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ABSTRACT
Inertial amplifiers are receiving increasing attention due to their superior 
potential for vibration attenuation under a wide range of dynamic excita
tions. This paper proposes and subsequently analyzes new inertial amplifier 
designs capable of simultaneous amplification of the effective mass and 
stiffness of a resonant single-degree-of-freedom dynamic system. The inertial 
amplifier configuration is conceived through constrained link-bar mechan
isms with masses and springs attached at selected points. Three new con
figurations, namely the compound, nested, and levered inertial amplifiers, 
are introduced. The mass and stiffness amplification factors for all the ampli
fiers are derived in closed form by analysing the dynamics of the underlying 
mechanisms. Based on the analytical expressions, parameter choices for 
superior amplification are obtained analytically. Numerical results demon
strate that it is possible to achieve several orders of magnitude of mass and 
stiffness amplifications. Using the amplified effective mass and stiffness, the 
ability to tune the natural frequency of the inertially amplified dynamic 
system has been established. The inertial amplifiers proposed and designed 
here will deliver significantly higher effective mass and stiffness than what is 
used within the mechanisms. This will lead to superior passive vibration 
control opportunities, exploiting the ability to manipulate the resonance 
frequency of the underlying oscillatory system.
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1. Introduction

Vibration reduction in resonant structures can be achieved in two broad ways. The first approach is to 
enhance the damping in a structure so that the vibration amplitudes near the resonance frequencies 
become lower. Conceptually, this is straightforward. However, achieving higher damping requires 
innovation in material science involving extensive experimental testing and development. The second 
approach is to move or alter the natural frequencies so that they avoid resonance around dominant 
excitation frequencies. Vibration absorbers (Den Hartog 1985; Rivin 2003) are the most prominent 
examples of the second approach. This requires the ability to change the effective mass or stiffness of 
the system or both. The motivation of this paper lies in the second approach. It will be shown that 
a new class of stiffened inertial amplifiers has the capability of extreme modulation of effective inertia 
and stiffness properties of an oscillatory system.

Controlling the effective mass of general dynamical systems is receiving significant atten
tion in the current research. The concept of inertial amplification has existed since the 1960s 
in various forms (see, for example Goodwin (1965)). Smith (2002) proposed a device concept 
(named an inerter) that exploited an inertial amplification. The concept used rotating fly
wheels, and effectively, this can be viewed as a separate element that represents a higher mass 
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without actually increasing the physical mass. Initial works on inerters involved noise and 
vibration reduction in automobiles. Inerters have been used for vibration absorption and 
reduction by various authors (Chen and Hu 2019a; Di Matteo, Masnata, and Pirrotta 2019; 
Giaralis and Petrini 2017; Lazar, Neild, and Wagg 2014, 2016; Marian and Giaralis 2014). 
More recently (Marian and Giaralis 2017), inerters have been used for vibration energy 
harvesting. We refer to recent review papers (Kuhnert et al. 2020; Wagg 2021) for 
a comprehensive overview of the current and historical perspective on the use of inerters in 
dynamic systems.

The classical inerter (Smith 2020) used a flywheel-gear mechanism (Smith 2020). A different 
route to inertial enhancement is the use of an inertial amplification mechanism (Cheng et al.  
2020). This is usually achieved through a link-bar mechanism (Chen and Hu 2019b) loaded with 
symmetric masses and a spring (Zhao et al. 2019). Like the classical inerter (Lazar, Neild, and 
Wagg 2014), an inertial amplifier (Frandsen et al. 2016) also delivers an increased effective mass 
without increasing the physical mass (De Domenico, Ricciardi, and Zhang 2020). Therefore, 
inertial amplifiers are mechanisms that augment the effective inertia of a system without propor
tionally increasing its actual mass (Acar and Yilmaz 2013). Inertial amplifiers (Taniker and Yilmaz  
2017) exploit compliant mechanisms (Chowdhury, Banerjee, and Adhikari 2021). Dynamics of 
compliant mechanisms (Neil Sclater 2001) and their configuration study are classical topics 
(Howell 2001). Historically, compliant mechanisms were used to manipulate motion only. The 
key conceptual difference between inerter/inertial amplifiers and classical compliant mechanisms 
is that such mechanics are now employed to manipulate the effective inertia of a dynamical system 
(Cheng et al. 2020). Inertial amplifiers (Li and Li 2018) have been used for vibration absorption 
and attenuation (Chowdhury, Banerjee, and Adhikari 2022), low-frequency band-gap manipula
tion (Yilmaz, Hulbert, and Kikuchi 2007), and piezoelectric vibration energy harvesting (Adhikari 
and Banerjee 2022). Recently, Alotta and Failla (2021) proposed efficient damped inerter-based 
vibration absorbers, and Chowdhury et al. (2023) introduced inertial amplifier Tuned Mass 
Dampers (Chowdhury, Banerjee, and Adhikari 2023). Building on these developments, inerter 
and inertial amplifier-based vibration absorbers have emerged as a promising alternative, offering 
enhanced dynamic performance without significant mass addition (Chowdhury and Adhikari  
2025b). These absorbers leverage geometrically constrained mechanisms to amplify the effective 
inertia (Orta and Yilmaz 2019), enabling broader frequency coverage and improved attenuation. 
Recent studies have demonstrated their potential for passive control applications, including base 
isolation (Chowdhury and Adhikari 2025a), structural resonance suppression, and energy harvest
ing (Chowdhury, Adhikari, and Banerjee 2025). To further enhance the performance of these 
vibration absorbers, optimization schemes based on the H1 norm have been employed to mini
mize the worst-case response across a specified frequency range (Den Hartog 1985). This robust 
control approach ensures optimal absorber tuning and broadband vibration attenuation.

From this brief review, it is clear that inertial amplifiers are of significant current interest due to 
their potential for vibration reduction applications. However, the conventional rhombus-shaped four- 
bar mechanism commonly used (see Fig. 1b for example) is somewhat restrictive as the only parameter 
influencing the inertial amplification is the amplifier angle. From an engineering standpoint, it will be 
beneficial to have alternative mechanisms giving more design freedom. Another key limitation of the 
conventional design paradigm is the lack of ability and emphasis on the simultaneous manipulation of 
effective stiffness. Novel mechanisms allowing superior control of effective inertia and stiffness 
properties will eventually lead to enhanced and efficient vibration control through desired natural 
frequency shifts.

Inspired by the ideas of inerters and inertial amplifiers, the aim of this paper is to investigate the 
possibility of mechanical systems capable of manipulating the effective inertia and stiffness properties 
of a resonant dynamic system. A key goal here is to develop unconventional designs that will 
simultaneously directly enhance both the mass and stiffness of a system. Therefore, we ask the 
following fundamental question:

2 S. ADHIKARI AND S. CHOWDHURY



• In what way can masses and stiffness elements be placed within a mechanical system so that their 
effective mass and stiffness can be manipulated and controlled in the desired manner?

Four novel amplifier mechanisms have been proposed in this paper to address this. It will be shown 
that under certain design choices, it is possible to have a mechanical system with significantly greater 
control of the natural frequencies. These novel stiffened amplifiers are applied in the core material of 
the conventional base isolator to increase its vibration reduction capacity. Accordingly, four stiffened 
amplifier base isolators are introduced. H1 optimization is employed to derive the optimal design 
parameters of these novel isolators. The vibration reduction capacity of novel isolators is compared to 
the vibration reduction capacity of conventional base isolators to find their superior vibration 
reduction capacities.

2. Inertial Amplifiers

The inertial amplifiers are applied to the structures to attenuate their vibration. Three different types 
of novel inertial amplifiers including the conventional one are introduced in this section.

