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A B S T R A C T

Laminated composite honeycomb cellular core sandwich panels are widely utilized in various industries due to
their exceptional stiffness-to-weight ratio and strength characteristics. Current analytical models often simplify
honeycomb cores as homogenized continua, effectively predicting stiffness but falling short in capturing crucial
failure modes, particularly shear buckling of honeycomb core walls. Existing theoretical studies on shear
buckling are limited to isotropic materials and specific honeycomb geometries. While numerical models can
simulate cell wall buckling, their computational demands render them impractical for large structures employing
sandwich panels. This paper introduces a novel, simplified semi-analytical approach that accurately predicts the
shear buckling load of laminated composite honeycomb cellular cores. The model accounts for bend-twist
coupling effects and rotational restraints at laminate wall boundaries. To validate the proposed approach, pre-
dictions are compared with finite element analysis results for hexagonal honeycomb cores and cores of varying
shapes, incorporating diverse fibre lay-up configurations. The findings demonstrate excellent agreement between
the proposed approach and finite element analysis, indicating its reliability in predicting shear buckling. This
research addresses the gap in existing methodologies by offering a practical and efficient tool for predicting shear
buckling in laminated composite honeycomb cores, extending applicability beyond isotropic materials and
specific honeycomb geometries. The proposed approach holds promise for optimizing the design and structural
integrity of sandwich panels, impacting industries relying on these lightweight and high-performance structures.

1. Introduction

Sandwich panels are widely used in many engineering applications
due to their high stiffness-to-weight ratio and strength properties. The
honeycomb core is one of the most commonly used core types in sand-
wich panels, which can be built from a variety of materials ranging from
isotropic metal foils to fibre-reinforced composite [1–5]. Localised
buckling of the cell walls is a commonly observed failure mode in
honeycomb core sandwich panels [6,7]. Optimising geometric designs,
material selections, and stability analyses to mitigate local buckling in
honeycomb core sandwich panels can serve as a blueprint for advancing
mechanical metamaterials, facilitating the development of structures
with precisely tailored mechanical properties. While three-dimensional
(3D) numerical models can capture localised failures such as shear
buckling of core, such models are complex and easily become imprac-
tical due to high computational costs when modelling large-scale
structures. Often, equivalent homogenised models, where the

honeycomb core is represented using its effective stiffness properties
[8–10], are adopted in analysing the behaviour of large-scale sandwich
structures. While such equivalent models managed to capture the global
behaviour of the sandwich structures well, they failed to capture local-
ised failures such as the shear buckling of the honeycomb core.

Shear buckling of the honeycomb core is related to the responses at
the local level (stress at each plate), which cannot be calculated directly
using the equivalent properties. The stresses at the local level depend on
the geometry and material parameters of the core; therefore, the
modelling approach must be capable of capturing the local geometric
and material parameter variations. Therefore, relationships relating the
macro-level responses to the local responses are needed. Only a very
limited number of studies are available in the existing literature
addressing the issue of the shear buckling of honeycomb cores. In the
past, researchers [11–16] have mainly investigated the shear buckling
strength of the honeycomb cores with isotropic walls. In most of the
theoretical studies [14–16], boundary conditions for the plates were
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assumed to be either simply supported or fixed supported. However, the
assumption of simply supported condition for the plate edges un-
derestimates the prediction, while the fixed supported assumption
overestimates. Shi and Tong [17] have considered the boundary con-
ditions of the plate in between simply supported and fixed by estimating
the rotational restraint provided by adjacent plates at the onset of
buckling. In most of the studies [14–16], shear buckling strength has
been calculated considering shear loading separately in two different
principal directions. However, the shear buckling strength of the hon-
eycomb core depends on the effective direction of shear loading when
the honeycomb core is subjected to combined transverse shear in two
different directions [18]. Some researchers [18–21] have also consid-
ered the shear buckling of the honeycomb cores of different shapes.
López Jiménez and Triantafyllidis [20] and Qiu et al. [21] proposed
analytical models to predict the out-of-plane normal and shear buckling
of the honeycomb cores of different shapes, including hexagonal and
square cores. The method combines the Bloch wave representation
theorem for the eigenmode with the analytical solution of the linearised
von Kármán plate equations to analyse the representative volume
element (RVE). However, the models proposed in the past do not
consider the different material configurations, such as laminated com-
posite for the honeycomb core. In recent studies, many researchers [3–5]
have used composite laminates to manufacture various shaped ultra-
lightweight honeycomb cores for weight-sensitive applications. Pathir-
ana et al. [22–24] recently proposed a semi-analytical approach for the
out-of-plane compression buckling of composite hexagonal honeycomb
core [22] and in-plane shear and compression buckling of corrugated
core [23,24]. However, modelling approach to capture the shear buck-
ling of composite honeycomb cores of different shapes is yet to be
developed. Considering the potential of composite honeycomb cores of

different shapes for various sandwich structure applications, and one of
the dominant modes of failure is local shear buckling of the cell walls,
it’s necessary to have a simplified model to predict the shear buckling of
honeycomb cores of different shapes to design and optimise sandwich
structures.

This paper presents a semi-analytical model to predict the critical
shear buckling load of the laminated composite honeycomb cores of
different shapes and material configurations. The proposed approach
uses the analysis of the RVE of honeycomb cores together with lami-
nated composite plate buckling theory [25] to predict the critical
buckling strain of the laminated composite honeycomb cores. Following
the introduction in Section 1, Section 2 of this paper presents the deri-
vations of the semi-analytical model for the shear buckling of the
laminated composite wall honeycomb core. Unlike most of the shear
buckling solutions for the composite plates [26–31], which do not
consider the bend-twist coupling, the shear buckling solution in the
proposed approach has been developed considering bend-twist coupling
due to the angle-ply laminates. Based on the theoretical solutions, phase
failure maps of the hexagonal honeycomb core are plotted for simplified
cases such as core with identical laminated walls without bend-twist
coupling, etc., and the solutions for the shear buckling load under
different shear loadings are discussed in Section 3. In Section 4, theo-
retical solutions for the honeycomb cores of rectangular and triangular
shapes are derived using the proposed methodology. In Section 5, the
results from the proposed semi-analytical approach are validated against
the results from the finite element (FE) analysis for the laminated
composite honeycomb cores of various material configurations.

Fig. 1. (a) Typical periodic hexagonal honeycomb core and (b) RVE of hexagonal core fabricated using (c) laminated composite wall having different (d) fibre layer
arrangements. Global variables are defined with respect to the (x1, x2, and x3) coordinate system and local variables of each plate are defined with respect to the
(x1, x2, and x3) coordinate system.

Fig. 2. (a) RVE of the hexagonal core with the nodal numbers and characteristic dimensions (b) deformed shape of the plate under positive shear strain. The positive
angle ϕ of the fibre is measured anti-clockwise with respect to the positive direction-x1.
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2. Proposed approach

Fig. 1(a) shows a typical periodic honeycomb core structure built
using laminated composite plates (Fig. 1(c)) having different fibre layer
sequences. When flexural loads are applied on sandwich panels con-
sisting of honeycomb core, transverse shear forces are predominantly
carried by the honeycomb core [28–31]. While it is possible that hon-
eycomb core cell walls may also carry compression forces, considering
core depth is typically much larger than the thickness of the cell walls
[31], such compression forces can be taken as negligible compared to
transverse shear forces acting on the cell walls. Therefore, only trans-
verse shear forces acting on cell walls are considered in this study.
Similar to the assumptions made in existing studies [17], this study also
assumes that transverse shear stresses are constant across the depth of
the core.

