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Abstract: Uncertainties need to be taken into account for credible predictions of the dynamic response of complex structural systems in
the high and medium frequency ranges of vibration. Such uncertainties should include uncertainties in the system parameters and those
arising due to the modeling of a complex system. For most practical systems, the detailed and complete information regarding these two
types of uncertainties is not available. In this paper, the Wishart random matrix model is proposed to quantify the total uncertainty in the
mass, stiffness, and damping matrices when such detailed information regarding uncertainty is unavailable. Using two approaches,
namely, (a) the maximum entropy approach; and (b) a matrix factorization approach, it is shown that the Wishart random matrix model
is the simplest possible random matrix model for uncertainty quantification in discrete linear dynamical systems. Four possible approaches
for identifying the parameters of the Wishart distribution are proposed and compared. It is shown that out of the four parameter choices,
the best approach is when the mean of the inverse of the random matrices is same as the inverse of the mean of the corresponding matrix.
A simple simulation algorithm is developed to implement the Wishart random matrix model in conjunction with the conventional
finite-element method. The method is applied vibration of a cantilever plate with two different types of uncertainties across the frequency
range. Statistics of dynamic responses obtained using the suggested Wishart random matrix model agree well with the results obtained

from the direct Monte Carlo simulation.
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Introduction

The equation of motion of a damped n degree of freedom linear
structural dynamical system can be expressed as

Mg(r) + Cq(r) + Kq(r) =£(2) (1)

where f(r) e R"=forcing vector; q() € R"=response vector; and
M e R, C e R and K € R"*"=mass, damping, and stiff-
ness matrices, respectively. When uncertainties exist in the system
parameters, boundary conditions and geometry are considered,
and the system matrices become random matrices. Uncertainties
in Eq. (1) are completely characterized by the joint probability
density function of the random matrices M, C, and K. There are
two approaches to obtain the probability density functions of
the system matrices. The first is the parametric approach and
the second is the nomparametric approach. In the parametric
approach, the uncertainties associated with the system parameters,
such as Young’s modulus, mass density, Poisson’s ratio, damp-
ing coefficient, and geometric parameters are quantified using
statistical methods. Once the uncertainties are quantified, the re-
sponse of the system can be obtained using the stochastic finite-
element method; see for example, Shinozuka and Yamazaki
(1998), Ghanem and Spanos (1991), Kleiber and Hien (1992),
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Matthies et al. (1997), Manohar and Adhikari (1998a,b), Adhikari
and Manohar (1999, 2000), Haldar and Mahadevan (2000),
Sudret and Der-Kiureghian (2000), Nair and Keane (2002),
Elishakoff and Ren (2003), and Sachdeva et al. (2006a,b). This
type of approach is suitable for data/aleatoric uncertainties.
Epistemic/model uncertainties on the other hand do not explicitly
depend on the system parameters. For example, there can be un-
quantified errors associated with the equation of motion (linear or
nonlinear), in the damping model (viscous or nonviscous), in the
model of structural joints, and also in the numerical methods
(e.g., discretization of displacement fields, truncation and round-
off errors, tolerances in the optimization and iterative algorithms,
step sizes in the time-integration methods). It is evident that the
parametric approach is not suitable to quantify these types of
uncertainties and nonparametric approaches have been proposed
by Soize (2000, 2001) and Adhikari (2007a,b) for this purpose.
The importance of considering parametric and/or nonparametric
uncertainty also depends on the frequency of excitation. In the
high-frequency vibration, the wave lengths of the vibration modes
become very small and the vibration response can be very sensi-
tive to the small details of the system. In such situations, a non-
parametric approach such as the statistical energy analysis (SEA)
(Lyon and Dejong 1995) can be used. On the other hand, for
low-frequency vibration problems, a parametric approach such as
the stochastic finite-element method is adequate. In the medium-
frequency vibration problems, both parametric and nonparametric
uncertainties need to be considered. We refer the readers to the
works by Langley and Bremner (1999), Sarkar and Ghanem
(2002, 2003a,b), Langley and Cotoni (2007), and Cotoni et al.
(2007) for discussions on midfrequency vibration analysis in lin-
ear dynamical systems.

In the majority of practical problems, the complete informa-
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tion regarding uncertainties is not available. In some cases, for
example, cars manufactured from a production chain and soil
property distribution in a construction site, it may be possible to
obtain probabilistic descriptions of the system parameters experi-
mentally. However, obtaining such probabilistic information may
be prohibitively expensive for many problems. In another class of
problems, for example, dynamic analysis of a space vehicle, even
“in principle” it may not be possible to obtain probabilistic infor-
mation because there may be just “only one sample.” However,
there will still be some uncertainties in the model. Regardless of
what type of uncertainties exist in the model of a linear dynamical
system as given by Eq. (1), it must be characterized by the ran-
dom matrices M, C, and K. These random matrices, therefore,
can be used to model both parametric and nonparametric uncer-
tainty in the system. Motivated by this observation, in this paper
we obtain the probability density function of the random matrices
based on a parameter estimation point of view. It is first shown
that the Wishart random matrix is the simplest physically realistic
random matrix model for the system matrices appearing in linear
structural dynamical systems. Four different physically realistic
parameter selection approaches are discussed and compared using
numerical examples. Based on the numerical results, the best
method among the four proposed methods is identified.

Matrix Variate Probability Density Functions

In this section, the concept of matrix variate probability density
functions or random matrices is introduced. A random matrix can
be considered as an observable phenomenon representable in the
form of a matrix, which under repeated observation, yields differ-
ent nondeterministic outcomes. Therefore, a random matrix is
simply a collection of random variables that may satisfy certain
rules (for example, symmetry, positive definiteness, etc.). Ran-
dom matrices were introduced by Wishart (1928) in the context of
multivariate statistics. However, the random matrix theory (RMT)
was not used in other branches until the 1950s when Wigner
(1958) published his works (leading to the Nobel prize in Physics
in 1963) on the eigenvalues of random matrices arising in high-
energy physics. Using an asymptotic theory for large dimensional
matrices, Wigner was able to bypass the Schrodinger equation
and explain the statistics of measured atomic energy levels in
terms of the limiting eigenvalues of these random matrices. Since
then, research on random matrices has continued to attract interest
in multivariate statistics, physics, number theory, and more re-
cently in mechanical and electrical engineering. We refer the
reader to the books by Mezzadri and Snaith (2005), Tulino and
Verdi (2004), Eaton (1983), Girko (1990), Muirhead (1982), and
Mehta (1991) for the history and applications of random matrix
theory.

