
Applied Mathematical Modelling 149 (2026) 116273

Available online 4 July 2025
0307-904X/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Contents lists available at ScienceDirect

Applied Mathematical Modelling  

journal homepage: www.elsevier.com/locate/apm

Enhanced wave attenuation through inertial amplification in 

periodic beam-rigid body structure

N. Rosić a, ,∗, M. Cajić b, , D. Karličić b, S. Adhikari c, M. Lazarević a

a Department of Mechanics, Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, 11120, Serbia
b Mathematical Institute of the Serbian Academy of Sciences and Arts, Kneza Mihaila 36, Belgrade, 11001, Serbia
c James Watt School of Engineering, The University of Glasgow, Glasgow, G12 8QQ, UK

A R T I C L E I N F O A B S T R A C T 

Keywords:

Inertial amplifier

Periodic structure

Frequency band structure

Spectral element method

Transfer matrix method

We address the fundamental challenge of achieving low-frequency wave attenuation in periodic 
structures without increasing system mass - a critical limitation in current design of metastructures. 
Traditionally, low-frequency attenuation has been achieved through the use of local resonators, 
which can be tuned to a specific low-frequency range by increasing their mass. To overcome this 
trade-off, we investigate the influence of two inertial amplifiers with distinct configurations: one 
with auxiliary masses connected to both beam and main mass and another with auxiliary masses 
suspended between the main mass and a fixed support. The transfer matrix method, combined 
with the spectral element method, is employed to analyze how design parameters influence the 
dispersion properties of each system. Our findings show that purposeful structural design of these 
inertial amplifiers can lead to as much as 50% broader attenuation bands across both high and 
low-frequency ranges. We also demonstrate near-coupling phenomena between local resonance 
and Bragg scattering mechanisms, which result in an ultra-wide low-frequency band gap. This 
study provides a method for robust wave control in periodic structures made of elastic and rigid 
segments such as buildings and bridges, particularly for low-frequency, lightweight acoustic and 
seismic isolation.

1. Introduction

Wave propagation through periodic structures with different oscillating attachments has attracted the attention of researchers 
as it has a significant potential towards vibration suppression. Periodic structures inherently exhibit the so-called ``band gaps'' -
frequency ranges in which elastic waves experience significant attenuation. This phenomenon, known as Bragg scattering, occurs due 
to dispersive properties of boundaries between tessellated unit cells. The elastic waves are scattered at these boundaries, and waves 
within the band gap frequencies are eliminated through destructive interference [1--4]. Unlike this mechanism, when the attachments 
oscillate at their resonant frequency, as they interact with the main structure a band gap is created in the vicinity of that frequency 
[5--18]. Furthermore, the interaction between these local resonance and Bragg scattering mechanisms can be exploited for efficient 
wave control [12--14].

Engineered periodic structures are often classified as ``metastructures'', as they have properties which surpass the properties of 
their constituent substructures [3]. These structures are present in aerospace and civil engineering, as well as other engineering fields 
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(e.g., buildings, bridges, pipelines). Despite significant advances in metastructure design for wave control, achieving low-frequency 
wave attenuation while maintaining system mass and avoiding complex geometries is an ongoing issue. This is especially relevant in 
civil and aerospace engineering, where such constraints are a priority.

Traditionally, different resonators, such as simple spring-mass resonators (SMRs), have been used to achieve low-frequency band 
gaps by increasing their mass [5--9]. Local resonance in periodic structures containing elastic beams has been extensively researched 
for vibration suppression [1], [2], [10--18]. Although these band gaps are often very narrow, in comparison to the band gaps which 
occur as a result of Bragg scattering, the frequency at which they occur is independent of structural periodicity, and can be tuned 
more easily as it does not have to satisfy various limits which are imposed on the structural design [13]. The idea of elastic flexural 
wave filtering using the local resonance band gaps has an application in low-frequency noise and vibration insulation related to the 
field of aerospace, acoustics, mechanical or seismic engineering [19] and vibrational energy harvesting [20--22]. Due to out of phase 
response of the attached resonators, negative effective mass or negative effective elastic constants can be perceived near the resonant 
frequencies [23], [24]. Also, the occurrence of the subwavelength bandgap is a very useful property of local resonance band gaps 
[23].

In this paper, we explore different methods to induce inertia amplification to passively enhance elastic wave attenuation in 
periodic structures containing elastic beams and rigid body segments. Our objective is to employ different types of inertial amplifiers 
to widen existing band gaps and possibly shift them to lower frequencies. The results obtained with inertial amplification mechanisms 
are compared to those achieved with SMRs of the same static mass. By implementing two different inertial amplifiers with tailored 
properties [25--30], we explicitly demonstrate the widening and shifting of the attenuation bands toward the low-frequency region 
without increasing the static mass of the attached discrete systems. This allows for the convenient shifting and expansion of band gaps 
across all frequency ranges, enabling a range of applications, including wave filtering and the protection of precision instruments 
from high-frequency noise. Also, interaction can be achieved between the band gaps which occur due to two different mechanisms 
(Bragg scattering and local resonance), which results in very interesting and useful phenomena, such as near-coupling of these band 
gaps [11]. It has already been shown that when the frequency ranges of LRBG and BSBG are in close proximity, the width of both 
band gaps is enhanced [14].

The unit cell under consideration is modeled as two identical elastic beams which have a rigid body suspended between them. The 
beams are modeled according to Timoshenko beam theory, which includes shear deformations and rotary inertia [2], [31--33]. The 
rigid body is modeled following a procedure described in [34--36], and its transfer matrix has been derived in accordance with [37]. 
Implementing the transfer matrix method allows for an efficient manipulation of various equations describing the motion of elastic 
beams and rigid bodies, giving great advantage during the analysis of investigated periodic mechanical systems [3], [38], [39]. It 
can also be successfully applied to randomly perturbed and quasiperiodic metastructures [40], [41], as well as periodic structures 
in which continuity conditions between unit cells do not apply [42]. In combination with the Floquet-Bloch theorem, dispersion 
properties of the system can be obtained by analyzing a single unit cell [1], [3], [39]. However, the transfer matrix method is suitable 
only for one-dimensional and quasi-one-dimensional systems, and in the case of large arrays of unit cells it suffers from numerical 
instability due to unavoidable matrix multiplication [37]. Thus, the spectral element method can be applied by assembling a global 
dynamic stiffness matrix from the transfer matrix of one unit cell, allowing robust modeling of large systems.