2.1. The Conventional Inertial Amplifier

The conventional inertial amplifier is shown in Fig. 1a.
This model has been extensively considered in recent years. Here, a brief review of it has been 

presented for the sake of completeness, and a comparison with other inertial amplifiers is to be 
introduced in the paper. The equation of motion of free vibration of the undamped SDOF oscillator in 
Fig. 1a is given by 

A fundamental interest in this paper is how the effective mass (and the stiffness) of the system change 
due to the introduction of the inertial amplifier. The inertial amplifier in Fig. 1b and the others 
subsequently introduced in this paper are a special class of general inerters. They can be viewed as 
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Figure 1. The single-degree-of-freedom (SDOF) model, the conventional inertial amplifier and the free-body diagram. (a) The mass 
and stiffness of the SDOF oscillator are given by m and k, respectively. (b) The conventional inertial amplifier with mass ma and 
amplifier angle is ϕ. The inertial amplifier is attached to an undamped spring-mass system. (c) The free-body diagram for the 
conventional inertial amplifier. The displacement of the mass (at point A) and the amplifier (at point O) are denoted by yðtÞ and uðtÞ, 
respectively. The forces F1ðtÞ and F2ðtÞ are the internal forces within the rigid links.
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grounded inerters with variable inertance (the effective mass). It will be rigorously shown that the 
variable inertance can be precisely quantified based on the mechanisms’ geometric configurations 
(angles).

The primary mass of the single-degree-of-freedom (SDOF) oscillator and the SDOF oscillator with 
the inertial amplifier is exactly the same. The inertial amplifier is constructed by placing masses ma 
within a rhombus mechanism made of four rigid links. The amplifier angle is ϕ with respect to the 
vertical line, and it is assumed that the rhombus mechanism can move freely in a friction less manner 
about the hinges marked in Fig. 1b by green dots. The free-body diagram for the conventional inertial 
amplifier is shown in Fig. 1c. The displacement of the mass (at point A) and the amplifier mass (at 
point O) are denoted by yðtÞ and uðtÞ, respectively. The motions yðtÞ and uðtÞ are perpendicular to 
each other. The forces F1ðtÞ and F2ðtÞ are the internal forces within the rigid links. Due to the 
symmetry of the mechanism, the dynamics at points O and O’ are the same. Therefore, it is sufficient 
only to consider the dynamic equilibrium at one point.

The free-body diagram of the inertial amplifier is utilized to derive the governing equation of 
motion of the inertially amplified single-degree-of-freedom system. Newton’s second law is applied at 
point A of the free-body diagram. Accordingly, the governing equation of motion has been derived as 

Here F1ðtÞ is the internal force within the rigid link bars in the upper half of the mechanism. The 
vertical motion of point O is yðtÞ=2 due to the vertical symmetry of the mechanism. Considering the 
bars in Fig. 1b are rigid, using the kinematic relationship of the rigid bars, one deduces 

It is important to note that the amplifier angle ϕ is treated as a constant geometric parameter in this 
analysis. This assumption is justified under the small-displacement regime and rigid-body kinematics, 
where the structural links are idealized as non-deformable, and the joint angles remain fixed during 
oscillation. Consequently, ϕ does not vary with the displacement yðtÞ, allowing a linear kinematic 
relationship to be used. Due to the vertical motion of the mass ma, the internal force in the rigid link 
bars in the lower half of the mechanism will be different (denoted by F2ðtÞ). Recalling that the vertical 
motion at point O is yðtÞ=2, balancing the force in the vertical direction, the inertial forces are 
derived as 

From the equilibrium of forces in the horizontal direction at point O one obtains 

Using the kinematic relationship in Eq. (3) in the above equation, one deduces 

Adding Eqs. (4) and (6), the total inertial forces are derived as 

Substituting Eq. (7) in Eq. (2), the governing equation of motion has been derived as 
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The effective mass of the amplified system in Fig. 1b is mþ ma
2 ð1þ cot2 ϕÞ

� �
. The above equation can 

be rewritten as 

where the mass ratio is given by 

The non-dimensional inertial amplification factor is introduced and defined as the ratio of the 
effective mass of the inertially amplified system to the original system as 

This definition of the inertial amplification factor will be used to quantify the efficacy of different 
inertial amplifier designs proposed here.

In Fig. 2, the inertial amplification factor is plotted as a function of the amplifier angle ϕ.
This is a log-plot, and it has been observed that the inertial amplification increases exponen

tially when the amplifier angle ϕ is closer to zero. This result shows that the theoretical inertial 
amplification can be over 100. The two key assumptions made in deriving the equation of 
motion are: (1) the hinge movements between the four link-bars, the mass and the ground are 
frictionless, and (2) the masses of the four link-bars are negligible. When the amplifier angle ϕ 
becomes close to zero, the mechanism becomes extremely narrow, and even very small friction 
in the hinges will prevent it from operating properly. Keeping this in mind, it is preferable that 
ϕ � 10�. This will ensure that the assumptions made are applicable to our model. Another point 
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Figure 2. Inertial amplification as a function of the amplifier angle ϕ for the conventional inertial amplifier. Three values of the mass 
factor γm are shown in the plot. For smaller amplifier angles ϕ �< 15� , the inertial amplification becomes prominent.
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to be noted is that the inertial amplifier effectively does not provide significant amplification 
when ϕ> 45�. Therefore, the amplifier angle should be chosen to be smaller than 45�. Now, the 
compound inertial amplifiers and their design with exact closed-form expressions are 
introduced.

2.2. The Compound Inertial Amplifier

The conventional inertial amplifier has been discussed in the previous section which has the potential 
for enhanced effective inertia. Now, the compound inertial amplifiers are introduced to enhance more 
inertial amplification. The main idea is to have multiple smaller inertial amplifiers working in unison. 
The proposed design of a compound inertial amplifier with two cells is shown in Fig. 3.

Two secondary mechanisms are inserted within a primary mechanism. From a practical standpoint, 
the outer and inner mechanisms can be placed in offset vertical planes so that their movements do not 
intersect each other. The primary amplifier angle is ϕ, and the secondary amplifier angle is θ. Each 
mass within the cells is ma=2, so the total mass in each half is ma, as in the case of the conventional 
inertial amplifier discussed in the previous section. This way, the inertial amplification performance 
can be compared consistently across different designs.

The displacement of the main mass (at point A), point O, and the amplifier mass (at point B) are 
yðtÞ, uðtÞ, and vðtÞ, respectively. From Fig. 3a, observe that point D is fixed and point C only moves in 
the vertical direction due to the symmetry of the system. Therefore, the vertical motion at point O is 
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Figure 3. The compound inertial amplifier and its corresponding free-body diagram. (a) a compound inertial amplifier with two cells. 
The primary amplifier angle is ϕ, and the secondary amplifier angle is θ. Each mass within the cells is ma=2 so that the total mass is 
the same as the conventional inertial amplifier. (b) The free-body diagram for the compound inertial amplifier. The displacement of 
the mass (at point A), point O, and the amplifier mass (at point B) are denoted by yðtÞ, uðtÞ and vðtÞ, respectively. The forces 
F1ðtÞ; F2ðtÞ and F3ðtÞ are the internal forces within the rigid links of the primary and secondary mechanisms.
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yðtÞ=2, and the horizontal motion at point B is uðtÞ=2. Considering the bars in Fig. 3a are rigid, using 
the kinematic relationship of the primary mechanism, one obtains 

From the kinematic relationship of the secondary mechanisms, the deflections in the horizontal and 
vertical directions are derived as 

Combining the preceding two equations, the vertical motion of the amplifier mass ma=2 can be related 
to the motion of the primary mass as 

Considering the equilibrium of the forces in the vertical direction, from point B in the free-body 
diagram in Fig. 3b, the inertial forces are derived as 

From the equilibrium of forces in the horizontal direction at point B, one obtains 

Eliminating F3ðtÞ from the above equations the expression of F2ðtÞ can be obtained as 

Using the expression of uðtÞ from Eq. (12), the total inertial forces at point “O” are derived as 

Considering the equilibrium of the forces in the horizontal direction from point O in the free-body 
diagram, the total inertial forces have been derived as 

Considering the equilibrium of the main mass, from point A in the free-body diagram, one has 

Substituting the expression of 2F1ðtÞ cos ϕ from Eq. (20) into the above equation, the equation of 
motion of an SDOF oscillator with the compound inertial amplifier has been derived as 
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The effective mass of the amplified system in Fig. 3a is derived as mþ ma
8 cot2 ϕ 1þ tan2 θð Þ

� �
. The 

non-dimensional inertial amplification factor for the compound inertial amplifier has been derived 
and defined as the ratio of the effective mass of the compound inertial amplifier to the original system. 