The probability density function of a random matrix can be
defined in a manner similar to that of a random variable or ran-
dom vector. See the book by Gupta and Nagar (2000, p. 44) for a
more formal definition of random matrices. If A is a nXm real
random matrix, then the matrix variate probability density func-
tion of A € R"*™, denoted by p,(A), is a mapping from the space
of nXm real matrices to the real line, i.e., pp(A):R"™*"—R.
Here, we define the probability density functions of few random
matrices, which are relevant to stochastic mechanics problems.

Gaussian random matrix. A rectangular random matrix
X € R"™? is said to have a matrix variate Gaussian distribution

with the mean matrix M e R"*? and the covariance matrix
2 ®W, where X € R and W € R provided the pdf of X is given
by

px(X) = (2m) Pz
Xetr{— %2-1 X-MW¥I(X- M)T} (2)

This distribution is usually denoted as X~N, , (M, % ® W)
Symmetric Gaussian random matrix. Let Y € R"*" be a sym-
metric random matrix and M, %, and W are nXn constant
matrices such that the commutative relation ZW=W3, holds. If
the n(n+1)/2X 1 vector vecp(Y) formed from Y is distributed as
Ny (veepM),B/(2 @ W)B,), then Y is said to have a
symmetric matrix variate Gaussian distribution with mean M and
covariance matrix B/(2 ® W)B,, and its pdf is given by

py(Y) = 2m) V4 BI(X @ W)B,| 2
Xetr{— %E_I(Y -MW (Y - M)T} (3)

This distribution is usually denoted as Y=Y”~SN,, (M,B(
®W)B,).

For a symmetric matrix Y eR"™", vecp(Y) is a
n(n+1)/2-dimensional column vector formed from the elements
above and including the diagonal of Y taken columnwise. The

. . 2 .
elements of the translation matrix B, € R" "1/ are given by

1 , ,
(Bn)ij,gh = 5(811;8 int 8ihajg) < n,j = n,g <hsn (4)
where 8;;=usual Kronecker’s delta.

Wishart matrix. A nXn symmetric positive definite random
matrix S is said to have a Wishart distribution with parameters
p=nand X e R}, if its pdf is given by

n’

1
pS(S) — {2(1/2)11171*”(%’]) |2|(1/2)p} |S|(1/2)(p—n—1)etr{_ %E—ls}
S)

This distribution is usually denoted as S~ W,(p,3).

Matrix variate gamma distribution. A nXn symmetric posi-
tive definite random matrix W is said to have a matrix variate
gamma distribution with parameters @ and W e R}, if its pdf is
given by

Pw(W) - {l“n(a)|\lr|—a}—l|W|a—(l/2)(n+l)etr{_ II'W}
(@) > 5(n-1) ©)

This distribution is usually denoted as W ~ G,,(a, W). The matrix
variate gamma distribution was used by Soize (2000, 2001) for
the random system matrices of linear dynamical systems.

In Egs. (5) and (6), the function T',(¢)=multivariate gamma
function, which can be expressed in terms of products of the
univariate gamma functions as

1 1
T (a)= w(”‘”"("-”r[g:lr[a - E(k - 1)] for %(a) > E(n -1)

(7)

For more details on the matrix variate distributions, we refer
the reader to the books by Tulino and Verdd (2004), Gupta and
Nagar (2000), Eaton (1983), Muirhead (1982), Girko (1990),
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Fig. 1. Comparison between equivalent chi-square and gamma random variables appearing respectively in the diagonals of Wishart and gamma

random matrices

and references therein. Among the four types of random matrices
introduced above, the distributions given by Egs. (5) and (6) will
always result in symmetric and positive definite matrices. There-
fore, they can be possible candidates for modeling random system
matrices arising in probabilistic structural dynamics.

Comparing the gamma distribution with the Wishart distribu-
tion, we have G, (a,W)=W,(2a,¥~'/2). The main difference be-
tween the gamma and the Wishart distribution is that originally
only integer values were considered for the shape parameter p in
the Wishart distribution. It is a misconception that p is limited to
integer numbers. One can easily observe that Eq. (5) is valid for
all real p greater than n [when p <n, then the distribution is often
called the anti-Wishart distribution, see Janik and Nowak (2003)].
Therefore, from an analytical point of view, the gamma and the
Wishart distributions are identical. However, a difference arises
when ensembles are digitally simulated as the diagonals of a
gamma matrix are gamma random variables whereas in the case
of a Wishart matrix they are chi-square random variables. For
large matrices, as expected in structural dynamics applications,
the difference between chi-square random variables and gamma
random variables is negligible. If the dimensions of the matrix are
n, the diagonal entries of the Wishart matrix would be chi-square
random variables with at least n degree of freedom. For a gamma
random matrix, the diagonals would be gamma random variables
with shape parameters a equal to at least n/2, and B=2 [see
Johnson et al. (1994), p. 338]. In Fig. 1, equivalent chi-square and
gamma random variables appearing, respectively, in the diagonals
of Wishart and gamma random matrices are compared.

When the value of n is small (n=3 is used for illustration),
from Fig. 1(a) it can be observed that a chi-square random vari-
able is different from the gamma random variables with close
fractional values. However, when n is large (n=50 is used for
illustration), as expected in structural dynamic applications, from
Fig. 1(b) it can be observed that there is very little difference
between a chi-square random variable and gamma random vari-
ables with close fractional values. This numerical result shows
that numerically there is very little difference between Wishart
and gamma random matrices when they are large. As a result,
only Wishart random matrices will be considered in this paper.

Probability Density Functions of the System
Matrices

In this section, two approaches are discussed to obtain the matrix
variate distributions of the random system matrices M, C, and K.
The first approach is based on the maximum entropy principle
and the second approach is based on the factorization of random

matrices.