The honeycomb core is considered to fail due to buckling if any of the
individual cell walls buckle due to transverse shear stress. Therefore, the
shear buckling load of the honeycomb core is defined as the critical
global transverse shear strain at which any of the plates buckles first. To
determine the critical global transverse shear strain of the honeycomb
core, it is necessary to determine the relationship between the in-plane
shear strain of the individual plate to the global transverse shear strain
of the honeycomb core.

2.1. Determination of shear strain at each plate due to transverse shear
strain in the core

To illustrate the proposed approach, a representative volume
element (RVE) of a hexagonal core shown in Fig. 1(b) is considered.
Displacement field u of the hexagonal core is defined in the global
Cartesian coordinate system (x1, x2, and x3) as: u = {u1, u2, u3}T , where
ui is component of the displacement in global direction-xi, and in the
local (individual plate) Cartesian coordinate system (x1, x2, and x3) as:
u = {u1, u2, u3}T, where ui is component of the displacement in local
direction-xi.

Each plate of the selected RVE of the hexagonal core (Fig. 2(a)) is
analysed for the shear deformation considering the displacement at each
node. Each node of the RVE (Fig. 2(a)) is considered to subject to a
displacement in direction-x3 or (or x3) due to the applied global trans-
verse shear load on the RVE. Fibre orientations of lamina of the com-
posite plate (Fig. 2(b)) are defined such that the anti-clockwise angle is
positive with respect to positive direction-x1. The positive direction-x1 is

defined for the plates I, II, and III, from node 1 to 5, node 5 to 2 and node
5 to 4 respectively. The positive direction-x3 is defined always in the
positive global direction-x3. Considering the sign convention assumed
here, the positive shear strain of each plate (Fig. 2) is expressed as:

γα =
u3(n) − u3(m)

Lα
, (1)

where u3(n) and u3(m) are the displacements in local direction-x3 at the
start node-m and end node-n, respectively of plate-α and γ is the in-plane
shear strain of the plate-α (α refers to plates I, II, and III and Lα refers to
length of the plate).

The relationship between the in-plane forces and strains for a sym-
metrically laminated composite laminate (Fig. 2. (b)) can be written
using classical laminate theory [25] as:
⎧
⎨

⎩

N11
N33
F

⎫
⎬

⎭
=

⎡

⎣
A11 A13 A16
A13 A33 A36
A16 A36 A66

⎤

⎦

⎧
⎨

⎩

ε11
ε33
γ

⎫
⎬

⎭
, (2)

where N11 and N33 are the in-plane normal forces in direction x1 and x3,
respectively and F is in-plane shear force of the laminate; ε11 and ε33 are
the in-plane normal strains and γ is the shear strain of the laminate; and
Aij is a component of membrane stiffness matrix of the laminate (i and j
are 1,3,6).

Considering the assumption that the core is subjected to only trans-
verse shear strain, we may also assume that in-plane normal strains ε11
and ε33 of the walls are equal to zero. Therefore, the relationship be-
tween the in-plane shear strain to the shear force of the plate-α can be
simplified as:

γα =
Fα

Aα
66

, (3)

where Fα and Aα
66 are in-plane shear load and the in-plane section shear

stiffness of plate-α, respectively.
In order to find the relationship between the applied transverse shear

strain of the honeycomb core and the shear strain at each plate, first, the
displacement at each node needs to be determined in terms of the
applied transverse shear strain, taking into account the periodic nature
of the honeycomb core. Considering the periodic boundary conditions
and force equilibrium of the RVE, nodal displacements can be solved to
get the strain at each plate due to the applied global strain. Applying the

Fig. 3. Diagrammatic illustration of the global transverse shear strains of typical hexagonal core RVE.
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periodic boundary condition to RVE in Fig. 2(a), we can get the
following expression:

u3(3) − u3(1) = u3(4) − u3(2), (4)

where u3(n) is the displacement of node-n in global direction-x3. RVE is
assumed not to undergo any rigid body motions. Therefore, we can
write,

u3(1) = 0. (5)

The average macroscopic strain of a RVE [32,33] of the periodic struc-
ture can be calculated as:

εij =
1

VRVE

∫

V

ε*ijdV, (6)

where ε*ij and εij are the micro-strain and average strain of the RVE, and
VRVE is the volume of the RVE. Using Gauss’s theorem, the volume
average macroscopic shear strain of the RVE can be expressed as an
integration of differential displacements around the boundary surfaces
of the RVE [32,33] as:

γij =
1

VRVE

∫

s

(
uinj + ujni

)
dS. (7)

where ni is the component of the outward unit normal vector of the
boundary surface of RVE.

Using the conditions given in Eq. (5) and average strain of the RVE
given in Eq. (7), following relationships can be obtained for the global
transverse shear strain (Fig. 3) of the hexagonal core RVE:

γ13 =
u3(3) − u3(1)

p
, (8)

γ23 =
u3(2) − u3(1)

q
+
r
p
u3(3) − u3(1)

q
, (9)

Sum of the forces in all four corner nodes should be zero in RVE. This can
be explained considering the repetition of the RVE in Fig. 4. Considering
adjacent RVEs a, b, c and d, the resultant force at point O should be zero,
which reads as follows:

F(1d)+ F(2c)+ F(4a) = 0, (10)

where F(n) is the shear force at node-n.
Considering the adjacent RVEs for the analysis, we can also write:

F(1d) = F(1a) and F(2c) = F(2a) (11)

From Eq. (10) and (11), we will get another equation for the RVE:

F(1)+ F(2)+ F(4) = 0. (12)

Resultant force at the internal node of RVE also should be zero, which
gives:

F(5) = 0. (13)

In this scenario, Eq. (13) is not an independent equation because if the
local equilibrium of each plate is considered, then Eq. (13) will give the
same equation as Eq. (12). The general procedure to formulate the
required equations to solve for the displacements of the RVE was out-
lined above considering the hexagonal honeycomb core which can also
be used for honeycomb cores of different shapes.

Now considering the Eqs. (4)-(13), the nodal displacements can be
found in terms of geometric and stiffness parameters of the RVE and
substituting the results into Eq.(1), the relationships between the
applied global shear strains γ13 and γ23 of the RVE and the shear strain of
each plate γα of the RVE can be expressed as:

γα = γ13fα, (14)

where;

f I = k
(
AII
66 + A

III

66

)
(L1 − L2cosθ) +

(
A
III

66
− A

II

66

)
L2sinθ

AI
66L2 +

(
AII
66 + AIII

66
)
L1,

(15)

f II =
k(L1 − L2cosθ)A

I
66 −

(
L2A

I

66 + 2L1A
III

66

)
sinθ

AI
66L2 +

(
A

II

66

+ AIII
66
)
L1, (16)

f III =
k(L1 − L2cosθ)A

I
66 +

(
L2A

I

66 + 2L1A
II

66

)
sinθ

AI
66L2 +

(
A

II

66

+ AIII
66
)
L1, (17)

Fig. 4. Repetition of the RVEs to form the periodic honeycomb core.
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and the ratio between the applied shear strain γ23/γ13 is k.
Substituting Eq. (14) with Eq. (3), the relationship for the shear

strain γ13 of the RVE can be written as:

γ13 =
Fα

Aα
66fα

. (18)

The critical shear buckling load of the honeycomb core is defined as the
minimum shear load which requires for any of the plate of RVE to
buckle, therefore, the condition to determine the critical shear strain of
the hexagonal core can be written as:

γcr = min

{⃒
⃒
⃒
⃒
⃒

FIcr
AI
66f I

⃒
⃒
⃒
⃒
⃒
,

⃒
⃒
⃒
⃒
⃒

FIIcr
AII
66f II

⃒
⃒
⃒
⃒
⃒
,

⃒
⃒
⃒
⃒
⃒

FIIIcr
AIII
66 f III

⃒
⃒
⃒
⃒
⃒

}

. (19)

where Fα
cr is the critical shear buckling load of plate-α.

