
Contents lists available at ScienceDirect

Structures

journal homepage: www.elsevier.com/locate/istruc

Geometric amplification of damping: Novel mechanisms for enhanced 

vibration control

Sondipon Adhikari iD , Sudip Chowdhury 

∗ 

iD

Glasgow Computational Engineering Centre, James Watt School of Engineering, The University of Glasgow, Glasgow G12 8QQ, United Kingdom

A R T I C L E I N F O

Keywords:

Ordinary damping amplifiers 

Compound damping amplifiers 

Nested damping amplifiers 

Levered damping amplifiers

A B S T R A C T

This paper introduces damping amplifiers as an innovative solution to enhance the vibration reduction capabil-

ities of conventional base isolators while addressing their inherent limitations. Four distinct classes of damping 

amplifiers are presented: ordinary damping amplifiers, compound damping amplifiers, nested damping ampli-

fiers, and levered damping amplifiers. The governing equations of motion for these damping amplifiers and their 

corresponding damping amplifier base isolators are derived using Newton’s second law. 𝐻 ∞ 

optimisation method 

is utilised to obtain exact closed-form expressions for the optimal design parameters of these novel isolators. A 

comprehensive parametric study is conducted by applying the optimal design parameters, demonstrating that 

damping amplifiers can amplify the effective damping of isolators by a factor of 1000 compared to conventional 

isolators, without introducing additional static damping into the dynamic systems. The transfer matrix is formu-

lated to analyse the dynamic responses of isolated structures in the frequency domain, while the time history 

analysis is performed to validate the frequency domain results. The Newmark-beta method is mathematically in-

tegrated with isolator design to evaluate the time history results under real earthquake ground motions. Results 

indicate that the novel isolators exhibit an improvement of 84.22 % in performance over conventional isolators. 

All results are mathematically verified, ensuring the validity of the findings.

1. Introduction

The vibration of engineering dynamic systems is governed by their 

mass, stiffness, and damping properties. Therefore, the control of vi-

bration is essentially achieved by manipulating the mass, stiffness, and 

damping of a dynamic system, either separately or together. Over the 

years, engineers have introduced and perfected innovative technologies 

for controlling these properties. The control of stiffness properties is gen-

erally easier and most abundant in practice. This can be achieved by 

advanced materials such as composites and honeycombs. Alternatively, 

active materials such as piezoelectric materials and shape memory alloys 

can be used to manipulate stiffness properties as necessary.

Controlling the mass, on the other hand, is more challenging than 

controlling the stiffness. This is because most materials have an inher-

ent density, which is generally difficult to alter. Smith [1] introduced an 

innovative way to manipulate mass through an inerter [2]. The concept 

used rotating flywheels, and effectively, this can be viewed as a sepa-

rate element representing a higher mass without actually increasing the 

physical mass [3]. Initial works on inerters involved noise and vibration

reduction in automobiles [4]. Later, inerters have been used for vibra-

tion absorption [5]. More recently, inerters have been used for vibration 

energy harvesting [6]. We refer to a recent review paper by Kuhnert et 

al. [7] for a comprehensive review of current and historical perspec-

tives on using inerters in dynamic systems [8]. Realising the classical 

inerter [1] using a flywheel-gear mechanism is conventional [9]. In ad-

dition to the classical inerter introduced by Smith, recent research has 

significantly advanced its applications and structural integrations. For 

example, Marian and Giaralis explored tuned mass-damper-inerter sys-

tems for harmonic vibration suppression and energy harvesting [10]. 

Lazar et al. demonstrated the use of inerter-based devices for struc-

tural vibration suppression [11], while Sun and Lei explored the role 

of inerters in generating band gaps and dynamic attenuation in peri-

odic structures [12]. Nonlinear inerter configurations have also been 

investigated in the context of seismic isolation and resilient design [13]. 

These studies illustrate the versatility of inerter-like devices in passive 

control strategies [14]. In contrast to these inertia-based systems, the 

present study proposes a fundamentally different class of damping am-

plifier mechanisms that achieve enhanced energy dissipation through
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geometric motion amplification, without increasing inertial mass. The 

key distinction lies in the use of linkage mechanisms and lever systems 

that amplify damper motion, offering an alternative route to effective 

vibration suppression. A different and simple route to inertial enhance-

ment is using an inertial amplification mechanism [15]. This is achieved 

through a link-bar mechanism loaded with symmetric masses and a 

spring. Like the classical inerter, an inertial amplifier also delivers an 

increased effective mass without increasing the static mass. Inertial am-

plifiers [16] are mechanisms that augment the effective inertia of a 

system without proportionally increasing its static mass [17]. They are 

commonly referred to as mass amplification devices [18], which focus 

on utilising inertial properties to amplify forces or movements. This ap-

proach usually involves using the concepts of mechanical leverage [17], 

resonance, or inertia to amp up small input forces or displacements into 

bigger, more usable outputs. The functions and applications of these 

devices are explained in detail below: Inertial amplifiers work as mass 

amplification devices by amplifying minute input forces through the use 

of a mass’s inertia. This is often achieved by mechanical configurations 

that leverage the inertia of a larger mass to produce a proportionately 

higher force or displacement [19]. These devices are capable of apply-

ing mechanical leverage, which is the process by which a set of levers or 

gears increases the force applied over a longer distance from a smaller 

force applied over a shorter distance. An alternative tactic is resonance, 

where a system is designed to oscillate at a particular frequency [20]. 

Small periodic pressures applied at the resonance frequency have the 

potential to increase the oscillations in the system and thus amp up 

the input. By assisting in the measurement and control of vibrations 

in machinery and buildings, these tools lessen damage and improve en-

gineering performance. Inertial amplifiers have been used for vibration 

absorption [21], attenuation [22] and low-frequency band-gaps [18,23].

For most practical problems, it is generally necessary to reduce the 

vibration. This can be achieved by increasing the damping of the sys-

tem. Like the inertial properties, manipulation of damping is difficult as 

the physical origin of damping in materials is often poorly understood. 

The viscous damping model is typically used to model damping [24]. It is 

possible to consider non-viscous [25,26] or viscoelastic [27,28] damping 

in the context of vibration reduction. Although advanced damping mod-

elling methods are available, controlling damping in materials is still an 

open research problem. Therefore, dynamic analysis often uses a discrete 

damper with a specific damping coefficient. There are also many realistic 

situations (e.g., automotive suspension, tuned mass dampers) where dis-

crete dampers are used. The damping coefficient can be changed in the 

analysis for design purposes. In practical terms, a damper with a higher 

damping coefficient means a larger and heavier damper. It would be 

practically useful if a smaller damper could deliver a higher damping, 

similar to an inerter, which delivers a higher mass compared to its actual 

mass.

Inspired by the ideas of inerters and inertial amplifiers, this paper 

aims to investigate the possibility of mechanical systems capable of am-

plifying damping. Although inertial amplifiers have been demonstrated 

to be very efficient for vibration isolation, their impact on the inherent 

damping of the system is indirect. A key goal is developing designs that 

directly enhance a system’s damping. In particular, we ask the following 

fundamental question:

• Can a usual damper attached to a conventional single-degree-of-

freedom (SDOF) dynamic system be employed in novel ways such 

that the effective damping of the system is increased?

This vital question can be addressed from different perspectives. One 

option is to consider viscoelastic damping, which can be achieved by 

combining springs and dampers in a combination of series and paral-

lel connections (for example, the classical Biot model [29,30]). This is 

a mechanical way to enhance damping. The resulting system can be 

modelled using various techniques, such as damping kernel functions 

[31,32], fractional derivative models [33], and the GHM model [34,35]. 

Several innovative mechanical configurations have previously been 

proposed to enhance structural damping under seismic loading. Notably,

Constantinou et al. introduced the toggle-brace-damper system [36,37], 

demonstrating effective force amplification using a toggle mechanism 

[38]. Similarly, Sigaher and Constantinou proposed the scissor-jack-

damper system [39], which uses a scissor mechanism to amplify damper 

displacements [39]. Experimental validation of scissor-jack-based en-

ergy dissipation systems has been demonstrated by Rama Raju et al. 

[40], who studied their integration with magnetorheological dampers 

in a three-storey steel moment-resisting frame. Their results confirmed 

the potential of such hybrid systems to enhance seismic performance 

through controlled energy dissipation. Walsh et al. [41] conducted a 

dynamic analysis of a flexible truss tower equipped with scissor-jack 

dampers under seismic excitation. Their study highlighted the effec-

tiveness of scissor-jack mechanisms in improving structural response in 

flexible systems, particularly under dynamic loading conditions. More 

recently, Yang et al. [42] proposed a novel spatial configuration of the 

scissor-jack-damper system aimed at enhancing energy dissipation ef-

ficiency. This spatial variant demonstrates the continued evolution of 

linkage-based damping devices and their adaptability to complex struc-

tural geometries. More recently, Baquero Mosquera et al. presented an 

amplification system for concentrated and distributed energy dissipation 

devices aimed at seismic energy management [43]. These pioneering 

studies laid the groundwork for damping amplification through geo-

metric configurations. Building upon these foundational concepts, the 

present study introduces four novel classes of damping amplifiers, ordi-

nary, compound, nested, and levered, with analytically derived damping 

amplification factors. The methodology employs 𝐻 ∞ 

control theory

for rigorous optimisation and yields closed-form solutions for isolator 

design, enabling effective performance comparisons and practical de-

ployment. This paper also addresses the above-mentioned question using 

a mechanical approach. Novel-specific linkage mechanisms to exploit 

their movements for enhancing the ‘stretching’ of a damper and conse-

quently generating more effective damping are introduced in this paper. 

