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A B S T R A C T

The combination of negative stiffness devices and inerters to traditional base isolators (TBI) and tuned mass
dampers (TMD) does not exist in any state-of-the-art. Therefore, to pursue the research using the above-
mentioned research scope, the negative stiffness inerter passive dampers such as negative stiffness inerter-based
base isolators (NSIBI), negative stiffness base isolators (NSBI), negative stiffness inerter-based tuned mass
dampers (NSITMD), and negative stiffness tuned mass dampers (NSTMD) are introduced in this paper. 𝐻2
and 𝐻∞ optimization methods are applied to derive the exact closed-form expressions for the optimal design
parameters of these novel passive vibration dampers. Newton’s second law applies to derive the governing
equations of motion of the controlled structures. The transfer function formation and Newmark-beta method are
applied to determine the dynamic responses of the controlled structures analytically and numerically. Hence,
𝐻2 optimized NSIBI and NSBI have 45.98% and 46.71% more dynamic response reduction capacities than
optimum TBI. In addition, 𝐻∞ optimized NSIBI and NSBI have 58.36% and 57.32% more dynamic response
reduction capacities than optimum TBI. Furthermore, the optimum NSITMD and NSTMD have 0.42%, 10.84%,
and 4.5%, 13.48% more dynamic response reduction capacities than traditional TMD. All the derivations are
mathematically accurate.
1. Introduction

Passive vibration control systems are built to protect structures and
living creatures from natural disasters like earthquakes and cyclones.
These devices are the most economical and immensely studied vibra-
tion control devices globally. The base isolators (BI) [1] are prominent
due to their superior vibration reduction capacities among the passive
dampers. However, the base isolators are inefficient for high-rise build-
ings to reduce the dynamic responses. To overcome this drawback,
tuned mass dampers (TMD) are installed [2] at the top of high-rise
buildings [3]. BI mechanism was introduced by Touaillon in 1870,
and since then, it has been studied immensely [4]. BI is installed in
between the superstructure and substructures of many aeronautical [5],
mechanical [6], and civil engineering structures [7]. BI is installed in
the building structures to reduce the inter-story drift [8] and accel-
erations [9]. New Zealand bearings [10], lead rubber bearings [11],
resilient friction base isolators [12], friction-pendulum systems [13],
and pure-friction systems [14] are the nonlinear BI [15] available in
the industry.

Frahm introduced TMD in 1909 without considering the damp-
ing [16]. An undamped TMD is effective when the TMD’s inherent
frequency is near the excitation frequency. However, no vibration
decreases when the excitation frequency differs from the TMD’s native
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frequency [17]. Therefore, to overcome this drawback, Ormondroyd
and Den Hartog introduced damping inside the core material of TMD.
They also have provided optimal closed-form solutions for the design
parameters [18].

To achieve these optimal design parameters regarding closed-form
expressions, 𝐻2 and 𝐻∞ optimization methods are introduced [19].
𝐻2 optimization method applies to structures excited by random white
noises [20]. The standard deviations of the dynamic responses of the
controlled structures are reduced using 𝐻2 optimized [21] dampers
[22]. In contrast, the maximum amplitudes of the dynamic responses
of the controlled structures are reduced using 𝐻∞ dampers [2]. The
optimization method applies to harmonically excited controlled struc-
tures. This method was first introduced by Den Hartog in 1985 by
introducing a book, namely ‘‘Mechanical Vibration’’ [23]. However,
the optimal closed-form solutions for the design parameters of the
dampers need to be presented in a more detailed manner. In addi-
tion, the previously established closed-form expressions’ accuracy for
optimal design parameters must be cross-checked [24]. Traditionally,
the dynamic response reduction capacities of the base isolators and
tuned mass dampers are enhanced by increasing the static mass of
the dampers. However, increasing the static mass of the damper en-
hances its flexibility as the natural frequency of the dampers reduces.
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Therefore, the time period of the damper increases. Sometimes, for
high amplitude vibrations, the time period of the dampers enlarges
extensively, which causes damage to the structural configurations of
the dampers. Precisely, the load-bearing capacity of the controlled
structure reduces. The adaptability of the dampers is reduced for the
changing pattern of the ground motions, i.e., from near-fault to far-
field. In contrast, to increase the static mass of the dampers, the number
of tuned mass dampers needs to be increased to reduce the dynamic
responses of the structures. As a result, the total static mass of the
damper array rises, increasing the cost. Hence, instead of static mass,
the effective mass of the dampers needs to be increased.

Recently, Smith [25] introduced inerters, the effective mass amplifi-
cation device through the force to the current analogy for mitigation of
dynamic responses of the dynamic systems [26]. Other researchers are
also studied different mass amplification, negative stiffness, negative
mass, and different mechanical devices for increasing the dynamic
response reduction capacity of conventional passive vibration isola-
tion devices [27]. Inertial amplifiers [28–30] are one of the mass
amplification devices which can provide large wide-bandgap at low
frequencies [31] and these characteristics allow this device to apply in
the civil engineering structures. The inerters are also implanted inside
or parallel to the conventional passive vibration control devices to
increase their energy dissipation capacity by amplifying the significant
effective mass through rotational mass with motion transformers inside
the system [32]. The inerters are applied to mechanical engineering
fields to reduce the mechanical responses of the structures [33]. The
inerters are also applied in civil engineering structures [34] to minimize
the dynamic responses of the structures. Inerters are implanted in the
core material of TMD [35] and BI to mitigate the responses of dynamic
systems, such as buildings, wind turbines, and bridges [36].

Instead of effective mass amplification devices, different types of
negative stiffness devices such as quasi-zero stiffness [37], high-static-
low-dynamic stiffness [38], Euler buckled beams as negative stiffness
elements [39], pseudo-negative-stiffness [40], negative-stiffness inclu-
sions [41], magnetic negative stiffness dampers [42] are installed inside
the passive vibration isolation systems to increase their vibration re-
duction capacities. However, a minimal number of applications for
entire structures are observed for inerters such as buildings and bridges.
KDamper-based devices can be considered as an extension of the con-
ventional TMD concept by the introduction of an appropriate negative
stiffness element to the additional mass of the TMD [43,44]. These
devices can be thus considered as an indirect approach to increase the
inertia effect of the additional mass with the negative stiffness element
force without, however, having to directly increase the additional mass
itself [45,46]. However, from the existing state of the art, it has been
observed that the implantation of negative stiffness devices (NSD),
inerters inside the core material of the passive vibration control devices
such as base isolators (BI) and tuned mass dampers (TMD) to increase
their dynamic response reduction capacities are minimal [47]. Pre-
cisely, the combination of negative stiffness devices (NSD) and inerters
to BI and TMD do not exist in any state of the art. In addition, the
optimal design parameters for the above-mentioned novel dampers in
terms of closed-form expressions also do not exist. Therefore, a research
scope has been found.

Therefore, to pursue the research using the above-mentioned re-
search scope, the negative stiffness inerter-based base isolators (NSIBI),
negative stiffness base isolators (NSBI), negative stiffness inerter-based
tuned mass dampers (NSITMD), and negative stiffness tuned mass
dampers (NSTMD) are introduced in this paper. These novel dampers
are installed in single-degree-of-freedom systems (SDOF), having the
same system parameters, such as damping ratio 𝜁𝑠 = 0.05, to reduce
their dynamic responses subjected to base excitations. 𝐻2 and 𝐻∞ op-
timization methods are applied to derive the optimal design parameters
for these novel passive vibration isolation systems in terms of closed-
form expressions. These optimal closed-form solutions are provided
2

maximum vibration reduction capacity to the novel dampers. Newton’s
Table 1
The values of inerter masses for NSIBI and NSBI.

Mass NSIBI NSBI

𝑚𝑑 𝑚𝑑 ≠ 0 𝑚𝑑 = 0

second law applies to derive the governing equations of motion for
the controlled structures subjected to base excitations. The transfer
function formation and Newmark-beta method are applied to determine
the dynamic responses of the controlled structures analytically and
numerically. The near-field earthquake records are applied to the base
of the controlled structures. The maximum dynamic responses of the
structures controlled by novel dampers are compared with the maxi-
mum dynamic responses of the structures controlled by conventional
dampers.

