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Abstract

A least-square-based method to identify the system matrices of linear dynamical systems is proposed. The primary focus

is on the identification of a reduced-order model of the system operating in the mid-frequency range of vibration. Proper

orthogonal decomposition (POD) is used for the model reduction. Such reduced-order model circumvents the limitations

of traditional modal analysis which, although well-adapted in the low-frequency range, is prone to computational and

conceptual difficulties in the mid-frequency range. The inverse problem involving the identification of the mass, damping

and stiffness matrices is posed in the framework of a linear least-square estimation problem. To achieve this objective,

Kronecker algebra is aptly exploited for a concise mathematical formulation to identify these matrix-valued variables.

Tikhonov regularisation is used to satisfy the symmetry property of the system matrices. The application of the proposed

methodology is demonstrated using an example of multiple degree-of-freedom discrete linear dynamical system. The

robustness of the new methodology is investigated using a noise sensitivity study.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

System identification plays a crucial role in the model-based prediction of dynamical systems. A finite
representation of a continuous media described by a partial differential equation usually leads to a discrete
dynamical system. In practical applications involving linear continuous operators, the discrete system is fully
characterised by the so-called mass, stiffness and damping matrices. Once these matrices are estimated with
reasonable confidence, such discrete model can predict the response of the underlying dynamical system to
external disturbances. In the context of structural dynamics, the identification of these system matrices is
achieved by traditional modal analysis techniques. In the low-frequency domain, only a few modes contribute
to the total response of the system (see, for example, the books by Géradin and Rixen [1], Clough and Penzien
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[2] and Humar [3]). Experimental modal analysis permits the extraction of such modal parameters through
experimental measurements, as described by Maia and Silva [4] and Ewins [5]. The structure is set into motion
by either a mechanical shaker, an impact hammer or ambient vibration (such as wind or traffic load in a bridge
structure), with the corresponding response measured at one or more points. Recent innovation in the field of
data-acquisition hardware allows us to acquire highly resolved spatio-temporal vibration data. For example,
Iemma et al. [6] made use of the laser-vibrometer to conduct contact-free measurement of surface
displacement of a structure.

For low-frequency vibration problems, the modal analysis has been widely used to identify the mass,
stiffness and damping matrices from the measured response (see references [5,4,7–17] for example). The two
main disadvantages of this approach are: (a) the accuracy of the identified modal parameters relies on the
presence of distinct peaks in the measured frequency response functions (FRFs); (b) the identification of
complex modes poses a serious challenge in the presence of non-proportional damping (refer to Srikantha-
Phani and Woodhouse [18] and Adhikari [19]). The first problem is inherent to the conventional modal
analysis. If the peaks in the measured FRFs are not distinct or are closely spaced, the modal parameter
extraction procedure is difficult to apply [5]. As a consequence, the identified system matrices obtained using
the extracted modal parameters become erroneous. It is therefore difficult to extend the modal identification
procedure in the mid-frequency range where a large number of modes contribute to the total response. Modal
analysis is also difficult to apply to periodic systems (such as the bladed disks in turbomachineries) inherently
containing closely spaced modes demarcated by the so-called pass-bands and stop-bands [20]. The second
problem arises for systems with high damping materials [21,22] such as panels with viscoelastic damping. In
this paper, we investigate the ability to adopt a different approach to tackle the problem of system
identification in the mid-frequency range. In order to be successful, such approach should address the
following major challenges encountered in the mid-frequency range: (a) a high-resolution numerical model is
needed to capture short wavelength system response leading to large-scale system matrices; (b) the small-
amplitude system response may be significantly corrupted by noise. Any system identification tool must
therefore be able to deal with, or at least bypass, significant computational costs associated with identifying
the high-dimensional system matrices. Furthermore, the method must be robust in dealing with noise in the
measured response data.

This paper explores the feasibility of identifying a proper orthogonal decomposition (POD)-based reduced-
order model in mid-frequency structural dynamics. To reduce computational effort, such reduced-order model is
exploited to identify the underlying dynamical system to be used as a predictive tool. POD is used to arrive at a
low-dimensional representation of the system response. Kronecker algebra is exploited to achieve a concise
formulation for the linear least-square identification problem in the matrix space. Tikhonov regularisation is
applied to satisfy additional physical constraints in terms of the symmetric property of the system matrices. The
robustness of the method is evaluated using a noise-sensitivity study. The paper is organised in the following
manner. A brief background of POD is given in Section 2.1. The application of POD in reduced-order modelling
is detailed in Section 2.2. In Section 3, the detailed formulation involving the system identification method is
described. Section 4 describes the concept of Tikhonov regularisation and its application to system
identification. A step-by-step algorithm of the proposed methodology is given in Section 5. Section 6 reports
the results from a numerical example elucidating the feasibility and usefulness of the proposed method. The
paper concludes in Section 7 where a summary and findings of the current investigation are detailed.