Pdf of the Random System Matrices Using

the Maximum Entropy Approach

Soize (2000, 2001) used this approach to obtain the probability
density functions of the system matrices. Suppose that the mean
values of M, C, and K are given by IVI, (_3, and I_(, respectively.
The matrix variate distributions of the random system matrices

should be such that
a. M, C, and K are symmetric matrices;
b. M is positive definite and C and K are nonnegative-definite

matrices; and
c.  The moments of the inverse of the dynamic stiffness matrix

D(w)=- (8)

should exist Vw. That is, if H(w)=frequency response func-
tion (FRF) matrix, given by

o’M + ioC +K

H(w) =D 0)=[- oM + ioC + K] 9)

then the following condition must be satisfied:

E[[H(w)[f] <> Vo (10)

Here, v=order of the inverse-moment constraint. For example, if
H(w) is considered to be a second-order (matrix variate) random
process, then v=2 should be used. This constraint is clearly aris-
ing from the fact that the moments and the pdf of the response
vector must exist for all frequencies of excitation. Because the
matrices M, C, and K have similar probabilistic characteristics,
for notational convenience we will use the notation G, which
stands for any one of the system matrices. Suppose the matrix
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variate density function of G € R} is given by pg(G): R} — R. We
have the following information and constraints to obtain pg(G):

f pc(G)dG =1 (the normalization) (11)
G>0

and

E[G]= Gp;(G)dG = G (the mean matrix) (12)
G>0

The mean matrix G is symmetric and positive definite and the
integrals appearing in these equations are n(n+1)/2 dimensional.

The exact application of the constraint that the inverse mo-
ments of the dynamic stiffness matrix should exist for all frequen-
cies requires the derivation of the joint probability density
function of the random matrices M, C, and K. This problem is
extremely difficult to treat analytically. Therefore, we consider a
simpler problem where it is required that the inverse moments of
each of the system matrices M, C, and K must exist. Provided the
system is damped, this condition will always guarantee the exis-
tence of the moments of the frequency response function matrix.
This is only a sufficient condition and not a necessary condition.
As a result, except the stiffness matrix (to take account of the
static case when w=0), the distributions arising from this ap-
proach will be more constrained than what is necessary.

Maximizing the entropy associated with the matrix variate
probability density function pg(G)

Spg) =— f p6(G)In{ps(G)}dG (13)
G>0

and using the constraints in Egs. (11) and (12), it can be shown
that (Soize 2000, 2001) the maximum-entropy pdf of G
follows the Wishart distribution with parameters p=Q2v+n+1)

and 2=G/(2v+n+1), that is G~W, Qu+n+1,G/Qu+n+1)).
The maximum-entropy approach not only gives the form of the
pdf of the system matrices, but also its parameters.

Pdf of the Random System Matrices Using the Matrix
Factorization Approach

In this section, an alternative approach is discussed to obtain the
probability density function of the random system matrices. Be-
cause G is a symmetric and positive-definite random matrix, it
can always be factorized as

G=Xxx" (14)

where X € R™7; and p=n is in general a rectangular matrix.
Since the factorization in Eq. (14) will always guarantee the sat-
isfaction of the symmetry and the positive-definiteness condition,
we consider that this is the form of the random system matrices
arising in structural dynamics. Now we need to study the proba-
bilistic nature of the random matrix X. Once the pdf of X is
known, the pdf G can be derived using the nonlinear matrix trans-
formation in Eq. (14). The simplest case is when the mean of X
is O e R"P, p=n and the covariance tensor of X is given by
3 ®I,e R where X eR). Following Gupta and Nagar
(2000, Chap. 3), it can be shown that if X~N, ,(0,.X®1),
then the pdf of G in Eq. (14) is a Wishart distribution so that
G~W,(p,>) as given in Eq. (5) (see Appendix I for details).
How to obtain p and 3 will be discussed later in the paper.

Statistical Properties of the Wishart Random
Matrices and Their Inverse

In the previous section using two different approaches, it was
shown that each system matrix follows a Wishart distribution. The
maximum entropy approach gives the form of the distribution
(Wishart/gamma) as well as its parameters, whereas the matrix
factorization approach only gives the form of the distribution. The
rest of the paper is mainly devoted to parameter identification of
the Wishart distribution.

The use of the Wishart distribution in the context of structural
dynamics turns out to be very useful because it has been studied
extensively in the multivariate statistics literature; see for ex-
ample, the books by Muirhead (1982), Eaton (1983), Gupta and
Nagar (2000), and Mathai and Provost (1992). In this section, we
consider some statistical properties of the Wishart random matrix
and its inverse, which are crucial for the parameter identification
problem.

Assuming that G has the Wishart distribution with parameters
p=0+n+1 and ¥=G/(0+n+1), the first moment (mean), the
second moment, the elements of the covariance tensor, and the
variance of G can be obtained following Gupta and Nagar (2000,
Chap. 3) as

E[G]=p2 =G (15)
E[G*]=p3? + p Trace(2)3 + p*22 = ;[(6 +n+2)G?
0+n+1
+ G Trace(G)] (16)

1 - _ _
cov(G;;,Gyy) = (22 + 22 ) = m(GikG 1+ GuGy)

(17)

E[{G - E[G]}*]=E[G*]- G’ = [G® + G Trace(G)]

0+n+1
(18)

It is useful to define the normalized standard deviation of G as

E[|G - E[G]|F]

[EIGIE 19

2 _
oG =

This measure of uncertainty was introduced by Soize (2000) as
the dispersion parameter. Because both E[+] and Trace(-) are lin-
ear operators, their order can be interchanged. Using Egs. (15)
and (16), we have

E[|G - E[G]|?] = E[Trace([G - E[G]][G - E[G]]")]
= Trace(E[[G? - GE[G] - E[G]G - E[G]*]])
= Trace(E[G?] - E[G]?)
=Trace(p2? + p Trace(2) + p?22 - (p2)?)
= p Trace(2?) + p{Trace(Z)}? (20)

Therefore
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o pTrace(¥?) + p{Trace(X)}* 1
96= p°Trace(X2?) p

| {Trace(2)}?
* Trace(2?)

1 | {Trace(G)}?
= + —
B+n+1 Trace(G?)

(21)

Eq. (21) shows that the normalized standard deviation of G will
be smaller for higher values of 6. This implies that for a system
with a fixed dimension, the uncertainty in the system matrices
reduces when 6 increases. Recall that 0 is the order of the inverse
moment that we have enforced to exist. Intuitively, Eq. (21) im-
plies that if we enforce more constraints (in terms of the order of
the inverse moment), the resulting distribution becomes less un-
certain. This fact, in turn, allows one to control the amount of
uncertainty in the system by choosing different values of 0. It is
interesting to observe that the parameter 6, which was originally
used as the order of the inverse-moment constraint, now solely

controls the amount of variability in the matrices as both n and G
are fixed. If o7 is known (e.g., from experiments, stochastic
finite-element calculations or experience) then Eq. (21) can be
used to calculate 6. Next, we consider the properties of the in-
verse of the system matrices.