The spectral methods use high-order polynomials which improve convergence properties and the spectral element method com

bines that with the finite element method [11], [43]. This is particularly advantageous for analytical approach to wave propagation 
problems in elastic structures, where fewer elements can be used, as structural elements such as beams can be described using beam 
theories. The advantages of using the spectral element method are twofold: it significantly reduces computational cost compared 
to the finite element method, and it offers improved precision and numerical stability over the transfer matrix method by avoiding 
repeated matrix multiplications [32], [33], [44--48]. In this manner, the frequency response function (FRF) for a relatively large 
number of arrayed unit cells can also be efficiently determined. The FRF which is obtained is plotted against the band diagrams 
to illustrate the difference between the band gaps resulting from Bragg scattering and the ones which occur due to local resonance 
[2], [15--18], [38], [44], [49], [50].

This paper introduces a novel metastructure design that integrates suspended inerter-based resonators into periodic beam–rigid 
body systems to enhance wave attenuation. Unlike prior approaches relying on conventional spring-mass resonators, the proposed 
method enables significant widening and downward shifting of band gaps without increasing the static mass of the attachments or 
introducing complex geometrical changes [5--18]. Both inertial amplifiers which are studied in this paper consist of a main mass 
connected to a beam via a spring, along with two auxiliary masses connected to the main mass using rigid bars. In the first inertial 
amplifier, the auxiliary masses are connected to both beam and main mass, and in the second mechanism the auxiliary masses are 
suspended between the main mass and a fixed support. The results are compared with a simple spring-mass attachment, its mass 
being equal to the total mass of the inertial amplifier. The transfer matrices for the attachments (inertial amplifiers and spring-mass 
resonator) are derived in accordance with the models presented in [16], [26], [27], [30]. Furthermore, we demonstrate how the 
interaction between Bragg scattering and local resonance band gaps can be exploited to achieve enhanced vibration suppression. 
The proposed model captures all critical effects of the rigid body within the system, laying the groundwork for future extensions to 
more general quasi-one-dimensional metastructures where beams and rigid bodies are connected at arbitrary angles, as well as such 
quasiperiodic structures. The proposed methodology and procedures can be extended to investigate the influence of discrete systems 
incorporating materials with complex behaviors, such as plasticity and related anisotropic behaviors, as well as hygro-thermoelastic 
effects on the deformation of solid structures such as buildings, which occur due to humidity and heat [51], [52]. Experimental 
validation can also offer valuable insights into the robustness of the analytical formulation of the mathematical model. In the existing 
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literature, experimental studies have been performed on structures incorporating inertial amplification mechanisms and experimental 
measurements were compared to the FRFs obtained through finite element simulations [53--55].

The paper is organized as follows: In §2, a detailed description of the studied metastructure is provided, along with an explanation 
of the combined transfer matrix and spectral element methods. In §3 transfer matrices are derived for discrete systems which are 
attached to provide enhanced wave attenuation. In §4 the details of numerical calculations are given and various results are compared 
and discussed to demonstrate the effectiveness of the studied inertial amplifiers in shifting and broadening band gaps, as well as their 
potential for versatile design through tunable parameters. In §5 the main takeaway and several conclusions are provided.

2. Problem statement

We investigate a metastructure made from identical coaxial elastic beams with rigid bodies suspended between every pair of 
beams, and a discrete system attached at their adjoining ends, as shown in Fig. 1. A unit cell is formed from two Timoshenko beams 
with one rigid body between them, with an attachment included at the left-most end, as shown in Fig. 2. Harmonic wave motion is 
assumed, and separation of variables is performed. For example, in the transverse direction, the displacement can be expressed as 
𝑤(𝑧, 𝑡) =𝑤(𝑧)𝑇 (𝑡). The temporal function 𝑇 (𝑡) appears as a common factor in all terms and is thus canceled from the matrix equation. 
The transfer matrix method is used to relate the spatial parts of the state variables at unit cell ends, the state vector being:

𝝍 (𝑧) =

⎧⎪⎪⎨⎪⎪⎩
𝑤 (𝑧)
𝜑 (𝑧)

𝑀𝑓 (𝑧)
𝐹 𝑡 (𝑧)

⎫⎪⎪⎬⎪⎪⎭
, (1)

where z is the longitudinal axis of the unit cell, 𝑤,𝜑,𝑀𝑓 and 𝐹 𝑡 are, respectively, the spatial functions of transverse displacement, 
angle of rotation of the cross section, bending moment and shearing force. The axial displacement and force are excluded, as no 
coupling is expected to occur between transverse and axial oscillations when the beams are coaxial [37].

The state vectors at the two ends of the beam are related through the beam transfer matrix 𝐓beam which is provided in Appendix A 
together with the relevant beam properties [2], [37]. The transfer matrix for the rigid body 𝐓body relates the state vectors at two ends 
of the beams which are adjacent to the rigid body, and it is derived in accordance with [37]:

𝐓𝑏𝑜𝑑𝑦 =

⎡⎢⎢⎢⎢⎣
1 𝐷 0 0
0 1 0 0

−𝑚𝜔2 𝐷

2 𝐽
𝐶
𝜔2 −𝑚𝜔2 𝐷2

4 1 𝐷

−𝑚𝜔2 −𝑚𝜔2𝐷 0 1

⎤⎥⎥⎥⎥⎦
, (2)

where 𝐷 denotes the characteristic length of the rigid body, as indicated in Fig. 2, 𝐽𝐶 is the mass moment of inertia about the axis 
which is perpendicular to the plane of motion and passes through the center of mass 𝐶 of the rigid body.

The transfer matrix for the relevant discrete system which is attached to the left side of the unit cell is denoted as 𝐊. Thus, the 
total transfer matrix of such unit cell is obtained through simple matrix multiplication:

𝐓 = 𝐓beam𝐓body𝐓beam𝐊 =
[
𝐓11 𝐓12
𝐓21 𝐓22

]
, (3)

where 𝐓11, 𝐓12, 𝐓21 and 𝐓22 are submatrices (of order 2) of the full transfer matrix 𝐓 (of order 4), which relate the relevant components 
of the state vectors at the two ends of the unit cell. The transfer matrix can be manipulated by simple matrix algebra to obtain the 
dynamic stiffness matrix for one unit cell [44], [45], which relates the forces and moments to displacements at its ends:

⎧⎪⎪⎨⎪⎪⎩
𝑀𝑓 (0)
𝐹 𝑡 (0)
𝑀𝑓 (Λ)
𝐹 𝑡 (Λ)

⎫⎪⎪⎬⎪⎪⎭
=
[

𝐓−1
12𝐓11 −𝐓−1

12
𝐓21 −𝐓22𝐓−1

12𝐓11 𝐓22𝐓−1
12

]⎧⎪⎨⎪⎩
𝑤 (0)
𝜑 (0)
𝑤 (Λ)
𝜑 (Λ)

⎫⎪⎬⎪⎭ . (4)