2. Reduced-order modelling

A fine spatial resolution of the finite element (FE) mesh is necessary to capture the local features of high-
and mid-frequency vibration. The resulting FE model involves the solution of a large-scale linear system.
Scalable algorithms involving domain decomposition methods [23–25] can tackle such large-scale systems
through data parallelism by exploiting multi-processor computers. Nevertheless, reduced-order modelling
offers a reasonable turnaround time in the forward simulation of systems having substantial model resolution.
A reduced-order model is perhaps even more useful in tackling the inverse problem involving the identification
of large-scale linear systems as many inversion algorithms perform better in identifying low-dimensional
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models. We therefore aim to identify a reduced-order model to solve the problem of system identification in
the mid-frequency range.

The primary issue in reduced-order modelling is the selection of a reduced-order basis to represent the response of
a high-dimensional system. Such basis can be a natural choice as in the case of modal expansion or can be automated
but explicitly identifiable as in Krylov method in iterative solvers [26,27]. The benefit derived from adopting a good
set of basis functions depends on the problem at hand. Potential benefits include: (1) computational complexity
reduction relative to the comprehensive model; (2) minimise turnaround time for repeated simulation; (3) extracting
reusable basis for repeated computational tasks. A good basis is physically motivated and problem-dependent (e.g.
POD basis), hierarchical (e.g. wavelet basis) or orthogonal (e.g. Fourier and POD basis). A physically motivated
(therefore problem-dependent) basis splits the components of the result in a dominant part together with a
subdominant part to enhance the accuracy further. A hierarchical basis separates different components by the scales
of variations. Expansion in an orthogonal basis separates the components of the solution by decoupling the inner-
product spaces. In the current investigation, we adopt a POD-based reduced-order model following [28–30].

We have chosen POD as a model reduction technique due to the following difficulties associated with modal
analysis: (1) modal identification becomes problematical when the FRF is smooth or alternatively, when the
natural frequencies are densely spaced in the frequency axis; (2) the form and magnitude of damping become
significant in the mid-frequency band sometimes leading to complex modes due to non-proportional damping.
Such complex modes do not necessarily form a complete basis in contrast to the case of POD basis.
Furthermore, the effect of damping is included in the POD modes irrespective of its form (proportional or
non-proportional) and magnitude.

2.1. Background of proper orthogonal decomposition

POD provides a basis for the spectral decomposition of a spatio-temporal signal and has been extensively
used in numerous applications due to its various desirable properties. The most compelling property of POD is
perhaps its mean-square optimality: it provides the most efficient way of capturing the dominant components
of a high-dimensional signal with only a few dominant scales of fluctuations, namely proper orthogonal modes
(POMs) [28–40]. POD has been used by Sarkar and Ghanem [28] and Sarkar and Paidoussis [29,30] for the
model reduction of linear as well as non-linear dynamical systems [28–30]. In the context of system
identification, POD has been applied by Kerschen and Golinval [31] and Feeny and Kappagantu [40] to
measured displacements of a discrete undamped system with a known mass matrix leading to an estimation of
the normal modes. The POD method has been used in the context of non-linear problems as a model-
reduction tool by Azeez and Vakakis [32,33], Kerschen et al. [34–36] and Kunisch and Volkwein [37]. Lenaerts
et al. [38,39] have used POD for the identification of a non-linear dynamical system whereby the non-linear
stiffness parameter was identified with a reduced-order model. Other approaches for reduced-order
identification of non-linear systems are detailed in [41]. The recent availability of data-acquisition hardware
(such as the laser-vibrometer [6]) makes it possible to acquire highly resolved spatio-temporal vibration data
rendering POD-based methods amenable to practical application.

The system of equations describing the forced vibration of a viscously damped linear discrete system with n

degrees of freedom can be represented by

Mn €unðtÞ þ Cn _unðtÞ þ KnunðtÞ ¼ fnðtÞ. (1)

Here Mn 2 Rn�n is the mass matrix, Cn 2 Rn�n is the damping matrix, Kn 2 Rn�n is the stiffness matrix,
unðtÞ 2 Rn is the displacement vector and fnðtÞ 2 Rn is the forcing vector at time t. Our aim is to arrive at a
POD-based reduced-order model of the above system of equations. Suppose that r snapshots of u are obtained
at n locations (e.g., by using piezoelectric accelerometers) of a system response function. The response vector
uðtÞ is normally stored in the discrete time format as

uðtiÞ ¼

u1ðtiÞ

..