2.2. Critical shear buckling load of the composite plate

Rayliegh-Ritz method is used to calculate the critical shear buckling
load of the composite plate. Consider a plate subjected to in-plane shear
with rotationally restrained along the two longer edges (b > 3L) and
simply supported along the two shorter edges (Fig. 5). The out-of-plane
displacement of the plate under shear buckling may be expressed using a
trigonometric function [26] as:

u2(x1, x3) = Ao

[

(1 − R)sin
(πx1
L

)
+R
(

1

− cos
(
2πx1
L

))]

sin
(

π(x3 − βx1)
μL

)

, (20)

where u2(x1, x3) is the out-of-plane displacement of plate-α in direction-
x2, Ao, μ, and β are the amplitude of the wave, ratio of the half wave
length to L, and skew angle of the wave, respectively. The function
consists of a weighted term R, which takes into account the degree of
rotational restraint of the plate. When R becomes zero then the

displacement function represents the simply supported boundaries for
all the edges and when R becomes 1 then the displacement function
implies the clamped longer edges. R could be determined considering
the boundary conditions along the rotationally restrained edges.

The boundary conditions along the rotationally restrained edges of
the plate can be written as:

u2(0, x3) = 0, u2(L, x3) = 0, (21)

M11(0, x3) = − D16

(
∂2u2

∂x1∂x3

)

x1=0
− D13

(
∂2u2
∂x23

)

x1=0
− D11

(
∂2u2
∂x21

)

x1=0

= − kr
(

∂u2
∂x1

)

x1=0
,

(22)

M11(L, x3) = − D16

(
∂2u2

∂x1∂x3

)

x1=L
− D13

(
∂2u2
∂x23

)

x1=L
− D11

(
∂2u2
∂x21

)

x1=0

= kr
(

∂u2
∂x1

)

x1=L

(23)

where Dij is the element of the plate bending stiffness matrix defined
with respect to the (x1, x2, and x3) coordinate system and kr is the
stiffness of the edge rotational restraint due to unbuckled adjacent plate
or plates.

Simplifying the Eqs. (22)-(23) under the assumption of cylindrical
bending and with the substitution of Eq. (20), following can be obtained
[26]:

R =
1

1+ 4πD11
Lkr

. (24)

Total potential energy of the plate can be written as sum of strain energy
due to bending, strain energy stored in the rotational restraint, and the
work done by the applied load:

Π = Ub +Ur +W (25)

where;

Ur =
1
2

∫

kr
(

∂u2
∂x1

)2

x1=0
+ kr

(
∂u2
∂x1

)2

x1=L
dx3, (27)

W =

∫∫

F
∂u2
∂x1

∂u2
∂x3

dx1dx3. (28)

Substituting the displacement function (Eq. (20)) into Eqs. (26)-(28) and
then getting the first variation of total potential energy of the plate gives:

δΠ = δUb + δUr + δW = 0 (29)

By simplifying Eq. (29), the shear buckling load of the plate can be
determined as:

Fig. 5. (a) Composite plate subjected to in-plane shear (b) rotationally
restrained plate along longer edges.

Ub =
1
2

∫∫

D11

(
∂2u2
∂x21

)2

+2D13
∂2u2
∂x21

∂2u2
∂x23

+D33

(
∂2u2
∂x23

)2

+4D16
∂2u2
∂x21

∂2u2
∂x1∂x3

+4D36
∂2u2
∂x23

∂2u2
∂x1∂x3

+4D66

(
∂2u2

∂x1∂x3

)2

dx1dx3, (26)
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F =
π2
L2

[(
β3

2μ2 +
μ2
2β

+ 3β
)

D11 +
D33

2μ2β
+

(
β
μ2 +

1
β

)

D13 −

(
2β2

μ2

+
6π2
L2

)

D16 −
2D36

μ2 +

(
2β
μ2

+
2
β

)

D66

]

+
3π3R2

2L2β(3π + Rn)

[(

6β2 + 26μ2)D11

+ 2D13 − 12βD16 +4D66 +
4krμ2L( − 1+ R)2

π2R2

]

, (30)

where;

Rn = 32R − 6πR − 32R2 +12πR2. (31)

In order to find the minimum critical shear buckling load Fcr, the Eq.
(30) has to be minimised with respect to two unknowns β and μ. Here a
numerical solution procedure is implemented using MATLAB ‘fmincon’
function to get the critical skew angle βcr and critical aspect ratio μcr. The
upper and lower limits for the β and μ are defined as [0, π/2] and [0, b/L]
respectively for positive shear load and [-π/2, 0] and [0, b/L] respec-
tively for the negative shear load acting on the plate. Plate will be
subject to positive or negative shear depending on the applied global
shear strain and the plate position in the RVE.

2.2.1. Determination of rotational stiffness
Depending on the shear load carried by each plate, core walls may

not buckle simultaneously. Therefore, when one or more plates buckle
(referred to as ‘critical plate’) at a time, other adjacent non-buckled plate
or plates (referred to as ‘restraining plate’) restrain the rotation of the
critical plate or plates. Therefore, the boundary of the critical plate
should be considered to lie between simply supported and fixed sup-
ported for more accurate predictions. Here the effect of the rotational
restraint provided by the restraining plates at boundaries of the critical
plates against buckling should be considered. The critical plates and
restraining plates of the RVE could be identified based on the prediction
of shear buckling loads considering all edges simply supported condi-
tions. Rotational stiffness provided by the restraining plates can be
conservatively written in the following form assuming cylindrical
bending [27] of the plate:

kr =
c(D11)rs

L
1
Ar

(32)

where c is equal to 2 when the restraining plate is subjected to the equal

Fig. 6. Procedure for determining the critical shear buckling strain of the
honeycomb core.