Unit cells are tessellated to form the periodic structure, which is modeled by enforcing displacement and force continuity conditions 
at their interfaces. However, the presented analytical procedure is robust and can be extended to accommodate various discontinuities 
[42]. For the periodic case considered here, the 𝑗-th unit cell satisfies the following matrix equation, where the state variables are 
consistent with the continuity conditions:

⎧⎪⎪⎨⎪⎪⎩

𝑀𝑓𝑗
(0)

𝐹 𝑡𝑗
(0)

𝑀𝑓𝑗+1
(0)

𝐹 𝑡𝑗+1
(0)

⎫⎪⎪⎬⎪⎪⎭
=
[

𝐓−1
12𝐓11 −𝐓−1

12
𝐓21 −𝐓22𝐓−1

12𝐓11 𝐓22𝐓−1
12

]⎧⎪⎨⎪⎩
𝑤𝑗 (0)
𝜑𝑗 (0)

𝑤𝑗+1 (0)
𝜑𝑗+1 (0)

⎫⎪⎬⎪⎭ . (5)
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Fig. 1. The system of tessellated unit cells which theoretically extends infinitely in both directions. 

Fig. 2. The unit cell consists of two identical coaxial elastic beams, with a rigid body suspended between them, and an attachment at the left end of the unit cell. 

Applying the Floquet–Bloch theorem to two consecutive unit cells, and noting that the internal forces at their boundaries satisfy 
𝐹 𝑡𝑗

(Λ) + 𝐹 𝑡𝑗+1
(0) = 0 and 𝑀𝑡𝑗

(Λ) +𝑀𝑡𝑗+1
(0) = 0, we obtain: 

{
𝑤𝑗+1 (0)
𝜑𝑗+1 (0)

}
= e𝑖𝜅Λ

{
𝑤𝑗 (0)
𝜑𝑗 (0)

}
,

{
𝑀𝑓𝑗+1

(0)
𝐹 𝑡𝑗+1

(0)

}
= −e𝑖𝜅Λ

{
𝑀𝑓𝑗

(0)
𝐹 𝑡𝑗

(0)

}
, (6)

where 𝜅 is the wavenumber related to wave propagation through the unit cell as a whole, and Λ = 2𝐿+𝐷 is the total length of the 
unit cell, as indicated in Fig. 2. Introducing (6) to (5) leads to:

(
e𝑖2𝜅Λ𝐈− e𝑖𝜅Λ𝐏1 − 𝐏2

){𝑤𝑗 (0)
𝜑𝑗 (0)

}
= 0, (7)

which can be transformed to form the eigenvalue problem [44], [45]:

[
𝟎 𝐈
𝐏2 𝐏1

]⎧⎪⎨⎪⎩
𝑤𝑗 (0)
𝜑𝑗 (0)

e𝑖𝜅Λ𝑤𝑗 (0)
e𝑖𝜅Λ𝜑𝑗 (0)

⎫⎪⎬⎪⎭− e𝑖𝜅Λ𝐈
⎧⎪⎨⎪⎩

𝑤𝑗 (0)
𝜑𝑗 (0)

e𝑖𝜅Λ𝑤𝑗 (0)
e𝑖𝜅Λ𝜑𝑗 (0)

⎫⎪⎬⎪⎭ = 0, (8)

where

𝐏1 = 𝐓11 +𝐓12𝐓22𝐓−1
12 ,

𝐏2 = 𝐓12𝐓21 −𝐓12𝐓22𝐓−1
12𝐓11,

and 𝐈 is an identity matrix, 𝟎 is a zero matrix of appropriate size, and 0 is a zero vector.

The eigenvalues 𝑒𝑖𝜅Λ are obtained over a range of frequencies. The dimensionless wavenumber 𝜅Λ is then calculated and plotted 
against the dimensionless frequency:

Ω= 𝜔Λ2

2𝜋
√

𝐸𝐼𝜉

𝜌𝐴 

,

to produce the band diagram. This diagram illustrates the dispersion properties of the system, helping to visualize the band gaps 
[32], [33], [46], [47].

In order to validate these results, we plot the frequency response function (FRF) for a system of 𝑁 unit cells. This is done by 
building the global dynamic stiffness matrix 𝐌𝑁 and imposing a unit force at the right end of the system, and then solving for 
displacement vector V =𝐌−1

𝑁
F [44]. The eigenvalue problem and FRF can be obtained using the transfer matrix, as well [32], [33], 

[38], [46]. However, the large number of matrix multiplications needed for FRF calculation would lead to significant numerical errors. 
Hence, the spectral element method was used throughout. The first and second to last element of the solution vector V are output and 
input transverse displacements, 𝑤𝑁 and 𝑤1 respectively. The FRF amplitude is then obtained by calculating 20 log10

(|𝑤1|∕|𝑤𝑁 |)
for each frequency [44].
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3. Building the transfer matrix for discrete systems

Here we take into consideration three different discrete systems depicted in Fig. 3, the first being a spring-mass resonator, and the 
other two different mechanisms intended to cause inertia amplification. Their influence is accounted for by considering the transverse 
force 𝑓𝑖 which is exerted on the beam at their attachment point. Thus, the transfer matrix 𝐊 takes the form:

𝐊 =
⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
𝑓𝑖 0 0 1

⎤⎥⎥⎥⎦ . (9)

Understanding the structure of their transfer matrix and the analytical form of the force 𝑓𝑖 is essential for comparison, further 
discussion and analysis of numerical results.

3.1. The spring-mass resonator

The spring-mass resonator (SMR) is consisted of a mass 𝑚𝑟𝑒𝑠 attached to a spring of stiffness 𝑐, as given in Fig. 3.a). The elastic 
force resulting from the deformation of the spring, due to the transverse displacement of the beam 𝑤𝑖 and the displacement of the 
attached mass 𝑣𝑖, is given by:

𝐹𝑐 = 𝑐(𝑤𝑖 − 𝑣𝑖). (10)

The elastic force acts on the beam at the attachment point, thus 𝐹𝑐 = 𝑓𝑖. The inertial force 𝐹 𝑖𝑛
𝑟𝑒𝑠

=𝑚𝑟𝑒𝑠𝑣̈𝑖 is introduced and according 
to D’Alembert’s principle, with respect to directions of forces, we have:

𝐹𝑐 − 𝐹 𝑖𝑛
𝑟𝑒𝑠

= 0. (11)

Consequently, the equation of motion of the attached mass 𝑚𝑟𝑒𝑠 is:

𝑚𝑟𝑒𝑠𝑣̈𝑖 = 𝑐(𝑤𝑖 − 𝑣𝑖) = 𝑓𝑖. (12)

After applying the harmonic solution for displacements and employing separation of variables, the relevant time derivative is per

formed, which yields:

−𝑚𝑟𝑒𝑠𝜔
2𝑣𝑖 = 𝑐(𝑤𝑖 − 𝑣𝑖). (13)

Now, the relationship between displacements 𝑣𝑖 and 𝑤𝑖 is obtained:

𝑣𝑖 =
𝑐

𝑐 −𝑚𝑟𝑒𝑠𝜔
2𝑤𝑖, (14)

and, according to (12), the force which is exerted by the SMR is:

𝑓𝑖 = −
𝑐𝑚𝑟𝑒𝑠𝜔

2

𝑐 −𝑚𝑟𝑒𝑠𝜔
2𝑤𝑖. (15)

3.2. The first inertial amplifier

The first inertial amplifier (IA-1), which is shown in Fig. 3.b), is constituted of a main mass 𝑚𝑀 = 0.5𝑚𝑟𝑒𝑠, which is attached to 
the beams with a spring of stiffness 𝑐. Additionally, two auxiliary masses of mass 𝑚𝑎 = 0.25𝑚𝑟𝑒𝑠 are connected with the beam and the 
main mass using rigid bars. The angle between the axis of the spring and the rigid bars is 𝜃.

The force-equilibrium diagrams of all masses are illustrated in Fig. 4, where inertial forces 𝐹 𝑖𝑛
𝑤

= 𝑚𝑀𝑣̈𝑖, 𝐹 𝑖𝑛
𝑢

= 𝑚𝑀𝑢̈𝑖 and 𝐹 𝑖𝑛
𝜈

=
𝑚𝑀𝜈̈𝑖 have been introduced. We assume small displacements, thus considering the angle 𝜃 to be constant, as well as that the spring 
remains vertical, thus maintaining the symmetry of the discrete element [26]. Applying the D’Alembert’s principle in the direction 
of displacement 𝑣𝑖 results in:

2𝐹2 cos𝜃 + 𝐹𝑐 − 𝐹 𝑖𝑛
𝑣

= 0, (16)

where 𝐹𝑐 = 𝑐(𝑤𝑖 − 𝑣𝑖) is the elastic force resulting from the deformation of the spring and 2𝐹2 cos𝜃 + 𝐹𝑐 = 𝑓𝑖 is also the force acting 
on the beam at the attachment point. The equation of motion of the main mass 𝑚𝑀 is: 

𝑚𝑀𝑣̈𝑖 = 2𝐹2 cos𝜃 + 𝑐(𝑤𝑖 − 𝑣𝑖) = 𝑓𝑖. (17)

After applying the D’Alembert’s principle for an auxiliary mass 𝑚𝑎 , in two perpendicular directions of displacements 𝑢𝑖 and 𝜈𝑖:

𝐹1 sin𝜃 + 𝐹2 sin𝜃 − 𝐹 𝑖𝑛
𝑢

= 0, (18)

𝐹1 cos𝜃 − 𝐹2 cos𝜃 − 𝐹 𝑖𝑛
𝜈

= 0, (19)
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Fig. 3. Unit cells with different attachments: a) spring-mass resonator, b) first inertial amplifier (IA-1), c) second inertial amplifier (IA-2). 

Fig. 4. a) The first inertial amplifier in its undeformed and deformed state (designated with dashed lines), b) the diagram of force equilibrium for the main mass, c) 
the diagram of force equilibrium for the right auxiliary mass (symmetry applies).

we obtain the equations of motion:

𝑚𝑎𝑢̈𝑖 = 𝐹1 sin𝜃 + 𝐹2 sin𝜃 ⇒−𝑚𝑎𝜔
2𝑢𝑖 =

(
𝐹1 + 𝐹2

)
sin𝜃, (20)

𝑚𝑎𝜈̈𝑖 = 𝐹1 cos𝜃 − 𝐹2 cos𝜃 ⇒−𝑚𝑎𝜔
2𝜈𝑖 =

(
𝐹1 − 𝐹2

)
cos𝜃. (21)

The dynamics of both auxiliary masses are identical due to the mechanism’s symmetry. To obtain the relationship between 𝑢𝑖 and 
𝜈𝑖 to 𝑣𝑖 and 𝑤𝑖, we follow a procedure analogous to the one which is given in [26], details of which are presented in Appendix B. 
From Eqs. (20), (21), (B.5) and (B.6) we obtain:

𝐹1 =𝑚𝑎

𝑤̈𝑖 − 𝑣̈𝑖

4 
1 

sin2 𝜃 cos𝜃
, (22)

𝐹2 =𝑚𝑎

𝑤̈𝑖 − 𝑣̈𝑖

4 
cos2𝜃

sin2 𝜃 cos𝜃
. (23)

Finally, from Eqs. (17) and (23) it follows that:

−𝑚𝑀𝜔2𝑣𝑖 =
(
𝑐 −

𝑚𝑎

2 
cos2𝜃
sin2 𝜃 

𝜔2
)(

𝑤𝑖 − 𝑣𝑖
)
= 𝑘𝑒

(
𝑤𝑖 − 𝑣𝑖

)
= 𝑓𝑖, (24)

where we have introduced the parameter

𝑘𝑒 = 𝑐 −
𝑚𝑎 cos2𝜃
2 sin2 𝜃 

𝜔2 = 𝑐 − 1
2
𝑚𝑎𝜔

2 (cot2 𝜃 − 1
)
= 𝑐 − 𝑏𝜔2, (25)

where 𝑏 =𝑚𝑎

(
cot2 𝜃 − 1

)
∕2. The relation between 𝑣𝑖 and 𝑤𝑖 is found from (24):

𝑣𝑖 =
𝑘𝑒

𝑘𝑒 −𝑚𝑀𝜔2𝑤𝑖. (26)

Finally, from Eqs. (24) and (26) we obtain:

𝑓𝑖 = −
𝑘𝑒𝑚𝑀𝜔2

𝑘𝑒 −𝑚𝑀𝜔2𝑤𝑖, (27)

which has the same structure as for SMR, given in Eq. (15), where 𝑘𝑒 = 𝑐 and 𝑚𝑀 =𝑚𝑟𝑒𝑠 for SMR. In the case of IA-1, the parameter 𝑘𝑒

is also a function of auxiliary mass 𝑚𝑎 , the angle 𝜃 and angular frequency 𝜔, which indicates that its effects will be more pronounced 
at higher frequencies.

Analyzing the equation (25) it can be concluded that sin 𝜃 = 0 is not permitted, thus 𝜃 ≠ 0 (the other solutions are not applicable). 
In the case when 𝜃 = 𝜋∕4, we have 𝑘𝑒 = 𝑐 (as 𝑏 = 0), and the mechanism is reduced to a simple SMR with 𝑚𝑀 =𝑚𝑟𝑒𝑠∕2.
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Fig. 5. a) The second inertial amplifier in its undeformed and deformed state (designated with dashed lines), b) the diagram of force equilibrium for the main mass, 
c) the diagram of force equilibrium for the right auxiliary mass (symmetry applies).