.

unðtiÞ

8>><>>:
9>>=>>;, (2)
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where ti ¼ i � dt with dt being the uniform time step used in the data-acquisition card, i ¼ 1; . . . ; r, and r is the
total number of steps used in the measurement. One obtains the response correlation matrix Ruu 2 Rn�n in the
time domain to be used in the POD method as

Ruu ¼ huðtÞu
TðtÞi, (3)

where h�i is the time averaging operator. The above matrix is symmetric and positive definite. In the case of the
system being excited by band-limited incoherent stationary white noise vector of unit strength, the response
correlation matrix can also be expressed in the continuous frequency domain [28,42] by

Ruu ¼

Z
B

RfHyðoÞHðoÞgdo. (4)

Here HðoÞ denotes the system transfer matrix, ð�Þy is the complex conjugate transpose (Hermitian) operator
and B is the frequency bandwidth of interest.

The spectral decomposition of Ruu is given by

Ruu ¼
Xn

i¼1

liuiu
T
i , (5)

where li are the eigenvalues of Ruu and ui are the corresponding eigenvectors. The eigenvalues li are arranged
such that l1Xl2X � � �Xln. Due to the symmetry and positive definiteness of Ruu, all eigenvalues are positive
and the set of eigenvectors forms an orthonormal basis. Only the first few modes are the most important for
the POD method since they capture most of the energy of the signal, i.e. Ruu can be approximated by

Ruu �
Xm

i¼1

liuiu
T
i . (6)

Here m is the number of dominant POD modes. Two widely used methods for determining the optimal
dimension (m) of the reduced-order system are: (1) computing the percentage of energy extracted; (2) plotting
the POD eigenvalues. Each li represents the average energy contributed by each mode ui e.g., [43]. Thus by
including more POD modes ui, one increases the total percentage of energy captured by the reduced-order
POD representation. The percentage of total energy extracted is computed by dividing the sum of the
characteristic eigenvalues for the modes extracted by the sum of all the eigenvalues of the original correlation
matrix asPm

i¼1liPn
i¼1li

Xk, (7)

assuming that POD is required to capture k of the energy of the measured displacements. In general, m is
much smaller than n. Furthermore, a narrower frequency band results in a smaller number of dominant modes
being required for a good approximation.

The major tasks involved in POD are: (a) construction of the correlation matrix Ruu in Eq. (3) and (b) the
solution of the eigenvalue problem in Eq. (5). These steps are straightforward compared to the effort involved
in experimental modal analysis.

It is also important to note that the POD modes obtained are functions of the system response. Clearly,
different inputs result in different outputs and, consequently, different POD modes are extracted. We are
interested in determining the optimal set of POD modes which are equally valid for arbitrary excitations
having their frequency contents confined within the prescribed frequency band. In order to excite the entire
spectrum of natural frequencies in that frequency band, the system is forced to vibrate with an incoherent

band-limited stationary vector white noise with unit strength [28,42], also known as ‘‘rain-on-the-roof’’
loading. The resulting response covariance matrix is thus given by Eq. (4) for this particular type of excitation.
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2.2. System model reduction using POD

Let us consider the output vector uðtÞ of a multi-input multi-output system of order n. Having calculated the
dominant subspace of POD, the output vector can be approximated by a linear representation involving the
first m POD modes as

uðtÞ �
Xm

i¼1

aiðtÞui. (8)

In matrix form, Eq. (8) becomes

uðtÞ � ½u1; . . . ;um�

a1ðtÞ

..

.

amðtÞ

8>><>>:
9>>=>>;. (9)

This can be rewritten as

uðtÞ � RaðtÞ, (10)

where R is the transformation matrix containing the first m dominant POD eigenvectors:

R ¼ ½u1; . . . ;um� 2 Rn�m, (11)

and aðtÞ is the vector containing the respective coefficients. Eq. (10) indicates that system output is optimally
approximated by applying a transformation R on the POD modal coefficient vector. The modal coefficients
can be obtained by

aðtÞ ¼ RTuðtÞ. (12)

Each modal coefficient aiðtÞ is simply equal to the projection of the output vector uðtÞ onto the corresponding
POD mode ui.

Using the POD transformation matrix R, the reduced-order representation of the system in Eq. (1) is

Mm €umðtÞ þ Cm _umðtÞ þ KmumðtÞ ¼ fmðtÞ, (13)

where

Mm ¼ RTMnR 2 Rm�m, (14)

Cm ¼ RTCnR 2 Rm�m, (15)

Km ¼ RTKnR 2 Rm�m, (16)

are the reduced-order mass, damping, and stiffness matrices, respectively. The reduced-order displacement
vector (equivalent to the POD modal coefficients) and reduced-order forcing vector are given by

umðtÞ ¼ RTunðtÞ ¼ aðtÞ, (17)

fmðtÞ ¼ RTfnðtÞ. (18)