This fundamental concept can be realised in different ways, which is 

the focus of this work. This paper proposes four competing mecha-

nisms. It will be shown that, under certain design choices, mechanical 

systems can amplify effective damping, resulting in a higher damping 

factor with the same damper. In addition, the proposed damping am-

plifiers are designed to be integrated into the internal configuration 

of conventional base isolators without altering the isolator’s size or in-

creasing the damper’s physical damping coefficient to enhance effective 

dynamic damping. The structural implementation of this integration is 

discussed in detail in Section 3 (see Fig. 9). Accordingly, four novel iso-

lators, namely, Ordinary damping-amplifier base isolator, Compound 

damping-amplifier base isolator, Nested damping-amplifier base iso-

lator, and Levered damping-amplifier base isolator, are introduced in 

this paper. The governing equations of motion of all dynamic systems 

are derived using Newton’s second law. 𝐻 ∞ 

optimisation approach is 

employed to derive the exact closed-form expressions of these novel 

isolators. The transfer matrix is formulated to analyse the dynamic re-

sponses of isolated structures in the frequency domain, while the time 

history analysis is performed to validate the frequency domain results. 

The Newmark-beta method is mathematically integrated with isolator 

design to evaluate the time history results under real earthquake ground 

motions. The effectiveness of the advanced damping amplifier designs 

is validated by comparing the vibration mitigation performance of the 

novel isolators against that of conventional isolators.

2. Structural model and equations of motion

The concept of damping amplifiers is developed in this section. 

Four types of damping amplifiers are introduced and mathematically 

analysed in the following subsections.

2.1. The ordinary damping amplifier

In Fig. 1, the conventional damped single-degree-of-freedom (SDOF) 

model, the ordinary damping amplifier, and the corresponding free-body 

diagram are shown. This mechanism is similar to the conventional iner-
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Fig. 1. The conventional damped single-degree-of-freedom (SDOF) model, the 

ordinary ideal damping amplifier, and the free-body diagram. (a) The mass, stiff-

ness, and damping of the SDOF oscillator are given by 𝑚, 𝑘, and 𝑐, respectively. 
(b) The ordinary damping amplifier is obtained by inserting a damper within a 

rhombus mechanism made of four rigid links. The amplifier angle is 𝜙, and the 

amplifier damping is 𝑐. (c) The free-body diagram for the ordinary damping am-

plifier. The displacement of the mass (at point A) and the amplifier damper (at 

point O) are denoted by 𝑦(𝑡) and 𝑢(𝑡), respectively. The force 𝐹 (𝑡) is the internal 

force within the rigid links.

tial amplifier extensively discussed in the literature [17]. This damping 

amplifier is reviewed here for the purpose of comparing and contrasting 

on a similar footing with the models to be introduced later.

The damper in the conventional damped SDOF model and the damp-

ing amplifier SDOF model are exactly the same. The damper in the 

amplifier is placed horizontally within a rhombus mechanism made of 

four rigid links. The amplifier angle is 𝜙 with respect to the vertical line, 

and it is assumed that the rhombus mechanism can move freely in a fric-

tion less manner about the four hinges marked in Fig. 1(b) by green dots. 

The free-body diagram for the ordinary damping amplifier is shown in 

Fig. 1(c). The displacement of the mass (at point A) and the amplifier 

damper (at point O) are denoted by 𝑦(𝑡) and 𝑢(𝑡), respectively. The mo-

tions 𝑦(𝑡) and 𝑢(𝑡) are perpendicular to each other. The force 𝐹 (𝑡) is the 

internal force within the rigid links. Note that due to the symmetry of the 

mechanism, the dynamics at points O and O’ are the same. Therefore, it 

is sufficient to consider the dynamic equilibrium at one point only.

The equation of motion of free vibration of the conventional SDOF 

is given by

𝑚𝑦̈(𝑡) + 𝑘𝑦(𝑡) + 𝑐𝑦̇ (𝑡) = 0 (1)

Dividing by the mass, the equation of motion can be rewritten as 

𝑦̈(𝑡) + 𝜔 

2
𝑛𝑦(𝑡) + 2𝜁𝜔 𝑛 

𝑦̇ (𝑡) = 0 (2)

Here the undamped natural frequency (𝜔 𝑛 

) and the damping factor (𝜁 ) 

are expressed as

𝜔 𝑛 

= 

√

𝑘
𝑚

(3)

and 𝑐
𝑚

= 2𝜁𝜔 𝑛 or 𝜁 = 

𝑐

2
√

𝑘𝑚
(4)

One of the main objectives of the damping amplifier is to alter the effec-

tive damping factor of the SDOF system in Fig. 1(b) without changing 

the damper. To obtain the equation of motion, considering the equilib-

rium of the mass from point A in the free-body diagram in Fig. 1(c), we 

have

𝑚𝑦̈(𝑡) + 𝑘𝑦(𝑡) + 2𝐹 (𝑡) cos 𝜙 = 0 (5)

Here 𝐹 (𝑡) is the internal force within the rigid link bars. The damper is 

compressed by 2𝑢(𝑡) between the points O and O’. Balancing the force

arising from the motion of the damper from the equilibrium at point O, 

we have

2𝐹 (𝑡) sin 𝜙 − 2𝑐𝑢̇ (𝑡) = 0 (6)

The vertical motion of point O is 𝑦(𝑡)∕2 due to the vertical symmetry

of the mechanism. Considering the bars in Fig. 1(b) are rigid, using the 

kinematic relationship of the rigid bars, one deduces

𝑦(𝑡)
2 

cos 𝜙 = 𝑢(𝑡) sin 𝜙 or 𝑢(𝑡) = 𝑦(𝑡) cot 𝜙∕2 (7)

Substituting this in Eq. (6) we have 

2𝐹 (𝑡) sin 𝜙 = 𝑐 cot 𝜙𝑦̇ (𝑡) = 0 or 2𝐹 (𝑡) = 𝑐 

cot 𝜙 

sin 𝜙 

𝑦̇ (𝑡) (8)

Substituting this in Eq. (5), we obtain the equation of motion as 

𝑚𝑦̈(𝑡) + 𝑘𝑦(𝑡) + 𝑐 cot 

2 𝜙 𝑦̇ (𝑡) = 0 (9)

It can be seen that the effective damping of the novel damping amplifier 

in Fig. 1(b) is 𝑐 𝑎 

= 𝑐 cot 

2 𝜙. Therefore, we define the damping amplifi-

cation factor as the ratio of the damping factor of the amplifier to the 

damping factor of the original system as

 𝑑 = 

𝜁 𝑎
𝜁 

= cot 

2 𝜙 (10)

Here, 𝜁 𝑎 is the damping factor of the damping amplifier in Fig. 1(b). 

The damping factor  𝑑 

is the key parameter which quantifies and also 

characterises the efficiency of a damping amplifier. In Fig. 2, the damp-

ing amplification factor is plotted as a function of the amplifier angle 

𝜙. This is a log plot, and we observe that the damping amplification 

increases exponentially when the amplifier angle 𝜙 is closer to zero. 

This result shows that the theoretical damping amplification can be over 

1000 times compared to the conventional SDOF system with the same 

damper. The two key assumptions made in deriving the equation of mo-

tion of the ideal amplifier are: (1) the hinge movements between the 

four link-bars, the mass, the ground and the damper are frictionless, 

and (2) the masses of the four link bars are negligible. When the ampli-

fier angle 𝜙 becomes close to zero, the mechanism becomes extremely 

narrow, and even very small friction in the hinges will prevent it from
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Fig. 2. Damping amplification as a function of the amplifier angle 𝜙 for the ideal 

ordinary damping amplifier. For smaller amplifier angles 𝜙 ⪅ 20 

◦ , the damping 

amplification becomes prominent.
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operating properly. Keeping this in mind, it is preferable that 𝜙 ≥ 10 

◦ .

This will ensure that the assumptions made are applicable to our model. 

Another point to be noted is that the damping amplifier effectively does 

not provide any amplification when 𝜙 > 45 

◦ . Therefore, the amplifier 

angle should be chosen to be smaller than 45 

◦.

2.2. The compound damping amplifier

The ordinary damping amplifier introduced in the previous section 

has the potential for enhanced vibration reduction due to the increased 

effective damping. However, it was observed that its efficiency might 

be reduced when the amplifier angle 𝜙 is not small. Therefore, in this 

section, we explore designs which can provide efficiency over a larger 

parameter region.

The key idea here is to have multiple smaller damping amplifiers 

working in unison. The introduced design of a compound damping am-

plifier with two cells is shown in Fig. 3. Two secondary mechanisms 

are inserted within a primary mechanism. The primary amplifier angle 

is 𝜙, and the secondary amplifier angle is 𝜃. Each damper within the 

cells is 𝑐∕2, so the total damping is 𝑐, which is the same as the baseline 

SDOF oscillator. This way, the damping amplification performance can 

be compared consistently with the previous case.