2. Novel base isolators

The values of inerter masses for NSIBI and NSBI are listed in Table 1.
The structural diagram of SDOF systems isolated by novel isolators is
displayed in Fig. 1(a). The schematic diagrams of NSIBI and NSBI are
shown in Figs. 1(b) and 1(c). 𝑚𝑏, 𝑘𝑏, and 𝑐𝑏 define the mass, stiffness,
and damping of novel isolators. 𝑚𝑑 defines the inerter mass. 𝑘𝑑 defines
the negative stiffness of the novel isolators, i.e., 𝑘𝑑 = 𝛽𝑘𝑏. �̈�𝑔 defines the
base excitation. 𝑚𝑠, 𝑘𝑠, and 𝑐𝑠 define the mass, stiffness, and damping
of SDOF systems. 𝑢𝑠 and 𝑢𝑏 define the absolute dynamic response of
SDOF systems and novel isolators. NSBI is mathematically formulated
by considering 𝑚𝑑 = 0. Newton’s second law applies to derive the
governing equations of motion of the SDOF systems isolated by the
novel isolators, such as NSIBI and NSBI subjected to base excitation
and expressed as

𝑚𝑠�̈�𝑠 + 𝑚𝑠�̈�𝑏 + 𝑐𝑠�̇�𝑠 + 𝑘𝑠𝑥𝑠 = −𝑚𝑠�̈�𝑔 ,

𝑚𝑏�̈�𝑏 + 𝑚𝑑 �̈�𝑏 + 𝑐𝑏�̇�𝑏 + 𝑘𝑒𝑥𝑏 − 𝑘𝑠𝑥𝑠 − 𝑐𝑠�̇�𝑠 = −𝑚𝑏�̈�𝑔 ,
(1)

where 𝑘𝑒 = 𝑘𝑏 − 𝑘𝑑 defines the total effective stiffness of NSIBI, 𝑥𝑏 =
𝑢𝑏 − 𝑥𝑔 and 𝑥𝑠 = 𝑢𝑠 − 𝑢𝑏 define to the relative dynamic responses of
the isolator and main structure. 𝑐𝑠 = 2𝑚𝑠𝜁𝑠𝜔𝑠 and 𝑘𝑠 = 𝑚𝑠𝜔2

𝑠 are the
damping and stiffness of the SDOF systems. 𝑐𝑏 = 2𝜁𝑏(𝑚𝑏 + 𝑚𝑑 )𝜔𝑏 and
𝑘𝑏 = (𝑚𝑏 + 𝑚𝑑 )𝜔2

𝑏 are the damping and stiffness of novel dampers.
𝑥𝑠 = 𝑋𝑠𝑒i𝜔𝑡, 𝑥𝑏 = 𝑋𝑏𝑒i𝜔𝑡, and �̈�𝑔 = 𝐴𝑔𝑒i𝜔𝑡 are the steady state solutions,
applying to Eq. (1). Therefore, the transfer function obtains as
[

2 𝜁𝑠𝑞𝜔𝑠 + 𝑞2 + 𝜔𝑠
2 𝑞2

−2 𝜁𝑠𝑞𝜔𝑠 − 𝜔𝑠
2 (

𝜇𝑏 + 𝜇𝑑
) (

(1 − 𝛽)𝜔𝑏
2 + 2 𝜁𝑏𝑞𝜔𝑏 + 𝑞2

)

]

×
{

𝑋𝑠
𝑋𝑏

}

= −

[

1
𝜇𝑏

]

𝐴𝑔 ,

(2)

where 𝛽 = 𝑘𝑑∕𝑘𝑏 defines the negative stiffness ratio of the novel isola-
tors. The dynamic responses of the SDOF system and NSIBI determine
as

𝐻𝑠(𝑞) =
𝑋𝑠
𝐴𝑔

=

−𝛽 𝜇𝑏𝜔𝑏
2 − 𝛽 𝜇𝑑𝜔𝑏

2 + 2 𝑞𝜁𝑏𝜇𝑏𝜔𝑏
+2 𝑞𝜁𝑏𝜇𝑑𝜔𝑏 + 𝑞2𝜇𝑑 + 𝜇𝑏𝜔𝑏

2 + 𝜇𝑑𝜔𝑏
2

𝛥
,

(3)

𝐻𝑏(𝑞) =
𝑋𝑏
𝐴𝑔

=
2 𝜁𝑠𝑞𝜔𝑠𝜇𝑏 + 𝑞2𝜇𝑏 + 2 𝜁𝑠𝑞𝜔𝑠 + 𝜔𝑠

2𝜇𝑏 + 𝜔𝑠
2

𝛥
. (4)

The denominator (𝛥) of the dynamic response function is separated into
its real and imaginary parts as obtains as

𝛥 =

2 𝛽 𝑞𝜁𝑠𝜇𝑏𝜔𝑏
2𝜔𝑠 + 2 𝛽 𝑞𝜁𝑠𝜇𝑑𝜔𝑏

2𝜔𝑠 − 4 𝑞2𝜁𝑏𝜁𝑠𝜇𝑏𝜔𝑏𝜔𝑠 − 4 𝑞2𝜁𝑏𝜁𝑠𝜇𝑑𝜔𝑏𝜔𝑠
+𝛽 𝑞2𝜇𝑏𝜔𝑏

2 + 𝛽 𝑞2𝜇𝑑𝜔𝑏
2 + 𝛽 𝜇𝑏𝜔𝑏

2𝜔𝑠
2 + 𝛽 𝜇𝑑𝜔𝑏

2𝜔𝑠
2 − 2 𝑞3𝜁𝑏𝜇𝑏𝜔𝑏

−2 𝑞3𝜁𝑏𝜇𝑑𝜔𝑏 − 2 𝑞3𝜁𝑠𝜇𝑏𝜔𝑠 − 2 𝑞3𝜁𝑠𝜇𝑑𝜔𝑠 − 2 𝑞𝜁𝑏𝜇𝑏𝜔𝑏𝜔𝑠
2 − 2 𝑞𝜁𝑏𝜇𝑑𝜔𝑏𝜔𝑠

2

−2 𝑞𝜁𝑠𝜇𝑏𝜔𝑏
2𝜔𝑠 − 2 𝑞𝜁𝑠𝜇𝑑𝜔𝑏

2𝜔𝑠 − 𝑞4𝜇𝑏 − 𝑞4𝜇𝑑 − 2 𝑞3𝜁𝑠𝜔𝑠 − 𝑞2𝜇𝑏𝜔𝑏
2

−𝑞2𝜇𝑏𝜔𝑠
2 − 𝑞2𝜇𝑑𝜔𝑏

2 − 𝑞2𝜇𝑑𝜔𝑠
2 − 𝜇𝑏𝜔𝑏

2𝜔𝑠
2 − 𝜇𝑑𝜔𝑏

2𝜔𝑠
2 − 𝑞2𝜔𝑠

2.

(5)
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Fig. 1. (a) The structural diagram of SDOF systems isolated by novel negative stiffness base isolators. The schematic diagrams of (b) negative stiffness inerter-based base isolation
system and (c) Negative stiffness base isolation system.
Fig. 2. The difference in effective stiffness ratio versus negative stiffness ratio of NSBI.

The total effective mass of NSIBI obtains as 𝑚𝑒 = 𝑚𝑏 +𝑚𝑑 . Accordingly,
the effective mass and stiffness ratios derive as

𝜇𝑒 =
𝑚𝑏 + 𝑚𝑑

𝑚𝑠
= 𝜇𝑏 + 𝜇𝑑 ,

𝜅𝑒 =
𝑘𝑏 − 𝑘𝑑

𝑘𝑏
=

(

𝜇𝑏 + 𝜇𝑑
)

(1 − 𝛽)
𝜇𝑏

,
(6)

where 𝛽 = 𝑘𝑑∕𝑘𝑏 defines the novel isolators’ negative stiffness ratio.
Considering 𝜇𝑑 = 0, the total effective stiffness of NSBI derives as

𝑘𝑒 = 𝑘𝑏 − 𝑘𝑑 = 𝑘𝑏(1 − 𝛽), (7)

where 𝑘𝑑 = 𝛽𝑘𝑏 defines to the negative stiffness of NSBI. The effective
stiffness ratio w.r.t the static stiffness of the NSBI derives as

𝜅𝑒 =
𝑘𝑏 − 𝑘𝑑

𝑘𝑏
= (1 − 𝛽) . (8)

The difference in the effective stiffness ratio versus the negative stiff-
ness ratio of NSBI is shown in Fig. 2. The effective stiffness decreases
as the negative stiffness ratio of NSBI increases. A higher stiffness ratio
provides a more flexible base to the isolated structures, increasing the
isolator’s dynamic response reduction capacity.

3. 𝑯𝟐 optimization for NSIBI and NSBI systems

𝐻2 optimization employs to derive the optimal design parameters
for NSIBI and NSBI subjected to random-white noise excitation [19,20].
𝜁𝑠 = 0 considers to perform this optimization. A mathematical expres-
sion with the matrices is derived to obtain the standard deviation (SD)
3

of the dynamic responses of the isolated structures and expressed as

𝜎2𝑥𝑠,𝑏 = ∫

∞

−∞

𝛯𝑛(𝜔) d𝜔
𝛬𝑛(i𝜔)𝛬∗

𝑛(i𝜔)
= 𝜋

𝑎4

det[𝐍4]
det[𝐃4]

, (9)

𝑁4 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑏3 𝑏2 𝑏1 𝑏0
−𝑎4 𝑎2 −𝑎0 0
0 −𝑎3 𝑎1 0
0 𝑎4 −𝑎2 𝑎0

⎤

⎥

⎥

⎥

⎥

⎦

and 𝐷4 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎3 −𝑎1 0 0
−𝑎4 𝑎2 −𝑎0 0
0 −𝑎3 𝑎1 0
0 𝑎4 −𝑎2 𝑎0

⎤

⎥

⎥

⎥

⎥

⎦

.