Suppose F=G~! denotes the inverse of a system matrix. The
Jacobian of this transformation is given by Mathai (1997) as
J(G —F)=|F|"*. Using this, the pdf of the inverse of the sys-
tem matrices can be obtained. The inverse of a Wishart matrix is
also known as the inverted Wishart matrix, which is defined as
follows:

Inverted Wishart matrix: a n X n symmetric positive definite
matrix random V is said to have an inverted Wishart distribution
with parameters m and W e R?, if its pdf is given by

2—( 1/2)(m—n—1)n\ll’|( 172)(m=n~1)

py(V) = ett{-V'W} m>2n ¥>0

T‘,,(E(m -n- 1)>|V|’”/2
(22)

This distribution is usually denoted as V~IW,(m,¥). From
this we can say that the inverse of a system matrix has an in-
verted Wishart distribution with parameters m=0+2(n+1) and
W=(0+n+1)G". Following Gupta and Nagar (2000, Chap. 3),
the first moment (mean) and the second moment can be obtained
exactly in closed form as

v 0+n+1_
E[G']= = -! 23
[G™) m—2n-2 0 23)
E[G]= Trace(W)W + (m — 2n - 1)W?
T (m=-2n-1)(m-2n-2)(m-2n-4)
_ (0 +7n+1)*Trace(GHG™ + G2 (24)

0(6+1)(6-2)

From Eq. (23) observe that 6 must be more than O for the
existence of the mean of the inverse matrices. Similarly, from
Eq. (24), for the existence of the second inverse moment 6 must
be more than 2. These values give explicit constraints for the
condition that G™! be a second-order random matrix. However,
recall that except for the stiffness matrix, the condition that G~
be a second-order random matrix is not a necessary condition.

Parameter Selection for the Wishart Distribution

Using two different approaches we have shown that the matrix
variate pdf of the system matrices can be represented by the
Wishart random matrices. Moreover, the maximum entropy ap-
proach naturally provides the parameters for the Wishart distribu-
tion. It was shown that G has the Wishart distribution with
parameters p=0+n+1 and 3=G/(0+n+1). These parameter se-
lections, however, give rise to the following fundamental problem
as shown in the example below.

Example 1. Suppose the degrees of freedom of a system

n=1,000 and 6=4. Therefore, from Eq. (15) we have E[G]=G
and from Eq. (23), we have

O+n+1_
=_

- S g |_4+1,000+1

4

G 1=251.25G™

(25)

This implies that the mean of the inverse of the matrix is 251.25
times more than the inverse of the mean matrix.

This is clearly nonphysical for engineering structural matrices
because the randomness of a real system is not very large. One
possible way to reduce this “gap” is to increase the value of 0.
However, this implies the reduction of the variance, that is, the
assumption of more constraints than is necessary. This discrep-
ancy between the “mean of the inverse” and the “inverse of the
mean” of the random matrices is a crucial drawback of the pa-
rameters obtained using the maximum entropy approach. A new
approach based on the least-squares error minimization was pro-
posed by Adhikari (2007a) to overcome this problem. In this
paper, we compare four parameter selection options, namely, the
original approach by Soize (2000, 2001), the least-squares error
minimization approach by Adhikari (2007a), and two new ap-
proaches introduced in this paper.

The parameters p and 3 of the Wishart matrices can be ob-
tained based on what criteria we select. For this parameter esti-

mation problem, the “data” consist of the “measured” mean (G)

and normalized standard deviation (G) of a system matrix. We

investigate the following four possible choices for parameter
estimation:

1. Criterion 1: for each system matrix, we consider that the
mean of the random matrix is the same as the deterministic
matrix and the normalized standard deviation is the same as
the measured normalized standard deviation. Mathematically

this implies E[{G]=G and ¢;=6. This condition results in

p=n+1+6 and 2=Gip (26)

where

1 {Trace(G)}?
14—

0=—

— —-(n+1) (27)
e Trace(G?)

This criteria was proposed by Soize (2000, 2001).

2. Criterion 2: for each system matrix, we consider that the
mean of the random matrix and the mean of the inverse of
the random matrix are closest to the deterministic matrix and

its inverse. Mathematically this implies |G-E[G][r and

|[G™'-E[G™"]|¢ are minimum and ¢;=G;. This condition
results in
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p=n+1+6 and =Gl (28)

where a=+/0(n+1+6) and 6 is as defined in Eq. (27). This is
known as the optimal Wishart distribution (see Appendix II
for details) and was proposed by Adhikari (2007a). The ra-
tionale behind this approach is that a random system matrix
and its inverse should be mathematically treated in a similar
manner as both are symmetric and positive-definite matrices.
3. Criterion 3: here we consider that for each system matrix,
the mean of the inverse of the random matrix is equal to
the inverse of the deterministic matrix and the normalized
standard deviation is same as the measured normalized stan-

dard deviation. Mathematically this implies E[G™']=G™! and
05;=0¢. Using Eq. (23) and after some simplifications one
obtains

p=n+1+60 and =G/ (29)

where 0 is defined in Eq. (27).

4. Criterion 4: these criteria arise from the idea that the mean of
the eigenvalues of the distribution is the same as the “mea-
sured” eigenvalues of the mean matrix and the normalized
standard deviation is the same as the measured normalized
standard deviation. Mathematically we can express this as

EIM']=M"" E[K]=K o,=6, and ogx=06g
(30)

This implies that the parameters of the mass matrix are se-
lected according to Criterion 3 and the parameters for the
stiffness matrix is selected according to Criterion 1. The
damping matrix is obtained using Criterion 2. This case is,
therefore, a combination of the previous three cases.

Simulation Algorithm Using Wishart
System Matrices

It will be shown in the numerical examples, that among the four
approaches discussed above, the Wishart random matrix corre-
sponding to Criterion 3 produces the best results. Therefore, for
all practical purposes, the random matrix model for a system ma-
trix should be a Wishart matrix with parameters p=n+1+6 and

3 =G/0. This leads to a simple and general simulation algorithm
for probabilistic structural dynamics. The method can be imple-
mented by following these steps

1. From the deterministic matrices G={M,C,K} using the
standard finite-element method. Obtain n, the dimension of
the system matrices.