The displacement of the mass (at point A), point O and the amplifier 

damper (at point B) are 𝑦(𝑡), 𝑢(𝑡) and 𝑣(𝑡), respectively. From Fig. 3(a), 

observe that point D is fixed, and point C only moves in the vertical direc-

tion due to the symmetry of the system. Therefore, the vertical motion 

at point O is 𝑦(𝑡)∕2, and the horizontal motion at point B is 𝑢(𝑡)∕2.
Considering the bars in Fig. 3(a) are rigid, using the kinematic 

relationship of the primary mechanism, one obtains

𝑦(𝑡)
2 

cos 𝜙 = 𝑢(𝑡) sin 𝜙 or 𝑢(𝑡) = 𝑦(𝑡) cot 𝜙∕2 (11)

From the kinematic relationship of the secondary mechanisms, we can 

deduce that

𝑣(𝑡) cos 𝜃 = 

𝑢(𝑡)
2 

sin 𝜃 or 𝑣(𝑡) = 𝑢(𝑡) tan 𝜃∕2 (12)

Combining the preceding two equations, the motion of the damper can 

be related to the motion of the primary mass as

𝑣(𝑡) = 

𝑦(𝑡)
4

cot 𝜙 tan 𝜃 (13)

Fig. 3. The compound damping amplifier and its corresponding free-body dia-

gram. (a) A compound damping amplifier with two damping cells. The primary 

amplifier angle is 𝜙, and the secondary amplifier angle is 𝜃. Each damper within 

the cells is 𝑐∕2 so that the total damping is the same as the baseline SDOF os-

cillator. (b) The free-body diagram for the compound damping amplifier. The 

displacement of the mass (at point A), point O and the amplifier damper (at point 

B) are denoted by 𝑦(𝑡), 𝑢(𝑡) and 𝑣(𝑡) respectively. The forces 𝐹 1 

(𝑡) and 𝐹 2 

(𝑡) are the 

internal forces within the rigid links of the primary and secondary mechanisms.

The net stretching of the dampers is 2𝑣(𝑡). Considering the equilibrium of 

the forces in the vertical direction, from point B in the free-body diagram 

in Fig. 3(b), we have

2𝐹 2(𝑡) cos 𝜃 = (𝑐∕2)2𝑣̇ (𝑡) = 𝑐𝑣̇ (𝑡) (14)

Considering the equilibrium of the forces in the horizontal direction from 

point O in the free-body diagram, we have

2𝐹 1(𝑡) sin 𝜙 = 2𝐹 2 

(𝑡) sin 𝜃 = 𝑐𝑣̇ (𝑡) tan 𝜃 (15)

or 2𝐹 1(𝑡) = 

𝑐𝑣̇ (𝑡) tan 𝜃
sin 𝜙

= 

𝑐𝑦̇ (𝑡) tan 

2 𝜃 cot 𝜙
4 sin 𝜙

(16)

Considering the equilibrium of the mass from point A in the free-body 

diagram, we have

𝑚𝑦̈(𝑡) + 𝑘𝑦(𝑡) + 2𝐹 1(𝑡) cos 𝜙 = 0 (17)

Substituting 𝐹 1 

(𝑡) from Eq. (15) into the above equation, we have the 

equation of motion of an SDOF oscillator with the compound damping 

amplifier as

𝑚𝑦̈(𝑡) + 𝑘𝑦(𝑡) + 𝑐𝑦̇ (𝑡) cot 

2 𝜙 tan 

2 𝜃
4 

= 0 (18)

We obtain the damping amplification factor as the ratio of the damping 

factor of the amplifier to the damping factor of the original system as

 𝑑 = 

𝜁 𝑎
𝜁

= cot 

2 𝜙 

(

tan 

2 𝜃
4

) 

(19)

Comparing this to the damping amplification factor of the ordinary am-

plifier in Eq. (10), we observed that the damping amplification factor of 

the compound amplifier is 

( 

tan 

2 𝜃
4

) 

times more. Therefore, the compound

amplifier will outperform the ordinary amplifier provided

tan 𝜃 > 2 or 𝜃 ⪆ 64 

◦ (20)

This requirement, in addition to 𝜙 < 45 

◦ required for damping ampli-

fication from the ordinary amplifier. The condition that each term be 

greater than 1.0 was introduced to provide a conservative and straight-

forward design guideline, ensuring reliable amplification. This approach 

simplifies the design space and guarantees that the overall amplification

factor exceeds unity without relying on delicate parameter balancing.

In Fig. 4, the damping factor of the ideal and compound amplifier 

are compared. Amplifications for three different values of the secondary 

amplifier angle 𝜃 are shown in the figure. This clearly shows that when 

𝜃 > 64 

◦, the amplification of the compound amplifier is more than its

ordinary counterpart. The results in Fig. 4 also give another interesting 

possibility which is not available for the ordinary amplifier. For a given 

target damping amplification, say 100, a range of combinations of 𝜙
and 𝜃 can be selected. This gives more opportunities for the design and 

satisfies any practical constraints.

2.3. The nested damping amplifier

In the previous section, we showed that the damping amplification

can be enhanced by introducing secondary mechanisms within the pri-

mary mechanism. Motivated by this, here we take this idea further in 

the form of a nested damping amplifier design shown in Fig. 5. The 

amplifier is obtained by introducing two connected four-bar rhombus 

mechanisms inside the primary mechanism. Overall, the design con-

ceived in Fig. 5 is therefore made up of three mechanisms, and they are 

marked on the figure. The damper with a damping coefficient 𝑐 is placed 

horizontally inside the innermost mechanism. Therefore, the amount of 

damping employed in the enhancer is the same as the original SDOF 

system.
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Fig. 4. Damping amplification as a function of the primary amplifier angle 𝜙 for 

the compound amplifier SDOF systems for various secondary amplifier angle 𝜃.

Fig. 5. The nested damping amplifier and its corresponding free-body diagram. 

(a) The nested damping amplifier is made up of three connected mechanisms. 

The damper 𝑐 is placed horizontally inside the innermost mechanism. The am-

plifier angles for the mechanisms are 𝜙 1 

, 𝜙 2 

and 𝜙 3 

as shown. (b) The free-body 

diagram for the nested damping amplifier. The displacement of the mass (at 

point A), points O, B and C are denoted by 𝑦(𝑡), 𝑢 1 

(𝑡), 𝑢 2 

(𝑡) and 𝑢 3 

(𝑡), respectively. 
The forces 𝐹 1 

(𝑡), 𝐹 2 

(𝑡) and 𝐹 3 

(𝑡) are the internal forces within the rigid links of

mechanisms 1, 2 and 3 respectively.

The amplifier angles for the mechanisms are 𝜙 1 

, 𝜙 2 

and 𝜙 3 

. The dis-

placement of the mass (at point A), points O, B and C are 𝑦(𝑡), 𝑢 1 

(𝑡), 𝑢 2 

(𝑡) 

and 𝑢 3 

(𝑡), respectively. From Fig. 5(a) observe that point D is fixed and 

point B only moves in the vertical direction due to the symmetry of the 

system. Therefore, the vertical motion at point O is 𝑦(𝑡)∕2.
Using the kinematic relationship of mechanism 1, one obtains 

𝑦(𝑡)
2

cos 𝜙 1 

= 𝑢 1 

(𝑡) sin 𝜙 1 

or 𝑢 1 

(𝑡) = 𝑦(𝑡) cot 𝜙 1 

∕2 (21)

Next, we consider the motion of mechanism 2. Considering, for example, 

that the member OB is of fixed length, we can deduce

𝑢 1 

sin 𝜙 2 

= 𝑢 2 

cos 𝜙 2 (22)

Finally, considering the motion of mechanism 3 and noting that the 

member CB is of fixed length, we obtain

𝑢 3 

sin 𝜙 3 

= 𝑢 2 

cos 𝜙 3 (23)

Combining the above three kinematic relationships, the motion of the 

innermost mechanism containing the damper can be linked with the

motion of the primary oscillating mass as 

𝑢 3 

= 

𝑦(𝑡) 

2 

cot 𝜙 1 

tan 𝜙 2 

cot 𝜙 3 

(24)

Now, we consider the free-body diagram in Fig. 5(b) and investi-

gate the equilibrium at various points to obtain the equation of motion. 

Considering the equilibrium of the mass from point A in the free-body 

diagram, we have

𝑚𝑦̈(𝑡) + 𝑘𝑦(𝑡) + 2𝐹 1(𝑡) cos 𝜙 1 

= 0 (25)

The net stretching of the damper is 2𝑢 3 

(𝑡). Using the equilibrium of the 

forces in the horizontal direction from point C in the free-body diagram, 

we have

2𝐹 3(𝑡) sin 𝜙 3 

= 2𝑐 ̇𝑢  3(𝑡) (26)

From the equilibrium of the forces in the vertical direction, from point 

B in the free-body diagram, one obtains

2𝐹 2 cos 𝜙 2 

= 2𝐹 3 

cos 𝜙 3 

(27)

Considering the equilibrium of the forces in the horizontal direction from 

point O in the free-body diagram, we have

2𝐹 1(𝑡) sin 𝜙 1 

= 2𝐹 2(𝑡) sin 𝜙 2 

(28)

Combining Eqs. (23)–(28), the equation of motion of an SDOF oscillator 

with the nested damping amplifier can be obtained as

𝑚𝑦̈(𝑡) + 𝑘𝑦(𝑡) + 𝑐𝑦̇ (𝑡) cot 

2 𝜙 1 

tan 

2 𝜙 2 

cot 

2 𝜙 3 

= 0 (29)

We obtain the damping amplification factor as the ratio of the damp-

ing factor of the amplifier to the damping factor of the original system 

as

 𝑑 = 

𝜁 𝑎
𝜁

= cot 

2 𝜙 1 

( 

tan 

2 𝜙 2 

cot 

2 𝜙 3 

) 

(30)

Comparing this to the damping amplification factor of the ordinary am-

plifier in Eq. (10), it is noted that the damping amplification factor of 

the nested amplifier is 

( 

tan 

2 𝜙 2 

cot 

2 𝜙 3 

) 

times more. Therefore, the nested 

amplifier will outperform the ordinary amplifier provided

tan 𝜙 2 

> 1 or 𝜙 2 

> 45 

◦ and cot 𝜙 3 

> 1 or 𝜙 3 

< 45 

◦ (31)

These requirements are in addition to 𝜙 1 

< 45 

◦ necessary for damp-

ing amplification from the ordinary amplifier. The condition that each 

term be greater than 1.0 was introduced to provide a conservative and 

straightforward design guideline, ensuring reliable amplification. This 

approach simplifies the design space and guarantees that the overall 

amplification factor exceeds unity without relying on delicate parameter 

balancing.