Fig. 7. Deformed configuration of RVE with identical composite plates under the shear load (a) γ13 (b) γ23 and (c).γ13/γ23 = 1
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and opposite moment and Ar is the amplification factor depending on
the loading on the restraining plate. The factor Ar is defined as [27]:

Ar =
1

1 −
(F)

ss
rs

(Fcr)
ss
rs

, (33)

the ratio (F)ssrs/(Fcr)
ss
rs being defined as follows:

(F)ssrs
(Fcr)

ss
rs

=
A66(γ)

ss
rs

A66(γcr
)
ss
rs =

(γ)ssrs
(γcr)ssrs

, (34)

where (Fcr)ssrs is the critical shear buckling load of restraining plate under
simply supported condition and (F)ssrs is the shear load carried by the
restraining plate at the time of buckling of the critical plate under simply
supported condition. In the following it is presented two examples to
illustrate the calculation of kr:1 If plate-II and plate-III buckle simulta-
neously before plate-I, then plate-I will restrain the rotation of plate-II
and plate-III. Rotational stiffness provided by the plate-I can be deter-
mined as follows:

kr =
1
2
2DI

11
L1

1
AI
r
. (35)

2 If plate-III only buckles first, then plate-I and plate-II together will
restrain the rotation of plate-III. Rotational stiffness provided by the
restraining plates can be determined as follows:

kr =
2DII

11
L2

1
AII
r
+
2DIII

11
L2

1
AIII
r
. (36)

Similar way, other scenarios can be considered by identifying the critical
plate and restraining plates. Once the rotational stiffness of the critical
plate is determined, then the critical shear buckling strain of the hon-
eycomb core can be calculated following procedure shown in Fig. 6.

3. Theoretical analysis

3.1. Hexagonal core with identical plates

Let’s consider that all the plates in the RVE (Fig. 2) have an identical
fibre layer arrangement, length(L), and thickness(t). Typical deformed
configurations of regular hexagonal (θ = 120o) core in Fig. 7 illustrates
the nodal displacements at each plate under different global shear strain
of the RVE. For the RVE subjected to shear strain γ13 (Fig. 7(a)), only the
plate-II and plate-III carry the load, the plate-I does not take any shear
load. Plate-II and plate-III are subject to positive shear and negative
shear respectively. Since the magnitude of shear strains are equal, both
plates will buckle simultaneously if the plates are fabricated with
orthotropic laminate. This is not true when plates are fabricated using
angle-ply laminates having bend-twist coupling. In such cases, the shear
buckling loads for the plates will be different depending on the fibre
orientations; therefore, only one of inclined plates (Plate-II or plate-III)
will buckle first. When the RVE is subjected to shear strain γ23(Fig. 7(b)),
all the plates experience positive shear and plate-I is subjected to largest
shear strain, therefore, it will buckle first because the material and
geometric parameters are identical for all three plates. Similarly, when
the RVE is subjected to combined shear of γ23/γ13 = 1, plate-III will
buckle first.

It can be noted that depending on applied shear strain ratio on the
RVE, the critical plate and critical shear buckling strain of the core can
be different which may be easily identified using a phase failure map in
Fig. 8. As all plates are identical, the magnitude of the term Fα

cr/Aα
66 (Eq.

(19)) is equal for all three plates if the plates are orthotropic laminates.

Fig. 8. Failure phase map of the honeycomb core with identical ortho-
tropic plates.

Fig. 9. Deformed configuration of RVE with non-identical composite plates under the shear load (a) γ13, (b) γ23, and (c)γ13/γ23 = 1.
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Then the phase failure map can be plotted based on the Eq. (37)
simplified from Eq. (19):

γcr = min

{⃒
⃒
⃒
⃒
⃒

FIcr
kAI

66

⃒
⃒
⃒
⃒
⃒
,

⃒
⃒
⃒
⃒
⃒

2FIIcr
AII
66
(
k −

̅̅̅
3

√ )

⃒
⃒
⃒
⃒
⃒
,

⃒
⃒
⃒
⃒
⃒

2FIIIcr
AIII
66
(
k+

̅̅̅
3

√ )

⃒
⃒
⃒
⃒
⃒

}

. (37)

From the phase failure map in Fig. 8, we can identify the following
conditions:

• if k >
̅̅̅
3

√
or k < −

̅̅̅
3

√
, then plate-I buckles first,

• if k = 0, then plate-II and plate-III buckle simultaneously before
plate-I ,

• if k =
̅̅̅
3

√
, then plate-I and plate-II buckle simultaneously before

plate-III,
• if k = −

̅̅̅
3

√
, then plate-I and plate-III buckle simultaneously before

plate-II,
• if 0 < k <

̅̅̅
3

√
, then only plate-II buckles first, and

• if −
̅̅̅
3

√
< k < 0, then plate-III buckles first.

The failure map in Fig. 8 shows a coloured region for each plate
where the plate is safe against the buckling under the applied shear load.
The common intersecting region of all three plates shows a feasible
design region where the hexagonal core with identical plates is safe
against shear buckling.

3.2. Hexagonal core with non-identical plates

If plate-II and plate-III have an identical fibre layer arrangement,
length (L) and thickness (t), and plate-I has double thickness (2 t), same
length and symmetric fibre layup of plate-II and plate-III, then deformed
configurations of RVE of regular hexagonal (θ = 120o) core for different
shear strain conditions can be plotted as in Fig. 9. The plate-II and plate-
III will buckle simultaneously under both the shear strain γ13 and γ13,
however, when RVE is subjected to γ23, both plates experience shear in
the same direction (both positive) contrast to the γ13 loading (Fig. 9(a)-
(b)). Like in the RVE with identical plates in section 3.2, in this case also
plate-III buckles first under combined shear; however, the ratio of the
shear strains between the plates are different. It can also be identified
that the nodal points in the deform configurations are coplanar for the
RVE with identical plates (Fig. 7); however, in the case where Plate-I is
different to the Plate- II and Plate- III, deformed nodal points are not
coplanar (Fig. 9(b)-(c)) which is not compatible with the face sheets of
the sandwich panels. Therefore, honeycomb core with non-identical
plates is subjected to bending due to skin effect of the sandwich panel,
however, this effect can be considered minimal if the bending rigidity of
the face sheets (typically thin face sheet) is very small compared to
bending rigidity of the core (typically for thick core).

For the regular hexagonal core with non-identical plates, critical
shear strain γcr for the buckling can be derived from Eq. (19) as:

γcr = min

{⃒
⃒
⃒
⃒
⃒

2FIcr
3AI

66k

⃒
⃒
⃒
⃒
⃒
,

⃒
⃒
⃒
⃒
⃒

4FIIcr
AII
66
(
3k − 2

̅̅̅
3

√ )

⃒
⃒
⃒
⃒
⃒
,

⃒
⃒
⃒
⃒
⃒

4FIIIcr
AIII
66
(
3k+ 2

̅̅̅
3

√ )

⃒
⃒
⃒
⃒
⃒

}

. (38)

Here, for the purpose of plotting the failure phase map (Fig. 10),

Fig. 10. Failure phase map of the hexagonal core with non-identical ortho-
tropic plates. Plate-I has double thickness of plate-II and plate-III.

Fig. 11. RVEs of (a) triangular core (b) rectangular core.
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additionally, we also assume that FIcr = 8FIIcr. This is true when the RVE
consists of plates having all the plies arranged in same orientation;
however, this may or may not be true for the other fibre lay-ups of the
plates. Following the condition above, the failure phase map can be used
as a theoretical guidance to identify the critical plates and the critical
shear strain of the hexagonal core.

4. Honeycomb core of different shapes

Following the same procedure in section 2.1, we can also derive the
required equations for the critical shear strain of honeycomb core of
different shapes. For rectangular and triangular cores, RVEs in Fig. 11
are used to analyse and to get the required equations for the critical
shear buckling strain of the cores.

