1+c̅ and 

V5 =
6c̅kLkR ln (̅c+1)(1+4c̅+6c̅2+4c̅3+c̅4)

1+c̅ . The entire derivation 
of Ke is given in Appendix 3.

6.2. Equivalent mass

The equivalent mass (Me) can be obtained by providing 
a unit displacement amplitude at the free end of the 
beam such that (w(x, t)|x=0 = 1) and calculating its cor
responding kinetic energy. The closed-form expression 
of Me can be defined as follows:

Me = rtLHt +MR (45) 

where L = 2prtτgm and the mass correction factor (gm) 
can be defined as follows:

gm =
V6 +V7 +

3ckLkRV8
1+c̅

V2
9

(46) 

where, V6 =
9
2 k

2
R 1+ 6c̅

1+c̅+
36c̅2

(1+c̅)2

􏼐 􏼑
(2+ c̅), V7 =

27c̅2k2
L

(1+c̅)2 

1+ c̅
4

( 􏼁
, V8 = 9+ 3c̅+ 9c̅(3+c̅)

1+c̅ +
3c̅kL

20(1+c̅) (33+ 7c̅)+

3kR
3c̅

1+c̅+ 1
􏼐 􏼑

3
4+

c̅
5

( 􏼁
+ 3kLkRc̅

20(1+c̅)
33
7 +

7
8 c̅

( 􏼁
and V9 = 3kR 

+ 9c̅kL
1+c̅ +

9c̅kR
1+c̅ +

3c̅kLkR
1+c̅ .

6.3. Closed form expression of natural frequency

Now, substituting the expression of equivalent stiffness 
(Ke) and equivalent mass (Me) from Equations (43) and 
(45) in (42), the closed-form expression of natural fre
quency as a function of non-dimensional conicity (̅c), 
lateral stiffness ratio (kL), rotational stiffness ratio (kR) 
and mass ratio (g) can be derived as follows:

v2
1 = v2

nd
2 (47) 

Here, d =
�����
gk

g+gm

􏽱
serves as a frequency ratio of the 

SDOF system. This closed-form expression is validated 
against existing literature across various boundary con
ditions, as detailed in the subsequent sections on results 
and discussion.

6.4. Analytical validation

The validity of the proposed closed-form approximate 
expression for natural frequency, as outlined in 
Equation (47), is compared against existing literature 
across various boundary conditions. The following 
sub-subsections present this validation process.

6.4.1. Uniform beam having fixed support
The non-dimensional conicity parameter (̅c) tends to 
zero for uniform cross-sections. In contrast, for fixed 
supports, the lateral stiffness ratio (kL) and rotational 
stiffness ratio (kR) tend towards infinity. Consequently, 
the formulations for the equivalent stiffness (Ke) and 
equivalent mass (Me) defined in Equations (43) and 
(45) can be modified as follows:

lim
c→0,kL→1,kR→1

Ke =
3EtIt

H3
t

(48) 

and,

lim
c→0,kL→1,kR→1

Me = MR +
33

140
rtAtHt (49) 

Equations (48) and (49) are the exact expressions of equiv
alent stiffness and equivalent mass for a cantilever beam 
connected by a lumped mass at the free end, which agrees 
exactly with Table 8 of Blevins and Plunkett (1980).

6.4.2. Uniform beam having flexible support
For c̅ = 0, the stiffness (gk) and mass correction factor 
(gm) defined in Equations (44) and (46) can be modified 
as follows:

lim
c→0

(gk) =
3kLkR

3kL3kR + kLkR
(50) 

and,

lim
c→0

(gm)=
3

140
×

140k2
L+420k2

R+420kLkR+77k2
LkR+105k2

RkL+11k2
Lk

2
R

3kL+3kR+kLkR( )2

(51) 

Equations (50) and (51) is the exact expression of equiv
alent stiffness and equivalent mass provided in Equation 
(71) of Adhikari and Bhattacharya (2011). The sub
sequent section provides a detailed analysis to obtain 
the natural frequency of a wind turbine tower using a 
numerical approach.