In Fig. 6, the damping factors of the ideal and the nested amplifier 

are compared. Amplifications for three different values of combinations 

of the angles 𝜙 2 

and 𝜙 3 

are shown. These results clearly show that when 

𝜙 2 

> 45 

◦ and 𝜙 3 

< 45 

◦ , the amplification of the nested amplifier is much 

more than its ordinary counterpart. The results in Fig. 6 also give another 

interesting possibility, which is not available for the ordinary amplifier. 

For a given target damping amplification, say 100, a range of combina-

tions of 𝜙 1 

, 𝜙 2 

, and 𝜙 3 

can be selected. This gives more opportunities 

for the design and satisfies any practical constraints. The schematic di-

agrams of the compound and the nested amplifier are drawn in a 2D 

plane. However, they can be fabricated such that different mechanisms 

operate at different planes. This way, a wide range of amplifier angles 

can be achieved without the issue of mechanisms touching each other. In 

principle, one can add more internal and nested mechanisms following 

the idea introduced in Figs. 3 and 5. The damping amplification factors
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Fig. 6. Damping amplification as a function of the amplifier angle 𝜙 1 

for the 

nested amplifier SDOF systems for various combinations of 𝜙 2 

and 𝜙 3 

.

for such higher-order compounds and nested amplifiers will be more nu-

merous and will follow the same trend as derived in Eqs. (19) and (30). 

However, care should be taken for practical consideration, as there will 

be many moving parts in higher-order mechanisms. In practical imple-

mentations, the presence of multiple moving parts in compound and 

nested configurations can be addressed by arranging the mechanisms 

in parallel planes or using layered assemblies to avoid physical inter-

ference. Additionally, the use of precision hinges, low-friction bearings, 

and modular linkage components can facilitate smooth motion transfer 

and ensure reliable operation of complex amplifier systems.

The rigid-bar assumption is adopted in the analytical formulation 

to enable closed-form solutions and highlight the fundamental mechan-

ics of damping amplification. In configurations with high amplification, 

such as the compound and nested designs, elastic deformation of the bars 

may influence performance. Nevertheless, the models presented offer a 

novel and effective framework for understanding and designing damping 

amplifiers, and they provide a solid foundation for future investigations 

that may incorporate bar compliance through detailed simulations or 

experiments.

The proposed amplifier mechanisms are constructed using hinged 

joints, which are commonly used in linkage systems to allow rotational

motion with minimal resistance. These joints preserve the kinematic as-

sumptions used in the analytical formulations and ensure proper relative 

motion between rigid bars. While detailed joint construction is not in-

cluded in this theoretical study, the use of idealised hinges is sufficient 

to demonstrate the feasibility and effectiveness of the proposed mecha-

nisms. The configurations presented form a conceptual framework that 

can be translated into practical designs using standard mechanical joints 

and fabrication methods in future implementations.

2.4. The levered damping amplifier

So far, the three damping amplifiers introduced all exploit rhombus-

shaped four link-bar mechanisms in a novel manner. Although they 

are very compact and represent a space-saving design, there are many 

moving parts. The aim here is to conceive amplifier designs that use rel-

atively simpler mechanisms. The concept of a damping amplifier that 

uses only mechanical levers is shown in Fig. 7. A damper with damping 

coefficient 𝑐 is connected with the second lever arm at point O. The rods 

AC, CD and DO are assumed to be rigid. In addition, the rod AC piv-

ots freely about 𝑃 1 

, and the rod DO pivots freely about 𝑃 2 

. The rod CD 

simply connects rods AC and DO and transfers the motion. Considering

Fig. 7. The conventional damped single-degree-of-freedom (SDOF) model and 

the levered damping amplifier. (a) The mass, stiffness and damping of the SDOF 

oscillator are given by 𝑚, 𝑘 and 𝑐, respectively. (b) The levered damping amplifier 

is made up of two connected levers. The damper 𝑐 is connected with the second 

lever arm at point O. The lever arm can freely pivot about the points 𝑃 1 and 𝑃 2.

these, the motion at point O can be obtained as 

𝑢(𝑡) = 

𝑏 1
𝑎 1

𝑏 2 

𝑎 2
𝑦(𝑡) (32)

Using this, the equation of motion of an SDOF oscillator with the levered 

damping amplifier can be obtained as

𝑚𝑦̈(𝑡) + 𝑘𝑦(𝑡) + 𝐹 𝐴(𝑡) = 0 (33) 

where 𝐹 𝐴 

(𝑡) is the force at point A. This can be related to the force at

point O as

𝐹 𝐴(𝑡) = 

𝑏 1
𝑎 1

𝑏 2
𝑎 2

𝐹 𝑂(𝑡) = 

(

𝑏 1
𝑎 1

𝑏 2
𝑎 2

) 

𝑐𝑢̇(𝑡) = 

(

𝑏 1
𝑎 1

𝑏 2
𝑎 2

) 2
𝑐𝑦̇ (𝑡) (34)

We can obtain the damping amplification factor as the ratio of the 

damping factor of the amplifier to the damping factor of the original 

system as

 𝑑 = 

𝜁 𝑎
𝜁

= 

(

𝑏 1
𝑎 1

𝑏 2 

𝑎 2

) 2
(35)

Therefore, provided 𝑏 1 

> 𝑎 1 

and 𝑏 2 

> 𝑎 2 

, the levered amplifier in Fig. 7 

will deliver an increased amplification. For example, when 𝑏 1 

∕𝑎 1 

= 2 and 

𝑏 2 

∕𝑎 2 = 3, the levered amplifier’s damping amplification factor will be 

36. The damping amplification factor of the levered damping amplifier 

in Eq. (35) is compared with the ordinary damping amplifier’s damping 

amplification factor, which is expressed in Eq. (10) to obtain the supe-

rior damping amplification ability of the levered damping amplifier. The 

superior damping amplification factor is mathematically formulated and 

expressed as

(

𝑏 1
𝑎 1

𝑏 2 

𝑎 2

) 2
> cot 

2 𝜙 

(

𝑏 1
𝑎 1

𝑏 2 

𝑎 2

) 

> ± cot 𝜙
(36)

The +ve root of Eq. (36) is considered. Fig. 8 shows the requirement 

of a minimal lever arm ratio to achieve robust performance of levered 

damping amplifier with the conjunction of damping amplifier angle. The 

graph indicates that the levered damping amplifier provides more ef-

fective damping amplification with a minimal lever-arm ratio than the 

ordinary one. The damping amplifiers are further installed in the core 

material of the conventional base isolators in order to boost the vibra-

tion reduction capacities of these devices and overcome the limitations
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Fig. 8. The minimal lever arm ratio required for the levered damping amplifier 

to surpass the performance of the ordinary damping amplifier is shown as a 

function of the damping amplifier angle 𝜙.

that they already have. In the following sections, three new classes of 

damping-amplifier vibration isolation systems are introduced. The four 

damping amplifier configurations differ significantly in terms of space 

requirements and damper stroke demands due to their respective link-

age mechanisms. Configurations with parallel linkages tend to have a 

more compact design but may limit the available stroke range, which 

can reduce damping effectiveness in applications requiring larger travel 

distances. In contrast, serial linkages and multi-stage systems gener-

ally require more space but provide a greater stroke capacity, which 

is beneficial for applications with higher stroke demands.

In the present study, the levered damping amplifier is introduced as 

a conceptual model to demonstrate the feasibility of damping amplifica-

tion through geometric motion transformation. The assumption of rigid 

levers is made to facilitate analytical tractability and derive closed-form 

expressions that highlight the core mechanism. While bending flexibility 

may affect the performance of practical implementations, the theoretical 

formulation serves as a foundation for further development, including 

future designs that address stiffness and material constraints through 

structural optimisation or numerical modelling.

3. Application of damping amplifiers

The structural diagrams of the single degree of freedom systems iso-

lated by the ordinary, compound, nested, and levered damping-amplifier 

base isolators are subjected to base excitation are shown in Fig. 9(a)–(d). 