In the frequency domain, Eq. (13) is equivalent to

½�o2Mm þ ioCm þ Km�UmðoÞ ¼ FmðoÞ, (19)

where UmðoÞ 2 Cm and FmðoÞ 2 Cm are the Fourier transforms of umðtÞ and fmðtÞ, respectively.
Eq. (13) is the reduced-order model to be identified. Our task is to identify the reduced-order system

matrices Mm, Cm and Km. The value of UmðoÞ is known from measurements and the value of FmðoÞ is known
as it is the input to the system. The proposed system identification technique can estimate the system matrices
of both the comprehensive system in Eq. (1) as well as the reduced-order system in Eq. (13). In practice,
however, the order of a complex system can be very high (in the order of millions) depending on the
application at hand. In such cases the POD-based reduced-order model may reduce the identification problem
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to estimating the reduced-order matrices of much smaller dimensions. From a computational perspective, the
advantage of the reduced-order model identification problem relates to significant reduction of both the
memory requirement and arithmetic complexity.

3. Reduced-order system identification

Consider the forced vibration of a viscously damped linear discrete system with m degrees of freedom
described by Eq. (13) or (19). For a specific frequency oi, one can recast Eq. (19) as

½ �o2
i Im ioiIm Im �

Mm

Cm

Km

264
375UmðoiÞ ¼ FmðoiÞ. (20)

Here Im is the identity matrix of order m. Applying the vec operator (see Appendix A.2) on both sides of (20)
and using the Kronecker algebraic identity vecðAYBÞ ¼ ðBT � AÞ vecðYÞ [44,45] we obtain

ðUmðoiÞ
T
� ½�o2

i Im ioiIm Im �Þvec

Mm

Cm

Km

264
375

0B@
1CA ¼ FmðoiÞ. (21)

Here � denotes the Kronecker matrix product (see Appendix A.1) and the unknowns are the elements of the
mass, damping and stiffness matrices. Having measured the system response UmðoÞ vector at s different
frequencies and knowing the force FmðoÞ, one can rewrite Eq. (21) in the following augmented form:

Umðo1Þ
T
� ½�o2

1Im io1Im Im �

..

.

UmðosÞ
T
� ½�o2

s Im iosIm Im �

26664
37775vec

Mm

Cm

Km

264
375

0B@
1CA ¼

Fmðo1Þ

..

.

FmðosÞ

8>><>>:
9>>=>>;. (22)

Eq. (22) is a system of equations and can thus be written as

Ax ¼ y, (23)

where

x ¼ vec

Mm

Cm

Km

264
375

0B@
1CA 2 R3m2

, (24)

A ¼

Umðo1Þ
T
� ½�o2

1Im io1Im Im �

..

.

UmðosÞ
T
� ½�o2

s Im iosIm Im �

26664
37775 2 Csm�3m2

(25)

and

y ¼

Fmðo1Þ

..

.

FmðosÞ

8>><>>:
9>>=>>; 2 Csm. (26)

Eqs. (23)–(26) permit a convenient representation of the inverse problem involving identification of the
matrix-valued unknown variables Mm, Cm and Km posed as the solution of a linear system of equations. The
application of Kronecker identities allows such a concise and simple mathematical representation. The system
of equations (22) is overdetermined in the case where s43m. The vector x containing vectorised equivalent of

ARTICLE IN PRESS
M. Khalil et al. / Mechanical Systems and Signal Processing 21 (2007) 3123–31453128



Author's personal copy

the mass, damping, and stiffness matrices can be solved in the least-square sense using the approximate inverse
of the matrix A as follows:

bx ¼ ½ATA��1ATy, (27)

where bx is the least-square estimate of x and ½ATA��1AT is the least-square inverse of matrix A, also known as
the Moore–Penrose inverse of a matrix [46,47].

The system matrix identification method proposed can identify the reduced order as well as the original
model system matrices.

4. Tikhonov regularisation

4.1. Background

The estimated vector bx is a good solution to Eq. (23) if the matrix–vector product Abx is close to y. In the
preceding section, the estimate of x is obtained in the least-squares sense. One quantity for measuring the
accuracy of the estimated bx is the L2-norm of the residual vector Abx� y given by

CðbxÞ ¼ kAbx� yk ¼ ðAbx� yÞTðAbx� yÞ. (28)

Consider the case of the number of frequency points being relatively small due to insufficient measurements.
In that case, the matrix A may have a rank less than 3m2 and there will exist one or more zero singular values
of A. The least-square solution vector bx will then have two components. One component lies in the subspace
spanned by the singular vectors of A corresponding to the non-zero singular values. The other non-zero
component exists in the subspace spanned by the singular vectors with zero singular values. Only the first
component can reasonably be estimated from the data set y.