6.5. Numerical validation

The finite element software Open System for Earth
quake Engineering Simulation (OpenSEES) (McKenna 
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2011) has been used to validate the proposed math
ematical model. In this software, a numerical model 
based on the finite element method is developed, and 
an eigenvalue analysis is performed to estimate the 
natural frequency of the wind turbine system. Like 
the mathematical model, a heavy mass is considered 
at the top to represent the RNA and the blades. To 
model the conical tower, it is discretised into n cylind
rical continuous beam elements made of an elastic 
material with a constant cross-section (Arany, Bhatta
charya, Adhikari et al. 2015), as shown in Figure 
12(a). For SSI, lateral and rotational springs are 
attached at the bottom node of the lowest element 
using zero-length elements. The natural frequencies 
obtained from the finite element simulations are com
pared with those from analytical methods and are pre
sented in Table 3. The next section outlines an 
experimental validation using a reduced-scale model 
to determine the natural frequency.

6.6. Experimental validation

As shown in Figure 12(b), the experimental setup consists 
of a hollow cylindrical tower fixed at the bottom plate, with 
a heavy lumped mass placed at the top. The hollow cylind
rical tower has been 3D-printed using PLA material. The 
geometric and material properties of all components are 
provided in Table 2. The bottom plate is allowed to move 
unilaterally, creating a sudden displacement or jerk, 
which induces free-damped vibration in the system. A uni
axial accelerometer (Neeshpapa et al. 2014) is attached to 
the tip of the tower, as shown in Figure 12(b), to record 
the system’s acceleration amplitude. The technical specifi
cations of the accelerometer are provided in Table 2. The 
accelerometer is connected to a data acquisition (DAQ) 
system, which interfaces with a PC to obtain the time- 
domain response via LabView software (Kalkman 1995). 
The recorded vertical acceleration vs. time data is then 
transformed into the frequency domain using the Fast 
Fourier Transform (FFT) algorithm (Duhamel and Vetterli 

Table 2. Geometric and material properties of the experimental model shown in Figure 12(b).
Apparatus Properties Symbols Units Values

PLA material Density ρ kg/m3 778.89
Young’s modulus E GPa 2.9

Tower Height H m 0.4
Outer diameter D m 0.04
Thickness τp m 0.002

Rigid mass Mass Mr kg 2
Accelerometer Sensitivity − mV/(m/s2) 4.98

Mass Ma kg 0.0236
Natural Frequency Experiment ve Hz 7.2

Bessel function solution (Error %) vb Hz 7.15 (0.694%)
Approximate solution (Error %) v1 Hz 7.26 (0.83%)
Numerical simulation (Error %) vn Hz 7.31 (1.52%)

Table 3. Physical properties and natural frequency results for four different wind turbines.

Components Properties
Vestas V90 3 MW Vestas V66 2 MW NREL 5 MW Siemens SWT 3.6 MW  

(Pangerc et al. 2016)(Romero et al. 2016) (Almutairi and Alahmadi 2022) (Jonkman et al. 2009)

Tower Length, Ht (m) 80 54.5 90 60
Top outside diameter, Dtt (m) 2.31 2.75 3.87 2.8
Bottom outside diameter, Dtb (m) 4.2 4.25 6 3.5
Wall thickness, τ (mm) 30 34 23 47.5
Young’s modulus, Et (GPa) 210 210 210 210
Density, rt (kg/m3) 7850 7860 8500 8500
RNA mass, MR (tonne) 111 80 350 130

Monopile Length, Hp (m) 28 31.5 56 71
Outside diameter, Dp (m) 4.3 3.5 6 3.5
Wall thickness, tp (mm) 45 50 60 75
Density, rp (kg/m3) 7850 7860 8500 8500
Young’s modulus, Ep (GPa) 210 210 210 210
Mean sea depth, Hf (m) 8 16.5 20 21

Soil Young’s modulus, Es (MPa) 20 5160 158.46 105.64
Density, rs (kg/m3) 1500 2850 1019.36 1019.36
Poisson’s ratio, ms 0.3 0.2 0.3205 0.3205

Natural frequency (Hz) Real-world MSWT 0.28–0.35 0.69–0.77 0.22–0.32 0.4–0.6
Bessel function solution 0.307 0.737 0.26 0.452
Approximate solution 0.297 0.729 0.258 0.451
Error (%) 3.016 0.985 0.502 0.079
Fixed base condition 0.347 0.809 0.277 0.517
Flexibility (%) 11.527 8.899 6.137 12.572
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1990). The peak amplitude in the FFT graph corresponds 
to the system’s natural frequency. The natural frequency 
obtained from the experiment is validated against numeri
cal and analytical methods, as shown in Table 2. Further 
details on the experimental procedures can be found in 
Patro, Banerjee et al. (2023). The subsequent section com
pares the natural frequencies obtained from Equation (47) 
with the complete analytical model discussed in Section 5
for different real-world MSWTs.