(10)

The SD of the main structure derives as

𝜎2
𝑥𝑠

=

𝑆0𝜋

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛽2𝜇𝑏
2𝜔𝑏

4 + 2 𝛽2𝜇𝑏𝜇𝑑𝜔𝑏
4 + 𝛽2𝜇𝑑

2𝜔𝑏
4 + 4 𝜁𝑏2𝜇𝑏

2𝜔𝑏
2𝜔𝑠

2

+4 𝜁𝑏2𝜇𝑑
2𝜔𝑏

2𝜔𝑠
2 − 2 𝛽 𝜇𝑏

2𝜔𝑏
4 − 4 𝛽 𝜇𝑏𝜇𝑑𝜔𝑏

4 + 2 𝛽 𝜇𝑏𝜇𝑑𝜔𝑏
2𝜔𝑠

2

−2 𝛽 𝜇𝑑
2𝜔𝑏

4 + 2 𝛽 𝜇𝑑
2𝜔𝑏

2𝜔𝑠
2 − 𝛽 𝜇𝑏𝜔𝑏

2𝜔𝑠
2 − 𝛽 𝜇𝑑𝜔𝑏

2𝜔𝑠
2

+𝜇𝑏
2𝜔𝑏

4 + 2𝜇𝑏𝜇𝑑𝜔𝑏
4 − 2𝜇𝑏𝜇𝑑𝜔𝑏

2𝜔𝑠
2 + 𝜇𝑑

2𝜔𝑏
4 − 2𝜇𝑑

2𝜔𝑏
2𝜔𝑠

2

+𝜇𝑑
2𝜔𝑠

4 + 𝜇𝑏𝜔𝑏
2𝜔𝑠

2 + 𝜇𝑑𝜔𝑏
2𝜔𝑠

2 + 8 𝜁𝑏2𝜇𝑏𝜇𝑑𝜔𝑏
2𝜔𝑠

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2𝜔𝑏𝜁𝑏
(

𝜇𝑏 + 𝜇𝑑
)

𝜔𝑠
6

.

(11)

To derive optimal design parameters, Eq. (11) is partially differentiated
w.r.t the damping ratio and frequency of NSIBI and expressed as

𝜕𝜎2𝑥𝑠
𝜕𝜁𝑏

= 0 and
𝜕𝜎2𝑥𝑠
𝜕𝜔𝑏

= 0. (12)

The first equation of Eq. (12) is substituted by Eq. (11). The damping
ratio of NSIBI is derived as

𝜁𝑏 =

√

√

√

√

√

√

√

√

√

√

√

𝛽2𝜇𝑏
2𝜔𝑏

4 + 2 𝛽2𝜇𝑏𝜇𝑑𝜔𝑏
4 + 𝛽2𝜇𝑑

2𝜔𝑏
4 − 2 𝛽 𝜇𝑏

2𝜔𝑏
4 − 4 𝛽 𝜇𝑏𝜇𝑑𝜔𝑏

4

+2 𝛽 𝜇𝑏𝜇𝑑𝜔𝑏
2𝜔𝑠

2 − 2 𝛽 𝜇𝑑
2𝜔𝑏

4 + 2 𝛽 𝜇𝑑
2𝜔𝑏

2𝜔𝑠
2 − 𝛽 𝜇𝑏𝜔𝑏

2𝜔𝑠
2

−𝛽 𝜇𝑑𝜔𝑏
2𝜔𝑠

2 + 𝜇𝑏
2𝜔𝑏

4 + 2𝜇𝑏𝜇𝑑𝜔𝑏
4 − 2𝜇𝑏𝜇𝑑𝜔𝑏

2𝜔𝑠
2

+𝜇𝑑
2𝜔𝑏

4 − 2𝜇𝑑
2𝜔𝑏

2𝜔𝑠
2 + 𝜇𝑑

2𝜔𝑠
4 + 𝜇𝑏𝜔𝑏

2𝜔𝑠
2 + 𝜇𝑑𝜔𝑏

2𝜔𝑠
2

4𝜇𝑏
2𝜔𝑏

2𝜔𝑠
2 + 8𝜇𝑏𝜇𝑑𝜔𝑏

2𝜔𝑠
2 + 4𝜇𝑑

2𝜔𝑏
2𝜔𝑠

2
.

(13)

To derive modified SD, Eq. (13) is substituted in Eq. (11). Hence, the
SD is modified as

𝜎2𝑥𝑠 =

√

√

√

√

√

√

√

(

𝜇𝑏 + 𝜇𝑑
)2 (𝛽 − 1)2 𝜔𝑏

4 + 𝜇𝑑2𝜔𝑠
4

+2
(

𝜇𝑏 + 𝜇𝑑
)

𝜔𝑠
2 (𝜇𝑑 − 1∕2

)

(𝛽 − 1)𝜔𝑏
2

𝜔𝑏
2𝜔𝑠

2
(

𝜇𝑏 + 𝜇𝑑
)2

(

𝜇𝑏 + 𝜇𝑑
)

𝜔𝑠
6𝜔𝑏.

(14)

To derive natural frequency of NSIBI, Eq. (14) is substituted in the
second expression of Eq. (12). The optimal natural frequency of NSIBI
is derived as

(𝜔𝑏)opt =

√

2
(

𝜇𝑏 + 𝜇𝑑 − 𝛽 𝜇𝑏 − 𝛽 𝜇𝑑
) (

1 − 2𝜇𝑑
)

𝜔𝑠
( ) . (15)
2 𝜇𝑏 + 𝜇𝑑 − 𝛽 𝜇𝑏 − 𝛽 𝜇𝑑
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Fig. 3. (a) The differences in optimal frequency ratio 𝜂𝑏 versus base mass ratio 𝜇𝑏 for different values of negative stiffness ratio 𝛽 of NSIBI. The black solid (𝛽 = 0.10) and red
ashed (𝛽 = 0.20) lines with markers are employed to address these plots. (b) The differences in optimal damping ratio 𝜁𝑏 versus base mass ratio 𝜇𝑏 for different values of negative
tiffness ratio 𝛽 of NSIBI. The black solid (𝛽 = 0.10) and red dashed (𝛽 = 0.20) lines with markers are employed to address these plots. 𝜇𝑑 = 0.1 is applied for both graphs.
𝐷

T
a
(

he non-dimensional form of the optimal frequency ratio of NSIBI is
erived using Eq. (15) and expressed as

𝜂𝑏)opt =

√

2
(

𝜇𝑏 + 𝜇𝑑 − 𝛽 𝜇𝑏 − 𝛽 𝜇𝑑
) (

1 − 2𝜇𝑑
)

2
(

𝜇𝑏 + 𝜇𝑑 − 𝛽 𝜇𝑏 − 𝛽 𝜇𝑑
) . (16)

The optimal damping ratio of NSIBI is derived by substituting Eq. (15)
in Eq. (13) and expressed as

(𝜁𝑏)opt =

√

2
4

√

√

√

√

(

1 − 4𝜇𝑑
)

(1 − 𝛽)
(

1 − 2𝜇𝑑
) (

𝜇𝑏 + 𝜇𝑑
) . (17)

The differences in optimal frequency and damping ratios versus the
base mass ratio for different values of negative stiffness ratio of NSIBI
are displayed in Figs. 3(a) and 3(b). To obtain Fig. 3, Eqs. (16) and (17)
are employed. 𝜇𝑑 ≠ 0 is considered for NSIBI. The frequency and
amping ratios decrease with the increment of the base mass ratio. In
ontrast, the frequency ratio increase and the damping ratio decrease
ith the increment of the negative stiffness ratio. Substituting 𝜇𝑑 = 0

n Eqs. (16) and (17), the exact closed-form expressions for the optimal
requency and damping ratios of NSBI are derived. The differences in
ptimal frequency and damping ratios versus the base mass ratio for
ifferent values of negative stiffness ratio of NSBI are displayed in
igs. 4(a) and 4(b). The frequency and damping ratios decrease with
he increment of the base mass ratio. In contrast, the frequency ratio
ncrease and the damping ratio decrease with the increment of the
egative stiffness ratio.

. 𝑯∞ optimization for NSIBI and NSBI

𝐻∞ optimization is employed to derive the optimal design param-
ters for NSIBI and NSBI subjected to harmonic excitation [19,20].
𝑠 = 0 considers to perform this optimization. The dimensional transfer
unction in Eq. (2) is transformed into a non-dimensional transfer
unction and expressed as
[

−𝜂2 + 2i𝜁𝑠𝜂 + 1 −𝜂2

−2i𝜁𝑠𝜂 − 1 𝐵12

]

{

𝑋𝑠
𝑋𝑏

}

= −

[

1
𝜇𝑏

]

𝐴𝑔

𝜔2
𝑠
,

( ) ( 2 2 2)
(18)
4

12 = 𝜇𝑏 + 𝜇𝑑 2i𝜁𝑏𝜂 𝜂𝑏 − 𝛽 𝜂𝑏 − 𝜂 + 𝜂𝑏 .
The dynamic response of the main structure derives as

𝐻𝑠(𝜂) =
𝑋𝑠
𝐴𝑔

𝜔2
𝑠

=
−𝛽 𝜂𝑏2𝜇𝑏 − 𝛽 𝜂𝑏2𝜇𝑑 − 𝜂2𝜇𝑑 + 𝜂𝑏2𝜇𝑏 + 𝜂𝑏2𝜇𝑑 + 2 i𝜁𝑏𝜂 𝜂𝑏

(

𝜇𝑏 + 𝜇𝑑
)

𝛥
.