Clearly there is a need to include additional information which permits the estimation of the component of x
that lies in the null-space of A. One approach to solving this problem is to introduce another norm DðbxÞ that
measures the error between bx and some default solution x1 where x1 may be some prior information about x.
DðbxÞ has the form

DðbxÞ ¼ kbx� x1k. (29)

More generally, one strives to estimate the result of a linear operator L in the form of a matrix acting on the
difference ðbx� x1Þ leading to

DðbxÞ ¼ kLðbx� x1Þk ¼ ðbx� x1ÞTLTLðbx� x1Þ. (30)

A well-known regularisation technique is to form a weighted sum of CðxÞ and DðxÞ using a weighting
factor l2. The estimate bx is the value of x that minimises this sum:

bx ¼ arg minfCðxÞ þ l2DðxÞg. (31)

The solution to (31) can be obtained as

bx ¼ ðATAþ l2LTLÞ�1ðATyþ l2LTLx1Þ. (32)

The above formulation leads to a family of solutions parameterised by the weighing factor l, popularly known
as the regularisation parameter [48]. If the regularisation parameter is very large, the constraint involving the
observed data y weakly influences the solution bx. The estimate of x will be heavily dominated by the constraint
Lx ¼ Lx1. On the other hand if l is chosen to be small, the solution depends more heavily on the observed
data. Of course, if l is set to zero, the problem reduces to solving Eq. (23) being posed as an unconstrained
optimisation problem. Thus, the value for the regularisation parameter is chosen based on how strongly one
would like to enforce the constraint Lx ¼ Lx1. This regularisation method is generally known as Tikhonov
regularisation [48].
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4.2. Determination of the regularisation parameter

A main issue in applying Tikhonov regularisation is choosing a good value of l that smoothes the solution
without penalising the constraint on the available information. There are three methods to determine the
optimal value for l (see [49–52]):

(1) Discrepancy principle: Choose l such that for a given value for �, the residual norm satisfies

CðbxÞ ¼ �. (33)

(2) Generalised cross-validation principle: Choose l so as to minimise the function

GðbxÞ ¼ kAbx� yk

trðI� AðATAþ l2IÞ�1AT
Þ
. (34)

where trð�Þ is the matrix trace operator. This method ensures that the regularisation parameter is invariant
to an orthogonal transformation of the data.

(3) L-curve criterion: Choose l that corresponds to the ‘‘corner’’ of the curve kAbx� yk versus kLðbx� x1Þk,
plotted in log–log scale.

We have adopted the L-curve criterion in the current investigation.

4.3. Application to the system identification problem

In order to estimate the component of x that lies in the null-space of A, one needs to include some prior
knowledge concerning the system whenever any such information is available. For example, one can decide to
arrive at a solution that enforces the estimated mass, stiffness and damping matrices to be symmetric, or as
symmetric as possible. Such symmetry property in the discrete system matrices needs to be satisfied whenever
the underlying continuous linear operator is self-adjoint. This problem can be posed as a constrained
optimisation problem in the same theoretical framework detailed previously with certain modifications as
discussed next.

In order to satisfy the symmetry, for instance, in the mass matrix Mm, we need to have

Mm ¼MT
m. (35)

With the aid of Kronecker algebra, the symmetry condition (35) in the mass matrix gives rise to the constraint
equation (see Appendix B for the derivation):

LMx ¼ 0m2 , (36)

where

LM ¼ ðIm � ½ Im 0m�m 0m�m �Þ � ð½ Im 0m�m 0m�m � � ImÞU. (37)

Here U denotes the vec-permutation matrix [53], 0m2 is the zero vector of order m2, and the subscript in LM

indicates that the constraint is on the mass matrix.
The symmetry conditions on the damping matrix Cm and the stiffness matrix Km similarly lead to

LCx ¼ 0m2 (38)

and

LKx ¼ 0m2 ,

respectively, where

LC ¼ ðIm � ½ 0m�m Im 0m�m �Þ � ð½ 0m�m Im 0m�m � � ImÞU
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and

LK ¼ ðIm � ½ 0m�m 0m�m Im �Þ � ð½ 0m�m 0m�m Im � � ImÞU. (39)

Applying Tikhonov regularisation to estimate x, we obtain the following solution:

bx ¼ ðATAþ l2MLT
MLM þ l2CL

T
CLC þ l2KL

T
KLK Þ

�1
ðATyÞ, (40)

where A is defined in Eq. (25). The above solution depends on the values chosen for the regularisation
parameters lM , lC and lK . If the regularisation parameters are very large, the constraint enforcing the
symmetry condition is satisfied more accurately in x (the vector containing the elements of mass, damping and
stiffness matrices).