The integration of the proposed damping amplifier mechanisms into 

base isolators is achieved by embedding them within the internal struc-

ture of the isolator, effectively forming a hybrid system that combines 

conventional isolator components (mass, stiffness, and damping) with 

geometric amplifier linkages. These amplifiers are configured in such a 

way that they manipulate the motion of the damper to achieve signif-

icantly higher effective damping without increasing the physical size 

or mass of the isolator itself. As illustrated in Fig. 9, each damping 

amplifier configuration, such as ordinary, compound, nested, and lev-

ered, is incorporated into the isolator’s framework, allowing the system 

to benefit from enhanced energy dissipation while maintaining a com-

pact and practical design. This structural implementation is central to 

enabling the vibration reduction improvements demonstrated in the sub-

sequent analyses. First, the damping-amplifier enhanced base isolators 

are designed by applying 𝐻 ∞ 

optimisation methods. For this purpose, 

the amplified isolators are applied at the base of the single degree of 

freedom systems with the exact amount of mass 𝑚 𝑠 

, stiffness 𝑘 𝑠 

, and

damping 𝑐 . The isolated single degree of freedom system is base𝑠   ex-

cited. Newton’s second law is applied to derive the governing equations 

of motion for these isolated SDOF systems. The equation of motion for 

the novel isolators is derived as

𝑚𝑦̈ = −𝑘 

( 

𝑦 − 𝑢 𝑔 

) 

− 𝑐  

( 

𝑦̇ − 𝑢̇ 𝑔 

) 

+ 𝑘 𝑠 

(

𝑦𝑠 − 𝑦 

)

+ 𝑐 𝑠
( 

𝑦̇ 𝑠 

− 𝑦̇ 

)

(37)

where 𝑦 and 𝑦 𝑠 define the absolute displacement of the isolator and 

SDOF system. 𝑢 𝑔 

defines the base displacement. Now, consider 𝑢 = 𝑦 − 𝑢 𝑔 

and 𝑢 𝑠 

= 𝑦 𝑠 − 𝑦 and define these degrees of freedom as the relative dis-

placement of the isolator and SDOF system with respect to ground and 

isolator. After substituting these variables in Eq. (37), this governing 

equation of motion is rewritten as

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 − 𝑐 𝑠𝑢̇ 𝑠 

− 𝑘 𝑠 

𝑢 𝑠 

= −𝑚𝑢̈ 𝑔 

(38)

𝑚, 𝑐, and 𝑘 define the mass, damping, and stiffness of the damping-

amplifier base isolators. For each damping-amplifier base isolator, the 

value of 𝑐  has been derived as

Ordinary damping-amplifier base isolator: 

𝑐  = 𝑐 cot 

2 𝜙
⏟⏟⏟ 

𝜗
(39)

Compound damping-amplifier base isolator: 

𝑐  = 𝑐 cot 

2 𝜙 

(

tan 

2 𝜃
4

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜗

(40)

Nested damping-amplifier base isolator: 

𝑐  = 𝑐 cot 

2 𝜙 1 

tan 

2 𝜙 2 

cot 

2 𝜙 3
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ 

𝜗

(41)

Levered damping-amplifier base isolator:

𝑐 = 𝑐
(

𝑏 1
𝑎 1

𝑏 2 

𝑎 2

) 2

⏟⏞⏞⏞⏟⏞⏞⏞⏟ 

𝜗

(42)

The value for 𝑐 has been derived as 𝑐 = 2𝑚𝜉 𝑑 

𝜈 𝑑 . 𝜗 defines the damping

amplification factor. The governing equation of motion for the isolated 

SDOF system is derived as

𝑚 𝑠 

𝑦̈ 𝑠 = −𝑘 𝑠 

( 

𝑦 𝑠 − 𝑦 

) 

− 𝑐 𝑠 

( 

𝑦̇ 𝑠 − 𝑦 

) 

(43)

where 𝑦 and 𝑦 𝑠 

define the absolute displacement of the isolator and SDOF 

system. Now, consider 𝑢 = 𝑦 − 𝑢 𝑔 

and 𝑢 𝑠 

= 𝑦 𝑠− 𝑦 and define these degrees 

of freedom as the relative displacement of the isolator and SDOF system 

with respect to ground and isolator. After substituting these variables in 

Eq. (43), this governing equation of motion is rewritten as

𝑚 𝑠 

𝑢̈ 𝑠 

+ 𝑚 𝑠 

𝑢̈ + 𝑐 𝑠𝑢̇ 𝑠 

+ 𝑘 𝑠 

𝑢 𝑠 

= −𝑚 𝑠 

𝑢̈ 𝑔 

(44)

where 𝑢 𝑔 

defines the base displacement. The steady state solutions are 

considered: 𝑢 = 𝑈𝑒 

i𝜔𝑡 , 𝑢 𝑠 = 𝑈 𝑠 

𝑒 

i𝜔𝑡, and 𝑢̈ 𝑔 

= 𝑈 𝑔𝑒 

i𝜔𝑡 . These solutions are

substituted in Eq. (38) and the last expression of Eq. (44). As a result, a 

frequency response function has been derived and expressed as

[ 

2 i𝜇 𝜅 𝑑 𝜅 𝜉 𝑑 𝜗 + 𝜇 𝜅 𝑑
2 − 𝜇 𝜅 

2 −2 i𝜅 𝜉 𝑠 

− 1
−𝜅 

2 2 i𝜅 𝜉 𝑠 

+ 1 − 𝜅2 

] {

𝑈 

𝑈 𝑠

}

= − 

[

𝜇
1

] 𝑈 𝑔

𝜈 

2
𝑠

(45)

where 𝜇 = 𝑚∕𝑚 𝑠 defines the isolator mass ratio, 𝜅 𝑑 = 𝜈 𝑑 

∕𝜈 𝑠 

defines 

the frequency ratio of the isolator, 𝜉 𝑑 defines the damping ratio of
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Fig. 9. The structural diagrams of the single degree of freedom systems isolated by the (a) ordinary, (b) compound, (c) nested, and (d) levered damping-amplifier 

base isolators subjected to base excitation.

the isolator, and 𝜅 = 𝜔∕𝜈 𝑠 

defines the excitation frequency ratio. The 

displacement of the SDOF system is obtained as

̃ 𝑍 𝑠 = 

(

𝑈 𝑠
𝑈 𝑔

)

𝜈 

2
𝑠 = 

2 i𝜇 𝜅 𝑑 𝜅 𝜉 𝑑 𝜗 + 𝜇 𝜅 𝑑
2

𝛿 𝑓 

(46)

The displacement of the isolator is obtained as

𝑍̃ = 

(

𝑈
𝑈 𝑔

)

𝜈 

2
𝑠 = 

−𝜇 𝜅 

2 + 𝜇 + 1 + i 

( 

2 𝜅 𝜇 𝜉 𝑠 

+ 2 𝜅 𝜉 𝑠
)

𝛿 𝑓 

(47)

The denominator of Eqs. (46) and (47) has been obtained as

̃ 𝛿 𝑓 = 

4 𝜅 

2 𝜇 𝜉 𝑑 

𝜉 𝑠 

𝜅 𝑑 𝜗 − 𝜅 

4 𝜇 + 𝜅 

2 𝜇 𝜅 𝑑 

2 + 𝜇 𝜅 

2 − 𝜇 𝜅 𝑑 

2 + 𝜅 

2 

+i 

( 

2 𝜅 

3 𝜇 𝜉 𝑑 

𝜅 𝑑 𝜗 + 2 𝜅 

3 𝜇 𝜉 𝑠 − 2𝜇 𝜅 𝑑 

𝜅 𝜉 𝑑 

𝜗 − 2 𝜅 𝜇 𝜉 𝑠 

𝜅 𝑑 

2 + 2 𝜅 

3 𝜉 𝑠
)

(48)

The isolated structure is subjected to harmonic base excitation. 𝐻 ∞ opti-

misation is applicable, and the optimal design parameters of the isolator 

are derived analytically. The 𝐻 ∞ optimisation method is employed in

this study to derive the optimal design parameters for damping-amplifier 

base isolators. Although traditionally used in the design of dynamic 

vibration absorbers (DVAs), the method is well-suited for base isola-

tion systems due to their analogous dynamic structure. Both systems 

involve two interacting degrees of freedom and aim to minimise the 

response of the primary structure under dynamic excitation. The 𝐻 ∞ 

approach ensures robustness against worst-case excitation scenarios, 

such as broadband seismic inputs, by minimising the maximum gain 

of the transfer function from disturbance to response. Furthermore, this 

method facilitates the derivation of closed-form expressions for optimal 

damping ratios and frequency tuning, which is essential for analytical 

insight and efficient parametric design. Its applicability to base isola-

tion has been supported by recent studies in structural dynamics and

vibration control. To perform 𝐻 ∞ 

optimisation, 𝜉 𝑠 

is considered zero,

i.e. 𝜉 𝑠 = 0, to satisfy its mathematical condition [44] derived below.

|

̃ 𝑍 𝑠| =

√

√

√

√

𝐴 

2 + 𝜉2𝑑𝐵 

2

𝐶 

2 + 𝜉2𝑑𝐷 

2
(49)

The closed-form expressions for 𝐴, 𝐵, 𝐶, and 𝐷 are derived and 

expressed below.

𝐴 = 𝜇 𝜅 𝑑
2 , 𝐵 = 2 𝜅 𝑑 

𝜗 𝜇 𝜅, 𝐶 = −𝜅 

4 𝜇 + 𝜅 

2 𝜇 𝜅 𝑑 

2 + 𝜅 

2 𝜇 − 𝜇 𝜅 𝑑 

2 + 𝜅 

2, 

and 𝐷 = 2 𝜅 

3 𝜇 𝜅 𝑑 𝜗 − 2 𝜅 𝜇 𝜅 𝑑 𝜗 

(50)

Two constraints are derived from Eq. (49) and expressed as

|

|

|

|

|

𝐴
𝐵

| 

| 

| 

| 

| 𝜅𝑗

=
|

|

|

|

|

𝐶
𝐷

| 

| 

| 

| 

| 𝜅𝑗

and
|

|

|

|

|

𝐵
𝐷

|

|

|

|

|𝜅1

=
|

|

|

|

|

𝐵
𝐷

|

|

|

|

|𝜅2

(51)

Eq. (50) is substituted in the first expression of Eq. (51). 

𝜅 

4 𝜇 + 

( 

−2 𝜇 𝜅 𝑑 

2 − 𝜇 − 1 

) 

𝜅 

2 + 2𝜇 𝜅 𝑑
2 = 0

𝜅 

2
1 + 𝜅 

2
2 =

2𝜇 𝜅 𝑑
2 + 𝜇 + 1
𝜇 

(52)

Eq. (50) is substituted in the second expression of Eq. (51). 