(19)

The dynamic response of NSIBI derives as

𝐻𝑏(𝜂) =
𝑋𝑏
𝐴𝑔

𝜔2
𝑠 =

−𝜂2𝜇𝑏 + 𝜇𝑏 + 1 + 2 i𝜂 𝜁𝑠
(

𝜇𝑏 + 1
)

𝛥
. (20)

The denominator (𝛥) of the dynamic response function is separated into
its real and imaginary parts as obtains as

𝛥 =

𝜂2 − 𝛽 𝜂2𝜂𝑏2𝜇𝑏 − 𝛽 𝜂2𝜂𝑏2𝜇𝑑 + 4 𝜂2𝜁𝑏𝜁𝑠𝜂𝑏𝜇𝑏 + 4 𝜂2𝜁𝑏𝜁𝑠𝜂𝑏𝜇𝑑 − 𝜂4𝜇𝑏 − 𝜂4𝜇𝑑

+𝜂2𝜂𝑏2𝜇𝑏 + 𝜂2𝜂𝑏2𝜇𝑑 + 𝛽 𝜂𝑏2𝜇𝑏 + 𝛽 𝜂𝑏2𝜇𝑑 + 𝜂2𝜇𝑏 + 𝜂2𝜇𝑑 − 𝜂𝑏2𝜇𝑏 − 𝜂𝑏2𝜇𝑑

+i

⎛

⎜

⎜

⎜

⎝

2 𝛽 𝜂 𝜁𝑠𝜂𝑏2𝜇𝑏 + 2 𝛽 𝜂 𝜁𝑠𝜂𝑏2𝜇𝑑 + 2 𝜂3𝜁𝑏𝜂𝑏𝜇𝑏 + 2 𝜂3𝜁𝑏𝜂𝑏𝜇𝑑 + 2 𝜂3𝜁𝑠𝜇𝑏

+2 𝜂3𝜁𝑠𝜇𝑑 − 2 𝜂 𝜁𝑠𝜂𝑏2𝜇𝑏 − 2 𝜂 𝜁𝑠𝜂𝑏2𝜇𝑑 + 2 𝜂3𝜁𝑠 − 2 𝜂 𝜁𝑏𝜂𝑏𝜇𝑏

−2 𝜂 𝜁𝑏𝜂𝑏𝜇𝑑

⎞

⎟

⎟

⎟

⎠

,

(21)

where 𝜂 = 𝜔∕𝜔𝑠 defines excitation frequency. The resultant of Eq. (20)
is conceptualized as

∣ 𝐻𝑠(𝜂) ∣=

√

√

√

√

𝐴2 + 𝜁2𝑏𝐵
2

𝐶2 + 𝜁2𝑏𝐷
2
=
|

|

|

|

|

𝐵
𝐷

|

|

|

|

|

√

√

√

√

√

√

√

(

𝐴
𝐵

)2
+ 𝜁2𝑏

(

𝐶
𝐷

)2
+ 𝜁2𝑏

, (22)

where 𝐴, 𝐵, 𝐶, and 𝐷 is expressed as

𝐴 = −𝛽 𝜂𝑏2𝜇𝑏 − 𝛽 𝜂𝑏
2𝜇𝑑 − 𝜂2𝜇𝑑 + 𝜂𝑏

2𝜇𝑏 + 𝜂𝑏
2𝜇𝑑 ,

𝐵 = 2 𝜁𝑏𝜂 𝜂𝑏
(

𝜇𝑏 + 𝜇𝑑
)

,

𝐶 = −𝛽 𝜂2𝜂𝑏2𝜇𝑏 − 𝛽 𝜂2𝜂𝑏2𝜇𝑑 − 𝜂4𝜇𝑏 − 𝜂4𝜇𝑑 + 𝜂2𝜂𝑏2𝜇𝑏 + 𝜂2𝜂𝑏2𝜇𝑑
+𝛽 𝜂𝑏2𝜇𝑏 + 𝛽 𝜂𝑏2𝜇𝑑 + 𝜂2𝜇𝑏 + 𝜂2𝜇𝑑 − 𝜂𝑏2𝜇𝑏 − 𝜂𝑏2𝜇𝑑 + 𝜂2

,

= 2 𝜁𝑏𝜂 𝜂𝑏 (𝜂 − 1) (𝜂 + 1)
(

𝜇𝑏 + 𝜇𝑑
)

.

(23)

wo constraints are derived from Eq. (22) to obtain optimal frequency
nd damping ratios [20,23] and express as

𝐴
𝐵

)2|
|

|

|

=
(𝐶
𝐷

)2|
|

|

|

and
(𝐵
𝐷

)2|
|

|

|

=
(𝐵
𝐷

)2|
|

|

|

. (24)

|𝜂 |𝜂 |𝜂1 |𝜂2
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Fig. 4. (a) The differences in optimal frequency ratio 𝜂𝑏 versus base mass ratio 𝜇𝑏 for different values of negative stiffness ratio 𝛽 of NSBI. The black dotted (𝛽 = 0.10), red
ash-dotted (𝛽 = 0.20), blue dashed (𝛽 = 0.30), and cyan solid (𝛽 = 0.40) lines with markers are employed to address these plots. (b) The differences in optimal damping ratio 𝜁𝑏
ersus base mass ratio 𝜇𝑏 for different values of negative stiffness ratio 𝛽 of NSBI. The black dotted (𝛽 = 0.10), red dash-dotted (𝛽 = 0.20), blue dashed (𝛽 = 0.30), and cyan solid
𝛽 = 0.40) lines with markers are employed to address these plots. 𝜇𝑑 = 0 is applied for both graphs.
T
b
a
a
a
I
w

T

(

fter applying the first expression of Eq. (24), a equation is determined
s [20]

(

𝜇𝑏
2 + 3𝜇𝑏𝜇𝑑 + 2𝜇𝑑

2) 𝜂4

+
(

2 𝛽 𝜂𝑏2𝜇𝑏
2 + 4 𝛽 𝜂𝑏2𝜇𝑏𝜇𝑑 + 2 𝛽 𝜂𝑏2𝜇𝑑

2 − 2 𝜂𝑏2𝜇𝑏
2 − 4 𝜂𝑏2𝜇𝑏𝜇𝑑

−2 𝜂𝑏2𝜇𝑑
2 − 𝜇𝑏

2 − 3𝜇𝑏𝜇𝑑 − 2𝜇𝑑
2 − 𝜇𝑏 − 𝜇𝑑

)

𝜂2

−2 𝛽 𝜂𝑏2𝜇𝑏
2 − 4 𝛽 𝜂𝑏2𝜇𝑏𝜇𝑑 − 2 𝛽 𝜂𝑏2𝜇𝑑

2 + 2 𝜂𝑏2𝜇𝑏
2 + 4 𝜂𝑏2𝜇𝑏𝜇𝑑 + 2 𝜂𝑏2𝜇𝑑

2

= 0.

(25)

Using the second constraint of Eq. (24), another equation derives and
expresses as

𝜂21 + 𝜂22 = 2. (26)

Comparing Eqs. (25) and (26), the optimal frequency ratio of is NSIBI
derived as

(𝜂𝑏)opt =

√

1 − 𝜇𝑏 − 2𝜇𝑑
2𝜇𝑏 + 2𝜇𝑑 − 2 𝛽 𝜇𝑏 − 2 𝛽 𝜇𝑑

. (27)

2
1,2 is derived as

𝜂1,2)2 = 1 ±

√

2 𝜂𝑏2
(

𝜇𝑏 + 𝜇𝑑
)

(𝛽 − 1) + 𝜇𝑏 + 2𝜇𝑑
𝜇𝑏 + 2𝜇𝑑

. (28)

The optimal 𝜂21,2 is derived by substituting Eq. (27) into Eq. (28) and
expressed as

(𝜂1,2)2opt = 1 ±

√

2𝜇𝑏 + 4𝜇𝑑 − 1
𝜇𝑏 + 2𝜇𝑑

. (29)

The mathematical expressions for deriving the optimal damping ratio
of NSIBI are expressed as

𝜕|𝐻𝑠(𝜂)|
2

𝜕𝜂2
|𝜂21,2

= 0 and (𝜁𝑏)opt =

√

𝜁2𝑏1 + 𝜁2𝑏2
2

. (30)

The optimal damping ratio of NSIBI is derived as

𝐴1𝜁
4
𝑏 + 𝐵1𝜁

2
𝑏 + 𝐶1 = 0

and 𝜁2𝑏1,𝑏2 =
−𝐵1 ±

√

𝐵2
1 − 4𝐴1𝐶1

2𝐴1
,

(31)

here 𝐴1, 𝐵1, 𝐶1 are listed in Appendix A. To achieve the optimal
amping ratio for NSIBI, Eqs. (27) and (28) are substituted in Eq. (31).
5

he differences in optimal frequency and damping ratios versus the
ase mass ratio for different values of negative stiffness ratio of NSIBI
re displayed in Figs. 5(a) and 5(b). To obtain Fig. 5, Eqs. (27), (30),
nd (31) are employed. 𝜇𝑑 ≠ 0 is considered for NSIBI. The frequency
nd damping ratios decrease with the increment of the base mass ratio.
n contrast, the frequency ratio increase and the damping ratio decrease
ith the increment of the negative stiffness ratio. Substituting 𝜇𝑑 =

0 in Eqs. (27), (30), and (31), the exact closed-form expressions for
the optimal frequency and damping ratios of NSBI are derived. The
differences in optimal frequency and damping ratios versus the base
mass ratio for different values of negative stiffness ratio of NSBI are
displayed in Figs. 6(a) and 6(b). The frequency and damping ratios
decrease with the increment of the base mass ratio. In contrast, the
frequency ratio increase, and the damping ratio decrease with the
increment of the negative stiffness ratio. 𝐻∞ optimization method is
also applied for TBI to derive the optimal design parameters. Therefore,
the optimal frequency ratio of TBI is derived as