For the triangular core positive direction-1 is defined for the plates-I,
plates-II, and plates-III from 7 to 9 (or 9–8), 1 to 9 (or 9–6) and 3 to 9 (or
9–4) respectively. For the rectangular core positive direction-x1 is
defined for the plates-I and plates-II from 5 to 7 (or 7–6) and 1 to 7 (or
7–4) respectively. For the triangular core in Fig. 11 with all members
having identical laminate, strain at each plate can be derived as:

γI = γ13, (39)

γII =
γ13(L1 + L3cos(θ + ω) + kL2sin(ω) )

L2
, (40)

γIII =
γ13(L3cos(θ + ω) + kL2sin(ω) )

L3
, (41)

where;

θ = cos− 1
⎛

⎝

(
(L2)2 + (L3)2

)
− (L1)2

2L2L3

⎞

⎠ and (42)

ω = cos− 1
⎛

⎝

(
(L1)2 + (L2)2

)
− (L3)2

2L1L2

⎞

⎠. (43)

For an equilateral triangular core with identical laminates for all the
plates, the critical shear strain of core γcr can be written as:

γcr = min

{⃒
⃒
⃒
⃒
⃒

FIcr
AI
66

⃒
⃒
⃒
⃒
⃒
,

⃒
⃒
⃒
⃒
⃒

2FIIcr
AII
66

(
1+

̅̅̅̅̅̅
3k

√ )

⃒
⃒
⃒
⃒
⃒
,

⃒
⃒
⃒
⃒
⃒

2FIIIcr
AIII
66
(
− 1+

̅̅̅
3

√ )

⃒
⃒
⃒
⃒
⃒

}

. (44)

The failure phase map in Fig. 11 can be plotted using Eq. (44).
From the failure phase map in Fig. 12, we can identify that:

• if − 1̅ ̅
3

√ < k < 1̅ ̅
3

√ , then the plate-I buckles first,

• if k = 1̅ ̅
3

√ , then plate-I and plate-II buckle simultaneously,

• if k = − 1̅ ̅
3

√ , then plate-I and plate-III buckle simultaneously,

• if k > 1̅ ̅
3

√ , then plate-II buckles first and

• if k < − 1̅ ̅
3

√ , then only plate-III buckles first.

For rectangular honeycomb core, regardless of length and stiffness
ratio of the plates, we will get the relationship that applied shear strain
in each direction is equal to shear strain at each plate when the plates are
orthotropic laminate:

γI13 = γ13, (45)

γII13 = kγ13. (46)

Fig. 12. Failure phase map of the triangular core with identical ortho-
tropic plates.

Fig. 13. FE models analysed for the shear load (a) γ13, (b) γ23, and (c) γ23/γ13 = 1.
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5. Finite element analysis

Linear buckling analysis is carried out using ABAQUS [34] software
to validate the proposed semi-analytical approach for the shear buckling
of the honeycomb cores. RVEs of the hexagonal cores (Fig. 13) are
modelled with S4 shell elements and material properties are assigned
using composite shell section feature available in the software. The fibre
orientation of each lamina is defined according to positive local direc-
tion of each plate considered in this study. The element size was selected
to be 0.5 mm following a mesh convergence study. Prescribed
displacement boundary conditions are used to apply the shear load on

the FE models of the RVEs. Shear loads are applied to represent the
following average global shear strain conditions on the RVEs: a) γ13, b)
γ23 and γ23/γ13 = 1 (Fig. 13). Critical shear buckling strains and the
critical plates of the RVEs are determined for positive and negative shear
loading considering the three different scenarios described above.

Elastic properties of E-glass/Epoxy used for composite wall honey-
comb cores with respect to principal axes of the lamina in the analysis
are E1 = 38600Nmm− 2, E3 = 8270Nmm− 2, G13 = 4140Nmm− 2, v13 =

0.26. Hexagonal honeycomb core wall lengths are equal and considered
as L = 50 mm, while the depth of the core b is 150 mm. The thickness of
plate-I of the hexagonal (Fig. 2) core is double the thickness of the in-
clined plates (Plates-II and III). The hexagonal cores having two different
relative core density ρ*(1) of 0.072 and 0.036 are considered for the
analysis. The thicknesses of plates are selected to satisfy the requirement
of relative core density considered. Fibre layer sequence and orienta-
tions defined in Table 1 for the inclined plates are assigned with respect
to the local axes of the plates and fibre layer sequence and orientations
of the plate-I is assumed to be symmetrical lay-up of the inclined plates.
Each ply of the laminate has an equal thickness.

Table 1
Material configuration of the walls.

Fibre lay-up Fibre orientation (0)

1 0/0/90/0/0
2 0/90/90/90/0
3 90/0/0/0/90
4 45/− 45/0/− 45/45
5 45/− 45/90/− 45/45
6 45/− 45/45/− 45/45

Table 2
(a)Critical shear strain of the honeycomb core (ρ* = 0.072) under γ13 = γ (positive) and γ23 = 0.

Fibre
lay-up

Critical shear buckling strain (1) Error% Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
%

Proposed FE

1 0.06476 0.08574 0.08375 − 22.68 2.37 II&III II&III
2 0.06226 0.08064 0.08327 − 25.23 − 3.16 II&III II&III
3 0.04234 0.06087 0.06261 − 32.37 − 2.78 II&III II&III
4 0.01884 0.02797 0.02746 − 31.39 1.86 III III
5 0.01867 0.02703 0.02719 − 31.35 − 0.60 III III
6 0.01636 0.02388 0.02591 − 36.86 − 7.84 III III

(b) Critical shear strain of the honeycomb core (ρ* = 0.072) under γ13 = γ (negative) and γ23 = 0.

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
%

Proposed FE

1 0.06476 0.08574 0.08375 − 22.68 2.37 II&III II&III
2 0.06226 0.08064 0.08327 − 25.23 − 3.16 II&III II&III
3 0.04234 0.06087 0.06261 − 32.37 − 2.78 II&III II&III
4 0.01884 0.02797 0.02746 − 31.39 1.86 III III
5 0.01867 0.02703 0.02719 − 31.35 − 0.60 III III
6 0.01636 0.02388 0.02591 − 36.86 − 7.84 III III

Table 3
(a)Critical shear strain of the honeycomb core (ρ* = 0.072) under γ13 = 0 and γ23 = γ (positive).

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
%

Proposed FE

1 0.07478 0.09513 0.09625 − 22.31 − 1.17 II&III II&III
2 0.07189 0.08900 0.09541 − 24.65 − 6.72 II&III II&III
3 0.04889 0.06837 0.07190 − 32.00 − 4.91 II&III II&III
4 0.02175 0.02881 0.03101 − 29.85 − 7.08 II&III II&III
5 0.02155 0.02802 0.03061 − 29.61 − 8.47 II&III II&III
6 0.01889 0.02436 0.03066 − 38.39 − 20.55 II&III II&III

b.Critical shear strain of the honeycomb core (ρ* = 0.072) under γ13 = 0 and γ23 = γ (negative).