2. Obtain the normalized standard deviations or the “dispersion
parameters” G;={G;,5¢,0x} corresponding to the system
matrices. This can be obtained from experiment, experience,
or using the stochastic finite-element method.

3. Calculate

1 {Trace(G)}?
Og=—) 1+ ——

— —(n+1) for G={M,C,K}
e Trace(G?)

(31

4. Approximate (n+1+80) to its nearest integer and call it p.
That is p=[n+1+64]. For complex engineering systems, n
can be in the order of several thousands or even millions. As
shown in the numerical example before, this approximation

would introduce negligible error. Create a n X p matrix X
with Gaussian random numbers with zero mean and unit co-

variance, i.e., )~(~N,,,p(O,In®Ip).
5. Because =G/ 05 is a positive definite matrix, it can be

factorized as X =I'I'". Using the matrix I' € R"*", obtain the
matrix X using the linear transformation

X=X (32)

Following Theorem 2.3.10 in Gupta and Nagar (2000), it can
be shown that X~N, (0,X®1,).
6. Now obtain the samples of the Wishart random matrices

W,(n+1+65,G/0;) as

G=XXx" (33)

Alternatively, MATLAB (The MathWorks Inc., Natick, MA)
command wishrnd can be used to generate the samples of
Wishart matrices. MATLAB can handle fractional values of
(n+1+6) so that the approximation to its nearest integer in
Step 5 may be avoided.

7. Repeat the above process for the mass, stiffness, and damp-
ing matrices and solve the equation of motion for each
sample to obtain the response statistics of interest.

This procedure can be implemented easily. Once the samples

of the system matrices are generated, the rest of the analysis is

identical to any Monte Carlo simulation-based approach. If
one implements this approach in conjunction with a commercial
finite-element software, unlike the stochastic finite-element
method, the commercial software needs to be accessed only once
to obtain the mean matrices. This simulation procedure is, there-
fore, “nonintrusive.”

Although the random matrix-based approach outlined above is
very easy to implement, there are some limitations:

* The statistical correlations between mass, stiffness, and damp-
ing matrices cannot be considered in the present form. One
must derive the matrix variate joint probability density func-
tion for M, K, and C.

e Unlike the deterministic matrices derived from finite-element
discretization, sample-wise sparsity may not be preserved for
the random matrices.

e Only one variable, namely, the normalized standard deviation
0 defined in Eq. (19), is available to characterize uncertainty
in a system matrix. This can be obtained, for example using
standard system identification tools (e.g., modal identification)
across the ensemble.

e Unlike the parametric uncertainty quantification methods, no
computationally efficient analytical method (e.g., perturbation
method, polynomial chaos expansion) is yet available for the
random matrix approach.

In the medium- and high-frequency vibration of stochastic sys-
tems, where there is enough “mixing” of the modes, the dynamic
response is not very sensitive to the detailed nature of uncertainty
in the system. In this situation, in spite of the limitations men-
tioned above, the random matrix approach provides an easy alter-
native to the conventional parametric approach. The numerical
examples in the next section illustrate this fact.
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X direction (length)

Fig. 2. Finite-element model of a steel cantilever plate: 25X 15
elements, 416 nodes, 1,200 degrees of freedom, the deterministic
properties are: E=200X10° N/m?, =03, p=7,860 kg/m>,
=3.0 mm, L,=0.998 m, Ly=0.59 m, input node number: 481,
output node numbers: 481, 877, 268, 1,135, 211, and 844, modal
damping factor: 2% for all modes

Numerical Example: Dynamic Response of a Plate
with Uncertainties

A cantilever steel plate with uncertain properties is considered to
illustrate the application of Wishart random matrices in probabi-
listic structural dynamics. The diagram of the plate, together with
the deterministic numerical values assumed for the system param-
eters are shown in Fig. 2. The plate is excited by a unit harmonic
force and the response is calculated at the point shown in the
diagram. The standard four-noded thin plate bending element (re-
sulting in 12 degrees of freedom per element) is used. The plate is
divided into 25 elements along the x-axis and 15 elements along
the y-axis for the numerical calculations. The resulting system has
1,200 degrees of freedom so that n=1,200. A response is calcu-
lated for the six points shown in the figure. Here we show results
corresponding to Points 1 and 2 only.

Two different cases of uncertainties are considered. In the first
case, it is assumed that the material properties are randomly in-
homogeneous. In the second case, we consider that the plate is
“perturbed” by attaching spring-mass oscillators at random loca-
tions. The first case corresponds to a parametric uncertainty prob-
lem while the second case corresponds to a nonparametric
uncertainty problem.

Plate with Randomly Inhomogeneous
Material Properties

It is assumed that the Young’s modulus, Poisson’s ratio, mass
density, and thickness are random fields of the form

E(x) = E(1 + ef1(x)) (34)
r(x) = E(1 +€,/5(x)) (35)
p(x) = p(1 + €yf3(x)) (36)
and #(x) = (1 + €,f4(x)) (37)

The two-dimensional vector x denotes the spatial coordinates.
The strength parameters are assumed to be €;=0.15, eH:O.IO,

€,=0.14, and €,=0.12. The random fields fi(x), i=1,...,4 are
assumed to be delta-correlated homogeneous Gaussian random
fields. A 1,000-sample Monte Carlo simulation is performed to
obtain the FRFs.

We want to identify which of the four Wishart matrix fitting
approaches proposed here would produce the highest fidelity with
direct stochastic finite-element Monte Carlo simulation results.
From the simulated random mass and stiffness matrices, we ob-
tain n=1,200, 0,,=0.0999, and ox=0.2151. Since a 2% constant
modal damping factor is assumed for all the modes, o-=0. The
only uncertainty related information used in the random matrix
approach are the values of o, and 0. The information regarding
which element property functions are random fields, nature of
these random fields (correlation structure, Gaussian or non-
Gaussian), and the amount of randomness are nor used in the
Wishart matrix approach. This is aimed to depict a realistic situ-
ation when the detailed information regarding uncertainties in a
complex engineering system is not available to the analyst. Using
n=1,200, 0,,=0.0999, and 0x=0.2151, together with the deter-
ministic values of M and K, from Eq. (31) we obtain

0,,=232,924 and 0, =5,777 (38)

Using these, the samples of the mass and stiffness matrices
are simulated following the procedure outlined in the previous
section.