(𝜈𝑏)𝑜𝑝𝑡 =

√

1 − 𝜇𝑏
2𝜇𝑏

. (32)

he optimal damping ratio of TBI is derived as

𝜉𝑏)𝑜𝑝𝑡 =

√

1 − 𝜇𝑏
8𝜇𝑏

. (33)

The variation of optimal frequency ratio of TBI 𝜈𝑏 versus base mass ratio
𝜇𝑏 is displayed in Fig. 7(a). To acquire Fig. 7(a), Eq. (32) is employed.
The optimal frequency ratio of TBI decreases when the base mass
ratio increases. The same trend is observed for Fig. 7(b). Therefore,
the results imply that a higher base mass ratio enhanced the time
period of the isolator and provided additional flexibility at the base
of the isolated structure. A higher base mass ratio is recommended for
achieving TBI’s optimum vibration reduction capacity. The variation
of the optimal damping ratio of TBI 𝜉𝑏 versus base mass ratio 𝜇𝑏 are
displayed in Fig. 7(b). To acquire Fig. 7(b), Eq. (33) is employed. TBI’s
optimal viscous damping ratio decreases when the base mass ratio
increases. TBI’s optimal viscous damping ratio decreases when the base
mass ratio increases. Therefore, the results imply that a higher base
mass ratio provides a lower viscous damping ratio of TBI, which is
affordable. The higher base mass ratios are recommended for achieving
robust performance for 𝐻 optimized TBI.
∞
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Fig. 5. (a) The differences in optimal frequency ratio 𝜂𝑏 versus base mass ratio 𝜇𝑏 for different values of negative stiffness ratio 𝛽 of NSIBI. The black dotted (𝛽 = 0.10), red
ash-dotted (𝛽 = 0.20), blue dashed (𝛽 = 0.30), and sky blue solid (𝛽 = 0.40) lines with markers are employed to address these plots. (b) The differences in optimal damping ratio
𝑏 versus base mass ratio 𝜇𝑏 for different values of negative stiffness ratio 𝛽 of NSIBI. The black dashed (𝛽 = 0.10), and sky blue dash-dotted (𝛽 = 0.30) lines with markers are
mployed to address these plots. 𝜇𝑑 = 0.10 is applied for both graphs. Eqs. (27), (30), and (31) are employed to obtain both graphs.
Fig. 6. (a) The differences in optimal frequency ratio 𝜂𝑏 versus base mass ratio 𝜇𝑏 for different values of negative stiffness ratio 𝛽 of NSBI. The black solid (𝛽 = 0.10), red
ash-dotted (𝛽 = 0.20), blue dashed (𝛽 = 0.30), and cyan dotted (𝛽 = 0.40) lines with markers are employed to address these plots. (b) The differences in optimal viscous damping
atio 𝜁𝑏 versus base mass ratio 𝜇𝑏 for different values of negative stiffness ratio 𝛽 of NSBI. The sky blue dashed (𝛽 = 0.10), and black solid (𝛽 = 0.20) lines with markers are
mployed to address these plots. 𝜇𝑑 = 0, Eqs. (27), (30), and (31) are employed to obtain both graphs.
. Robustness of NSIBI and NSBI

The differences in main structural optimal dynamic responses iso-
ated by 𝐻2 optimized NSIBI versus frequency ratio for various damping
atios are displayed in Fig. 8(a). 𝜇𝑏 = 0.70, 𝜇𝑑 = 0.10, 𝛽 = 0.10, 𝜁𝑠 = 0
re considered system parameters. The optimal frequency and damping
atios using Eqs. (16) and (17), i.e., (𝜂𝑏)𝑜𝑝𝑡 = 0.7454 and (𝜁𝑏)𝑜𝑝𝑡 = 0.3248.
𝜂 = 0.4433, 1.599 are the Eigen frequencies at 𝜁𝑏 = 0. 𝜂 = 1.313 is
minima point. 𝜂 = 0.4388, 1.542 are the resonating frequencies at (𝜂𝑏)𝑜𝑝𝑡
nd (𝜁𝑏)𝑜𝑝𝑡. At these frequency regions, the maximum dynamic response
itigation occurs. The anti-resonance frequency region evaluates at
= 2.0. At 𝜁𝑏 = ∞, the dynamic response peaks of the isolated structure,

.e., two degrees of freedom systems, are merged into one. The en-
ire system vibrates as a single-degree-of-freedom system (SDOF). The
requency point is evaluated at 𝜂 = 1.0.

The differences in 𝐻∞ optimized NSIBI controlled structure’s dy-
namic responses are shown in Fig. 8(b). The system parameters are
considered as 𝜇𝑏 = 0.70, 𝜇𝑑 = 0.10, 𝛽 = 0.10, 𝜁𝑠 = 0 and substituting
hese parameters in Eqs. (27), (30), and (31). Hence, (𝜂 ) = 0.2635
6

𝑏 𝑜𝑝𝑡
and (𝜁𝑏)𝑜𝑝𝑡 = 0.3792 are evaluated. 𝜂 = 0.1643, 1.511 are the Eigen
frequencies at 𝜁𝑏 = 0. 𝜂 = 0.7071 is the anti-resonance frequency.
𝜂 = 0.1557, 1.506 are the resonating frequencies; resulting the mitigation
of maximum dynamic responses. 𝜂 = 0.8483 is the minima frequency
point. 𝜁𝑏 = ∞, the dynamic response peaks of the two degrees of
freedom systems are merged into a single-degree-of-freedom system
(SDOF). 𝜂 = 1.0 is the frequency point. The peak dynamic responses
of the main structure isolated by 𝐻2 and 𝐻∞ optimized NSIBI are
determined as 3.038 and 2.1538. Therefore, the dynamic response
reduction capacity of 𝐻∞ optimized NSIBI is 29.1% superior to 𝐻2
optimized NSIBI.

The variations of main structural optimal dynamic responses iso-
lated by 𝐻2 optimized NSBI for different values of damping ratio are
displayed in Fig. 9(a). The system parameters are considered as 𝜇𝑏 =
0.70, 𝜇𝑑 = 0, 𝛽 = 0.10, 𝜁𝑠 = 0. The optimal frequency and damping
ratios are determined using Eqs. (16) and (17), i.e., (𝜂𝑏)𝑜𝑝𝑡 = 0.8909
and (𝜁𝑏)𝑜𝑝𝑡 = 0.4009. 𝜂 = 0.4966, 1.702 are the Eigen frequencies at
𝜁𝑏 = 0. 𝜂 = 0.4934, 1.697 are the resonating frequencies at (𝜂𝑏)𝑜𝑝𝑡 and
(𝜁 ) . At these frequency regions, the maximum dynamic response
𝑏 𝑜𝑝𝑡
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Fig. 7. (a) The variations of optimal frequency ratio of traditional base isolator (TBI) versus base mass ratio. Eq. (32) is employed for this graph. (b) The variation of the optimal
viscous ratio of traditional base isolator (TBI) versus base mass ratio. Eq. (33) is employed for this graph. The black dashed line with marker is employed to address both graphs.
Fig. 8. (a) The differences in main structural optimal dynamic responses isolated by 𝐻2 optimized NSIBI versus frequency ratio for various damping ratios. 𝜇𝑏 = 0.70, 𝜇𝑑 = 0.10,
𝛽 = 0.10, 𝜁𝑠 = 0 are considered system parameters. The optimal frequency and damping ratios are derived using Eqs. (16) and (17), i.e., (𝜂𝑏)𝑜𝑝𝑡 = 0.7454 and (𝜁𝑏)𝑜𝑝𝑡 = 0.3248. The red
dashed (𝜁𝑏 = 0), black dash-dotted (𝜁𝑏 = ∞), and sky blue solid ((𝜁𝑏)𝑜𝑝𝑡 = 0.3248) lines are employed to address these plots. (b) The differences in main structural optimal dynamic
responses isolated by 𝐻∞ optimized NSIBI versus frequency ratio for various damping ratios. 𝜇𝑏 = 0.70, 𝜇𝑑 = 0.10, 𝛽 = 0.10, 𝜁𝑠 = 0 are considered system parameters. Eqs. (27), (30),
and (31) are applied to derive the optimal frequency and damping ratios, i.e., (𝜂𝑏)𝑜𝑝𝑡 = 0.2635 and (𝜁𝑏)𝑜𝑝𝑡 = 0.3792. The red dashed (𝜁𝑏 = 0), black dash-dotted (𝜁𝑏 = ∞), and sky
blue solid ((𝜁𝑏)𝑜𝑝𝑡 = 0.3792) lines are employed to address these plots. P, Q, and R indicate the fixed points for both graphs.
mitigation occurs. At 𝜁𝑏 = ∞, the dynamic response peaks of the
isolated structure, i.e., two degrees of freedom systems, are merged into
one. The entire system vibrates as a single-degree-of-freedom system
(SDOF). The frequency point is evaluated at 𝜂 = 1.0.