7. Application of the methodology to 
installed wind turbines and discussion

This section undertakes a comparison between the natural 
frequencies derived from the empirical formula outlined in 
Equation (47) and those obtained from the comprehensive 
analytical model detailed in Equation (5), focussing on 
different types of MSWTs found in various global wind 
farms. Specifically, four distinct MSWT case models are 
considered, encompassing a total of 16 input parameters 
that encompass the physical characteristics of the tower, 
monopile, and site conditions. These parameters collec
tively contribute to calculating natural frequencies using 
both the empirical formula and the comprehensive analyti
cal approach, as outlined in Table 3. The findings reveal a 
remarkable alignment between the natural frequencies pre
dicted by the empirical formula and the measured frequen
cies, typically within a 3.1% margin. This level of accuracy is 
noteworthy, considering the simplified nature of the meth
odology employed. Furthermore, when comparing the 
fixed base and natural frequencies to those incorporating 
flexible foundations using our method, the disparity typi
cally falls within the range of 6–13%, a common occurrence 
in offshore wind turbine analyses. The degree of flexibility 
introduced by the foundation’s compliance, expressed as a 
percentage reduction in the first natural frequency, is docu
mented for each wind turbine model in Table 3.

8. Conclusion

This study utilises a frequency domain dynamic stiffness 
approach to investigate the dynamic response of a mono
pile-supported offshore wind turbine (MSWT) under 
ship impact loading. In this analysis, the tower and 
monopile are modelled as Euler-Bernoulli beams. 
Fluid-structure interaction (FSI) is accounted for by 
applying hydrodynamic mass along the entire submerged 
length of the monopile. Similarly, soil-structure inter
action (SSI) is modelled using viscoelastic springs distrib
uted along the length of the monopile embedded within 
the soil. The force-displacement relationship for the com
bined system of the tower and monopile is established 
through the Spectral Element Method (SEM).

The dynamic response at the top of the tower in the fre
quency domain is evaluated when subjected to impact 
loading at its base. A parametric study demonstrates how 
the dynamic response at the top varies with changes in 
the ship’s mass, impact velocity, and water depth. It was 
found that the maximum dynamic response consistently 
occurs at the resonant frequency of the MSWT across all 
scenarios. Consequently, a sensitivity analysis using the 
Pearson correlation was conducted to assess the influence 
of various geometric and material parameters of the 
tower, monopile, and soil on the system’s natural fre
quency. This analysis revealed that the mass of the rotor 
nacelle assembly (RNA) (MR) and the bottom diameter 
of the tower (Dtb) are significantly sensitive to changes in 
the natural frequency, underscoring their importance in 
the MSWT design process. Conversely, the depth of the 
monopile submerged in water (Hf ) showed a negligible 
impact on the natural frequency.

A simplified non-dimensional model was proposed 
to account for the non-uniform geometry of the system, 
and the foundation was modelled using lateral and 
rotational springs. Closed-form expressions for these 
springs have been derived based on the physical proper
ties of the monopile and soil. An analytical approximate 
closed-form expression for the natural frequency has 
been formulated, facilitating the preliminary design of 
beam-like structures considering their conicity and 
flexible supports. This expression enables manual natu
ral frequency estimation and simplifies dynamic analy
sis for hollow conical Euler-Bernoulli beams with 
similar structural configurations. By reverse engineer
ing, the geometric parameters of the wind turbine can 
be recalculated based on a desired natural frequency. 
The proposed model effectively captures the dynamic 
response of MSWTs under varying impact energies 
and deformation modes from local indentations to glo
bal bending and incorporates foundation and geometric 
effects for diverse design scenarios. The major limitation 
of the present study is that a linear elastic model is con
sidered for the tower, monopile, and soil. The large 
deformations of the structure, material, and geometric 
nonlinearity can be considered in future work. 
Additionally, future work may extend to estimating sto
chastic dynamic responses, considering the dynamics of 
the rotating blades.
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Appendices