The predicted mean of the amplitude using the direct stochas-
tic finite-element simulation and four Wishart matrix approaches
are compared in Fig. 3 for the driving-point FRF.

In Figs. 3(b—d), we have separately shown the low-, medium-,
and high-frequency response, obtained by zooming in the appro-
priate frequency ranges in Fig. 3(a). There are, of course, no fixed
and definite boundaries between the low-, medium-, and high-
frequency ranges. We have selected 0—0.8 kHz as the low-
frequency range, 0.8—2.2 kHz as the medium-frequency range,
and 2.2-4.0 kHz as the high-frequency range. These frequency
boundaries are selected on the basis of the qualitative nature of
the response and devised purely for the clarity in presenting the
results.

In Fig. 4, percentage errors in the mean of the amplitude of the
driving-point FRF obtained using the proposed four Wishart ma-
trix approaches are shown. Percentage errors are calculated using
the direct Monte Carlo simulation results as the benchmarks.

An error using any one of the random matrix approaches re-
duces with the increase in the frequency. Among the four Wishart
matrix approaches discussed here, Approach 3, that is when the
mean of the inverse is the same as the inverse of the mean matrix,
produces the least error across the frequency range. Moreover,
Approach 3 is significantly more accurate in the low-frequency
region compared to the other approaches.

The predicted standard deviation of the amplitude using the
direct stochastic finite-element simulation and four Wishart ma-
trix approaches are compared in Fig. 5 for the driving-point FRF.
In Figs. 5(b—d), we have separately shown the low-, medium-,
and high-frequency response, obtained by zooming in the appro-
priate frequency ranges in Fig. 5(a). The overall features of these
plots are similar to the mean results shown before.

In Fig. 6, percentage errors in the standard deviation of the
amplitude of the driving-point FRF obtained using the proposed
four Wishart matrix approaches are shown. Like the mean, error
in standard deviation using any one the random matrix ap-
proaches reduces with the increase in the frequency. Among the
four Wishart matrix approaches discussed here, Approach 3, that
is when the mean of the inverse is the same as the inverse of the
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Fig. 3. Comparison of the mean of the amplitude of the driving-point FRF obtained using the direct stochastic finite-element simulation and
proposed four Wishart matrix approaches for the plate with randomly inhomogeneous material properties

mean matrix, produces the least error across the frequency range.
Again, Approach 3 is significantly more accurate in the low-
frequency region compared to the other approaches. From these
results, we conclude that the Wishart random matrix correspond-
ing to Approach 3 should be used for a system with parametric
uncertainty. In the next section, we discuss the same system with
nonparametric uncertainty.

Plate with Randomly Attached Spring-Mass Oscillators

In this example, we consider the same plate but with nonparamet-
ric uncertainty. We assume that 10 spring mass oscillators with
random natural frequencies are attached at random nodal points in
the plate. The nature of uncertainty in this case is different from
the previous case because here the sparsity structure of the system
matrices changes with different realizations of the system. For
numerical calculations, we consider that the natural frequencies of
the attached oscillators follow a uniform distribution between 0.2
and 4.0 kHz. A 1,000-sample Monte Carlo simulation is per-
formed to obtain the FRFs.

From the simulated random mass and stiffness matrices
we obtain n=1,200, 0,,=0.13257, and 0x=0.33349. Since a 2%
constant modal damping factor is assumed for all the modes,
0=0. The only uncertainty related information used in the ran-
dom matrix approach are the values of o), and og. The informa-
tion regarding the location and natural frequencies of the attached
oscillators are not used in the Wishart matrix approach. This
is aimed to depict a realistic situation when the detailed infor-
mation regarding uncertainties in a complex engineering system

is not available to the analyst. Using n=1,200, 0,,=0.13257, and
0x=0.33349, together with the deterministic values of M and K,
from Eq. (31) we obtain

0y = 18,184 and 0, = 1,703 (39)
Using these, the samples of the mass and stiffness matrices are
simulated following the procedure outlined before.

The predicted mean of the amplitude using the direct stochas-
tic finite-element simulation and four Wishart matrix approaches
are compared in Fig. 7 for the cross-FRF. In Figs. 7(b—d), we have
separately shown the low-, medium-, and high-frequency re-
sponse, obtained by zooming in the appropriate frequency ranges
in Fig. 7(a). The same frequency boundaries used in the previous
example are used for this example also.

In Fig. 8, percentage errors in the mean of the amplitude of the
cross-FRF obtained using the proposed four Wishart matrix ap-
proaches are shown. Again, percentage errors are calculated using
the direct Monte Carlo simulation results as the benchmarks. An
error using any one the random matrix approaches reduces with
the increase in the frequency. Like the previous example with
parametric uncertainty among the four Wishart matrix ap-
proaches, Approach 3 produces the least error across the fre-
quency range. Approach 3 is also significantly more accurate in
the low-frequency region compared to the other approaches.

The predicted standard deviation of the amplitude using the
direct stochastic finite-element simulation and four Wishart
matrix approaches are compared in Fig. 9 for the cross-FRF. In
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Fig. 4. Comparison of percentage errors in the mean of the amplitude of the driving-point FRF obtained using the proposed four Wishart matrix
approaches for the plate with randomly inhomogeneous material properties

Figs. 9(b—d), we have separately shown the low-, medium-, and
high-frequency response, obtained by zooming in the appropriate
frequency ranges in Fig. 9(a).

In Fig. 10, percentage errors in the standard deviation of the
amplitude of the cross-FRF obtained using the proposed four
Wishart matrix approaches are shown. Like the mean, error in
standard deviation using any one of the random matrix ap-
proaches reduces with the increase in the frequency. Again, Ap-
proach 3 produces the least error across the frequency range.
Approach 3 is also significantly more accurate in the low-
frequency region compared to the other approaches. From these
results, we conclude that the Wishart random matrix correspond-
ing to Approach 3 should be used for a system with either para-
metric or nonparametric uncertainty.

Summary and Conclusions

When uncertainties in the system parameters and modeling are
considered, the discretized equation of motion of linear dynamical
systems is characterized by random mass, stiffness, and damping
matrices. The possibility of using a Wishart random matrix model
for the system matrices is investigated in the paper. The main
conclusions are:

* For large system matrices, Wishart and gamma random matri-
ces are similar. Wishart matrices are computationally more ef-
ficient to simulate compared to gamma random matrices since
they are simply the product of a Gaussian random matrix and

its transpose. As a result, the Wishart random matrix is recom-
mended for all practical structural dynamic applications where
system matrices are expected to be large.

e A wishart random matrix distribution can be obtained either
using the maximum entropy approach or using the matrix fac-
torization approach.