Here, the subscript “2” is used to denote that the amplification factor is for the compound amplifier 
and differentiate it from the conventional amplifier given in Eq. (11).

Comparing Γ2 from Eq. (23) to the inertial amplification factor of the conventional amplifier in Eq. 
(11), the condition for the compound amplifier to outperform the conventional amplifier can be 
obtained as Γ2 > Γ1. Using the respective expressions, this translates to 

From this, the required condition for the secondary amplifier angle θ can be obtained as 

This requirement is in addition to ϕ< 45� required for inertial amplification from the conventional 
amplifier as the primary amplifier angle is normally chosen small, tan2ϕ0.

Therefore, the minimum value of θ necessary for the compound amplifier to outperform the 
conventional amplifier is 

To absolutely ensure the enhanced amplification of the compound amplifier, it has been considered 
that the limiting case when the primary amplifier angle ϕ¼ 45�. For this case, the requirement on θ 
obtained from Eq. (25) as 

Figure 4. Inertial amplification as a function of the primary amplifier angle ϕ for the compound amplifier SDOF system for various 
secondary amplifier angle θ. The value of the mass factor γm ¼ 0:1.
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Using different combinations of θ and ϕ, the compound amplifier gives a wide range of design choices 
to suit practical applications.

In Fig. 4, the inertial amplification factor of the compound amplifier is compared for different 
parameter values. Amplifications for three different values of the secondary amplifier angle θ are 
shown in the figure. This clearly shows that when θ > 70�, the amplification of the compound amplifier 
is more than its conventional counterpart. The results in Fig. 4 also give another interesting possibility 
which is not available for the conventional amplifier. For a given target inertial amplification, say 50, 
a range of combinations of ϕ and θ can be selected. This gives more opportunities for the design and 
satisfies any practical constraints.

2.3. The Nested Inertial Amplifier

In the previous section, it has been showed that inertial amplification can be enhanced by introducing 
secondary mechanisms within the primary mechanism. Motivated by this, here it has been taken that 
this idea is further in the form of a nested inertial amplifier design shown in Fig. 5.

The amplifier is obtained by introducing two connected four-bar rhombus mechanisms inside the 
primary mechanism. The overall design conceived in Fig. 5 is therefore made of three mechanisms, 
and they are marked on the figure. The amplifier mass ma is placed inside the innermost mechanism. 
Therefore, the amount of amplifier mass employed is the same as in the previous two cases. The outer 

1

y( )t

m

k

u1

ky(t)

(a) (b)

A

O

O

Ó
u1

A

B B
11

1

1

2

2

2

2

C

D

2 3

u2

u2

u3u3

C

3

4

3

3

ma

v3v3

Figure 5. The nested inertial amplifier and its corresponding free-body diagram. (a) The nested inertial amplifier is made of three 
connected mechanisms. The mass ma is placed inside the innermost mechanism. The amplifier angles for the mechanisms are ϕ1, ϕ2, 
and ϕ3 as shown. (b) The free-body diagram for the nested inertial amplifier. The displacement of the mass (at point A), points O, 
B and C are denoted by yðtÞ, u1ðtÞ, u2ðtÞ, and u3ðtÞ, respectively. The forces FiðtÞ; i ¼ 1; � � � 4 are the internal forces within the rigid 
links of the mechanism 1, 2, and 3, respectively.
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and both inner mechanisms can be placed in offset vertical planes so that their movements do not 
intersect each other.

The amplifier angles for the mechanisms are ϕ1, ϕ2 and ϕ3. The displacement of the mass (at point 
A), points O, B, and C are yðtÞ, u1ðtÞ, u2ðtÞ, and u3ðtÞ, respectively. From Fig. 5a observe that point D is 
fixed and point B only moves in the vertical direction due to the symmetry of the system. Therefore, 
the vertical motion at point O is yðtÞ=2. Using the kinematic relationship of mechanism 1, the 
deflections have been obtained as 

Next, the motion of mechanism two is considered. Considering, for example, that the member OB is of 
fixed length and the deflection has been derived as 

Finally, considering the motion of mechanism 3 and noting that the member CB is of fixed length, the 
expression for deflection has been obtained as 

Combining the above three kinematic relationships, the horizontal motion of the innermost mechan
ism containing the mass ma can be linked with the motion of the primary oscillating mass as 

For the vertical motion of the mass ma, from point C, the deflection has been obtained as 

Now, the free-body diagram Fig. 5b has been considered and investigated the equilibrium at various 
points to obtain the equation of motion. Considering the equilibrium of the main mass from point 
A in the free-body diagram, the governing equation of motion has been derived as 

Recalling that the vertical motion at point C is yðtÞ=2, balancing the force in the vertical direction at 
this point, the inertial forces are derived as 

From the equilibrium of forces in the horizontal direction at point C, one obtains 

Adding Eqs. (34) and (35), the inertial forces are derived as 

From the equilibrium of the forces in the vertical direction, from point B in the free-body diagram, one 
obtains 
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Considering the equilibrium of the forces in the horizontal direction from point O in the free-body 
diagram, the inertial forces are derived as 

Combining Eqs. (32)–(38), one can deduce 

Now, using the expression of u3 from Eq. (31) and substituting this in Eq. (33), the equation of motion 
of an SDOF oscillator with the nested inertial amplifier is obtained as 

The effective mass of the amplified SDOF oscillator in Fig. 5a is therefore given 
by mþ ma

2 ð1þ cot2 ϕ3Þ cot2 ϕ1 tan2 ϕ2
� �

.
The non-dimensional inertial amplification factor has been derived and defined as the ratio of the 

effective mass of the nested inertial amplifier to the original system. 

Comparing Γ3 from Eq. (41) to the inertial amplification factor of the conventional amplifier in Eq. 
(11), the condition for the nested amplifier to outperform the conventional amplifier can be obtained 
as Γ3 > Γ1. Using the respective expressions (using the notation ϕ ¼ ϕ1 for the conventional amplifier), 
this translates to 

From this, the required condition for the amplifier angles ϕ2 and ϕ3 can be obtained as 

As the primary amplifier angle is normally chosen small, tan2ϕ10. Therefore, the values of ϕ2 
and ϕ3, which are sufficient for the nested amplifier to outperform the conventional ampli
fier, are 

These requirements are in addition to ϕ1 < 45� required for inertial amplification from the conven
tional amplifier.

In Fig. 6, the inertial amplification factor of the nested amplifier is compared for different 
parameter values.

Amplifications for three different values of combinations of the angles ϕ2 and ϕ3 are shown. These 
results clearly show that when ϕ2 > 45� and ϕ3 < 45�, the amplification of the nested amplifier is much 
more than its conventional counterpart. The results in Fig. 6 also give another interesting possibility 
which is not available for the conventional amplifier. For a given target inertial amplification, say 50, 
a range of combinations of ϕ1, ϕ2, and ϕ3 can be selected. This gives more opportunity for the design 
to satisfy any practical constraints.