Appendix 1. Derivation for lateral spring 
stiffness

For a monopile subjected to static load (Pss), the governing 
differential equation defined in Equation (20) can be modified 
as follows:

EpIp
∂4Ws(xs)
∂x4

s
+ ks + ics( )Ws(xs) = 0 (A1) 

The trigonometric hyperbolic solution for the above differen
tial equation can be obtained similar to Equation (22) as fol
lows:

Ws(xs) = Ss(xs)Fs (A2) 

where, 
Ss(xs) = sin (lssxs) cos (lssxs) sinh (lssxs) cosh (lssxs)

􏼈 􏼉

and Fs = { Fs1 Fs2 Fs3 Fs4 }T . Now, the boundary con
ditions at xs = 0 and xs = Hs can be defined as follows:

M(xs)|xs=0 =
∂2Ws(xs)
∂x2

s

􏼌
􏼌
􏼌
􏼌

xs=0
= 0 (A3) 

Vs(xs)|xs=0 − Pss = 0⇒
∂3Ws(xs)
∂x3

s

􏼌
􏼌
􏼌
􏼌

xs=0
= −

Pss

EpIp
(A4) 

M(xs)|xs=Hs =
∂2Ws(xs)
∂x2

s

􏼌
􏼌
􏼌
􏼌

xs=Hs

= 0 (A5) 

Vs(xs)|xs=Hs = 0⇒
∂3Ws(xs)
∂x3

s

􏼌
􏼌
􏼌
􏼌

xs=Hs

= 0 (A6) 

Substituting Equations (A2) in (A3)–(A4), the boundary con
ditions can be written in matrix form as follows:

∂2Ws(xs)
∂x2

s

􏼌
􏼌
􏼌

xs=0

∂3Ws(xs)
∂x3

s

􏼌
􏼌
􏼌

xs=0

∂2Ws(xs)
∂x2

s

􏼌
􏼌
􏼌

xs=Hs

∂3Ws(xs)
∂x3

s

􏼌
􏼌
􏼌

xs=Hs

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

0 − l2
ss 0l2

ss

− l3
ss 0l3

ss 0
− l2

ss sin (lssHs) − l2
ss cos (lssHs) l2

ss sinh (lssHs) l2
ss cosh (lssHs)

− l3
ss cos (lssHs) l3

ss sin (lssHs) l3
ss cosh (lssHs) l3

ss sinh (lssHs)

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

􏽼����������������������������������������������􏽻􏽺����������������������������������������������􏽽
Qs

Fs1

Fs2

Fs3

Fs4

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

􏽼���􏽻􏽺���􏽽
Fs

=

0
− Pss

EpIp

0
0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

􏽼����􏽻􏽺����􏽽
Fss

(A7) 

⇒ Fs = Q− 1
s Fss (A8) 

Thus, substituting Equations (A8) in (A2), the closed-form 
expression of lateral spring stiffness can be obtained as fol
lows:

KL =
Pss

Ws(xs)|xs=0
=

Pss

Ss(xs)|xs=0Q− 1
s Fs

(A9) 

Appendix 2. Derivation for rotational spring 
stiffness

Thus, the boundary conditions at xs = Hs will be same as 
Equations (A3) and (A6). However, the boundary conditions 

at xs = 0 will be defined as follows:

M(xs)|xs=0 +Mss = 0⇒
∂2Ws(xs)
∂x2

s

􏼌
􏼌
􏼌
􏼌

xs=0
= −

Mss

EpIp
(A10) 

and,

Vs(xs)|xs=0 = 0⇒
∂3Ws(xs)
∂x3

s

􏼌
􏼌
􏼌
􏼌

xs=0
= 0 (A11) 

Substituting Equations (A2) in (A3), (A6), (A10), and (A11), 
the boundary conditions can be written in matrix form as fol
lows:

∂2Ws(xs)
∂x2

s

􏼌
􏼌
􏼌

xs=0
∂3Ws(xs)
∂x3

s

􏼌
􏼌
􏼌

xs=0
∂2Ws(xs)
∂x2

s

􏼌
􏼌
􏼌

xs=Hs
∂3Ws(xs)
∂x3

s

􏼌
􏼌
􏼌

xs=Hs

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= QsFs =

− Mss
EpIp

0
0
0

⎧
⎪⎪⎨

⎪⎪⎩

⎫
⎪⎪⎬

⎪⎪⎭

􏽼����􏽻􏽺����􏽽
Bss

⇒ Fs

= Q− 1
s Bss (A12) 

Thus, substituting Equations (A12) in (A2), the closed-form 
expression of rotational spring stiffness can be obtained as follows:

KR =
Mss

us(xs)|xs=0
=

Mss
∂Ws(xs)
∂xs

􏼌
􏼌
􏼌

xs=0

=
Mss

Ts(xs)|xs=0Q− 1
s Bss

(A13) 

where Ts(xs)|xs=0 = { lss 0 lss 0 }.

Appendix 3. Derivation for equivalent 
stiffness

For a cantilever beam carrying a static load (Ps) at the free end, 
the governing differential equation defined in Equation (31) 
can be modified as follows:

∂2

∂x̅2 1+ c̅x̅( )3
∂2w̅ x̅, t̅

( 􏼁

∂x̅2

􏼔 􏼕

= 0 (A14) 

The exact solution for the above differential equation can be 
obtained as

w̅(x̅) = F̅(x̅)E (A15) 

where, F̅(x̅) = 3+2(̅cx̅+1) ln (̅cx̅+1)+2c̅x̅
2c̅3(̅c+1)

− c̅
2c̅3(̅c+1)

c̅x̅+1
c̅+1

x̅(̅cx̅+1)
c̅+1

􏽮 􏽯
, 

E = { E1 E2 E3 E4 }T and {}T is the transpose of a vec
tor/matrix. Now, the non-dimensional boundary conditions 
as a function of w̅(x̅) at x̅ = 0 can be defined using Equation 
(33) as follows:

M̅(x̅)
􏼌
􏼌

x̅=0 =
∂2w̅(x̅)
∂x̅2

􏼌
􏼌
􏼌
􏼌

x̅=0
= 0 (A16) 
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and,

Vt(x)|x=0 − Ps = 0⇒ V̅(x̅)
􏼌
􏼌

x̅=0

= hc(x̅)
∂2w(x̅)
∂x̅2 +

∂3w(x̅)
∂x̅3

􏼒 􏼓􏼌
􏼌
􏼌
􏼌

x̅=0

=
pPsEtr3

t τ

H3
t

(A17) 

Similarly, at x̅ = 1, the non-dimensional boundary conditions 
can be considered same as in Equations (35) and (36) as 
follows:

M̅(x̅)+ kRu̅(x̅)
( 􏼁􏼌

􏼌
x̅=1 ⇒

∂2w̅(x̅)
∂x̅2

􏼌
􏼌
􏼌
􏼌

x=1
+ kR

∂w̅(x̅)
∂x̅

􏼌
􏼌
􏼌
􏼌

x̅=1

= 0 (A18) 

and,

V̅(x̅) − kLw̅(x̅)
( 􏼁􏼌

􏼌
x̅=1 ⇒ hc(x̅)

∂2w̅(x̅)
∂x̅2 +

∂3w̅(x̅)
∂x̅3

􏼒 􏼓􏼌
􏼌
􏼌
􏼌

x̅=1

− kLw̅(x̅)|x̅=1

= 0
(A19) 

Substituting Equations (A15) in (A16)–(A19), the boundary 
conditions can be written in matrix form as follows:

∂2w̅(x̅)
∂x̅2

􏼌
􏼌
􏼌

x̅=0

(hc(x̅) ∂
2w̅(x̅)
∂x̅2 +

∂3w̅(x̅)
∂x̅3 )

􏼌
􏼌
􏼌

x̅=0
∂2w̅(x̅)
∂x̅2

􏼌
􏼌
􏼌

x̅=1
+ kR

∂w̅(x̅)
∂x̅

􏼌
􏼌

x̅=1

(hc(x̅) ∂
2w̅(x̅)
∂x̅2 +

∂3w̅(x̅)
∂x̅3 )