¢ The current maximum entropy approach gives a natural selec-
tion for the parameters. Through a numerical example it was
shown that the parameters obtained using the maximum en-
tropy approach may yield nonphysical results. In that, the
“mean of the inverse” and the “inverse of the mean” of the
random matrices can be significantly different.

e The parameters of the pdf of a Wishart random matrix ob-
tained using the maximum entropy approach are not unique
since they depend on what constraints are used in the optimi-
zation approach.

e Considering that the available “data” are the mean and (nor-
malized) standard deviation of a system matrix, four different
approaches are compared to identify the parameters of the
Wishart distribution. It is shown that when the mean of the
inverse is equal to the inverse of the mean of the system ma-
trices, the calculated response statistics are in the best agree-
ment with the direct numerical simulation results.

e Numerical results suggest that the difference between four pro-
posed approaches are more in the low frequency regions and
less in the higher frequency regions.

The derived Wishart random matrix model is applied to the forced

vibration problem of a plate (with 1,200 degrees of freedom) with
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Fig. 5. Comparison of the standard deviation of the amplitude of the driving-point FRF obtained using the direct stochastic finite-element
simulation and proposed four Wishart matrix approaches for the plate with randomly inhomogeneous material properties

stochastically inhomogeneous properties and randomly attached
oscillators. For both cases, it is possible to predict the variation of
the dynamic response using the Wishart matrices across a wide
range of driving frequency. These results suggest that a Wishart
matrix with suggested parameters may be used as a consistent and
unified uncertainty quantification tool valid for medium- and
high-frequency vibration problems.
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Appendix I. Wishart Distribution Using Matrix
Factorization Approach

Suppose the matrix variate probability density function of
X e R"*7 is given by px(X): R"*?—R. We have the following
information and constraints to obtain px(X):

f px(X)dX =1 (the normalization) (40)
XeR"<P

J Xpx(X)dX =0 (the mean matrix) (41)
X eR<P

and

j X ® Xpx(X)dX =3 ® I, (the covariance matrix)
X e RMXP

(42)

The integrals appearing in the above three equations are n X p
dimensional. Under these conditions, extending the standard
maximum entropy argument to the random matrix case, it can be
said that X=Gaussian random matrix with mean O e R"*?;
p=n; and covariance X ®I,e R, Since X~N,, (0,%
®1,), the probability density function of the random matrix X can
be obtained from Eq. (2) as

1
px(X) = 2m)""2| %P2 etr —EE"IXXT (43)
We first derive the matrix variate characteristic function of
G=XX" as

bg(Z) = Eletr{— ZG}] = E[etr{— ZXX}] (44)

where Z=n X n symmetric complex matrix. Using the probability
density function of X in Eq. (43) we have
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Fig. 6. Comparison of percentage errors in the standard deviation of the amplitude of the driving-point FRF obtained using the proposed four
Wishart matrix approaches for the plate with randomly inhomogeneous material properties

1
=Q2m)” - etry — - <2
c(Z) = 2m)?x[7? ZXXT - JX7IXXT dX

Ryp

1
= (2m) 23| J etr —5[2“+2Z]XXT dX
R

np

(45)

The domain of the above integral is the space of all n X p real
matrices. This integral can be rearranged to obtain

dg(Z) = (2m)P2[5 |72

1
X f etr —5[2‘1+2Z]”2XXT[E‘1+2Z]”2 dX
]Rn'p

(46)

We use a linear transformation

X=[3"+2Z]"%Y 47)

The Jacobian associated with the above transformation can be
obtained as

dX =[27" +2Z| 7Y (48)

Substituting X and dX from Egs. (47) and (48) into Eq. (46), one
has

1
bg(Z) = (2m) 25| f et - JYYT (|57 + 27 2ay

R,,

= [L, +2ZX[?( (2m)™""? f

R,,

1
etr —EYYT dY | (49)

The second part of the above equation is the integration of the
probability density function of a nX p Gaussian random matrix
with zero mean and unit covariance [a special case of Eq. (2)].
Therefore

1
(2m)™? etry—-YY' (dY =1 (50)
R, 2

n.p

and consequently

dg(Z) = |1, +2ZX[ 7" (51)

If G were W,(p,Y), then the probability density function
would have been given by
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Fig. 7. Comparison of the mean of the amplitude of the cross-FRF obtained using the direct stochastic finite-element simulation and proposed
four Wishart matrix approaches for the plate with randomly attached oscillators with random natural frequencies

-1
pG(G) = {2(1/2);1171’*”(%p)|2|(1/2)p |G|(1/2)(p—n—1) etry — %E_IG}

(52)

Using this, the matrix variate characteristic function can be ob-
tained as

bg(Z) =Eletr{- ZG}] = f etr{- ZGlp(G)dG (53)
G>0

-1
2(1/2)np1"n(lp) |E|(”2)p f etr\ - ZG — lE‘IG
2 G>0 2

X |G|(1/2)(p—n—1)dG

-1
={2(1/2)np]" (lp) |2|<1/2)p}
"\2

1
X f etr{— —(I,+ 2Z2)2-1G}|G|{P/2-<”+1>/2}dG (55)
G>0 2

(54)

The n(n+1)/2 dimensional integral appearing in the second part
of the above equation can be evaluated exactly as

1
J etr{— —(I,+ ZZE)E-I(;}|G|{p/2—(n+1)/2}dG
G>0 2

rl)
rl=
n 2[’

= ‘ %(In +273)37!

1
=2<”2>"”|(In+2zz)|P/22|<”2)”Fn<5p> (56)
Using this and simplifying Equation (55), we have
b6(Z) = L, + 222" (57)

Comparing this with Eq. (51) and using the uniqueness of the
Laplace transform pairs of matrix variables, we say that the pdf of
G follows the Wishart distribution given in Eq. (5).