Comparing Figs. 6 with 4 it can be observed that the nested amplifier, in general, results in more 
amplification compared to the compound amplifier. This happens when 
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In the previous section, it was derived that the minimum value of θ for the compound amplifier is 60�
Using the θ ¼ 60�, the above condition becomes 

This requirement is consistent with what was derived in Eq. (44). From these discussions, it has been 
observed that it is possible to obtain physically realistic parameters such that the inertial amplification 
of the three amplifier configurations satisfies the following inequality 

This justifies the three rhombus-shaped inertial amplifier designs.
In principle, one can add more internal and nested mechanisms following the idea proposed in 

Figs. 3 and 5. The inertial amplification factors for such higher-order compound and nested 
amplifiers will be more and will follow the same trend as derived in Eqs. (23) and (41). However, 
care should be taken for practical consideration as there will be many moving parts in higher- 
order mechanisms.

2.4. The Levered Inertial Amplifier

So far, the three inertial amplifiers proposed all exploit rhombus-shaped four link-bar mechanisms in 
a novel manner. Although they are very compact and represent a space-saving design, there are many 
moving parts. The aim here is to conceive an amplifier design that uses relatively simpler mechanisms. 
The concept of an inertial amplifier that uses only mechanical levers is shown in Fig. 7.

The mass ma is connected with the second lever arm at point O. The rods AC, CD, and DO are 
assumed to be rigid. In addition, the rod AC pivots freely about P1, and the rod DO pivots freely about 

Figure 6. Inertial amplification as a function of the amplifier angle ϕ1 for the nested amplifier SDOF system for various combinations 
of ϕ2 and ϕ3.γm ¼ 0:1.The value of the mass factor undefined.
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P2. The rod CD simply connects rods AC and DO and transfers the motion and forces. Considering 
these, the motion at point O can be obtained as 

Now, the free-body diagram is shown in Fig. 7b and investigates the equilibrium at various 
points to obtain the equation of motion. Considering the equilibrium of the main mass from 
point A in the free-body diagram, the governing equations of motion have been derived as 

The rigid link AC rotates about the pivot point P1. Therefore, taking a moment about P1, the inertial 
forces have been derived as 

Similarly, taking member about P2 for the rigid link OD one has 

Elimination of F2ðtÞ from the two preceding equations leads to 

Using the expression of uðtÞ from Eq. (48) and substituting in the equilibrium Eq. (49), the equation of 
motion of an SDOF oscillator with the levered inertial amplifier is obtained as 
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Figure 7. (a) The levered inertial amplifier is made of three connected rigid levers. The mass ma is connected with the lever arm at 
point O. The lever arms can freely pivot about the points P1 and P2. (b) The free-body diagram for the levered inertial amplifier. The 
displacement of the mass (at point A) and the amplifier (at point O) are denoted by yðtÞ and uðtÞ, respectively. The forces F1ðtÞ and 
F2ðtÞ are the internal forces within the rigid links.
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The effective mass of the amplified SDOF oscillator in Fig. 7a is therefore given 

by mþma
b1
a1

b2
a2

� �2
� �

.

The non-dimensional inertial amplification factor has been derived and defined as the ratio of the 
effective mass of the levered inertial amplifier to the original system. 

Therefore, provided b1 > a1 and b2 > a2, the levered amplifier in Fig. 7 will deliver an increased 
amplification. As an example, when b1=a1 ¼ 4 and b1=a1 ¼ 3, the inertial amplification factor 
will be 144 for the levered amplifier. Comparing Γ4 from Eq. (54) to the inertial amplification 
factor of the conventional amplifier in Eq. (11), the condition for the nested amplifier to 
outperform the conventional amplifier can be obtained as Γ4 > Γ1. Using the respective 
expressions, this translates to 

From this, the required condition for the lever arm ratios are obtained as 
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Figure 8. The minimum lever arm ratio necessary for the levered inertial amplifier to outperform the conventional inertial amplifier is 
shown as a function of the amplifier angle ϕ.
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Note that this is independent of the mass ratio of γm. To understand this requirement, in Fig. 8 the 
minimum lever arm ratio necessary for the levered inertial amplifier to outperform the conventional 
inertial amplifier is shown as a function of the amplifier angle ϕ.

The shaded area shows the region of lever arm ratio, which will give more inertial amplification 
compared to conventional inertial amplifier for a selected value of ϕ. For example, if ϕ¼ 10�, choosing 
lever arm ratios b1

a1
¼ b2

a2
¼ 2 will be enough.

3. Stiffened Inertial Amplifiers

In the previous section, the inertial amplifier designs only employed discrete masses. This has an 
impact on the effective mass of the dynamic system only. If stiffness elements are used within 
the inertial amplifiers, it will alter the effective stiffness also. Therefore, by simultaneously using 
mass and stiffness elements, one can alter the effective mass and stiffness of the SDOF system. 
This, in turn, will make it possible to tune the resonance frequency of the oscillator using the 
stiffened inertial amplifier. Here, the four inertial amplifier designs proposed in the previous 
section are augmented using suitably placed stiffness elements. Stiffened inertial amplifiers 
introduced in this section can be viewed as grounded parallel inerter-spring configurations 
with variable inertance and stiffness. It will be rigorously shown that both the variable inertance 
and stiffness can be precisely quantified based on the mechanisms’ geometric configurations 
(angles).
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u(t) u(t)
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Figure 9. The stiffened inertial amplifier and the free-body diagram. (a) The stiffened inertial amplifier with mass ma, stiffness ka and 
the amplifier angle is ϕ. The stiffened inertial amplifier is attached to an undamped spring-mass dynamic system. (b) The free-body 
diagram for the stiffened inertial amplifier.

JOURNAL OF EARTHQUAKE ENGINEERING 15



3.1. The Stiffened Inertial Amplifier

The stiffened inertial amplifier is shown in Fig. 9.
To obtain the equation of motion, considering the equilibrium of the mass m, from point A in the 

free-body diagram in Fig. 9b, the governing equation of motion has been derived as 

Here F1ðtÞ is the internal force within the rigid link bars in the upper half of the mechanism. This can 
be obtained following the similar procedure outlined in section 3 for the case of the pure inertial 
amplifier. The main difference arises from the equilibrium of forces in the horizontal direction at point 
O. Considering this, the inertial forces are derived as 

Factor 2 in the above equation arises because the spring ka is stretched by 2uðtÞ. Adding this with Eq. 
(4) the expression of F1ðtÞ can be obtained as 

Using the expression of uðtÞ from the kinematic relationship in (3) in the above equation, one deduces 

Substituting this in Eq. (57), the equation of motion has been derived as 

The effective stiffness of the amplified system in Fig. 9 is kþ ka cot2 ϕð Þ. The above equation can be 
rewritten as 

where the stiffness ratio is given by 

The non-dimensional stiffness amplification factor is derived and defined as the ratio of the effective 
stiffness of the inertially amplified system to the original system. 

Next, the stiffness amplification factor will be derived for other inertial amplifier designs proposed 
here.

3.2. The Compound Stiffened Inertial Amplifier

The proposed design of a compound stiffened inertial amplifier with two cells is shown in Fig. 10.
Two secondary mechanisms are inserted within a primary mechanism as before. Each mass and 

stiffness within the cells are ma=2 and ka=2 so that the total mass and stiffness are the same as in the 
other proposed designs.
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The equation of motion can be obtained following the similar procedure outlined in section 3 for 
the case of a pure inertial amplifier. The main difference arises from the equilibrium of forces in the 
vertical direction at point B. Considering that the spring ka=2 is stretched by 2vðtÞ, the inertial forces 
are obtained as 

Adding this with Eq. (16) and eliminating F3ðtÞ, the expression of F2ðtÞ can be obtained as 

Recalling from Eq. (12) that uðtÞ ¼ yðtÞ cot ϕ=2 and Eq. (14) that vðtÞ ¼ yðtÞ
4 cot ϕ tan θ, the total 

inertial forces are obtained as 

Using Eq. (20), the inertial forces are obtained as 
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Figure 10. The compound stiffened inertial amplifier and its corresponding free-body diagram. (a) a compound stiffened inertial 
amplifier with two cells. The stiffness of the spring elements attached to mass within the cells is ka=2 so the total stiffness is ka as in 
other inertial amplifiers. (b) The free-body diagram for the compound stiffened inertial amplifier.
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Substituting this in the equilibrium of the mass at point A, from Eq. (21), the equation of motion has 
been obtained as 

The effective stiffness of the amplified system in Fig. 10 is kþ ka cot2 ϕ tan2 θ
4

� �
. The above equation can 

be rewritten as 

The non-dimensional stiffness amplification factor has been derived and defined as the ratio of the 
effective stiffness of the inertially amplified system to the original system. 