𝜅 

2
1 + 𝜅 

2
2 = 2 (53)

Equating Eqs. (52) and (53), the frequency ratio of the damper is derived 

as

(

𝜅𝑑
) 

opt 

= 

√

1 − 𝜇
2𝜇 

(54)

The closed-form expressions for 𝜅 

2
1,2 have been derived as

𝜅 

2
1,2 = 1 ± 

√ 

1 − 2 𝜅 𝑑
2 (55)

The closed-form expression for the optimal damping ratio of the isolator 

has been derived using a mathematical expression and is expressed as

𝜕| ̃ 𝑍 𝑠 (𝜅) | 

2

𝜕𝜅 

2

| 

| 

| 

| 

| 𝜅21,2

= 0 and
(

𝜉𝑑
) 

opt = 

√

𝜉2𝑑1 + 𝜉2𝑑2
2

(56)

Eq. (49) is substituted in the first expression of Eq. (56). The closed-form 

expression for the damping ratio of the isolator is derived as

𝐺 1𝜉
4
𝑑 + 𝐺 2𝜉

2
𝑑 + 𝐺 3 = 0

(

𝜉𝑑1,𝑑2
)2
𝜅21,2

=
−𝐺 2 ±

√

𝐺2
2 − 4𝐺 1 

𝐺 3

2𝐺 1

(57)
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Fig. 10. Variations in the optimal frequency ratio of the isolators as a function 

of the mass ratio of the isolator.

𝐺 1 = 16 𝜅 

6 

1,2𝜇 

2 𝜅 𝑑 

2 𝜗 

4 − 16 𝜅 

4
1,2𝜇 

2 𝜅 𝑑 

2 𝜗 

4

𝐺 2 =
6 𝜅 

8
1,2 

𝜇 

2 𝜗 

2 + 

( 

−8 𝜇 

2 𝜅 𝑑 

2 𝜗 

2 − 8𝜇 

2 𝜗 

2 − 8𝜇 𝜗 

2 

) 

𝜅 

6 

1,2
+ 

( 

8𝜇2 𝜅 𝑑
4 𝜗 

2 + 8𝜇 

2 𝜅 𝑑
2 𝜗 

2 + 4𝜇 𝜅 𝑑 

2 𝜗 

2 + 2𝜇 

2 𝜗 

2 + 4𝜇 𝜗 

2 + 2 𝜗 

2) 𝜅 

4
1,2

−8 𝜅 

2 

1,2 𝜇 

2 𝜅 𝑑
4 𝜗 

2

𝐺 3 =
2 𝜅 

6
1,2 

𝜇 

2 𝜅 𝑑
2 + 

( 

−3 𝜇 

2 𝜅 𝑑 

4 − 3𝜇 

2 𝜅 𝑑 

2 − 3𝜇 𝜅 𝑑
2 

)

𝜅 

4
1,2

+ 

( 

𝜇2 𝜅 𝑑
6 + 4𝜇 

2 𝜅 𝑑 

4 + 2𝜇 𝜅 𝑑
4 + 𝜇 

2 𝜅 𝑑 

2 + 2𝜇 𝜅 𝑑 

2 + 𝜅 𝑑
2 

)

𝜅 

2
1,2

−𝜇 

2 𝜅 𝑑 

6 − 𝜇 

2 𝜅 𝑑
4 − 𝜇 𝜅 𝑑

4

(58) 

The frequency ratio variations are derived using the 𝐻 ∞ 

optimi-

sation method. The graphical representations of these variations are 

determined using Eq. (54) and displayed in Fig. 10. According to this 

graph, the optimal frequency ratio decreases with the increment of 

the isolator mass ratio and provides additional flexibility to the iso-

lator with sufficient load-bearing capacity. In addition, the value of 

the isolator mass ratio should be less than or equal to 0.95, i.e., 𝜇 ≤ 

0.95, to achieve robust vibration reduction capacity from the isolator. 

Simultaneously, this type of parametric graph is also generated using 

the Eqs. (57) and (58). Accordingly, the optimal damping ratio changes 

of each isolator are obtained and shown in Fig. 11. The damping ra-

tio variations for ordinary damping-amplifier base isolator, compound 

damping-amplifier base isolator, nested damping-amplifier base isolator, 

and levered damping-amplifier base isolator with respect to the isolator 

mass ratio are shown in Fig. 11(a)–(d). The isolator damping ratio is a 

function of the variable isolator mass ratio. In the case of an ordinary 

damping-amplifier base isolator, the damping ratio progressively rises 

with increasing damping amplifier angle and falls with increasing isola-

tor mass ratio. The compound damping-amplifier base isolator with the 

primary damping amplifier angle exhibits the same properties. Section 

2.2 states that the secondary damping amplifier angle has a value of 

64 

𝑜. Furthermore, the nested damping-amplifier base isolator shares the

same physical properties of the damping ratio as ordinary and compound 

isolators. The damping ratio of the isolator is influenced by three am-

plifier angles: primary, secondary, and tertiary. This graph maintains 

constant secondary and tertiary angles. Regarding applying the minimal 

lever arm ratio, the levered damping-amplifier base isolators’ character-

istics differ slightly from those of the other three isolators. The value of

𝑏 1 

∕𝑎 1 

is maintained constant, i.e., 𝑏 1 

∕𝑎 1 

= 1.0, to preserve the design’s 

simplicity. 𝑏 2 

∕𝑎 2 

has a value that ranges from 1 to 3. A greater value of

the 𝑏 2 

∕𝑎 2 

ratio dramatically reduces the ideal damping ratio, making it

unsuitable for use as a base isolator. To obtain a strong vibration reduc-

tion capacity from the levered damping-amplifier base isolator, a lower 

value of 𝑏 2 

∕𝑎 2 

is necessary for its optimal design.

4. Dynamic response evaluation

The dynamic responses of the structures are evaluated to assess 

the effectiveness of the damping amplifiers in enhancing the vibration 

reduction performance of the isolators. 

4.1. Frequency domain responses

The newly developed damping-amplifier base isolators are applied 

to the single degree of freedom systems to achieve each one of their vi-

bration reduction performances. The governing system parameters are 

considered the same for all controlled single degree of freedom systems. 

The damping ratio of the SDOF system is considered 0.01 and is listed 

in Table 1. The harmonic excitation is applied at the base of the iso-

lated structures. As a result, the dynamic responses are developed from 

the isolated structures. The detailed analysis of dynamic response eval-

uation is illustrated in the following. This vibration reduction capacity 

is derived for the 𝐻 ∞ 

novel isolators. To perform the analytical study, 

the 𝐻 ∞ 

optimised design parameters for the novel isolators are derived

using Eq. (54)–(58). The design parameters for the conventional base 

isolator are obtained from a published journal. The details of all sys-

tem parameters for optimum novel and conventional base isolators are 

listed in Table 2. To conduct a fair comparison between the vibration 

reduction performances of the novel base isolators and the conventional 

base isolators, the mass ratios of both are kept exactly the same. The 

differences in the optimal displacements of the single degree of freedom 

systems isolated by the 𝐻 ∞ 

optimised ordinary, compound, nested, and

levered damping-amplifier base isolators in relation to the frequency ra-

tio are now obtained and graphically presented in Fig. 12(a)–(d) after 

all system parameters have been applied. The frequency response func-

tion is also used to analytically determine the maximum displacement 

response of the uncontrolled single-degree-of-freedom system, and the 

result is 50. The 𝐻 ∞ 

optimised ordinary, compound, nested, and levered

damping-amplifier base isolators isolated single degree of freedom sys-

tems yielded the following maximum displacement responses: 1.3397. 

The single degree of freedom system isolated by the conventional base 

isolator yields a maximum displacement response of 8.4918. The vibra-

tion reduction capacities of the novel isolators are derived with respect 

to the conventional base isolator, and the mathematical expression for 

the required derivation is as follows.

𝑍 dr(%) = 

( (

𝑍̃ 𝑠(𝜅) 

) 

conventional 

−
(

𝑍̃ 𝑠(𝜅)
)

novel
(

𝑍̃𝑠(𝜅) 

)

conventional

) 

× 100 (59)

where 𝑍 dr(%) defines the displacement reduction capacity of the

novel isolator compared to the conventional one.
( ̃ 𝑍 𝑠(𝜅) 

) 

conventional and
( 

𝑍̃ 𝑠(𝜅) 

)

novel 

define the maximum displacements of the SDOF systems 

isolated by the conventional and the novel base isolators. Using Eq. 

(59), the vibration reduction capacities of the suggested isolators are 

calculated in relation to the conventional base isolator. As a result, 

the 𝐻 ∞ 

optimised ordinary, compound, nested, and levered damping-

amplifier base isolators are 84.22 % more capable of reducing vibration 

than the conventional base isolator. The structural acceleration of the 

superstructure is further obtained to comprehensively evaluate the con-

trol performance of the proposed damping amplifier-based isolators. 

Accordingly, the variations in the optimal accelerations of the structures 

isolated by the optimum ODABI, CDABI, NDABI, and LDABI as a func-

tion of the frequency ratio are shown in Fig. 13(a)–(d). The maximum 

structural acceleration of the SDOF system isolated by conventional BI 

is derived as 2.0358, while the maximum structural acceleration of the 

SDOF system isolated by the novel base isolator is derived as 1.6122.