Appendix Il. Parameters for Optimal Wishart
Distribution

Since G~ W,(p,3), there are two unknown parameters in this
distribution, namely, p and . This implies that there are in total
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Fig. 8. Comparison of percentage errors in the mean of the amplitude of the cross-FRF obtained using the proposed four Wishart matrix
approaches for the plate with randomly attached oscillators with random natural frequencies

1+n(n+1)/2 number of unknowns as 3 is a nXn symmetric
matrix. For the simplification of algebra, without any loss of gen-
erality we consider that

3 =GY (58)

where Y € R"*"=unknown matrix to be determined. Suppose that
G has the Wishart distribution with parameters p=n+1+6 and

3=GY, that is, G~W, (n+1+6,GY). There are two undeter-
mined parameters in the problem, namely, the scalar 6 and the
matrix Y. The key idea is that the distribution of G must be such

that E[G] and E[G™'] be closest to G and G™', respectively, in the
least-squares sense.

The constant 6 can be obtained from Eq. (21). This leaves us
to determine only the matrix Y € R"*" such that E[G] and E[G™']

become closest to G and G™'. Because X and G are symmetric
matrices, we have

=37 GY=Y'G or Y'=GYG™

To obtain the optimal value of Y we define the “normalized er-
rors” as

or (59)

€= ”é - E[G]”F/HGHF (60)

and &,=|G™' - E[G™']|¢/||G7| (61)

Since G~ W, (n+1+6,GY) we have

E[G]=(n+1+0)GY (62)

and E[G']=0"'Y"'G™! (63)

For any two compatible matrices we know that [|AB|p
=||A|lsIB||r [see, for example, Horn and Johnson (1985), Chap. 5].
Using this, and substituting the expressions of E[G] in Eq. (60),
one obtains

€1=[G— (n+ 1+ 0)GY[¢/|Glle =G, ~ (n+ 1+ 6)Y)[¢/[G]
= HIn - (I’l +1+ e)Y”F (64)
Using the definition of the Frobenius norm, we have
e7=Trace((I, - (n+ 1 +0)Y)(I, - (n+ 1 +0)Y)")

=Trace(I,— (n+1+0)(Y+ YD)+ (n+1+0)°YY") (65)

Substituting the expression of Y7 from Eq. (59), this equation can
be expressed as

£7=Trace(I,— (n+1+0)(Y+GYG™) + (n+ 1 +0)’YGYG™)
=n-(n+1+0){Trace(Y) + Trace(GYG™)}

+(n+1+0)>Trace(YGYG™) (66)
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Fig. 9. Comparison of the standard deviation of the amplitude of the cross-FRF obtained using the direct stochastic finite-element simulation and
proposed four Wishart matrix approaches for the plate with randomly attached oscillators with random natural frequencies

Similarly, substituting the expressions of E[G™'] in Eq. (61), one
can obtain

&=L, - 67'Y [} (67)

from which, noting that Y"=G~'Y"'G, we have

£3="Trace(I,—- 0 (Y'+ Y ) +072Y"'Y )
=Trace(I, - 0"(Y'+G'Y"'G) + 6 2Y"'G'Y"!G)
=n—0"YTrace(Y™") + Trace(G'Y"'G)}

+072 Trace(Y'G™'Y'G) (68)

Now we define the objective function to be minimized as

X’ =ei+e;

(69)

The optimal value of Y is obtained by setting

2 2 2
%=O or &+&= (70)
aY aY dY

This expression has n> number of equations, which can be used
to solve for Y uniquely, which has n?> number of unknowns. To
apply Eq. (70), we need to differentiate a scalar function with
respect to a matrix. Differentiating Eq. (66) with respect to the
matrix Y, one has

— =2+ 1+0)L,+(n+1+0)*GYG'+G'YG)”

(71)

Differentiating Eq. (68) with respect to the matrix Y, we obtain

aei

N 2000(Y ) =AY 'GY'G'Y  + Y 'GT'Y'GY )T

(72)

Combining these two equations according to (70) and taking the
transpose of the resulting equation, one obtains

1 _ _ _ _
Y- Ee‘l(Y‘lGY‘lG‘lY‘l +Y'GT'Y'GY™)
1 — _ _
—0(n+1+0)I,+ Eﬁ(n +1+0)XGYG'+G'YG)=0

(73)

This is a nonlinear matrix equation of fourth order. Clearly,
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Fig. 10. Comparison of percentage errors in the standard deviation of the amplitude of the cross-FRF obtained using the proposed four Wishart
matrix approaches for the plate with randomly attached oscillators with random natural frequencies

there are more than one matrix solution to this equation. To ob-
tain closed-from expressions of Y, we try with a solution of the
form

Y=aoI, (74)

where a=positive real number to be determined. Substituting this
in Eq. (73) and simplifying, one obtains the following scalar
equation:

at =0 +0%(n+1+0)a—0%n+1+0)>=0 (75)

This fourth-order algebraic equation in o has the following four
exact solutions

and «=6/2*iVo(n+1+36/4)
(76)

Because o must be real and positive, the only feasible value of
a e R is

a=*=\0(n+1+6)

a=\0(n+1+0) (77)
Therefore
Y={0(n+1+0)}"1, (78)

Substituting this value of Y in Eq. (73), one can verify that this
equation is satisfied exactly by the above solution. Using the ex-
pression of Y in Equation (78), we have

3=GY={0(n+1+0)}""*G (79)

This result implies that G~ W, (n+1+6,G/\0(n+1+86)). For
these parameter selections, the mean of G and G™' become simul-

taneously closest to G and G

Notation

The following symbols are used in this paper:
B, = n’>Xn(n+1)/2-dimensional translation matrix;
C = space of complex numbers;

D(w) = dynamic stiffness matrix;
etr{*} = exp{Trace(*)};
f(r) = forcing vector;
G = symbol for a system matrix, G={M,C,K};
H(w) = frequency response function (FRF) matrix;
M,C, and K = mass, damping, and stiffness matrices,
respectively;
n = number of degrees of freedom;
p,% = scalar and matrix parameters of the Wishart
distribution;
P(X) = probability density function of (-) in (matrix)
variable X;
q(r) = response vector;
R = space of real numbers;
R} = space nXn real positive definite matrices;
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R™m = gpace n X m real matrices;

Trace(*) = sum of the diagonal elements of a matrix;
I',(a) = multivariate gamma function;
d;; = Kronecker’s delta function;

1

; = order of the inverse-moment constraint;
o = normalized standard deviation of G;

w = excitation frequency;
()F = Moore-Penrose generalized inverse of a

matrix;
()T = matrix transposition;
|/ = determinant of a matrix;

® = Kronecker product [see Graham (1981)]; and
~ = distributed as.
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