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
%

Proposed FE

1 0.07478 0.09513 0.09625 − 22.31 − 1.17 II&III II&III
2 0.07189 0.08900 0.09541 − 24.65 − 6.72 II&III II&III
3 0.04889 0.06837 0.07190 − 32.00 − 4.91 II&III II&III
4 0.03924 0.04944 0.05101 − 23.08 − 3.08 II&III II&III
5 0.03900 0.04738 0.05043 − 22.66 − 6.04 II&III II&III
6 0.03440 0.04247 0.03918 − 12.20 8.40 II&III II&III
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6. Results and discussion

6.1. Validation of the proposed approach

The proposed approach is used to predict the critical shear buckling
load of the honeycomb core under the two different assumptions that all
edges of plates are simply-supported (SS) and longer edges of plates are
rotationally-restrained (RR). Predicted results for the hexagonal cores
with different material configurations are then compared with results
from the FE analysis. Tables 2-4 show the comparison of the results for
the hexagonal cores with relative core density of 0.072 and Tables 5-7
show the comparisons for the relative core density of 0.036. Both posi-
tive and negative critical strains of the hexagonal cores have been
calculated and compared against the FE results. For the negative critical
shear strain of the hexagonal cores, the absolutes values are shown in the
Tables.

It can be seen from Tables 2-7 that the predictions using the proposed
approach give conservative results for all the different cases under the
assumption that all the plate edges are simply-supported. The error
percentage varies approximately from − 12% to − 42%, considering two
different core densities. On the other hand, except for a few cases of fibre

lay-up 6, the predictions are much closer to FE results, assuming that
longer edges of the plates are rotationally-restrained. The fibre lay-up 6
creates extensional-shear and bend-twist coupling within the plate.
Although the proposed analytical solution in Eq. (30) accounts for bend-
twist coupling, the extensional-shear coupling is not considered. Strong
extensional-shrear coupling therefore leads to either underestimate or
overestimate the critical strain depending on the normal stress caused
due to the coupling is tensile or compressive respectively. In all other
fibre lay-ups, the absolute error is less than 10 % (Table 2-7) for all the
different load cases and for the different core densities. Under the shear
loading of γ13, we get the same absolute values of critical shear strains
regardless positive and negative direction of applied shear load on the
RVE for all the different material configurations (Tables 2 and 5). Under
this shear loading on the RVE, only inclined plates (Plate-II and Plate-III)
carry the shear load, and one of the inclined plates is under positive
shear and other is under negative shear (Fig. 14(a)-(d)). For the RVE
with cross-ply laminates (material lay-up 1–3 in Table 1), both the in-
clined plates buckle simultaneously since the magnitude of critical shear
strains are equal. However, for the RVE having angle-ply laminates
(fibre lay-ups 4–6 in Table 1), the magnitude of critical shear strains is
different in the inclined plates due to the effect of bend-twist coupling of

Table 4
A. Critical shear strain of the honeycomb core (ρ* = 0.072) under γ13 = γ and γ23 = γ (positive).

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
%

Proposed FE

1 0.03471 0.05036 0.04596 − 23.24 9.58 III III
2 0.03336 0.04760 0.04445 − 24.94 7.10 III III
3 0.02269 0.03512 0.03343 − 32.13 5.06 III III
4 0.01010 0.01494 0.01441 − 29.92 3.67 III III
5 0.01000 0.01445 0.01421 − 29.65 1.65 III III
6 0.00877 0.01275 0.01345 − 34.81 − 5.22 III III

b. Critical shear strain of the honeycomb core (ρ* = 0.072) under γ13 = γ and γ23 = γ (negative).

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
%

Proposed FE

1 0.03471 0.05036 0.04596 − 23.24 9.58 III III
2 0.03336 0.04760 0.04445 − 24.94 7.10 III III
3 0.02269 0.03512 0.03343 − 32.13 5.06 III III
4 0.01821 0.02579 0.02382 − 23.56 8.26 III III
5 0.01810 0.02499 0.02350 − 22.97 6.35 III III
6 0.01597 0.02225 0.01953 − 18.21 13.95 III III

Table 5
A. Critical shear strain of the honeycomb core (ρ* = 0.036) under γ13 = γ (positive) and γ23 = 0.

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
%

Proposed FE

1 0.01619 0.02344 0.02358 − 31.34 − 0.59 II&III II&III
2 0.01557 0.02216 0.02315 − 32.75 − 4.29 II&III II&III
3 0.01059 0.01592 0.01684 − 37.10 − 5.44 II&III II&III
4 0.00471 0.00714 0.00741 − 36.47 − 3.69 III III
5 0.00467 0.00695 0.00734 − 36.41 − 5.37 III III
6 0.00409 0.00613 0.00700 − 41.55 − 12.40 III III

b. Critical shear strain of the honeycomb core (ρ* = 0.036) under γ13 = γ (negative) and γ23 = 0.

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
% Proposed FE

1 0.01619 0.02344 0.02358 − 31.34 − 0.59 II&III II&III
2 0.01557 0.02216 0.02315 − 32.75 − 4.29 II&III II&III
3 0.01059 0.01592 0.01684 − 37.10 − 5.44 II&III II&III
4 0.00471 0.00714 0.00741 − 36.47 − 3.69 III III
5 0.00467 0.00695 0.00734 − 36.41 − 5.37 III III
6 0.00409 0.00613 0.00700 − 41.55 − 12.40 III III
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the laminate; therefore, only one of inclined plates which has the lowest
critical shear buckling load buckles. When the direction of the shear load
on the RVE changes other inclined plate buckles at the same absolute
critical strain. Therefore, the change in the direction (positive to nega-
tive or vice-versa) of the applied loading does not change the critical
shear buckling strain of the hexagonal core under γ13.

Under shear loading of γ23 on the RVE, critical shear buckling strain
of the hexagonal core changes depending on the positive and negative
direction of the applied shear load (Tables 3 and 6). Under γ23 loading,
for all the material configurations and for both negative shear and
positive shear loading, plates II and III buckle simultaneously (Fig. 14
(e)-(h)), and all the plates experience the strain in the same direction.
Therefore, the change in direction of applied shear load (positive to
negative or vice-versa) on the RVE gives different critical strains for the
RVE having the angle-ply laminates due to the effect of bend-twist
coupling. However, for the hexagonal cores with cross-ply laminates,
magnitudes of the critical strains are equal regardless of positive and
negative direction of loading γ23 on the RVE. The difference between the
critical shear strains for the positive and negative shear loading γ23 on
the RVE with the angle-ply laminates is significant (critical strain for
negative shear approximately 1.7 times critical strain for the positive

shear); thus, neglecting the effect of bend-twist coupling under γ23
loading will under or overestimate the critical shear buckling load.

Comparing the critical shear strains of the hexagonal core under
shear loadings γ13 and γ23, a slightly higher results are obtained for the
shear load γ23 for all the fibre lay-ups in positive shear and for the cross-
ply laminates in negative shear (Table 3). However, the critical strains of
the hexagonal core under negative γ23 loading are significantly higher
than for negative γ13 loading for the angle-ply laminates (Table 3). In the
combined shear loading where γ13 and γ23 are equal, the buckling
behaviour is similar to γ23 loading in terms of the impact of the positive
and negative shear loading on the hexagonal core. However, here only
one of the inclined plates (Plate-III) buckles (Fig. 14 (i) − (l)).

In Fig. 15, the effect of the core walls aspect ratio on the shear
buckling strain of the hexagonal core under positive shear loads γ13 and
γ23 is illustrated. For the honeycomb core with relatively longer plates
considered in this study, the shear buckling strain approached a constant
value and the proposed approach, which incorporates rotationally
restrained boundaries, provides a very good agreement with FE pre-
dictions. This suggests that the proposed approach accurately captures
the shear buckling of composite honeycomb cores, particularly for those
having the walls with the higher aspect ratios, validating its

Table 6
A. Critical shear strain of the honeycomb core (ρ* = 0.036) under γ13 = 0 and γ23 = γ (positive).