5. Step-by-step summary of the proposed approach

The discussion so far leads to a simple algorithm for the system identification in linear structural dynamics.
The method can be implemented by following these steps:

(1) From the band-limited system response, we form the response correlation matrix

Ruu ¼ hunðtÞu
T
n ðtÞi. (41)

(2) Decompose Ruu into its eigenvalues and eigenvectors

Ruu ¼
Xn

i¼1

liuiu
T
i s (42)

arranged such that l1Xl2X � � �Xln.
(3) Obtain the smallest value for the dimension of the reduced-order model (m) satisfyingPm

i¼1liPn
i¼1li

Xk, (43)

assuming that POD is required to capture kth fraction of the energy of the signal.
(4) Obtain the transformation matrix containing the first m dominant POD eigenvectors:

R ¼ ½u1; . . . ;um� 2 Rn�m. (44)

(5) Obtain the POD reduced-order displacement vector and reduced-order forcing vector in the frequency
domain

UmðoÞ ¼ RTUnðoÞ (45)

and

FmðoÞ ¼ RTFnðoÞ. (46)
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(6) Form

A ¼

Umðo1Þ
T
� ½�o2

1Im io1Im Im �

..

.

UmðosÞ
T
� ½�o2

s Im iosIm Im �

26664
37775 and y ¼

Fmðo1Þ

..

.

FmðosÞ

8>><>>:
9>>=>>;. (47)

(7) Form the symmetry-constraining matrices

LM ¼ ðIm � ½ Im 0m�m 0m�m �Þ � ð½ Im 0m�m 0m�m � � ImÞU,

LC ¼ ðIm � ½ 0m�m Im 0m�m �Þ � ð½ 0m�m Im 0m�m � � ImÞU,

LK ¼ ðIm � ½ 0m�m 0m�m Im �Þ � ð½ 0m�m 0m�m Im � � ImÞU. ð48Þ
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(8) Apply the inversionbx ¼ ðATAþ l2MLT
MLM þ l2CL

T
CLC þ l2KL

T
KLK Þ

�1
ðATyÞ (49)

choosing the values of lM , lC and lK as to satisfy the chosen criteria for determining the regularisation
parameters.

(9) Obtain the estimated reduced-order mass, damping and stiffness matrices from bx satisfying

bx � vec

Mm

Cm

Km

264
375

0B@
1CA. (50)
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6. Numerical validation

In this section we consider a coupled linear array of mass–spring oscillators for a numerical illustration
of the aforementioned mathematical formulation. Such discrete model normally arises from the FE
discretisation of one-dimensional wave equation. At the initial stage these simple models are well-suited to
investigate the usefulness and feasibility of the proposed methodology without the undue computational
complexity involved in larger systems. In this example a lighter system is coupled with a heavier system. This
simulates a scenario involving the dynamic interactions of two coupled subsystems with different modal
densities.
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6.1. Original system model

The schematic diagram of the system is shown in Fig. 1. The mass matrix of the system has the form

Mn ¼
m1In=2 0n=2�n=2

0n=2�n=2 m2In=2

" #
, (51)

where n, m1, and m2 are chosen to be 100 DOFs, 0.1, and 1 kg, respectively. The stiffness matrix of the system
is given by

Kn ¼ ku

2 �1

�1 . .
. . .

.

. .
. . .

.
�1

�1 2

2666664

3777775, (52)
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with ku ¼ 4� 105 N=m. Energy dissipation in the system is modeled by Rayleigh damping given by
Cn ¼ a0Mn þ a1Kn, where a0 ¼ 0:5 and a1 ¼ 3� 10�5. Four frequency bands are considered for the
construction of the POD-based reduced-order model:

(1) Band 1: Low-frequency band (1.5–11.5)Hz.
(2) Band 2: Low-frequency band (1.5–21.5)Hz.
(3) Band 3: Intermediate-frequency band (53.5–73.5)Hz.
(4) Band 4: Mid-frequency band (102.8–122.8)Hz.

These frequency bands are shown in the cross- and driving-point-FRFs of the system in Fig. 2. Next we
construct the POD-based reduced model which adapts with the frequency band of interest.

ARTICLE IN PRESS

5 10 15

10-2

10-3

10-4

10-5

10-6

10-7

Frequency (Hz)

A
m

pl
itu

de
 o

f 
H

(5
0,

50
) (

ω
) 

10-2

10-3

10-4

10-5

10-6

10-7

A
m

pl
itu

de
 o

f 
H

(5
0,

40
) (

ω
) 

original FRF, n= 100
identified POD-reduced FRF, m= 2

5 10 15

Frequency (Hz)

original FRF, n= 100
identified POD-reduced FRF, m= 2

Fig. 12. Original and identified POD-reduced FRFs under an SNR of 20 dB for frequency band 1. (a) Driving-point-FRF and (b) cross-

FRF.

10-2

10-3

10-4

10-5

10-6

10-7

A
m

pl
itu

de
 o

f 
H

(5
0,

50
) (

ω
) 

10-2

10-3

10-4

10-5

10-6

10-7

A
m

pl
itu

de
 o

f 
H

(6
0,

40
) (

ω
) 

5 10 15 20 25
Frequency (Hz)

original FRF, n= 100
identified POD-reduced FRF, m= 4

5 10 15 20 25
Frequency (Hz)

original FRF, n= 100
identified POD-reduced FRF, m= 4

Fig. 13. Original and identified POD-reduced FRFs under an SNR of 20 dB for frequency band 2. (a) Driving-point-FRF and (b) cross-

FRF.