𝑍 ar(%) =

⎛ 

⎜ 

⎜ 

⎜ 

⎝ 

(

̈̃
 𝑍 𝑠(𝜅) 

)

conventional
−
(

̈̃
 𝑍 𝑠(𝜅) 

)

novel
(

̈̃
 𝑍 𝑠 

(𝜅) 

)

conventional

⎞

⎟

⎟

⎟

⎠

× 100 (60)

where 𝑍 ar(%) defines the acceleration reduction capacity of the novel 

isolator compared to the conventional one. 
(

̈ ̃ 𝑍 𝑠(𝜅) 

)

conventional 

and
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Fig. 11. Variations in the optimal damping ratio of the (a) ordinary, (b) compound, (c) nested, and (d) levered damping-amplifier base isolators as a function of the 

mass ratio of the isolator.

Table 1 

The structural system parameter for the single degree of freedom system.

Primary structure Governing system parameter Value 𝜉 𝑠

Single degree of freedom system Damping ratio 0.01

(

̈̃
 𝑍 𝑠 

(𝜅) 

) 

novel 

define the maximum accelerations of the SDOF systems

isolated by the conventional and the novel base isolators. The max-

imum values are substituted in Eq. (60) to obtain the acceleration 

reduction capacity of the novel isolator over the conventional isolator. 

Accordingly, the novel isolators are 20.81 % superior to the conventional 

base isolator.

The displacement of each isolator is obtained to further evaluate 

the efficiency of the novel isolator over the conventional base isola-

tor. The variations in the optimal displacement of the ODABI, CDABI, 

NDABI, and LDABI as a function of the frequency ratio are shown in 

Fig. 14(a)–(d). The maximum displacement of the conventional base 

isolator is obtained as 67.36, while the novel isolator’s maximum dis-

placement is obtained as 38.63. Accordingly, the isolator displacement 

reduction capacity of the novel isolators is significantly 42.65 % superior 

to the conventional isolator. It is also shown that damping ampli-

fiers reduce base displacement while mitigating the main structural 

movements, thereby protecting the base layer from vibration-induced 

damage. The acceleration of each isolator is obtained to further eval-

uate the efficiency of the novel isolator over the conventional base 

isolator. The variations in the optimal acceleration of the ODABI, CDABI, 

NDABI, and LDABI as a function of the frequency ratio are shown in 

Fig. 15(a)–(d). The maximum acceleration of the conventional base 

isolator is obtained as 7.4926, while the novel isolator’s maximum 

acceleration is obtained as 1.0256. Accordingly, the isolator accelera-

tion reduction capacity of the novel isolators is significantly 86.31 % 

superior to the conventional isolator. It is also shown that damping am-

plifiers reduce base acceleration while mitigating the main structural

Table 2 

The governing system parameters for the 𝐻 ∞ 

optimised conventional and novel 

base isolators.

System Introduced by 𝐻 ∞ optimisation

𝜅 𝑑 𝜉 𝑑

Ordinary damping-amplifier This study 0.235702 0.660887

base isolator

Compound damping-amplifier This study 0.235702 0.628856

base isolator

Nested damping-amplifier This study 0.235702 0.660887

base isolator

Levered damping-amplifier This study 0.235702 0.938643

base isolator

Conventional Matsagar and 0.50 0.10

base isolator Jangid [45]

Conventional base isolator: isolator mass ratio (𝜇 𝑏 

) = 0.90, Ordinary damping-

amplifier base isolator: 𝜇 = 0.90, 𝜙 = 40 

𝑜 ; Compound damping-amplifier base 

isolator: 𝜇 = 0.90, 𝜙 = 40 

𝑜 , 𝜃 = 64 

𝑜 ; Nested damping-amplifier base isolator: 

𝜇 = 0.90, 𝜙 1 

= 40 

𝑜 , 𝜙 2 

= 45 

𝑜 , 𝜙 3 

= 45 

𝑜 , and Levered damping-amplifier base 

isolator: 𝜇 = 0.90, 𝑏 1 

∕𝑎 1 

= 1, 𝑏 2 

∕𝑎 2 

= 1. These parameters are applied to the Eq. 

(54)–(58) to obtain each 𝐻 ∞ 

optimised base isolator’s optimal natural frequency 

and damping ratio.

movements, thereby protecting the base layer from vibration-induced 

damage.

4.2. Time history results

The earthquake records are applied as base excitation to the isolated 

structures for performing the time history analysis. The Newmark-beta 

method is employed to perform this analysis. The mass of the SDOF 

system is considered to be 3000 tons. The time period is 0.5 sec. The 

earthquakes are downloaded from PEER Berkeley and listed in Table 3. 

The above-mentioned earthquakes are employed to obtain the response 

spectra of each earthquake record. Further, the response spectra graph
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Fig. 12. The variations in the optimal displacements of the structures isolated by the optimum (a) ODABI, (b) CDABI, (c) NDABI, and (d) LDABI as a function of the 

frequency ratio.

Fig. 13. The variations in the optimal accelerations of the structures isolated by the optimum (a) ODABI, (b) CDABI, (c) NDABI, and (d) LDABI as a function of the 

frequency ratio.
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Fig. 14. The variations in the optimal displacement of the (a) ODABI, (b) CDABI, (c) NDABI, and (d) LDABI as a function of the frequency ratio.

Fig. 15. The variations in the optimal acceleration of the (a) ODABI, (b) CDABI, (c) NDABI, and (d) LDABI as a function of the frequency ratio.
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Table 3 

Details of earthquake records.

Earthquake Year 𝑀 𝑤 Recording station 𝑉 𝑠 30 

(m/s) Component 𝐸 𝑠 (km) PGA,g

Northridge 1994 6.7 Beverly Hills - Mulhol 356 MUL009 13.3 0.52

Duzce, Turkey 1999 7.1 Bolu 326 BOL090 41.3 0.82

Hector Mine 1999 7.1 Hector 685 HEC000 26.5 0.34

Imperial Valley 1979 6.5 Delta 275 H-DLT352 33.7 0.35

Kobe, Japan 1995 6.9 Nishi-Akashi 609 NIS090 8.7 0.51

Kocaeli, Turkey 1999 7.5 Duzce 276 DZC270 98.2 0.36

Landers 1992 7.3 Yermo Fire Station 354 YER270 86 0.24

Loma Prieta 1989 6.9 Capitola 289 CAP090 9.8 0.53

Manjil, Iran 1990 7.4 Abbar 724 ABBAR–T 40.4 0.51

Superstition Hills 1987 6.5 El Centro Imp. Co. 192 B-ICC090 35.8 0.36

Cape Mendocino 1992 7.0 Rio Dell Overpass 312 RIO270 22.7 0.55

Chi-Chi, Taiwan 1999 7.6 CHY101 259 CHY101-N 32 0.44

San Fernando 1971 6.6 LA - Hollywood Stor 316 PEL180 39.5 0.21

0 1 2 3 4
Time period (s)

0

1

2

2.5

Sa
/g

Northridge (1994)
Duzce, Turkey (1999)
Hector Mine (1999)
Imperial Valley (1979)
Kobe, Japan (1995)
Kocaeli, Turkey (1999)
Landers (1992)
Loma Prieta (1989)
Manjil, Iran (1990)
Superstition Hills (1987)
Cape Mendocino (1992)
Chi-Chi, Taiwan (1999)
San Fernando (1971)

Fig. 16. Response spectra of the earthquake ground motion records. 5 % 

damping is considered to achieve this plot.

is employed to understand the characteristics of the earthquakes, which 

are observed from the graph shown in Fig. 16. The nature of the 

isolated SDOF systems can also be understood from this graph. The 

numerical analysis is performed for all earthquakes, but the graphs for 

the Northridge earthquake are shown as the nature of all the graphs 

is the same. Only the values are different. Accordingly, the variations 

of the displacements of the SDOF systems isolated by conventional BI, 

ODABI, CDABI, NDABI, and LDABI, subjected to the Northridge earth-

quake, are shown in Fig. 17(a)–(d). The damping ratio of the main 

structure is considered to be 0.02. The maximum displacement of the 

uncontrolled structure is 0.0106 m, while the maximum displacement 

of the SDOF system isolated by conventional BI is derived as 0.0058 m. 

The maximum displacement of the SDOF system isolated by the novel 

isolator is derived as 0.0014 m. The maximum values are utilised to 

obtain the displacement reduction capacity of the novel isolators com-

pared to the conventional BI. As a result, the displacement reduction 

capacity of the novel isolators is significantly 75.86 % superior to the 

conventional BI. The maximum displacements of uncontrolled structures 

and structures isolated by conventional and novel base isolators are de-

rived for all considered earthquakes. The values are listed in Table 4. 

According to the Table 4, the displacement reduction capacity of novel 

isolators is significantly 67.60 % superior to conventional base isola-

tors. The acceleration reduction capacity of the novel isolator is also 

determined to evaluate the efficiency of the damping amplifiers com-

pared to the conventional isolator. Accordingly, the variations of the 

accelerations of the SDOF systems isolated by conventional BI, ODABI, 

CDABI, NDABI, and LDABI, subjected to the Northridge earthquake, are

shown in Fig. 18(a)–(d). The maximum acceleration of the uncontrolled 

structure is obtained as 1.5868 m/s 

2 . The maximum acceleration of the 

SDOF system isolated by the conventional BI is derived as 0.2566 m/s 

2. 