The variations of 𝐻∞ optimized NSBI controlled structure’s dynamic
responses are shown in Fig. 9(b). The system parameters are considered
as 𝜇𝑏 = 0.70, 𝜇𝑑 = 0.0, 𝛽 = 0.10, 𝜁𝑠 = 0. and substituting these
parameters in Eqs. (27), (30), and (31), (𝜂𝑏)𝑜𝑝𝑡 = 0.488 and (𝜁𝑏)𝑜𝑝𝑡 =
0.3806 are evaluated. 𝜂 = 0.2894, 1.6 are the Eigen frequencies at 𝜁𝑏 = 0.
𝜂 = 0.2794, 1.597 are the resonating frequencies, resulting in the miti-
gation of maximum dynamic responses. 𝜁𝑏 = ∞, the dynamic response
peaks of the two degrees of freedom systems are merged into a single-
degree-of-freedom system (SDOF). 𝜂 = 1.0 is the frequency point. 𝐻2
and 𝐻∞ optimized NSBI-controlled superstructure’s maximum dynamic
responses are determined as 2.9858 and 2.4622. Hence, the dynamic
7

response reduction capacity of 𝐻∞ optimized NSBI is 17.53% more
than 𝐻2 optimized NSBI.

The differences in the optimal dynamic responses of uncontrolled
structures, structures isolated by 𝐻2 optimized NSIBI, NSBI, and tradi-
tional base isolator (TBI) versus frequency ratio for various damping
ratios are displayed in Fig. 10(a). The system parameters for 𝐻2 op-
timized isolators and uncontrolled structures are listed in Tables 2
and 3. The values of 𝐻2 and 𝐻∞ optimized system parameters for
isolators are listed in Table 2. The system parameters of main structures
(uncontrolled and controlled structures) are listed in Table 3. The
harmonic excitations are applied at the base of the structures. The
peak value of the uncontrolled structure’s dynamic response is 10.01.
The peak values of dynamic responses of the structures isolated by
optimum NSIBI, NSBI, and TBI are determined as 2.96, 2.92, and 5.48.

The vibration reduction capacities of 𝐻2 optimized NSIBI and NSBI are
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Fig. 9. (a) The differences in main structural optimal dynamic responses isolated by 𝐻2 optimized NSBI versus frequency ratio for various damping ratios. 𝜇𝑏 = 0.70, 𝜇𝑑 = 0.0,
𝛽 = 0.10, 𝜁𝑠 = 0 are considered system parameters. Eqs. (16) and (17) are applied to derive the optimal frequency and damping ratios, i.e., (𝜂𝑏)𝑜𝑝𝑡 = 0.8909 and (𝜁𝑏)𝑜𝑝𝑡 = 0.4009. The
black dashed (𝜁𝑏 = 0), blue dash-dotted (𝜁𝑏 = ∞), and red solid ((𝜁𝑏)𝑜𝑝𝑡 = 0.4009) lines are employed to address these plots. (b) The differences in main structural optimal dynamic
responses isolated by 𝐻∞ optimized NSBI versus frequency ratio for various damping ratios. 𝜇𝑏 = 0.70, 𝜇𝑑 = 0.0, 𝛽 = 0.10, 𝜁𝑠 = 0 are considered system parameters. Eqs. (27), (30),
and (31) are applied to derive the optimal frequency and damping ratios, i.e., (𝜂𝑏)𝑜𝑝𝑡 = 0.488 and (𝜁𝑏)𝑜𝑝𝑡 = 0.38. The black dashed (𝜁𝑏 = 0), blue dash-dotted (𝜁𝑏 = ∞), and red solid
((𝜁𝑏)𝑜𝑝𝑡 = 0.38) lines are employed to address these plots. P, Q, and R indicate the fixed points for both graphs.
Fig. 10. (a) The differences in the optimal dynamic responses of uncontrolled structures and structures isolated by 𝐻2 optimized NSIBI, NSBI and optimum TBI. The black dotted
(uncontrolled), red dash-dotted (structure isolated by TBI), blue dashed (structure isolated by NSIBI), and cyan solid (structure isolated by NSBI) are applied to address each
plot. (b) The differences in the optimal dynamic responses of uncontrolled structures and structures isolated by 𝐻∞ optimized NSIBI, NSBI and optimum TBI. The black dotted
(uncontrolled), red dash-dotted (structure isolated by TBI), blue dashed (structure isolated by NSIBI), and cyan solid (structure isolated by NSBI) are applied to address each plot.
For both graphs, the design parameters are listed in Table 2. 𝜁𝑠 = 0.05 is considered for both graphs.
Table 2
The values of 𝐻2 and 𝐻∞ optimized system parameters for isolators.

System Proposed by 𝐻2 optimization 𝐻∞ optimization

𝜂𝑏 𝜁𝑏 𝜂𝑏 𝜁𝑏
NSIBI This study 0.7968 0.3472 0.3984 0.3567
NSBI This study 0.8909 0.4009 0.4879 0.3806
TBI Matsagar and Jangid [48] 0.25 0.15 0.4 0.15

Traditional base isolator (TBI): base mass ratio (𝜇𝐵) = 0.70, NSIBI: base mass ratio (𝜇𝑏)
= 0.60, inerter mass ratio (𝜇𝑑 = 0.10), NSBI: base mass ratio (�̃�𝑏) = 0.70, Mass ratio:
𝜇𝐵 = 𝜇𝑏 + 𝜇𝑑 = �̃�𝑏, and negative stiffness ratio 𝛽 = 0.10.

significantly 45.98% and 46.71% more than the vibration reduction
capacity of TBI.
8

Table 3
The system parameters of main structures (uncon-
trolled and controlled structures).

Name Symbol Values

Damping ratio 𝜁𝑠 0.05

The differences in the optimal dynamic responses of uncontrolled
structures, structures isolated by 𝐻∞ optimized NSIBI, NSBI, and tra-
ditional base isolator (TBI) versus frequency ratio for various damping
ratios are displayed in Fig. 10(b). The peak value of the uncontrolled
structure’s dynamic response is 10.01. The peak values of dynamic
responses of the structures isolated by optimum NSIBI, NSBI, and
TBI are determined as 2.39, 2.45, and 5.74. The vibration reduction
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Fig. 11. The algorithm for determining displacement and acceleration response reduction capacities.
Table 4
The system parameters of main structures (uncontrolled and controlled
structures).

Name Symbol Values

Mass of the structure 𝑚𝑠 3000 tons
Damping ratio 𝜁𝑠 0.05
Time period of the structure 𝑇𝑠 0.5 s

Table 5
Details of near-field earthquake records (pulse records) (https://peer.berkeley.edu/peer-
strong-ground-motion-databases).

Earthquake Year 𝑀𝑤 Recording
station

𝑉 𝑠30
(m/s)

Component 𝐸𝑠
(km)

PGA,g

Northridge-01 1994 6.7 Rinaldi
Receiving Sta

282 NORTHR 10.9 0.87

Chi-Chi, Taiwan 1999 7.6 TCU065 306 CHICHI 26.7 0.82

capacities of 𝐻∞ optimized NSIBI and NSBI are significantly 58.36%
and 57.32% more than the vibration reduction capacity of TBI.

Newmark-beta method is applied to determine the time domain
responses of the isolated structures subjected to near-field earthquake
records with pulses. In addition, the efficiency of the optimal closed-
form solutions for the proposed systems is also cross-checked through
this time domain analysis. The dynamic response reduction capacities
of the proposed dampers in the time domain, such as displacement and
acceleration response reduction capacities, are determined using the
Newmark-beta method. The algorithm for this study is introduced in
Fig. 11. MATLAB environment utilizes to perform this numerical study.
The main structure is an uncontrolled structure, and the uncontrolled
structure is a single degree of freedom (SDOF) system with the mass
of the structure 𝑚𝑠 = 3000 tons, damping ratio 𝜁𝑠 = 0.05, and time
period of the structure 𝑇𝑠 = 0.5 s The uncontrolled structures with
the same system parameters are mounted on a conventional isolation
base, i.e., traditional base isolator (TBI), NSIBI, and NSBI. For the
conventional isolation base, the base damping ratio considers as 15%
in order to have an equal comparison basis with the proposed isolation
systems, i.e., NSIBI and NSBI. The system parameters of the main
structures are listed in Table 4. The near-field earthquake records are
downloaded from the Pacific Earthquake Engineering Research Cen-
ter (https://peer.berkeley.edu/peer-strong-ground-motion-databases).
The detailed properties of near-field earthquake records are listed in
Table 5. The response spectra of the considered earthquake records are
shown in Fig. 12 with 5% damping. Near-field earthquakes are more
dangerous than far-field earthquakes [19]. Hence, the numerical study
is continued with near-field earthquake records (pulse records). The
9

Table 6
The values of 𝐻2 and 𝐻∞ optimized system parameters for isolators.

System Proposed by 𝐻2 optimization 𝐻∞ optimization

𝜂𝑏 𝜁𝑏 𝜂𝑏 𝜁𝑏
NSIBI This study 0.7968 0.3472 0.3984 0.3567
NSBI This study 0.8909 0.4009 0.4879 0.3806
TBI Chowdhury and Banerjee (𝐻2) [49] 0.8452 0.4226 ... ...
TBI This study (Eq. (32) and Eq. (33)) (𝐻∞) ... ... 0.4629 0.2315

Traditional base isolator (TBI): base mass ratio (𝜇𝐵) = 0.70, NSIBI: base mass ratio (𝜇𝑏)
= 0.60, inerter mass ratio (𝜇𝑑 = 0.10), NSBI: base mass ratio (�̃�𝑏) = 0.70, Mass ratio:
𝜇𝐵 = 𝜇𝑏 + 𝜇𝑑 = �̃�𝑏, and negative stiffness ratio 𝛽 = 0.10.

Fig. 12. Response spectra of earthquake base excitations. The black dash-dotted
(Northridge-01) and red dash (Chi-Chi, Taiwan) lines are applied to address these plots.
5% damping is considered to determine this graph.

values of 𝐻2 and 𝐻∞ optimized system parameters for each isolator
are listed in Table 6.