3.3. The second inertial amplifier

When we consider the second inertial amplifier (IA-2), which is presented in Fig. 3.c), we can observe that the main mass is 
attached to the beam with a spring, while the auxiliary masses are suspended between the main mass and a fixed wall, using the 
same rigid bars as in IA-1. According to the force-equilibrium diagram presented in Fig. 5.b), and after applying the D’Alembert’s 
principle, the equation of motion for the main mass is obtained:

𝑚𝑀𝑣̈𝑖 = −2𝐹1 cos𝜃 + 𝐹𝑐 = −2𝐹1 cos𝜃 + 𝑐(𝑤𝑖 − 𝑣𝑖) = 𝑓𝑖. (28)

The relationship between 𝑢𝑖 and 𝜈𝑖 to 𝑣𝑖 is provided in Appendix B. Following the similar procedure which was performed for IA-1, 
and taking into consideration the same equations of motion for auxiliary masses, (20) and (21), we obtain the needed force:

𝐹1 =𝑚𝑎

𝑣̈𝑖

4 
1 

sin2 𝜃 cos𝜃
. (29)

Finally, from Eqs. (28) and (29), we find the relation between the motion of the main mass and the transverse motion of the beam 
at the attachment point:

−𝑚𝑀𝜔2𝑣𝑖 = 𝑐(𝑤𝑖 − 𝑣𝑖) +𝑚𝑎

𝑣𝑖

2 sin2 𝜃
𝜔2 ⇒ 𝑣𝑖 =

𝑐

𝑘′
𝑒
−𝑚𝑀𝜔2𝑤𝑖, (30)

where we have introduced the parameter:

𝑘′
𝑒
= 𝑐 −

𝑚𝑎

2 sin2 𝜃
𝜔2 = 𝑐 − 𝑏′𝜔2, (31)

where 𝑏′ =𝑚𝑎∕2 sin2 𝜃. It can be concluded that in this case 𝜃 ≠ 0, as well. The unit force is:

𝑓𝑖 = −
𝑐𝑚𝑀𝜔2

𝑘′
𝑒
−𝑚𝑀𝜔2𝑤𝑖, (32)

where we can observe that, by comparison to Eqs. (15) and (24), two different parameters, 𝑐 and 𝑘′
𝑒
, appear in the numerator 

and denominator, respectively. Unlike the parameter 𝑘′
𝑒
, the spring stiffness 𝑐 is independent of frequency and the angle 𝜃, which 

influences the effect of IA-2 on the dispersion properties of the structure.

4. Numerical calculations and results

The unit cell which is used in numerical calculations (Fig. 2) has a square rigid body of side length 𝐷 = 0.015 m and mass 𝑚 = 0.005
kg. The beams are identical, of length 𝐿 = 0.05 m, square cross section with area 𝐴 = 1.44 ⋅ 10−4 m2, and shear coefficient 𝜇 = 5∕6. 
The beam material is defined by Young’s modulus 𝐸 = 70 GPa, shear modulus 𝐺 = 27 GPa and density 𝜌 = 2713 kg∕m3.

The mass of the spring-mass resonator (Fig. 3.a) is 𝑚𝑟𝑒𝑠 = 0.5𝜌𝐴𝐿, which corresponds to 50% of a single beam’s mass. The stiffness 
of the spring is 𝑐 = 0.8𝐸𝐼𝜉∕𝐿3, representing 80% of beam’s bending stiffness, where 𝐼𝜉 is the second moment of inertia of the cross 
section of the beam.

The main mass of the first inertial amplifier is set to 𝑚𝑀 = 0.5𝑚𝑟𝑒𝑠. Two auxiliary masses, each with 𝑚𝑎 = 0.25𝑚𝑟𝑒𝑠, are connected 
to the beam and the main mass via rigid bars, as shown in Fig. 3.b). Thus, the total mass is equivalent to that of the spring-mass 
resonator. The main mass is attached to the beam with a spring of stiffness 𝑐. The angle between the longitudinal axis of the spring 
and rigid bars is 𝜃.



Applied Mathematical Modelling 149 (2026) 116273

8

N. Rosić, M. Cajić, D. Karličić et al. 

Fig. 6. a) Dispersion diagram and FRF for a unit cell without attachments. The rigid body introduces periodicity to the system, resulting in Bragg scattering band gaps 
(BSBG), highlighted in blue. b) Dispersion diagram for a unit cell with a spring-mass resonator attached to the left end. The resonator induces a low-frequency local 
resonance band gap (LRBG) at its resonant frequency.

Fig. 7. a) Dispersion diagram and b) frequency response function (FRF) for a system with spring-mass resonators (SMR). A local resonance band gap (LRBG, designated 
in yellow) is visible at Ω𝑟 = 1.06497 (designated in red). The first BSBG is shifted to a higher frequency and reduced by more than 50% (designated in blue).

The second inertial amplifier contains the same components, except that the auxiliary masses are attached to a fixed wall rather 
than to the beam, as shown in Fig. 3.c).

The band diagram and frequency response function (FRF) for a system without any attachments is shown in Fig. 6.a). A number 
of band gaps are observed within the calculated frequency range (highlighted in blue), and FRF indicates that this is due to Bragg 
scattering band gaps (BSBGs). Since the beams surrounding the rigid body are identical, removing the rigid body would result in no 
attenuation bands, which is characteristic for a uniform beam [37].

An initial comparison is made with the results for a system with spring-mass resonators (SMR), which are shown in Fig. 6.b). 
The lower frequency range is shown in Fig. 7, along with the corresponding FRF. A local resonance band gap (LRBG), highlighted in 
yellow, is observed near the natural frequency of the resonator Ω𝑟 = 1.06497, indicated by a red line. As a consequence, the lowest 
BSBG which can be seen in Fig. 6.a) shifts to a higher frequency and decreases in size by more than 50%. Beyond the lower frequency 
range which is shown in Fig. 7, the spring-mass resonator does not affect the dispersion characteristics, which can be observed in 
Fig. 6, as all band gaps beyond the low-frequency range have not changed.

When the first inertial amplifier (IA-1) is considered, its dispersion characteristics are compared with those of the SMR in Fig. 8. 
For 𝜃 = 10◦, there is a significant downward shift of the lower branch in each pair of dispersion branches. Conversely, for 𝜃 = 70◦, 
the shift is upward.