If the compound inertial amplifier were to outperform the conventional amplifier in stiffness 
amplification, the required condition is 

This requirement is in addition to ϕ< 45� required for the stiffness amplification from the conven
tional amplifier.
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Figure 11. The nested stiffened inertial amplifier and its corresponding free-body diagram. (a) The stiffness of the spring element 
attached to mass within the inner cell is ka. The amplifier angles for the mechanisms are ϕ1, ϕ2, and ϕ3 as shown. (b) The free-body 
diagram for the nested inertial amplifier.
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3.3. The Nested Stiffened Inertial Amplifier

The proposed design of a nested stiffened inertial amplifier with three mechanisms is shown 
in Fig. 11.

The amplifier is obtained by introducing two connected four-bar rhombus mechanisms inside 
the primary mechanism. The spring with stiffness ka is attached to the mass within the inner 
mechanism.

The equation of motion can be obtained following the similar procedure outlined in section 3 for 
the case of a pure inertial amplifier. The main difference arises from the equilibrium of forces in the 
horizontal direction at point C. Considering that the spring ka is stretched by 2u3ðtÞ and From the 
equilibrium of forces in the horizontal direction at point C, the inertial forces are derived as 

Adding Eqs. (34) and (73), the total inertial forces are derived as 

Following the analytical approach in Section 3 and after some simplifications, the equation of motion 
of an SDOF oscillator with the nested stiffened inertial amplifier is obtained as 

The effective stiffness of the amplified system in Fig. 10 is kþ ka cot2 ϕ1 tan2 ϕ2 cot2 ϕ3ð Þð Þ. The above 
equation can be rewritten as 

Figure 12. (a) Compound θ ¼ 70� ; nested ϕ2¼ 70� , ϕ3¼ 15� and (b) compound θ ¼ 80� ; nested ϕ2¼ 80� , ϕ3¼ 10� . Stiffness 
amplification as a function of the primary amplifier angle ϕ for the conventional, compound, and nested amplifier SDOF system for 
various secondary amplifier angles θ, ϕ2 and ϕ3. The value of the stiffness factor γk ¼ 0:1. The compound and nested amplifiers 
show significantly more stiffness amplification compared to the conventional amplifier.
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The non-dimensional stiffness amplification factor has been derived and defined as the ratio of the 
effective stiffness of the inertially amplified system to the original system. 

In Fig. 12, the stiffness amplification from all the inertial amplifiers is compared.
The stiffness amplification factors Λi; I ¼ 1; 2; 3 are plotted as a function of the primary amplifier 

angle ϕ. The values of different secondary amplifier angles, such as θ, ϕ2, and ϕ3 are shown in the 
plots. The compound and nested amplifiers show significantly more stiffness amplification compared 
to the conventional amplifier. In particular, the nested amplifier outperforms the other two amplifiers 
by orders of magnitude. This is analytically investigated below.

If the nested inertial amplifier outperforms the conventional amplifier in the stiffness amplification, 
the required condition is 

Therefore, the nested amplifier will outperform the ordinary amplifier provided the same conditions 
for the case of inertial amplification given by Eq. (44) are satisfied. In Fig. 12, it can be observed that 
the nested amplifier, in general, results in more stiffness amplification compared to the compound 
amplifier. This happens when 

If this condition is satisfied, it will automatically satisfy the condition in Eq. (79). This can be observed 
in Fig. 12 also. Therefore, it can be concluded that it is possible to obtain physically realistic parameters 
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Figure 13. (a) The stiffened levered inertial amplifier is made of three connected rigid levers. The spring with stiffness ka is connected 
with the lever arm at point O. The lever arms can freely pivot about the points P1 and P2. (b) The free-body diagram for the levered 
inertial amplifier.
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such that the stiffness amplification of the three amplifier configurations satisfies the following 
inequality 

Next, the stiffness amplification of the levered inertial amplifier has been derived and introduced.

3.4. The Levered Inertial Amplifier

The proposed design of a stiffened levered inertial amplifier is shown in Fig. 13.
The spring with stiffness ka is connected with the second lever arm at point O. The rods AC, CD, 

and DO are assumed to be rigid. In addition, the rod AC pivots freely about P1, and the rod DO pivots 
freely about P2. The rod CD simply connects rods AC and DO and transfers the motion.

The equation of motion can be obtained following the similar procedure outlined in section 3 for 
the case of a pure inertial amplifier. The main difference arises from the equilibrium of forces in the 
vertical direction at point O. Considering that the spring ka is stretched by uðtÞ, taking a moment 
about P2 for the rigid link OD, the inertial force has been derived as 

Using the expression of uðtÞ from Eq. (48) and substituting in the equilibrium Eq. (49), the 
equation of motion of an SDOF oscillator with the levered stiffened inertial amplifier is 
obtained as 

The effective stiffness of the amplified system in Fig. 10 is kþ ka
b1
a1

b2
a2

� �2
� �

. The non-dimensional 

stiffness amplification factor has been derived and defined as the ratio of the effective stiffness of the 
inertially amplified system to the original system 

The stiffness amplification factor is similar to the inertial amplification factor obtained before in 
Eq. (54).

If the levered inertial amplifier was to outperform the conventional amplifier in the stiffness 
amplification, the required condition is 

This requirement, along with the requirement of inertial amplification derived in Eq. (56), will 
ensure that the stiffened levered inertial amplifier outperforms the conventional inertial ampli
fier in both inertial and stiffness amplifications. To understand both the requirements, in 
Fig. 14, the minimum lever arm ratio necessary for the levered inertial amplifier to outperform 
the conventional stiffened inertial amplifier in both fronts is shown as a function of the 
amplifier angle ϕ.

The shaded area shows the region of lever arm ratio for which the levered amplifier has a higher 
inertial amplification but a lower stiffness amplification in comparison to the conventional amplifier.
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4. Natural Frequency Tuning and Iso-Spectral Systems

It was observed that the stiffened inertial amplifiers change the effective mass and stiffness of the 
underlying SDOF oscillator. This naturally implies that the resonance frequency of the oscillator will 
be different and will change with the parameters of the inertial amplifiers. This gives an outstanding 
opportunity to tune the effective resonance frequency. This can be exploited in a wide range of 
beneficial ways in practical applications. For example, stiffened inertial amplifiers can be incorporated 
to shift the natural frequency of a system from a predominant excitation resonance frequency for 
vibration mitigation.

In this section, the fundamental analytical methods for controlling the effective natural frequency 
have been derived. As there are many parameters, this can be achieved in a number of ways. The mass 
of the amplifier ma is often selected first (say γm < 0:2) from wider considerations (such as weight 
constraints). Therefore, the aim is to obtain the stiffness of the inertial amplifiers for a desired change 
in the effective resonance frequency.