The differences in the optimal displacement of the main structure
isolated by 𝐻2 optimized NSBI, NSIBI, and TBI subjected to Northridge-
01 base excitation are shown in Fig. 13(a). The maximum displace-
ments of the uncontrolled structure and structures isolated by 𝐻2
optimized TBI, NSIBI, and NSBI are determined as 0.0116 m, 0.0097 m,
0.0086 m, and 0.007 m. Therefore, the dynamic response reduction
capacities of 𝐻2 optimized NSIBI and NSBI are significantly 11.34%
and 27.83% superior to 𝐻2 optimized TBI. The differences in the
optimal displacement of the main structure isolated by 𝐻∞ optimized
NSBI, NSIBI, and TBI subjected to Northridge-01 base excitation are
shown in Fig. 13(b). The maximum displacements of the uncontrolled

https://peer.berkeley.edu/peer-strong-ground-motion-databases
https://peer.berkeley.edu/peer-strong-ground-motion-databases
https://peer.berkeley.edu/peer-strong-ground-motion-databases
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Fig. 13. (a) The differences in the optimal displacement of the main structure isolated by 𝐻2 optimized NSBI, NSIBI, and optimum TBI [49] subjected to Northridge-01 base
excitation. (b) The differences in the optimal displacement of the main structure isolated by 𝐻∞ optimized NSBI, NSIBI, and optimum TBI (Eqs. (32) and (33)) subjected to
Northridge-01 base excitation. For both graphs, the design parameters are listed in Table 6. Pink dotted (uncontrolled structure), cyan dash-dotted (structure isolated by TBI), red
dashed (structure isolated by NSIBI), and blue solid (structure isolated by NSBI) lines are employed to address each plot for both graphs.
Fig. 14. SDOF systems controlled by (a) NSITMD and (b) NSTMD subjected to base excitation.
Table 7
The values of inerter masses for NSITMD and NSTMD.

Mass NSITMD NSTMD

𝑚ℎ 𝑚ℎ ≠ 0 𝑚ℎ = 0

structure and structures isolated by 𝐻∞ optimized TBI, NSIBI, and NSBI
are determined as 0.0116 m, 0.0048 m, 0.0023 m, and 0.0029 m.
Therefore, the dynamic response reduction capacities of 𝐻∞ optimized
NSIBI and NSBI are significantly 52.08% and 39.58% superior to 𝐻∞
optimized TBI.

6. Novel tuned mass dampers

The structural diagrams of SDOF systems controlled by novel TMD
display in Figs. 14(a) and 14(b). 𝑚𝑑 , 𝑘𝑑 , and 𝑐𝑑 define the mass,
stiffness, and damping of novel TMD. 𝑚ℎ defines the inerter mass.
𝑘 defines the negative stiffness of the novel TMD, i.e., 𝑘 = 𝛼𝑘 .
10

ℎ ℎ 𝑑
Considering 𝑚ℎ = 0 for NSITMD, NSTMD is mathematically formulated.
The values of inerter masses for NSITMD and NSTMD are listed in
Table 7. 𝑚𝑠, 𝑘𝑠, and 𝑐𝑠 define the mass, stiffness, and damping of SDOF
systems. �̈�𝑔 defines the base excitation. 𝑢𝑠 and 𝑢𝑑 define the absolute
dynamic response of SDOF systems and novel TMD. Newton’s second
law applies to derive the governing equations of motion of the SDOF
systems controlled by the novel TMD, such as NSITMD and NSTMD
subjected to base excitation and expressed as

𝑚𝑠�̈�𝑠 + 𝑘𝑠𝑥𝑠 + 𝑐𝑠�̇�𝑠 − 𝑚ℎ�̈�𝑑 − 𝑐𝑑 �̇�𝑑 − 𝑘𝑒𝑥𝑑 = −𝑚𝑠�̈�𝑔 ,

𝑚𝑑 �̈�𝑑 + 𝑚𝑑 �̈�𝑠 + 𝑚ℎ�̈�𝑑 + 𝑐𝑑 �̇�𝑑 + 𝑘𝑒𝑥𝑑 = −𝑚𝑑 �̈�𝑔 ,
(34)

where 𝑘𝑒 = 𝑘𝑑 − 𝑘ℎ defines the effective stiffness of NSITMD. 𝑐𝑠 =
2𝑚𝑠𝜁𝑠𝜔𝑠 and 𝑘𝑠 = 𝑚𝑠𝜔2

𝑠 are the damping and stiffness of the SDOF
systems. 𝑐𝑑 = 2𝜁𝑑 (𝑚ℎ + 𝑚𝑑 )𝜔𝑑 and 𝑘𝑑 = (𝑚ℎ + 𝑚𝑑 )𝜔2

𝑑 are the damping
and stiffness of NSITMD. 𝑥𝑠 = 𝑢𝑠 − 𝑥𝑔 , 𝑥𝑑 = 𝑢𝑑 − 𝑢𝑠 define the relative
dynamic responses of the primary structure and the novel damper. The
controlled structure is subjected to harmonic excitation. 𝑥𝑠 = 𝑋𝑠𝑒i𝜔𝑡,
𝑥 = 𝑋 𝑒i𝜔𝑡, and �̈� = 𝐴 𝑒i𝜔𝑡 are the steady state solutions which are
𝑑 𝑑 𝑔 𝑔
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substituted in Eq. (34). Hence, the transfer function is derived as
[

2 𝑞𝜁𝑠𝜔𝑠 + 𝑞2 + 𝜔𝑠
2 𝐴12

𝑞2𝜇𝑑 𝐴22

]

{

𝑋𝑠
𝑋𝑑

}

= −

[

1
𝜇𝑑

]

𝐴𝑔 ,

12 = −𝑞2𝜇ℎ − 2 𝑞𝜁𝑑
(

𝜇𝑑 + 𝜇ℎ
)

𝜔𝑑 −
(

𝜇𝑑 + 𝜇ℎ
)

𝜔𝑑
2 + 𝛼

(

𝜇𝑑 + 𝜇ℎ
)

𝜔𝑑
2,

𝐴22 = 𝑞2𝜇𝑑 + 𝑞2𝜇ℎ + 2 𝑞𝜁𝑑
(

𝜇𝑑 + 𝜇ℎ
)

𝜔𝑑 +
(

𝜇𝑑+𝜇ℎ
)

𝜔𝑑
2−𝛼

(

𝜇𝑑+𝜇ℎ
)

𝜔𝑑
2,

(35)

where 𝛼 = 𝑘ℎ∕𝑘𝑑 defines the negative stiffness ratio of the novel TMD.
The dynamic responses of the SDOF system and NSITMD determine as

𝐻𝑠(𝑞)=
𝑋𝑠
𝐴𝑔

=

−𝛼 𝜇𝑑2𝜔𝑑
2 − 𝛼 𝜇𝑑𝜇ℎ𝜔𝑑

2 + 2 𝑞𝜁𝑑𝜇𝑑2𝜔𝑑 + 2 𝑞𝜁𝑑𝜇𝑑𝜇ℎ𝜔𝑑
−𝛼 𝜔𝑑

2𝜇𝑑 − 𝛼 𝜔𝑑
2𝜇ℎ + 𝑞2𝜇𝑑𝜇ℎ + 2 𝑞𝜁𝑑𝜔𝑑𝜇𝑑 + 2 𝑞𝜁𝑑𝜔𝑑𝜇ℎ

+𝜇𝑑2𝜔𝑑
2 + 𝜇𝑑𝜇ℎ𝜔𝑑

2 + 𝑞2𝜇𝑑 + 𝑞2𝜇ℎ + 𝜔𝑑
2𝜇𝑑 + 𝜔𝑑

2𝜇ℎ
𝛥

,

(36)

𝐻𝑑 (𝑞) =
𝑋𝑑
𝐴𝑔

=
𝜔𝑠𝜇𝑑

(

2 𝑞𝜁𝑠 + 𝜔𝑠
)

𝛥
. (37)

The denominator (𝛥) of the dynamic response function is separated into
its real and imaginary parts as obtains as

𝛥 =

𝛼 𝑞2𝜇𝑑
2𝜔𝑑

2 + 𝛼 𝑞2𝜇𝑑𝜇ℎ𝜔𝑑
2 + 2 𝛼 𝑞𝜁𝑠𝜇𝑑𝜔𝑑

2𝜔𝑠 + 2 𝛼 𝑞𝜁𝑠𝜇ℎ𝜔𝑑
2𝜔𝑠 − 2 𝑞3𝜁𝑑𝜇𝑑

2𝜔𝑑

−2 𝑞3𝜁𝑑𝜇𝑑𝜇ℎ𝜔𝑑 − 4 𝑞2𝜁𝑑𝜁𝑠𝜇𝑑𝜔𝑑𝜔𝑠 − 4 𝑞2𝜁𝑑𝜁𝑠𝜇ℎ𝜔𝑑𝜔𝑠 + 𝛼 𝑞2𝜇𝑑𝜔𝑑
2 + 𝛼 𝑞2𝜇ℎ𝜔𝑑

2

+𝛼 𝜇𝑑𝜔𝑑
2𝜔𝑠

2 + 𝛼 𝜇ℎ𝜔𝑑
2𝜔𝑠

2 − 𝑞4𝜇𝑑𝜇ℎ − 2 𝑞3𝜁𝑑𝜇𝑑𝜔𝑑 − 2 𝑞3𝜁𝑑𝜇ℎ𝜔𝑑 − 𝑞2𝜇𝑑
2𝜔𝑑

2

−2 𝑞3𝜁𝑠𝜇𝑑𝜔𝑠 − 2 𝑞3𝜁𝑠𝜇ℎ𝜔𝑠 − 𝑞2𝜇𝑑𝜇ℎ𝜔𝑑
2 − 2 𝑞𝜁𝑑𝜇𝑑𝜔𝑑𝜔𝑠

2 − 2 𝑞𝜁𝑑𝜇ℎ𝜔𝑑𝜔𝑠
2

−2 𝑞𝜁𝑠𝜇𝑑𝜔𝑑
2𝜔𝑠 − 2 𝑞𝜁𝑠𝜇ℎ𝜔𝑑

2𝜔𝑠 − 𝑞4𝜇𝑑 − 𝑞4𝜇ℎ − 𝑞2𝜇𝑑𝜔𝑑
2 − 𝑞2𝜇𝑑𝜔𝑠

2

−𝑞2𝜇ℎ𝜔𝑑
2 − 𝑞2𝜇ℎ𝜔𝑠

2 − 𝜇𝑑𝜔𝑑
2𝜔𝑠

2 − 𝜇ℎ𝜔𝑑
2𝜔𝑠

2.