In addition, the novel isolator-controlled SDOF system has a maximum 

acceleration of 0.1466 m/s 

2 . The maximum values are utilised to ob-

tain the acceleration reduction capacity of the novel isolators compared 

to the conventional BI. As a result, the acceleration reduction capacity 

of the novel isolators is significantly 42.86 % superior to the conven-

tional BI. The maximum accelerations of uncontrolled structures and 

structures isolated by conventional and novel base isolators are de-

rived for all considered earthquakes. The values are listed in Table 

5. According to the Table 5, the acceleration reduction capacity of 

novel isolators is significantly 33.62 % superior to conventional base 

isolators. The damping force of the main structure is also mitigated 

by the isolators. Interestingly, the novel isolators dissipate the damp-

ing force more compared to the conventional BI, which are clearly 

observed in Fig. 19(a)–(d). Fig. 19 presents a phase-plane analysis 

of structural damping force versus structural displacement for various 

base-isolated single-degree-of-freedom (SDOF) systems subjected to the 

Northridge earthquake, with a damping ratio of 𝜉 𝑠 

= 0.02. Each subplot 

compares the hysteretic response of an uncontrolled system, a system 

with conventional base isolation (BI), and a system using a specific 

advanced base isolation strategy: ODABI, CDABI, NDABI, and LDABI. 

The elliptical loops in the plots represent energy dissipation charac-

teristics and structural response behaviours. The uncontrolled system 

consistently exhibits the largest elliptical loops, indicating high energy 

input and structural demand. Conventional BI reduces this response; 

however, the red hysteresis loops for BI still display a wide spread, 

signifying significant damping force and displacement interactions. In 

contrast, the advanced BI strategies, represented in blue, demonstrate 

tightly clustered and smaller loops, denoting improved control and re-

duced dynamic response. ODABI (Fig. 19(a)) effectively narrows the 

loop area through parameter optimisation, resulting in enhanced en-

ergy absorption with lower damping forces. CDABI (Fig. 19(b)) further 

improves this response by introducing controlled damping, which en-

ables real-time adaptability to seismic inputs and results in even more 

compact hysteresis loops, suggesting superior mitigation of both dis-

placement and force demands. NDABI (Fig. 19(c)) achieves the best 

performance among all strategies, as its nonlinear damping model ac-

commodates variations in amplitude and frequency content, allowing 

for more tailored energy dissipation. The loops under NDABI are the 

most confined, indicating the highest efficiency in vibration control. 

LDABI (Fig. 19(d)), while superior to conventional BI, exhibits slightly 

wider loops than NDABI or CDABI, reflecting the limitations of lin-

ear damping in responding to nonlinear seismic excitations. Overall, 

the advanced BI strategies significantly improve structural resilience by 

tailoring the force-displacement relationship, with NDABI and CDABI 

standing out due to their dynamic adaptability and enhanced damping 

efficiency.
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Fig. 17. The variations of the displacements of the SDOF systems isolated by conventional BI, (a) ODABI, (b) CDABI, (c) NDABI, and (d) LDABI, subjected to the 

Northridge earthquake.

Table 4 

Displacement reduction (%) of the novel isolators with respect to the conventional base isolator. 

The displacements of the uncontrolled and isolated structures are listed in this Table.

Earthquake Displacement (m) Displacement reduction (%)

Uncontrolled BI Novel BI Novel BI

Northridge 0.0106 0.0058 0.0014 76.4472

Duzce, Turkey 0.0133 0.0045 0.0014 68.6909

Hector Mine 0.0037 0.0027 5.10 × 10 

−4 80.9658

Imperial Valley 0.0063 0.0023 7.89 × 10 

−4 66.4314

Kobe, Japan 0.0187 0.0019 0.0011 42.1201

Kocaeli, Turkey 0.0054 0.0042 0.0013 68.8364

Landers 0.0045 0.0019 4.22 × 10 

−4 77.7884

Loma Prieta 0.0066 0.0034 0.0014 57.3697

Manjil, Iran 0.0095 0.0028 0.0012 58.5335

Superstition Hills 0.004 0.0026 7.66 × 10 

−4 70.4424

Cape Mendocino 0.006 0.0035 0.001 69.9785

Chi-Chi, Taiwan 0.0094 0.0048 0.0013 72.3731

San Fernando 0.0022 0.0016 5.09 × 10 

−4 68.8563

Mean 0.007707692 0.003230769 0.001007344 67.60259231

Standard deviation 0.004549993 0.001279573 0.00036792 10.16115305

Maximum 0.0187 0.0058 0.0014 80.9658

Minimum 0.0022 0.0016 0.00042167 42.1201

5. Summary and conclusions

The manipulation of damping is fundamental to vibration control. 

This paper discusses four competing damping amplifier device concepts 

through which the effective damping of an SDOF system can be aug-

mented. The novel designs are summarised in Fig. 20 along with their 

damping amplification factors and necessary parameter regimes. The 

four damping amplifiers are termed (1) the ordinary, (2) the compound, 

(3) the nested, and (4) the levered, based on their geometric configu-

rations. The ordinary damping amplifier is similar to the conventional 

scissor mechanisms and the X-shaped structures. The amplification fac-

tors for all four amplifiers were derived in closed form using the 

dynamics of the mechanisms. The newly developed damping amplifiers

are further applied to classical passive vibration isolation systems to en-

hance their vibration reduction capacities and overcome their existing 

limitations. Three novel classes of damping-amplifier vibration isolation 

systems are introduced. These dampers are applied to structures to con-

trol their vibrations. The 𝐻 ∞ 

optimisation methods are employed to

derive the exact closed-form expression for the optimal design param-

eters of these novel dampers. A parametric study is performed using 

these optimal closed-form solutions for the dampers. The vibration re-

duction capacities of the 𝐻 ∞ 

optimised novel dampers are compared

with the vibration reduction capacities of the optimum conventional 

base isolators.

Moving from the ordinary to the compound and the nested designs 

represents an increasing damping amplification with a suitable choice of
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Fig. 18. The variations of the accelerations of the SDOF systems isolated by conventional BI, (a) ODABI, (b) CDABI, (c) NDABI, and (d) LDABI, subjected to the 

Northridge earthquake.

Table 5 

Acceleration reduction (%) of the novel isolators with respect to the conventional base isolator. 

The accelerations of the uncontrolled and isolated structures are listed in this Table.

Earthquake Acceleration (𝑚∕𝑠 

2 ) Acceleration reduction (%)

Uncontrolled BI Novel BI Novel BI

Northridge 1.5868 0.2566 0.1466 42.8629

Duzce, Turkey 2.0829 0.6064 0.4516 25.5157

Hector Mine 0.5778 0.1516 0.0877 42.1532

Imperial Valley 0.9541 0.202 0.1091 45.9926

Kobe, Japan 2.9145 0.3329 0.2544 23.5769

Kocaeli, Turkey 0.8928 0.3902 0.2436 37.5704

Landers 0.6171 0.1391 0.0799 42.5134

Loma Prieta 1.1414 0.4446 0.3753 15.591

Manjil, Iran 1.6129 0.3017 0.2553 15.3906

Superstition Hills 0.6674 0.2063 0.1447 29.8737

Cape Mendocino 0.9449 0.2826 0.1694 40.0364

Chi-Chi, Taiwan 1.3278 0.3212 0.1786 44.4056

San Fernando 0.4645 0.1682 0.1151 31.6017

Mean 1.214223077 0.292569231 0.200869231 33.62185385

Standard deviation 0.696880142 0.132160164 0.112454186 10.82255811

Maximum 2.9145 0.6064 0.4516 45.9926

Minimum 0.4645 0.1391 0.0799 15.3906

parameters as shown in Fig. 20. The graphical illustrations provided in 

the paper further clarify the role of different mechanism parameters in 

damping amplification. This work’s impact lies in amplifying a conven-

tional damper’s attenuation effects through specially designed geometric 

configurations. The paper presents:

1. Four competing damping amplifier designs: ordinary, compound,

nested, and levered, characterised by their distinct geometric 

arrangements. Damping amplifications of orders of magnitude are 

possible with physically realistic parameter values.

2. Analytical derivations of the amplification factors achieved by

each design through closed-form dynamic analysis of the underly-

ing mechanisms.

3. An analytical parameter analysis to explicitly establish a hierarchy

of damping amplification through the four concepts.

4. Three new classes of damping-amplifier vibration isolation

systems.

5. Analytical 𝐻 ∞ optimisation techniques to determine optimal de-

sign parameters for damping-amplifier base isolators using closed-

form expressions.
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Fig. 19. The damping forces of the SDOF systems isolated by conventional BI, (a) ODABI, (b) CDABI, (c) NDABI, and (d) LDABI, subjected to the Northridge earthquake.

Fig. 20. Summary of the four novel amplifiers, their corresponding damping 

amplification factors ( 𝑑 

), and necessary parameter regimes. All amplifiers use 

the same amount of damping as the reference SDOF oscillator.

6. A parametric study using these optimal closed-form solutions for

the dampers, demonstrating higher isolator mass ratios to achieve 

robust performances.

7. Frequency and time domain analyses are performed to obtain

the dynamic response reduction capacity of the novel isolators

compared to the conventional base isolators. Comparative nu-

merical analysis shows an 84.22 % respective improvement in 

vibration reduction over conventional base isolators.

The analytical formulation presented here is about damping. 

However, the scope of the amplifier designs conceived here can go be-

yond the damping enhancement. The novel mechanical setups can be 

inverted to achieve an incredible advantage in active control. By replac-

ing the dampers with actuators and reversing the mechanism angles, a 

small control force can be amplified to deliver a superior control frame-

work for the underlying dynamic system. All four amplifiers can be 

used for enhanced vibration energy harvesting by swapping the dampers 

with suitable piezoelectric units. By miniaturising the mechanisms and 

including many unit cells in a periodic manner, it will be possible to 

create a designer ultra-high-damping metamaterial. Such an ultra-high-

damping metamaterial can attenuate vibration under a broad range of 

situations, as the material can be designed from the bottom up. Future 

research is also necessary on how the novel damping amplifiers can be 

used for vibration isolation and vibration absorption for multi-degree-

of-freedom systems with a wide range of dynamic forces, such as wind 

and earthquake excitations.
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