4.1. Natural Frequency Tuning

The resonance frequency of the baseline oscillator is given by 

The aim is to shift the resonance frequency of the inertially amplified oscillator in a desired and 
controlled manner. The equation of motion of the inertially amplified oscillator can be expressed in 
a general form as 
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Figure 14. The minimum lever arm ratio necessary for the stiffened levered inertial amplifier to outperform the conventional 
stiffened inertial amplifier is shown as a function of the amplifier angle ϕ.
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In the above, the indices 1, 2, 3, and 4 denote the conventional, compound, nested, and levered 
inertial amplifier configurations. The natural frequency of the inertially amplified oscillator ωa is 
given by 

In the above Λi and Γi are the stiffness and inertial amplification factors for the four configura
tions derived in the previous two sections. The frequency tuning parameter c is introduced and 
defined as the ratio between the natural frequency of the inertially amplified oscillator and the 
baseline oscillator 

The value of c can be selected for the desired frequency tuning. As the proposed inertial amplifier 
designs can generate a wide range of effective mass and stiffness variations, it is expected that a feasible 
solution can be found for a greater range of c. For notation convenience, the stiffness and inertial 
amplification factors are rewritten as 

Here fi and gi are functions of only the geometric parameters of the inertial amplifiers. They can be 
identified from the derivations in the previous sections as 

Substituting Eqs. (90) in (89) and solving, the desired value of the stiffness factor γk is derived for 
a given γm as 

Using this solution, the exact analytical expression for the stiffness factor can be explicitly obtained for 
the four inertial amplifiers as 
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The first part of the above expressions is a function of γm, while the second part depends only on the 
tuning factor c and geometric parameters of the inertial amplifier. In Fig. 15, contours of the stiffness 
factor, γk obtained from the above equations for the four inertial amplifier configurations are shown.

A fixed value of γm ¼ 0:2 is used in the calculations. The unshaded regions in the plots indicate no 
feasible value of γk is possible. The frequency tuning parameter c ¼ ωa=ω0 is varied from 0.1 to 10. The 
results show that for the rhombus-based inertial amplifier designs, significant control of the natural 
frequency is possible for smaller primary amplifier angles. For the levered amplifier, a very small value 
of the stiffness factor γk is necessary for frequency tuning if the lever arm ratio is larger. The tuning 
capability demonstrated here can be exploited in practical applications for vibration mitigation.

4.2. Iso-Spectral Systems

In some applications, it may not be desirable that the natural frequency would change due to the 
employment of an inertial amplifier. This may result in an unwanted resonance that was originally 
designed to be avoided for a dynamic system. Therefore, it is of practical interest to have a realistic 
stiffened inertial amplifier that will not alter the undamped natural frequency of the baseline system. 
From Eq. (89), this requirement translates to c ¼ 1. This type of dynamic system is called an iso- 
spectral system. This is a special case of the general results derived in the previous section. Therefore, 
substituting c ¼ 1 in Eqs. (94)–(97), the necessary stiffness factor for iso-spectral systems are 
derived as 

Figure 15. The contours of the stiffness factor γk with γm ¼ 0:2 for the (a) conventional, (b) compound: θ ¼ 80� , (c) nested: 
ϕ2¼ 80�;ϕ3¼ 10� , and (d) levered stiffened amplifiers. The results are shown for frequency tuning parameter c ¼ ωa=ω0 in the y- 
axis and the primary amplifier angle in the x-axis (and lever arm ratio for the levered amplifier). The unshaded regions indicate that 
no feasible value of γk is possible.
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It is interesting to note that the stiffness factor is independent of the primary amplifier angle for 
the compound and nested amplifiers. Therefore, if an iso-spectral system is to be designed, any 
primary amplifier angle can be chosen for these configurations. For the levered amplifier, the 
stiffness factor needs to be the same as the mass factor for an iso-spectral system. These simple 
design guidelines can help to obtain a stiffened inertially amplified oscillatory iso-spectral SDOF 
system.

4.3. Dynamic Response Analysis

Previous subsections provide a theoretical approach towards quantifying dynamic characteristics and 
parameter selection of the inertial amplifiers. In this section, it has been explicitly demonstrated the 
impact of the inertial amplifiers on the dynamic response of an SDOF oscillator. Frequency domain 
response is considered. It is necessary to consider damping to have a finite response at the resonance. 
The equation of motion of the inertially amplified damped oscillator can be expressed in a general 
form by the addition of a damping term to Eq. (87) as 

Here d is the damping coefficient, and f ðtÞ is the forcing function. In the above equation, i ¼ 0 
corresponds to the baseline oscillator, that is, the oscillator without any attached inertial amplifier. For 
i ¼ 0, it is obvious that Γ0 ¼ Λ0 ¼ 1 in Eq. (102). For i ¼ 1; � � � ; 4, Γi and Λi are explicitly defined 
through Eqs. (90)–(92).

Considering a harmonic forcing and harmonic response (assuming the steady-state response), 
one has 

Here j ¼
ffiffiffiffiffiffiffi
� 1
p

, ω is the frequency, FðωÞ is the frequency domain forcing and YðωÞ is the frequency 
domain response. Substituting these in the equation of motion Eq. (102) one has 

As the forcing is considered to be purely harmonic, FðωÞ;F is used in the above equation. Dividing by 
m one has 

Where the damping factor ζ0 is defined as 
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and ω0 is defined in Eq. (86). Dividing Eq. (105) by ω2
0 and rearranging, the generalized response of 

inertially amplified SDOF oscillator can be obtained as 

where the normalized frequency 

Note that the static deflection of the oscillator is given by 

The normalized dynamic response amplitude is, therefore, given by 

For numerical calculations, the ratio between the stiffness and mass is formulated through Eq. (89). In 
Fig. 16, three values of c and two values and two values of ζ have been employed.

For the conventional, compound, and nested inertial amplifiers, a fixed value of ϕ¼ 15� is selected. 
Additionally, for the compound inertial amplifier, θ¼ 80� and the nested inertial amplifier, ϕ2¼ 70�

and ϕ3¼ 15� have been used. For the levered inertial amplifier, a lever arm ratio of b1
a1

b2
a2
¼ 5 is selected. 

The mass ratio γm ¼ 0:2 is employed and the stiffness ratio γk is obtained from Eqs. (94)–(97) for the 
chosen values of the other parameters for the four inertial amplifiers as described. It is clear from 

Figure 16. (a) ζ ¼ 0:01, c ¼ 1=2, (b) ζ ¼ 0:01, c ¼ 1 (iso-spectral), (c) ζ ¼ 0:01, c ¼ 2, (d) ζ ¼ 0:05, c ¼ 1=2, (e) ζ ¼ 0:05, c ¼ 1 
(iso-spectral), and (f) ζ ¼ 0:05, c ¼ 2. Dynamic response of inertially amplified single-degree-of-freedom (SDOF) damped oscillators 
in the frequency domain. Three values of the frequency tuning parameter c are considered. Two values of the damping coefficient ζ 
are considered. The mass ratio γm ¼ 0:2 is selected, and the stiffness ratio γk is obtained from Eqs. (94)–Eq. (97) for the given values 
of the other parameters for the four inertial amplifiers.
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Fig. 16 that in general, the inertially amplified oscillators have a significantly lower dynamic response. 
For the c< 1 design, the maximum response is slightly more than the maximum response of the 
baseline oscillators. On the other hand, an opposite observation is made when c > 1. The numerical 
results obtained in Fig. 16, demonstrate a huge potential for manipulating the dynamic response of 
a conventional SDOF oscillator with attached inertial amplifiers.

5. Vibration Control Using Stiffened Inertial Amplifiers

The stiffened inertial amplifiers are induced inside the core material of the conventional nonlinear 
friction base isolators to enhance their vibration reduction capacity and overcome their limitations. 
Four single-story buildings with the same governing system parameters, i.e. mass, stiffness, and 
damping, are isolated by stiffened inertial amplifier base isolator, compound stiffened inertial ampli
fier base isolator, nested stiffened inertial amplifier base isolator, and levered inertial amplifier base 
isolator. The single-story buildings are conceptualized as single-degree-of-freedom systems. The 
isolated single-degree-of-freedom systems are subjected to base excitation. The structural diagrams 
of each isolated single-degree-of-freedom systems have been shown in Fig. 17a–d.