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
%

Proposed FE

1 0.01870 0.02578 0.02709 − 30.96 − 4.82 II&III II&III
2 0.01797 0.02425 0.02652 − 32.24 − 8.56 II&III II&III
3 0.01222 0.01809 0.01934 − 36.81 − 6.46 II&III II&III
4 0.00588 0.00806 0.00835 − 29.61 − 3.51 II&III II&III
5 0.00583 0.00777 0.00825 − 29.36 − 5.86 II&III II&III
6 0.00505 0.00679 0.00827 − 38.96 − 17.93 II&III II&III

b.Critical shear strain of the honeycomb core (ρ* = 0.036) under γ13 = 0 and γ23 = γ (negative).

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
%

Proposed FE

1 0.01870 0.02578 0.02709 − 30.96 − 4.82 II&III II&III
2 0.01797 0.02425 0.02652 − 32.24 − 8.56 II&III II&III
3 0.01222 0.01809 0.01934 − 36.81 − 6.46 II&III II&III
4 0.01061 0.01373 0.01407 − 24.61 − 2.44 II&III II&III
5 0.01055 0.01326 0.01391 − 24.17 − 4.70 II&III II&III
6 0.00860 0.01062 0.01076 − 20.07 − 1.30 II&III II&III

Table 7
A. Critical shear strain of the honeycomb core (ρ* = 0.036) under γ13 = γ and γ23 = γ (positive).

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
%

Proposed FE

1 0.00868 0.01259 0.01255 − 30.85 0.30 III III
2 0.00834 0.01190 0.01225 − 31.93 − 2.87 III III
3 0.00567 0.00878 0.00889 − 36.23 − 1.25 III III
4 0.00252 0.00374 0.00386 − 34.66 − 3.03 III III
5 0.00250 0.00361 0.00381 − 34.39 − 5.26 III III
6 0.00219 0.00319 0.00361 − 39.41 − 11.74 III III

b. Critical shear strain of the honeycomb core (ρ* = 0.036) under γ13 = γ and γ23 = γ (negative).

Fibre
lay-up

Critical shear buckling strain (1) Error % Critical plate

Proposed-SS(a) Proposed-RR(b) FE(c) (a − c)
c

%
(b − c)

c
% Proposed FE

1 0.00868 0.01259 0.01255 − 30.85 0.30 III III
2 0.00834 0.01190 0.01225 − 31.93 − 2.87 III III
3 0.00567 0.00878 0.00889 − 36.23 − 1.25 III III
4 0.00455 0.00645 0.00656 − 30.63 − 1.66 III III
5 0.00453 0.00625 0.00649 − 30.20 − 3.69 III III
6 0.00399 0.00556 0.00538 − 25.85 3.33 III III
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applicability and reliability in predicting the core wall buckling
behaviour under shear loading.

6.2. Influence of important parameters

In the previous section, the predictions using the proposed approach
were validated using the results from FE. In this section, the proposed

approach is used to study the influence of important parameters on the
critical shear buckling strain of the honeycomb core.

Fig. 16 shows the variation of the critical strains against the length
ratio of the honeycomb core with the constant relative core density of
0.072. The length of plate-II and plate-III are changed while the length of
plate-I still remains at 50 mm. The requirement of constant core density
is maintained by selecting the suitable thickness for plates. All other

Fig. 14. Top view and side view of critical buckling mode shape for the shear load (a-b) γ13( positive shear), (c-d) γ13(negative shear), (e-f) γ23(positive shear), (g-h)
γ23(negative shear), (i-j) γ13/γ23 = 1(positive shear), and (k-l) γ13/γ23 = 1(negative shear). The critical buckling mode shapes are shown for the hexagonal core RVEs
with (0/0/90/0/0) and (45/-45/0/-45/45) laminates and relative core density of 0.072. 1st and 3rd critical mode shapes of each row are for (0/0/90/0/0) laminate
and 2nd and 4th are for (45/-45/0/-45/45) laminate.
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conditions, such as the thickness ratio of plates and fibre lay-ups remain
same as before. Fig. 16(a) shows the variation of the critical strain under
γ13 shear loading. With the increase in the length ratio (L2/L1) of plates,
the critical shear buckling strain of the hexagonal core reduces contin-
uously. It can be understood that increasing the length of the plate-II and
plate-III under constant core density reduces the thickness of the in-
clined plates, leading to the continuous reduction of the shear buckling
load of the hexagonal core as the plate-I does not contribute to any load
sharing due to its orientation.

On the other hand, we see different trends in the variations of the
critical strains under the γ23 loading (Fig. 16(b)-(c)). Under γ23 loading,
shear load on the hexagonal core is carried by all three plates; therefore,
the change in the length ratio (L2/L1) leads to a transition of critical
strain dependency of the hexagonal core between the plate-I and the

inclined plates. At the lower length ratio, the plate-I buckles first and
governs the critical strain of the hexagonal core. As the length ratio
increases, both inclined plates buckle before the plate-I, and the critical
strain is almost constant with the variation of the length ratio. For the
cross-ply laminates, the transition of critical buckling dependency from
the plate-I to inclined plates happens at the length ratio of 0.75 for both
positive and negative shear on the RVE. For the angle ply-laminates, the
transition happens at the length ratio of 0.5 for the positive shear and
0.75 for the negative shear.

Fig. 17 shows the variation of the critical strain with change of angle
between the plates. The relative core density remains constant at 0.072
by changing the thickness of the plates accordingly. The maximum
critical shear strains of the honeycomb are obtained at around 130◦ and
110◦ for the shear load γ13 and γ23 respectively, regardless of positive or

Fig. 15. Effect of the aspect ratio of core walls on the critical shear buckling strain under (a) γ13(positive shear), (b) γ23(positive shear).

Fig. 16. Variation of the critical shear buckling strain with different length ratio between plate-II and I for the shear load (a) γ13 (positive and negative shear), (b)
γ23(positive shear) and (c) γ23(negative shear).

J. Sriharan et al. Composite Structures 351 (2025) 118629 

14 



negative shear and the material configuration of the plates. It can be
noted that the thickness of each plate at these angles is lower than plates
of the regular hexagonal core (120◦); however, the ratios in Eq. (19)
become maximum at 130◦ and 110◦ for the respective shear loading.

Fig. 18 shows the variation of the critical strain and shear buckling
strength of the hexagonal core with relative core density. The shear
buckling strength of the hexagonal core is calculated by multiplying the
critical strain with the effective shear stiffness [35,36] of the hexagonal
core. The relative core density is varied by changing the thicknesses of
the plates while keeping the length of each wall constant (50 mm);
however, it can be deduced from the Eq. (19) that even if we change the
length of plates (without changing the thickness) to vary the relative
core density, we will get same effect on the critical shear strain as long as
length ratio of the plates remains constant and the core depth to length
ratio is adequate to consider as

long plate for the buckling. The Fig. 18(a)-(b) show the critical shear
buckling strain and corresponding shear buckling strength for the pos-
itive and negative shear loading γ13. Although the effective stiffnesses of
the hexagonal cores with angle-ply laminates are higher than the
effective stiffnesses of the hexagonal cores with cross-ply laminates
(Fig. 18(g)-(h)), the buckling strength of the honeycomb core with cross-
ply laminates are higher than angle-ply laminates for the positive and
negative shear load γ13 (Fig. 18(b)) and positive shear load γ23 (Fig. 18
(d)). For the negative shear load of γ23, the hexagonal cores with angle-

ply laminates shows higher shear buckling strength than the cross-ply
laminates (Fig. 18(f)). It can be seen from Fig. 18(a)-(f) that the shear
buckling strength for the γ13 loading is always lower than the shear
buckling strength for γ23 loading; therefore, for the uniaxial bending, it
is always efficient to orient the plate-I along the longitudinal axis of the
beam and to use angle-ply laminates considering the direction of the
shear. However, for the plates subjected to combined shear, using the
angle-ply laminates for the core is beneficial if the design is governed by
the stiffness (e.g. deflection), but if it is strength governed then material
configurations and geometry of the honeycomb need to be designed for
the specific loadings for optimal performance.