Unlike the spring-mass resonator which affects the dispersion characteristics only near its resonant frequency, the first inertial 
amplifier with the same static mass and spring stiffness induces band gaps of Bragg type across the entire frequency range. The BSBGs 
caused by IA-1 merge with the ones caused by the rigid body, resulting in much wider band gaps for lower values of 𝜃. A similar 
effect could be achieved with spring-mass resonators if their stiffness were increased by at least an order of magnitude, as previously 
discussed in [2]. For higher values of 𝜃, the band gaps between pairs of dispersion branches are slightly wider, but this enlargement 
is insignificant in comparison to the changes observed for smaller values of 𝜃. The most significant effect of IA-1 at higher 𝜃 values 
occurs in the low-frequency range.

In Fig. 8.a), the broadest BSBG, spanning the frequency range Ω ∈ (28.4933,33.0388), is highlighted in blue. This band gap is 
nearly twice as large as the corresponding band gap for the SMR case, located at Ω ∈ (30.6321,33.0412). This enlargement occurs 
at the expense of the BSBG between the pairs of dispersion curves. The BSBG which is highlighted in red for a system with SMR, 
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Fig. 8. Comparison of dispersion diagrams for the spring-mass resonator and the first inertial amplifier for: a) 𝜃 = 10◦ and b) 𝜃 = 70◦ . In the case when 𝜃 = 10◦ , the 
band gaps between dispersion branches (with the largest highlighted in blue) are widened at the expense of the band gaps between the pairs of dispersion branches, 
as compared to the BSBG of the SMR system (designated in red). For 𝜃 = 70◦ the opposite trend is observed.

Fig. 9. Comparison of dispersion diagrams for the spring-mass resonator and the first inertial amplifier for 𝜃 = 10◦ in the low frequency range. The SMR band gap is 
designated in red (LRBG). The IA-1 band gaps are designated in blue (BSBG) and yellow (LRBG).

Fig. 10. Comparison of dispersion diagrams for the spring-mass resonator and the first inertial amplifier for 𝜃 = 70◦ in the low frequency range. The SMR band gap is 
designated in red (LRBG). The IA-1 band gaps are designated in blue (BSBG) and yellow (LRBG).

and was shown in Fig. 6 to occur due to the presence of the rigid body in the system, is almost completely closed for 𝜃 = 10◦. By 
comparing the designated band gaps in Fig. 8, it can be concluded that this effect is reversed for higher values of 𝜃. The limiting 
value at which this reversal occurs is 𝜃 = 45◦. According to the factor cos 2𝜃∕ sin2 𝜃 in Eq. (25), when cos2𝜃 = 0 (for 𝜃 = 45◦), there 
will be no difference in size between the band gaps of Bragg type (in the entire frequency range). Additionally, the LRBG will shift 
to a lower frequency (because 𝑚𝑀 = 0.5𝑚𝑟𝑒𝑠).

In Fig. 9, where the lower frequency range is shown in detail for 𝜃 = 10◦, significant differences are observed compared to the 
system with SMR. A large split in the dispersion branches is evident at Ω ∈ (1.42108,1.81343) (caused by Bragg scattering and 
highlighted in blue), while the LRBG is narrower and shifted to lower frequencies (Ω ≈ 0.5) compared to its position for SMR (Ω𝑟).

At 𝜃 = 70◦, which is shown in Fig. 10, the dispersion characteristics are very different, with the BSBG (designated in blue) at a 
higher frequency Ω ∈ (1.81104,2.17229) and a much wider LRBG at Ω ∈ (1.24643,1.79907), which is designated in yellow. In this 
case, the LRBG frequency range is higher than the resonant frequency Ω𝑟 of the SMR, but the most significant contribution is the 
width of the LRBG and the fact that there is a near-coupling between the LRBG and the BRBG, forming a very wide band gap.

This transition is better illustrated in Fig. 11, where dimensionless frequency is plotted against the angle 𝜃. The interplay between 
Bragg scattering and local resonance effects is visualized as a gradual transformation between the band diagrams for 𝜃 = 10◦ and 
𝜃 = 70◦. As 𝜃 increases, the LRBG widens and shifts to higher frequencies, while the BSBG narrows and is effectively pushed into 
a higher frequency range, where it grows larger with further increases in 𝜃. For large values of 𝜃, a near-coupling phenomenon is 
observed between two band gaps which occur as a result of two different mechanisms (Bragg scattering and local resonance) [11]. In 
this way, a very wide attenuation zone is formed. These results demonstrate that the use of IA-1 provides significant efficiency and 
versatility in band structure design, particularly for achieving low-frequency attenuation.

For the second inertial amplifier (IA-2), Fig. 12 shows that changes in the dispersion characteristics, compared to the SMR system, 
occur only at lower frequencies. The higher frequencies remain unaffected because the parameter 𝑘′

𝑒
(which is a function of 𝜃 and 

angular frequency 𝜔) appears exclusively in the denominator of Eq. (32), which can be expressed as:
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Fig. 11. Band diagram transformation for IA-1, when 𝜃 ∈ [10◦, 70◦]. The width and frequency level of the LRBG (yellow) increases significantly as 𝜃 increases. The 
width of the BSBG (blue) decreases and it is practically pushed over to a higher frequency range where its width increases again.

Fig. 12. a) Comparison of the dispersion diagram for SMR and IA-2 for 𝜃 = 10◦ . It can be seen that IA-2 does not influence the dispersion characteristics at higher 
frequencies. b) Comparison of an enlarged part of a lower frequency range for SMR and IA-2, when 𝜃 = 10◦ and 𝜃 = 70◦ . The SMR band gap is designated in red 
(LRBG). The IA-2 band gaps are designated in blue (BSBG) and yellow (LRBG).

Fig. 13. Band diagram transformation for IA-2, when 𝜃 ∈ [10◦, 70◦]. The width and frequency level of the LRBG (yellow) increases significantly as 𝜃 increases. The 
effect on the BSBG is opposite.

𝑓 IA-2
𝑖

= −𝑤𝑖

𝑐𝑚𝑀
𝑐

𝜔2 − 𝑏′ −𝑚𝑀

.

In comparison, for the first inertial amplifier the corresponding expression is:

𝑓 IA-1
𝑖

= −𝑤𝑖

(𝑐 − 𝑏)𝑚𝑀𝜔2

𝑐

𝜔2 − 𝑏−𝑚𝑀

,

which is proportional to 𝜔2. Thus, the influence of IA-2 is lost at higher frequencies and no changes in the BSBGs are observed. Unlike 
for the case of elastic foundation, which is discussed in [2], this cannot be compensated by increasing the stiffness of the spring.
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Fig. 14. Mass tuning for IA-1, when 𝜃 = 10◦ : a) the entire calculated frequency range, b) the low-frequency range. The increase of total mass of IA-1 leads to a 
downwards shift of the LRBG and widens the existing BRBGs between pairs of dispersion branches in each mode.