Newton’s second law has been employed to derive the governing equations of motion of each 
isolated single-degree-of-freedom system. The governing equation of motion of the isolated single- 
degree-of-freedom system has been derived as 

The governing equation of motion of the novel isolator has been derived as 

Figure 17. Four single-degree-of-freedom systems are isolated by a stiffened inertial amplifier base isolator, compound stiffened 
inertial amplifier base isolator, nested stiffened inertial amplifier base isolator, and levered inertial amplifier base isolator subjected to 
base excitation. The governing system parameters of the main structures, i.e. single-degree-of-freedom systems, are considered the 
same to conduct a fair comparison between each novel isolator and conventional base isolator in terms of vibration reduction 
capacity.
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where vs ¼ us � ub and vb ¼ ub � vg define the relative deflection of the single-degree-of-freedom 
systems and the isolators. The exact closed-form expressions for effective mass and stiffness for each 
isolator are listed in Table 1.

Table 1 is applied in Eq. (112) and the governing equation of motion for the stiffened inertial 
amplifier base isolator, compound stiffened inertial amplifier base isolator, nested stiffened inertial 
amplifier base isolator, and levered stiffened inertial amplifier base isolator have been derived. Table 1 
is represented in non-dimensional form to perform the H1 optimization method and is listed in 
Table 2. Table 2 presents the exact closed-form expressions for the non-dimensional effective mass 
and stiffness of the novel isolator.

γb ¼ mb=ms defines the mass ratio of isolator to the single-degree-of-freedom system. γm ¼ ma=mb 
defines the mass ratio of amplifier to the isolator.

γm has also been represented as γm ¼ γa=γb. γa ¼ ma=ms defines the mass ratio of amplifier to the 
single-degree-of-freedom system. γk ¼ ka=kb defines the stiffness ratio of amplifier stiffness to the 
isolator.

As the isolated single-degree-of-freedom systems are subjected to base excitation, the steady-state 
solutions are considered as vs ¼ Vseiωt , vb ¼ Vbeiωt , and €vg ¼ Vgeiωt . The steady-state solutions are 
substituted in Eq. (111) and Eq. (112) to derive the frequency response function for obtaining dynamic 
responses of the isolated single-degree-of-freedom systems in the frequency domain. In addition, the 
H1 optimization method has been applied to derive exact closed-form expressions for the optimal 

Table 2. The non-dimensional form of effective mass and stiffness of novel isolators.

Isolator Effective mass ratio Effective stiffness
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μ = Mass amplification factor of the isolators. κ = Stiffness amplification factor of the isolators. γe ¼ me=ms : Effective mass 
ratio εe ¼ ke=ms : Effective stiffness

Table 1. The exact closed-form expressions for effective mass and stiffness of novel isolators.

Isolator Effective mass ðmeÞ Effective stiffness ðkeÞ

SIABI mb þ
ma
2 ð1þ cot2 ϕÞ
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kb þ ka cot2 ϕð Þ

CSIABI mb þ
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8 cot2 ϕ 1þ tan2 θð Þ

� �
kb þ ka cot2 ϕ tan2 θ

4

� �

NSIABI mb þ
ma
2 1þ cot2 ϕ3ð Þ cot2 ϕ1 tan2 ϕ2

� �
kb þ ka cot2 ϕ1 tan2 ϕ2 cot2 ϕ3ð Þð Þ

LSIABI
mb þma

b1
a1

b2
a2

� �2
� �

kb þ ka
b1
a1

b2
a2

� �2
� �

SIABI: stiffened inertial amplifier base isolator (Eq. (61)). 
CSIABI: compound stiffened inertial amplifier base isolator (Eq. (69)). 
NSIABI: nested stiffened inertial amplifier base isolator (Eq. (76)). 
LSIABI: levered stiffened inertial amplifier base isolator (Eq. (83)).
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design parameters of the novel base isolators. To apply this optimization method, the damping of the 
single-degree-of-freedom system has been considered zero, i.e. �s ¼ 0. Accordingly, �s ¼ 0 has been 
substituted in Eq. (111) and Eq. (112) and the entire frequency response function is divided by the 
square of the natural frequency of the single-degree-of-freedom system, i.e. ω2

s , to make it non- 
dimensionalized. Accordingly, the frequency response function has been derived as 

where η ¼ ω=ωs defines the frequency ratio of the excitation to the single-degree-of-freedom system. 
The dynamic response of the single-degree-of-freedom system has been derived as 

The dynamic response of the isolator has been derived as 

The denominator of Eqs. (114) and (115) has been derived as 

The resultant of Eq. (114) has been applied to derive constraints and expressed as 

The closed-form expressions for R1 to R4 have been derived as 

Two constraints are derived as follows. 

Eq. (118) has been substituted in the first constraint of Eq. (119). As a result, an equation has been 
derived which contains the optimal natural frequency of the isolators and expressed as 

The summation of two roots from Eq. (120) has been derived as 

Eq. (118) has been substituted in the second constraint of Eq. (119) and as a result, the summation of 
two roots is derived as 
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Eq. (121) and Eq. (122) are equated and the exact closed-form expression for the optimal natural 
frequency of the isolator has been derived as 

The individual expression for each root, i.e. η2
1 and η2

2, has been derived as 

The closed-form expression for the optimal damping ratio of the isolator has been derived by 
formulating a mathematical expression and expressed as 

Eq. (117) has been substituted in the first expression of Eq. (125) and the closed-form expression for 
optimal damping ratio of the isolator has been derived as 

The closed-form expressions for E1, E2, and E3 have been derived as 
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Eqs. (123), (124), and the second expression of Eq. (126) have been substituted in the second 
expression of Eq. (125) to obtain the optimal damping ratio of the isolator.

The variations of the optimal frequency ratio and damping ratio of the stiffened inertial 
amplifier base isolator, compound stiffened inertial amplifier base isolator, nested stiffened 
inertial amplifier base isolator, and levered inertial amplifier base isolator have been shown in 
Fig. 18a,b. According to Fig. 18a, the optimal frequency ratio decreases when the isolator mass 
ratio increases. In contrast, the optimal damping ratio decreases when the isolator mass ratio 
increases according to Fig. 18b.

Lower frequency ratio provides higher time period to the isolated structures which helps 
the main structure to maintain its elastic limit and reduce structural damages during vibra
tion. Higher damping ratio within a certain ranges provides optimal vibration reduction 
capacity to the isolators. Therefore, a higher isolator mass ratio is recommended to achieve 
optimum base isolators.

6. Dynamic Response Evaluation of the Isolated Structures

To achieve each vibration reduction performance, the single-degree-of-freedom systems are equipped 
with newly developed base isolators. All isolated SDOF systems have the same governing system 
parameters.

The H1 optimized design parameters for the conventional and novel base isolators are listed in 
Table 4 Eq. (3).

The additional tests are carried out to prove the reliability of the proposed methodology in a larger 
class of seismic excitation scenarios. The Clough-Penzien power spectrum, a modified version of the 
widely used Kanai-Tajimi spectrum, may be employed as the ground acceleration for this study in 
order to accomplish this goal. The one-sided PSD that is present in the process sets it apart. 

Figure 18. The variations of the (a) optimal frequency ratio and (b) optimal damping ratio of stiffened inertial amplifier base isolator, 
compound stiffened inertial amplifier base isolator, nested stiffened inertial amplifier base isolator, and levered inertial amplifier base 
isolator. Eqs. (123) and (126) has been applied for these graphs. The values of other system parameters are considered: γk ¼ 0:1 and 
γa ¼ 0:1.
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where the constant power spectral density for random white noise excitation is defined by S0 and 
q ¼ iω. The well-known Kanai-Tajimi model’s filter parameters are ωf for the soil layer’s natural 
frequency and ζf for its damping capacity, respectively. A second filter that uses the parameters ωg and 
ζg provides a limited power output for the ground displacement. As ωg � ωf , the second quotient 
approaches unity very quickly, therefore the second filter only impacts the very low range frequencies. 
The filter parameter values are obtained from Kiureghian and Neuenhofer (1992) to investigate sites 
with soils classed as firm, medium, and soft. This study considers soil that is firm.