􏼌
􏼌
􏼌

x̅=1
− kLw̅(x̅)|x̅=1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

∂2f̅i(x̅)
∂x̅2

􏼌
􏼌
􏼌

x̅=0

(hc(x̅) ∂
2f̅i(x̅)
∂x̅2 +

∂3f̅i(x̅)
∂x̅3 )

􏼌
􏼌
􏼌

x̅=0
∂2f̅i(x̅)
∂x̅2

􏼌
􏼌
􏼌

x̅=1
+ kR

∂f̅i(x̅)
∂x̅

􏼌
􏼌
􏼌

x̅=1

(hc(x̅) ∂
2f̅i(x̅)
∂x̅2 +

∂3w̅(x̅)
∂x̅3 )

􏼌
􏼌
􏼌

x̅=1
− kLf̅i(x̅)

􏼌
􏼌

x̅=1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

􏽼���������������������������􏽻􏽺���������������������������􏽽
Q

E1

E2

E3

E4

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

􏽼��􏽻􏽺��􏽽
E

=

0
pPEr3

t τ

L3

0
0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

􏽼����􏽻􏽺����􏽽
J

(A20) 

Here, i varies from 1 to 4. Thus, substituting Equations (A20) 
in (A15), the equivalent end stiffness can be obtained as 

follows:

Ke =
Ps

w̅(x̅)|x̅=0
=

Ps

F̅(x̅)
􏼌
􏼌

x̅=0Q− 1J
(A21) 

Appendix 4. Derivation for equivalent mass

For a cantilever beam having a unit displacement amplitude at 
the free end of the beam, the non-dimensional boundary con
ditions as a function of W̅(x̅) at x = 0 and x = Ht can be 
defined using Equations (33), (35) and (36) as follows:

W̅(x̅)
􏼌
􏼌

x̅=0 = 1;
∂2W̅(x̅)
∂x̅2

􏼌
􏼌
􏼌
􏼌

x̅=0
= 0;

∂2W̅(x̅)
∂x̅2

􏼌
􏼌
􏼌
􏼌

x̅=1
+ kR

∂W̅(x̅)
∂x̅

􏼌
􏼌
􏼌
􏼌

x̅=1
= 0

(A22) 

and,

hc(x̅)
∂2W̅(x̅)
∂x̅2 +

∂3W̅(x̅)
∂x̅3

􏼒 􏼓􏼌
􏼌
􏼌
􏼌

x̅=1
− kLW̅(x̅)

􏼌
􏼌

x̅=1 = 0 (A23) 

A trial solution can be assumed for W̅(x̅) using the concept of 
static deflection as follows:

W̅ x̅( ) = L1 + x̅L2 + x̅2L3 + x̅3L4 = ZL (A24) 

where, Z = { 1 x̅ x̅2 x̅3 } and L = { L1 L2 L3 L4 }T . 
Thus, substituting Equations (A24) in (A22) and (A23), the 
boundary conditions can be written in matrix form as follows:

0 0 2 0
1 0 0 0
0 0 2+ 2kR 6+ 6kR
− kL − kL

6c̅
1+c̅ − kL

18c̅
1+c̅+ 6 − kL

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

􏽼�������������������������􏽻􏽺�������������������������􏽽
N

L1
L2
L3
L4

⎧
⎪⎪⎨

⎪⎪⎩

⎫
⎪⎪⎬

⎪⎪⎭

􏽼��􏽻􏽺��􏽽
L

=

0
1
0
0

⎧
⎪⎪⎨

⎪⎪⎩

⎫
⎪⎪⎬

⎪⎪⎭

􏽼�􏽻􏽺�􏽽
I

⇒ L = N− 1I (A25) 

Now, following Adhikari and Bhattacharya (2011), the kinetic 
energy (TK) of the entire system can be defined as follows:

TK =
1
2

􏽚Ht

0
rtAt(x)

∂wt(x, t)
∂t

􏼒 􏼓2
􏼨 􏼩

dx

+
1
2

MR
∂wt(x, t)
∂t

􏼌
􏼌
􏼌
􏼌

x=0

􏼒 􏼓2

= −
1
2
v2e− 2ivtMe (A26) 

where the equivalent mass (Me) can be defined as follows:

Me = rt

􏽚L

0
At(x)ZLLTZT dx+MR (A27) 
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