Fig. 15. Mass tuning for IA-1, when 𝜃 = 70◦ : a) the entire calculated frequency range, b) the low-frequency range. The increase of total mass of IA-1 leads to a 
downwards shift of the LRBG and widens the existing BRBGs between modes.

The results in Fig. 12.b), which presents the lower frequency range in detail, indicate that the LRBG shifts to lower frequencies 
for smaller angles 𝜃 (leading to a wider BSBG), and vice versa. Similar effects would be gained by increasing the mass of SMR. Thus, 
for small values of 𝜃, a significant reduction in the resonant frequency is achieved without increasing the static mass of the resonator 
(inertia amplification), although the LRBG becomes more narrow.

In Fig. 13, the dimensionless frequency is plotted against the angle 𝜃. At higher 𝜃 values, the influence of the factor sin−2 𝜃
in 𝑏′ decreases. Thus, when the LRBG occurs in proximity of the BSBG frequency range, the dominance of local resonance effects 
is displayed as BSBG becomes more narrow due to wave localization which is caused by the presence of IA-2 [13]. This is also 
demonstrated in Fig. 12.b), where the difference between band diagrams for SMR and IA-2 (for 𝜃 = 70◦), is only a small shift of the 
LRBG to a higher frequency range.

To isolate the influence of the inertial amplifier mass, we scale the total mass to 𝑚𝑡𝑜𝑡 = 𝛾𝑚
(
𝑚𝑀 + 2𝑚0

)
. It is expected for the LRBG 

to shift to a lower frequency when total mass is increased. As for the BRBGs, it has been shown that the IA-2 has no influence on such 
band gaps which are not in vicinity of the LRBG, so only the total mass influence of IA-1 will be examined. Thus, the band structure 
is compared for the cases when total mass is multiplied by the factor 𝛾𝑚 which takes values 1, 2 or 3 (equal, double or triple mass).

In Fig. 14 the results are compared for the case when 𝜃 = 10◦, and in Fig. 15 for the case when 𝜃 = 70◦. In Fig. 14.a) and 15.a) the 
whole calculated frequency range is shown, and in Fig. 14.b) and 15.b) only the lower frequency range is presented. As expected, it 
can be observed that, regardless of the angle 𝜃, the increase of total mass leads to a downward shift of the LRBG.

However, when BRBGs are considered, for lower values of the angle 𝜃 the increase in total mass leads to a significant shift of 
dispersion branches, which causes wider BRBGs, especially between pairs of dispersion branches within each mode. For higher values 
of the angle 𝜃, the shift of dispersion branches leads to much larger band gaps between modes.

Upon further examination, in the case when 𝜃 = 10◦, if only mass 𝑚𝑀 is increased by the same factor 𝛾𝑚 (making the total mass 
𝑚𝑡𝑜𝑡 = 𝛾𝑚𝑚𝑀 + 2𝑚0), we obtain almost the same diagram as in Fig. 14. When only the auxiliary mass is increased (the total mass 
being 𝑚𝑡𝑜𝑡 = 𝑚𝑀 + 2𝛾𝑚𝑚0), there is imperceptible difference to the case when 𝛾𝑚 = 1 (there is almost no change in band gaps for 
different values of 𝛾𝑚). In the case when 𝜃 = 70◦, the effect is opposite. Thus, mass tuning is most effective when applied to 𝑚𝑀 at 
small angles 𝜃 and to 𝑚𝑎 at large angles 𝜃. These results are omitted for the sake of brevity (as these diagrams look the same as in 
Fig. 14 and 15).

Since cot 45◦ = 1, for 𝜃 > 45◦ we have (cot2 𝜃 − 1) < 0, which results in 𝑏 < 0. As 𝑏 changes sign, 𝑘𝑒 becomes significantly larger 
and dominates over the influence of the mass 𝑚𝑀 . Conversely, when 𝜃 < 45◦, the influence of 𝑚𝑀 becomes dominant relative to 𝑘𝑒 . 
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In both cases, the LRBG shifts to lower frequencies as the total mass increases. However, only the appropriate mass component has 
a significant impact on BRBGs.

5. Conclusion

This paper provides valuable insights which can contribute to low-frequency acoustic and seismic engineering through application 
and tuning of different inertial amplifiers. Two distinct mechanisms (IA-1 and IA-2) were used to achieve significant wave attenuation 
compared to traditional spring-mass resonators, while maintaining the same total mass. Additionally, the mass tuning capabilities 
were investigated for IA-1. By combining the transfer matrix and spectral element methods, we developed a robust procedure for 
analyzing dispersive behavior and demonstrated how both local resonance and Bragg scattering contribute to wider and more tunable 
band gaps.

We have demonstrated that a purposeful configuration of inertial amplifiers can shift band gaps to desired frequency ranges while 
maintaining or enhancing their width, offering new possibilities in the design of such metastructures. This approach is particularly 
effective in the lower frequency range, where traditional solutions struggle. By analyzing the conditions that lead to the near-coupling 
phenomenon between local resonance and Bragg scattering mechanisms, remarkable control over wave propagation is achieved, 
providing ultra-wide low-frequency band gaps for higher angles in the IA-1 structure. It was also demonstrated that through mass 
tuning in IA-1, both low and high frequency ranges can be affected, in contrast to the traditional SMR, which only shifts its resonant 
frequency. The second configuration, IA-2, was shown to be less effective than IA-1, but remains useful for manipulating low-frequency 
attenuation zones through local resonance effects.

These findings have significant implications for various engineering applications, particularly in fields requiring lightweight so

lutions for vibration isolation and wave control. The ability to achieve enhanced low-frequency attenuation without the increase of 
mass opens new possibilities in seismic protection, aerospace structures, and precision instrument isolation. Future research direc

tions should explore the extension of these concepts to investigate nonlinear effects in the inertial amplification mechanisms, and 
develop optimization strategies for specific application requirements. Additionally, experimental validation of these theoretical pre

dictions would provide valuable insights for practical implementation, particularly regarding manufacturing tolerances and structural 
damping effects.
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Appendix A

We consider a Timoshenko beam (see Fig. A.16) defined by its geometric properties (length 𝐿, a square cross-section of area 𝐴 and 
second moment of inertia 𝐼𝜉 ) and material properties (Young’s modulus 𝐸, shear modulus 𝐺 and mass density 𝜌). The Timoshenko 
shear coefficient is 𝜇. We also introduce the radius of gyration 𝑅𝑔 =

√
𝐼𝜉∕𝐴 and the longitudinal wave speed 𝑐0 =

√
𝐸∕𝜌.