M. Khalil et al. / Mechanical Systems and Signal Processing 21 (2007) 3123–3145 3137



Author's personal copy

6.2. Reduced-order model: forward simulation

Under a band-limited independent white noise input with unit variance, the system response is used to
construct the correlation matrix. The POD eigenvectors are now extracted from the correlation matrix for
each of the four frequency bands. Normalised eigenvalues of the correlation matrix, that is l=lmax, are shown
in Fig. 3. Examining all four plots of Fig. 3, only the first few eigenvalues are significantly large as expected.
This justifies the approximation in Eq. (6).

Typical cross-FRFs and driving-point-FRFs of the POD-based reduced-order model are compared with the
original FRFs in Figs. 4–7. Examining these figures, it is clear that the FRFs from the POD-based reduced-
order models match reasonably well with the original FRF in the frequency bands of interests. Comparing
Fig. 4 with Fig. 5, it can be seen that extending the frequency bandwidth increases the dimensions of the
reduced-order models. Furthermore, note from Figs. 5–7 that the greater number of POMs are required for
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the reduced models at higher frequencies. The FRFs of the reduced models do not match well the FRFs of the
original system outside the frequency band of interest. This is expected as the POD-based reduced models are
only adapted to the frequency band of the measured response used for the extraction of POMs. There are a
number of factors that influence the accuracy of the reconstructed FRFs, for example (a) number of POD
modes to retain, (b) level of damping and (c) the size and position of frequency window for the construction of
POD.

6.2.1. Reduced-order model identification: noiseless case

Here we consider the inverse problem to identify the reduced system matrices using the proposed method in
the ideal case when the measured response is noise-free. Subsequently, we consider the case of a noise-
contaminated output. Using the measured response, the dimension of the reduced model can be determined a
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priori through POD eigenvalue analysis as in the forward simulation problem (refer to Figs. 4–7). Next we
estimate the reduced-order system matrices. These identified matrices are then used to construct typical FRFs
of the system and compared to the FRFs of comprehensive models, as shown in Figs. 8–11. The symmetry
constraint of the system matrices was applied in the identification process using Tikhonov regularisation, with
the value for the regularisation parameters, lM , lC and lK all being 100 estimated through L-curve criterion.
Note that the identified system matrices reproduce FRFs that match reasonably well the original FRFs.

6.2.2. Reduced-order model identification: noisy case

We have now demonstrated the efficacy of the proposed method for the case of noise-free data. In the low-
frequency range, such assumption is perhaps reasonable as the signal-to-noise ratio (SNR) is sufficiently high
for large-amplitude response. In the mid-frequency range, however, the SNR decreases significantly and
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thereby invalidates the noise-free assumption on the data arising from low-amplitude oscillations. In such
cases, the presence of noise may significantly affect the confidence level of the estimated parameters.

Now we apply the same methodology described above with the additional effect of measurement noise on
the system response, being modeled with uncorrelated Gaussian band-limited white noise. We consider the
different cases of SNR prior to the identification process. Let s2n and s2s denote the variance of the noise and
the original signal, respectively. The SNR is calculated using

SNR ¼ 10 log10
s2s
s2n

dB. (53)

Thus, an SNR of 10 implies that the variance of the signal is 10 times higher than the variance of the
contaminating noise. An SNR of 20 indicates that the variance of the signal is 100 times higher than
the variance of the contaminating noise. With an SNR of 20 dB, we obtain the identified FRF shown in
Figs. 12–15. Compared to the noiseless case, a noise level resulting in an SNR of 20 dB does not seem to alter
the identified system much. With an SNR of 10 dB (higher noise levels), we reproduce the FRFs using
identified reduced model shown in Figs. 16–19. Compared to the identified FRF in the case of 20 dB of the
SNR, a higher noise level of 10 dB SNR results in worse estimate of the FRF as expected. However, an SNR
of 10 implies a noise amplitude that is on average

ffiffiffiffiffi
10
p
� 3:2 times smaller than that of the original signal. In

such case of a high noise level, the proposed identification method still performs reasonably well which is
encouraging.

7. Conclusion

This paper explored the feasibility of identifying a reduced-order model of linear dynamical system in the
mid-frequency regime. POD was used for the model reduction strategy. Such a reduced-order model
circumvents the limitations of traditional modal analysis developed for the low-frequency region. The inverse
problem relating to the identification of the mass, damping and stiffness matrices was tackled in the
framework of a linear least-square estimation. Kronecker algebra was used to systematically handle the
proposed mathematical operations. Tikhonov regularisation was applied to satisfy certain physical constraints
defining the symmetry of the identified matrices involving linear self-adjoint operators. The salient features
that emerged from the current investigation are:

(1) For the discrete dynamical system investigated in this paper, it is demonstrated that POD can be
successfully applied for the reduced-order modelling. The dimension of the reduced model may be an order
of magnitude smaller than the corresponding comprehensive model.