The structural displacements of the single-degree-of-freedom systems isolated by the H1 opti
mized base isolators subjected to harmonic and random white noise excitations have been determined 
and shown in Fig. 19a,b. According to Fig. 19a, the maximum displacement of the uncontrolled 
structure has been derived as 50. The maximum displacements of the single-degree-of-freedom 
systems isolated by the conventional base isolator, stiffened inertial amplifier base isolator, compound 
stiffened inertial amplifier base isolator, nested stiffened inertial amplifier base isolator, and levered 
stiffened inertial amplifier base isolator have been determined as 5.2355, 1.9244, 1.9521, 1.9052, and 
1.9216. The maximum structural displacement of the novel isolators is compared with the maximum 
structural displacement of the conventional isolator to obtain the superior vibration reduction 
capacity of the novel isolators. As a result, the H1 optimized stiffened inertial amplifier base isolator, 
compound stiffened inertial amplifier base isolator, nested stiffened inertial amplifier base isolator, 
and levered stiffened inertial amplifier base isolator are 63.24%, 62.71%, 63.60%, and 63.29% superior 
to the optimum conventional base isolator. According to Fig. 19b, the maximum displacement of the 
uncontrolled SDOF system under random excitation is evaluated as 1:4947� 107 dB/Hz. The max
imum displacements of the SDOF systems isolated by the conventional base isolator, stiffened inertial 
amplifier base isolator, compound stiffened inertial amplifier base isolator, nested stiffened inertial 
amplifier base isolator, and levered stiffened inertial amplifier base isolator have been determined as 
5:3703� 106 dB/Hz, 7:7648� 105 dB/Hz, 8:4421� 105 dB/Hz, 7:4631� 105 dB/Hz, and 
7:7730� 105 dB/Hz. The maximum structural displacement of the novel isolators is compared with 
the maximum structural displacement of the conventional isolator to obtain the superior vibration 

Figure 19. The structural displacements of the SDOF systems isolated by the H1 optimized base isolators subjected to (a) harmonic 
and (b) random white excitations. The structural system parameters of the SDOF systems are considered the same and listed in 
Table 3. H1 optimized design parameters are listed in Table 4.
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reduction capacity of the novel isolators. As a result, the H1 optimized stiffened inertial amplifier base 
isolator, compound stiffened inertial amplifier base isolator, nested stiffened inertial amplifier base 
isolator, and levered stiffened inertial amplifier base isolator are 85.54%, 84.28%, 86.10%, and 85.52% 
superior to the optimum conventional base isolator.

The analytical studies and simulation efforts are also corroborated by a numerical analysis. The 
Newmark-beta approach is used to do the numerical analysis. This numerical analysis utilizes 
Northridge near-field earthquake data (pulse) as a loading function. The mass of the major structure 
is 3000 tons. The structural time period is considered as Ts ¼ 0:5 seconds. The structural period, 
ωs ¼ 2π=Ts, is used to ascertain the natural frequency of the structure. The anticipated viscous 
damping ratio for the single-degree-of-freedom systems is �s ¼ 0:01. The displacement and accelera
tion responses of the single-degree-of-freedom systems isolated by the conventional and stiffened 
isolators have been shown in Fig. 20a,b.

Figure 20. The structural displacement and acceleration of the uncontrolled SDOF systems. The responses from the isolated SDOF 
systems are added in the graphs to project the superior vibration reduction capacity of the stiffened isolators with respect to the 
conventional isolators. Accordingly, the (a) displacement and (b) acceleration responses of the SDOF systems isolated by the 
conventional and stiffened isolators are shown in this figure.

Table 3. The structural parameter of the SDOF systems.

Primary structure Governing system parameter Value
�s

SDOF system Damping ratio 0.01

Table 4. H1optimized design parameters for the conventional and novel base isolators.

System Introduced by

H1 optimization

ηb �b

Stiffened inertial amplifier base isolator This study 0.334586 0.49942
Compound stiffened inertial amplifier base isolator This study 0.359217 0.51107

Nested stiffened inertial amplifier base isolator This study 0.314332 0.49239
Levered stiffened inertial amplifier base isolator This study 0.360375 0.497323
Conventional base isolator Matsagar and Jangid Matsagar and Jangid (2003) 0.50 0.10

Conventional base isolator: isolator mass ratio (γb) = 0.90, stiffened inertial amplifier base isolator: γb = 0.70, ϕ¼ 40o ; Compound 
stiffened inertial amplifier base isolator: γb = 0.70, ϕ¼ 40o , θ¼ 64o; Nested stiffened inertial amplifier base isolator: γb = 0.70, 
ϕ1¼ 40o , ϕ2¼ 45o, ϕ3¼ 45o , and Levered stiffened inertial amplifier base isolator: γb = 0.80, b1=a1 ¼ 1:0, b2=a2 ¼ 1:0. These 
parameters are applied to the Eq. (123), Eq. (125), and Eq. (126) to obtain each H2 optimized base isolator’s optimal natural 
frequency and damping ratio.
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According to the analysis, the stiffened isolators are 73.98% and 39.62% superior to the conven
tional isolators in terms of displacement and acceleration reduction capacities. Therefore, the pro
posed isolators have successfully enhanced the vibration reduction capacity of the conventional 
isolator effectively by incorporating the amplifiers inside their core materials.

7. Conclusions

This paper presented a unified theoretical and analytical framework for designing and evalu
ating four novel configurations of inertial amplifiers, namely, the conventional, compound, 
nested, and levered designs, along with their stiffened variants. These amplifiers are integrated 
into the core materials of the conventional vibration isolators to increase their vibration 
reduction capacities. These isolators exploit geometrically constrained mechanisms to amplify 
effective inertia while introducing stiffness tuning elements to control the system’s dynamic 
characteristics. The stiffened versions of each configuration allow independent and simulta
neous manipulation of both effective mass and stiffness, enabling broad adaptability to diverse 
isolation requirements. A key technical advancement of this study is the derivation of closed- 
form expressions for both mass and stiffness amplification factors as functions of geometric 
parameters. These expressions were synthesized into a unified frequency tuning relation of the 
form ωa ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffi
Λi=Γi

p
, capturing how the natural frequency of the isolated system shifts with 

the ratio of stiffness to mass amplification. Inversion formulas were also developed, allowing 
designers to analytically determine the required stiffness properties to achieve a target fre
quency shift for a given inertial amplification. This framework eliminates the need for iterative 
numerical optimization and facilitates transparent and systematic design. Additionally, 
a comparative analysis was conducted to assess the effectiveness and design trade-offs among 
the four IA configurations. The nested IA exhibited the highest amplification capacity, while 
the levered IA offered a more compact design with high scalability. The compound and 
conventional designs provided intermediate levels of performance with simpler geometries. 
The performance mapping and parametric studies furnish practical guidelines for implement
ing these isolators in a variety of structural and mechanical systems. Key novel contributions 
of this study include:

• Introduction of four novel IA-based passive vibration isolator configurations.
• Development of stiffened variants to enable independent mass and stiffness tuning.
• Derivation of closed-form relations for mass/stiffness amplification and tuning ratio.
• Analytical inversion for stiffness ratio design targeting specific natural frequency shifts.
• Systematic performance comparison to identify optimal configurations for practical use.
These findings mark a substantial advancement in the design of passive vibration isolators by 

offering enhanced tunability, reduced physical mass, and compact geometric alternatives. The pro
posed IA-based isolators are especially suited for applications requiring high-performance vibration 
isolation across a range of frequencies without the need for active components or complex control 
systems. Future work will aim to explore nonlinear and broadband excitation scenarios and integrate 
the isolators into multi-degree-of-freedom systems.
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