As discussed earlier, the presence of bend-twist coupling in the angle-
ply laminates positively and negatively influences the shear buckling
strength of the honeycomb core. Fig. 19 shows comparisons of the
critical shear buckling strains obtained without considering the bend-
twist coupling (orthotropic solution D16 = 0 and D36 = 0) with the
predictions considering the effect of bend-twist coupling for hexagonal
core with fibre lay-up (45/-45/0/-45/45) in Table 1. The ratio of
D16/D66 is varied by changing the ratio of thickness of 45/-45 plies to 0-
angle plies while the laminate remains still symmetric and balanced, and
the relative core density of hexagonal core is 0.072. For the γ13 loading,
the critical strain is overestimated with orthotropic buckling solution
(Fig. 19(a)). Maximum error of around 60 % (Fig. 19(b)) is occurred
when the thickness of the 0-angle ply approaches zero. On the other
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Fig. 17. Variation of the critical shear buckling strain with the angle θ between the plates for the shear load (a) γ13(positive and negative shear), (b) γ23 (positive
shear) and (c) γ13 (negative shear).

J. Sriharan et al. Composite Structures 351 (2025) 118629 

15 



Fig. 18. Variation of the critical shear buckling strain and shear buckling strength for the shear load (a-b) γ13 (positive and negative shear), (c-d) γ23 (positive shear)
and (e-f) γ13 (negative shear) and variation of the effective shear stiffness (g) G13 and (h) G23 with the relative core density of the hexagonal core. Shear buckling
strength of the hexagonal core is calculated by multiplying the critical strain by the effective shear stiffness of the core.
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hand, predictions with and without the bend-twist coupling converge to
the same results as the percentage of+ 45/-45 plies approaches zero. For
the γ23 loading, the critical shear strain of the hexagonal core is over-
estimated by a maximum of 56 % and underestimated by 25 % for the
positive and negative shear, respectively. When the thicknesses of each
ply of laminate are equal (hexagonal cores considered in Tables 2–3), the
error percentages are 41 %, 36 % and − 20 % for positive and negative
γ13, positive γ23 and negative γ23, respectively.

6.3. Comparisons between different core shapes

Fig. 20 compares critical shear buckling strains of different core
shapes with an equal relative core density of 0.072. Here, the plates’
lengths of equilateral triangular core and rectangular core are selected
such that the characteristics dimensions p (86.6 mm) and q (75 mm) are
equal to the hexagonal core considered in this study. The hexagonal core
has the highest critical buckling strains for all the different load cases
compared to triangular and rectangular cores (Fig. 20(a)-(f)). The su-
perior performance of the hexagonal core compared to other core shapes
is mainly due to its geometric configuration and shear loading condi-
tions. However, under the combined shear condition, the relative
reduction in the shear buckling capacity of the hexagonal core is higher
than other core shapes. It can be noted that for the same relative core
density and for selected plate lengths, rectangular and triangular cores
have lower plate thickness than the honeycomb core. By selecting larger
plate lengths for the triangular and rectangular cores, one may consider
higher thickness for plates to keep the core density constant. However, it
can be deduced from Eq. (19) that the critical strain of the sufficiently
thick core does not vary with the length of the plate as long as the core
density and length ratio between the plates remain constant.

7. Conclusions

In this study, we present a novel and accessible semi-analytical
approach for predicting the critical shear buckling load of composite
honeycomb cores in sandwich panels. Our proposed model exhibits a
broad applicability, accommodating various honeycomb core shapes
and material configurations. Notably, employing simply-supported
boundary conditions for all honeycomb core edges yields conservative
predictions, while rotationally restraining two longer edges aligns
closely with finite element (FE) results. Analysing hexagonal

honeycomb cores with cross-ply and angle-ply laminates, we unveil the
consistent critical shear buckling strains of cross-ply laminates and the
directional influence of angle-ply laminates due to bend-twist coupling.
The study underscores the superior shear buckling performance of
hexagonal cores and emphasizes the potential for optimization by
adjusting both material configurations and geometric parameters. Key
contributions and impacts of the paper include:

General Applicability: The proposed approach is versatile, offering
predictions for various honeycomb core shapes and material con-
figurations, showcasing its broad applicability.
Boundary Conditions Influence: By exploring different boundary
conditions, the study reveals that rotationally restraining two longer
edges provides predictions closely aligned with finite element (FE)
results, offering a more accurate representation of critical shear
buckling strains.
Material Configuration Impact: The investigation of hexagonal
honeycomb cores with cross-ply and angle-ply laminates highlights
the influence of material configurations on critical shear buckling
loads. Notably, angle-ply laminates exhibit directional sensitivity
due to bend-twist coupling effects.
Conservative vs. Accurate Predictions: The proposed model’s use
of simply-supported boundary conditions leads to conservative pre-
dictions, while rotationally restraining longer edges provides more
accurate results, balancing efficiency and precision.
Geometric Optimization: The study emphasizes the potential for
optimizing shear buckling strength not only through material con-
figurations but also by adjusting geometric parameters of the hon-
eycomb core.

Our approach, notable for its ease of implementation and computa-
tional efficiency compared to finite element methods, proves to be a
valuable tool for optimizing honeycomb core shapes and material con-
figurations in sandwich panel design. Beyond enhancing the under-
standing of shear buckling behaviour, it provides practical insights for
industries focused on lightweight, high-performance structures.

While the proposed analytical approach provde many advantages as
highlighted above, it is with several limitations owing to the simplifying
assumptions made to make an analytical model possible. The proposed
method does not account for possible extensional-shear coupling effects
of the laminates. As a result, predictions may not be accurate when

Fig. 19. (a) Comparison of the predictions of the critical shear strains with and without the consideration of bend-twist coupling for different shear loads and (b)
percentage of difference in predictions between with and without bend-twist coupling. Thickness of (45/-45) plies and 0-ply of angle ply laminate (45/-45/0/-45/45)
in Table 1 were varied without changing the total thickness of the laminate (constant relative core density) to vary the influence of bend-twist coupling.
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laminates with strong extensional-shear coupling are used for the hon-
eycomb walls. The proposed solution also ignored the portantial in-
teractions between the core and face sheets. While ignoring such effects
means proposed solution is lukely to provide conservative results, this
may cause potential errors interms of determining the optimal solution.
In addition, analytical model assumed ideal geometric conditions and
ignored the effects of imperfections. Imperfections may influence the
shear buckling capacity, thus predictions may not be accurate when
there are large imperfections in the core walls.
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