(2) A Kronecker algebraic framework permits a general and concise theoretical formulation for the
identification of the system matrices in the linear least-square sense. Subsequently, the mathematical
framework is generalised to incorporate Tikhonov regularisation to achieve the symmetry property of the
mass, damping and stiffness matrices.

(3) The predictions from the identified reduced-order models match reasonably well with the original system
response. The robustness of the identification method was demonstrated by a noise-sensitivity study.

This initial numerical study suggests that it might be possible to put the method into practice. However, much
remains to be done to validate, test and extend both the theory and the methods for practical application.
Future works would consider experimental testing of the proposed procedure and application to more
complex real-life dynamical systems.
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Appendix A. Background of Kronecker algebra

A.1. Kronecker product

Given a matrix A of order m� n and a matrix B of order p� q represented by

A ¼

a11 � � � a1n

..

. . .
. ..

.

am1 � � � amn

2664
3775 (A.1)

and

B ¼

b11 � � � b1q

..

. . .
. ..

.

bp1 � � � bpq

2664
3775, (A.2)

the Kronecker product of A and B results in a matrix of order mp� nq given by [44]

A� B ¼

a11B � � � a1nB

..

. . .
. ..

.

am1B � � � amnB

2664
3775. (A.3)

A.2. Vectorisation

Given a matrix A of order m� n represented by

A ¼ ½A�1 A�2 � � � A�n � (A.4)

in which A�i denotes the ith column of A, the vectorisation of A results in a column vector of order mn given by
[44]

vecðAÞ ¼

A�1

A�2

..

.

A�n

266664
377775. (A.5)

Appendix B. Mass matrix symmetry constraint

The mass matrix Mm can be rewritten as

Mm ¼ ½ Im 0m�m 0m�m �

Mm

Cm

Km

264
375 ¼ ½ Im 0m�m 0m�m �

Mm

Cm

Km

264
375Im, (B.1)
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where 0m�m is the square matrix of order m�m whose elements are zero. Similarly, MT
m can be

rewritten as

MT
m ¼ ½M

T
m CT

m KT
m �

Im

0m�m

0m�m

2664
3775

¼

Mm

Cm

Km

2664
3775
T

Im

0m�m

0m�m

2664
3775 ¼ Im

Mm

Cm

Km

2664
3775
T

Im

0m�m

0m�m

2664
3775. ðB:2Þ

The symmetry constraint (36) can be written as

Mm ¼MT
m. (B.3)

Applying the vec operator (see Section A.2 of Appendix A) to both sides of (B.3) yields

vec Mmð Þ ¼ vecðMT
mÞ. (B.4)

Substituting expressions (B.1) and (B.2) into (B.4), we obtain

vec ½ Im 0m�m 0m�m �

Mm

Cm

Km

264
375Im

0B@
1CA ¼ vec Im

Mm

Cm

Km

264
375
T

Im

0m�m

0m�m

264
375

0B@
1CA. (B.5)

Applying the Kronecker algebra identity vec AYBð Þ ¼ ðBT � AÞ vec Yð Þ [44] to (B.5), we obtain

ðIm � ½ Im 0m�m 0m�m �Þvec

Mm

Cm

Km

2664
3775

0BB@
1CCA

¼ ð½ Im 0m�m 0m�m � � ImÞvec

Mm

Cm

Km

2664
3775
T0BB@
1CCA. ðB:6Þ

The vec-permutation matrix U can be used to make the following relation [53]:

vec

Mm

Cm

Km

264
375
T0B@
1CA ¼ U vec

Mm

Cm

Km

264
375

0B@
1CA. (B.7)

Substituting (B.7) into (B.6), one obtains

ðIm � ½ Im 0m�m 0m�m �Þvec

Mm

Cm

Km

2664
3775

0BB@
1CCA

¼ ð½ Im 0m�m 0m�m � � ImÞU vec

Mm

Cm

Km

2664
3775

0BB@
1CCA ðB:8Þ
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which is equivalent to

ðIm � ½ Im 0m�m 0m�m �Þ

�ð½ Im 0m�m 0m�m � � ImÞU

( )
vec

Mm

Cm

Km

264
375

0B@
1CA ¼ 0m2 . (B.9)

The constraint (B.9) can be rewritten as

LMx ¼ 0m2 , (B.10)

where

LM ¼ ½ðIm � ½ Im 0m�m 0m�m �Þ � ð½ Im 0m�m 0m�m � � ImÞU�. (B.11)
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