To build the transfer matrix, we introduce the matrix 𝐔, whose non-zero components are given by [2], [37]:

𝑈11 = cos𝑘1𝜁, 𝑈12 = sin𝑘1𝜁, 𝑈13 = cos𝑘2𝜁, 𝑈14 = sin𝑘2𝜁,

𝑈21 = 𝑖𝑆1 sin𝑘1𝜁, 𝑈22 = −𝑖𝑆1 cos𝑘1𝜁,
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Fig. A.16. Timoshenko beam with its geometric and material properties. 

𝑈23 = 𝑖𝑆2 sin𝑘2𝜁, 𝑈24 = 𝑖𝑆2 cos𝑘2𝜁,

𝑈31 = −𝑖𝐸𝐼𝜉𝑆1𝑘1 cos𝑘1𝜁, 𝑈32 = −𝑖𝐸𝐼𝜉𝑆1𝑘1 sin𝑘1𝜁,

𝑈33 = −𝑖𝐸𝐼𝜉𝑆2𝑘2 cos𝑘2𝜁, 𝑈34 = −𝑖𝐸𝐼𝜉𝑆2𝑘2 sin𝑘2𝜁,

𝑈41 = −𝜇𝐺𝐴
(
𝑘1 + 𝑖𝑆1

)
sin𝑘1𝜁, 𝑈42 = 𝜇𝐺𝐴

(
𝑘1 + 𝑖𝑆1

)
cos𝑘1𝜁,

𝑈43 = −𝜇𝐺𝐴
(
𝑘2 + 𝑖𝑆2

)
sin𝑘2𝜁, 𝑈44 = 𝜇𝐺𝐴

(
𝑘2 + 𝑖𝑆2

)
cos𝑘2𝜁,

where:

𝑘1 =

√√√√√√𝜇𝐺 +𝐸

2𝑐20𝜇𝐺 
𝜔2 −

√√√√√(𝜇𝐺 +𝐸

2𝑐20𝜇𝐺 

)2

𝜔4 −
𝜌𝜔2𝑅2

𝑔
− 𝜇𝐺

𝑐20𝑅
2
𝑔
𝜇𝐺 

𝜔2,

𝑘2 =

√√√√√√𝜇𝐺 +𝐸

2𝑐20𝜇𝐺 
𝜔2 +

√√√√√(𝜇𝐺 +𝐸

2𝑐20𝜇𝐺 

)2

𝜔4 −
𝜌𝜔2𝑅2

𝑔
− 𝜇𝐺

𝑐20𝑅
2
𝑔
𝜇𝐺 

𝜔2,

𝑆1 = 𝑖
𝜇𝐺𝐴𝑘21 − 𝜌𝐴𝜔2

𝜇𝐺𝐴𝑘1
,

𝑆2 = 𝑖
𝜇𝐺𝐴𝑘22 − 𝜌𝐴𝜔2

𝜇𝐺𝐴𝑘2
.

The transfer matrix which relates the state vector at the right side of the beam to the state vector at the left side of the beam is:

𝐓𝑏𝑒𝑎𝑚 =𝐔 (𝜁 =𝐿)𝐔 (𝜁 = 0)−1 . (A.1)

Appendix B

Using the procedure presented in [26], and based on the deformation schemes of considered inertial amplifiers which can be seen 
in Fig. 4.a and 5.a, we are able to find the relation between the displacement 𝑢𝑖 of the auxiliary mass to displacements 𝑤𝑖 and 𝑣𝑖. 
In both mechanisms 𝜃 ≈ 𝑐𝑜𝑛𝑠𝑡 due to the small deformations assumption. Thus, bearing in mind that depicted deformation is overly 
exaggerated, and observing two designated lengths ℎ and 𝑎∕2 (the whole distance from the beam to the main mass being 𝑎), we have 
that ℎ = (𝑎∕2) tan𝜃. We can also define the displacement 𝑢𝑖 as:

𝑢𝑖 = ℎ− ℎ′, (B.1)

where ℎ′ designates the same distance in the deformed state. However, it is more convenient to find the difference of squares [26]. 
If we take the length of one rod to be 𝑙, it holds that 𝑙2 = ℎ2 + (𝑎∕2)2. As the rods are rigid, we obtain:

ℎ2 −
(
ℎ′
)2 =(𝑙2 − 𝑎2

4 

)
−
(
𝑙2 − 𝑎′ 2

4 

)
= 𝑎′ 2

4 
− 𝑎2

4 
. (B.2)

The difference of squares can be transformed into:

ℎ2 −
(
ℎ′
)2 = (ℎ− ℎ+ 𝑢𝑖

)(
ℎ+ ℎ− 𝑢𝑖

)
= 𝑢𝑖

(
2ℎ− 𝑢𝑖

)
. (B.3)

Relations for the first inertial amplifier In the deformed state, we have 𝑎′ = 𝑎+𝑤𝑖 − 𝑣𝑖. It follows that:

ℎ2 −
(
ℎ′
)2 = 1

4

[
2𝑎
(
𝑤𝑖 − 𝑣𝑖

)
+
(
𝑤𝑖 − 𝑣𝑖

)2] = 𝑢𝑖
(
𝑎 tan𝜃 − 𝑢𝑖

)
. (B.4)

Due to the assumption of small deformations we can also assume that 
(
𝑤𝑖 − 𝑣𝑖

)2
≪ 2𝑎

(
𝑤𝑖 − 𝑣𝑖

)
and 𝑢𝑖 ≪ 𝑎 tan𝜃, thus:

𝑢𝑖 =
𝑤𝑖 − 𝑣𝑖

2 tan𝜃 
. (B.5)

In a similar manner, we can find 𝜈𝑖:

𝜈𝑖 =
𝑎′

2 
− 𝑎

2 
=

𝑤𝑖 − 𝑣𝑖

2 
. (B.6)
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Relations for the second inertial amplifier We have that 𝑎′ = 𝑎+ 𝑣𝑖, which leads to:

ℎ2 −
(
ℎ′
)2 = 𝑎′ 2

4 
− 𝑎2

4 
= 1

4
(
2𝑎𝑣𝑖 + 𝑣2

𝑖

)
= 𝑢𝑖

(
2ℎ− 𝑢𝑖

)
. (B.7)

Since 𝑣2
𝑖
≪ 2𝑎𝑣𝑖 and 𝑢𝑖 ≪ 𝑎 tan𝜃, we have:

𝑢𝑖 =
𝑣𝑖

2 tan𝜃
. (B.8)

Finally, for 𝜈𝑖 we have:

𝜈𝑖 =
𝑎′

2 
− 𝑎

2 
=

𝑣𝑖

2 
. (B.9)

Data availability

Data will be made available on request.
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