(38)

The total effective mass of NSITMD obtains as 𝑚𝑒 = 𝑚𝑑 + 𝑚ℎ. Accord-
ingly, the effective mass and stiffness ratios derive as

𝜇𝑒 =
𝑚𝑑 + 𝑚ℎ

𝑚𝑠
= 𝜇𝑑 + 𝜇ℎ. (39)

he total effective stiffness of NSITMD is derived as

𝑒 = 𝑘𝑑 − 𝑘ℎ = 𝑘𝑑 (1 − 𝛼). (40)

he effective stiffness ratio is derived as

𝑒 =
𝑘𝑑 − 𝑘ℎ

𝑘𝑑
=

(

𝜇𝑑 + 𝜇ℎ
)

(1 − 𝛼)
𝜇𝑑

. (41)

he contour diagram of effective mass as a function of inerter and
amper mass ratios is displayed in Fig. 15(a). To determine this graph,
q. (39) applies for this graph. The effective mass ratio increases as
he damper and inerter mass ratios increase. The contour diagram of
ffective stiffness as a function of inerter and damper mass ratios is
isplayed in Fig. 15(b). To obtain this graph, Eq. (41) is applied. The
ffective stiffness ratio increases as the damper and inerter mass ratios
ncrease. The total effective stiffness of the negative stiffness tuned
ass damper is derived as

𝑒 = 𝑘𝑑 − 𝑘ℎ = 𝑘𝑑 (1 − 𝛼), (42)

here 𝑘ℎ = 𝛼𝑘𝑑 refers to the stiffness ratio of the negative stiffness
evice to the novel damper. The effective stiffness ratio is derived as

𝑒 =
𝑘𝑑 − 𝑘ℎ

𝑘𝑑
= (1 − 𝛼) . (43)

The difference in the effective stiffness ratio versus the negative stiff-
ness ratio of NSTMD is shown in Fig. 16. The effective stiffness de-
creases as the negative stiffness ratio of NSTMD increases. A higher
stiffness ratio provides a more flexible base for the controlled struc-
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tures, increasing the NSTMD’s dynamic response reduction capacity.
7. 𝑯𝟐 optimization for NSITMD and NSTMD

𝐻2 optimization employs to derive the optimal design parame-
ters for NSITMD and NSTMD subjected to random-white noise excita-
tion [19,20]. 𝜁𝑠 = 0 considers to perform this optimization. The SD of
the main structure derives using Eqs. (9), (36) and (38) and expressed
as

𝜎2
𝑥𝑠

=

𝑆0𝜋

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

𝜇𝑑 + 1
)4 (𝜇𝑑 + 𝜇ℎ

)2 (𝛼 − 1)2 𝜔𝑑
4 +

((

𝜇ℎ + 1
)

𝜇𝑑 + 𝜇ℎ
)2 𝜔𝑠

4

−
(

𝜇𝑑 + 𝜇ℎ
) (

𝜇𝑑 + 1
)2 𝜔𝑠

2

⎛

⎜

⎜

⎜

⎝

(

−4 𝜁𝑑 2 + 𝛼 − 1
)

𝜇𝑑
2

−2
(

𝜇ℎ + 1
) (

2 𝜁𝑑 2 + 𝛼 − 1
)

𝜇𝑑

−2𝜇ℎ
(

2 𝜁𝑑 2 + 𝛼 − 1
)

⎞

⎟

⎟

⎟

⎠

𝜔𝑑
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2𝜔𝑑𝜁𝑑
(

𝜇𝑑 + 𝜇ℎ
)

𝜇𝑑
2𝜔𝑠

6
.

(44)

he damping ratio and frequency of the NSITMD are derived by par-
ially differentiating Eq. (44). The mathematical formulations are ex-
ressed as

𝜕𝜎2𝑥𝑠
𝜕𝜁𝑑

= 0 and
𝜕𝜎2𝑥𝑠
𝜕𝜔𝑑

= 0. (45)

The damping ratio of NSITMD is derived by substituting Eq. (44) into
the first equation of Eq. (45). Hence, the damping ratio of NSITMD is
derived as

𝜁𝑑 =

√

√

√

√

√

√

√

√

(

𝜇𝑑 + 1
)4 (𝜇𝑑 + 𝜇ℎ

)2 (𝛼 − 1)2 𝜔𝑑
4 + 𝜔𝑠

4 ((𝜇ℎ + 1
)

𝜇𝑑 + 𝜇ℎ
)2

− (𝛼 − 1)
(

𝜇𝑑 + 𝜇ℎ
)

𝜔𝑠
2 (𝜇𝑑

2 +
(

−2𝜇ℎ − 2
)

𝜇𝑑 − 2𝜇ℎ
) (

𝜇𝑑 + 1
)2 𝜔𝑑

2

4𝜔𝑑
2𝜔𝑠

2
(

𝜇𝑑 + 1
)3 (𝜇𝑑 + 𝜇ℎ

)2
.

(46)

The SD is modified by substituting Eq. (46) into Eq. (44) and expressed
as (seeBox I.) The natural frequency of NSITMD is derived by substi-
tuting Eq. (47) into the second expression of Eq. (45) and expressed as

(𝜔𝑑 )𝑜𝑝𝑡 =

√

√

√

√

√

√

𝜇𝑑
2𝜔𝑠

2 − 2𝜇𝑑𝜇ℎ𝜔𝑠
2 − 2𝜇𝑑𝜔𝑠

2 − 2𝜇ℎ𝜔𝑠
2

2 𝛼 𝜇𝑑
3 + 2 𝛼 𝜇𝑑

2𝜇ℎ + 4 𝛼 𝜇𝑑
2 + 4 𝛼 𝜇𝑑𝜇ℎ − 2𝜇𝑑

3 − 2𝜇𝑑
2𝜇ℎ

+2 𝛼 𝜇𝑑 + 2 𝛼 𝜇ℎ − 4𝜇𝑑
2 − 4𝜇𝑑𝜇ℎ − 2𝜇𝑑 − 2𝜇ℎ

.

(48)

The non-dimensional form of Eq. (48) is derived as

(𝜂𝑑 )𝑜𝑝𝑡 =

√

√

√

√

√

√

𝜇𝑑2 − 2𝜇𝑑𝜇ℎ − 2𝜇𝑑 − 2𝜇ℎ
2 𝛼 𝜇𝑑3 + 2 𝛼 𝜇𝑑2𝜇ℎ + 4 𝛼 𝜇𝑑2 + 4 𝛼 𝜇𝑑𝜇ℎ − 2𝜇𝑑3 − 2𝜇𝑑2𝜇ℎ

+2 𝛼 𝜇𝑑 + 2 𝛼 𝜇ℎ − 4𝜇𝑑2 − 4𝜇𝑑𝜇ℎ − 2𝜇𝑑 − 2𝜇ℎ

.

(49)

he damping ratio of NSITMD is derived by substituting Eq. (48) into
q. (46). Hence, the optimal damping ratio is derived as

𝜁𝑑 )𝑜𝑝𝑡 =

√

√

√

√

(

𝜇𝑑2 +
(

−4𝜇ℎ − 4
)

𝜇𝑑 − 4𝜇ℎ
)

𝜇𝑑2 (1 − 𝛼)

8
(

𝜇𝑑 + 1
) (

𝜇𝑑 + 𝜇ℎ
) (

𝜇𝑑2 +
(

−2𝜇ℎ − 2
)

𝜇𝑑 − 2𝜇ℎ
) . (50)

The differences in optimal frequency and damping ratios versus the
damper mass ratio for different values of negative stiffness ratio of
NSITMD are displayed in Figs. 17(a) and 17(b). To obtain Fig. 17,
Eqs. (49) and (50) are employed. 𝜇ℎ ≠ 0 is considered for NSITMD.
The frequency and damping ratios decrease with the increment of the
damper mass ratio. In contrast, the frequency ratio increase and the
damping ratio decrease with the increment of the negative stiffness
ratio. Substituting 𝜇ℎ = 0 in Eqs. (49) and (50), the exact closed-form
expressions for the optimal frequency and damping ratios of NSTMD
are derived.

The differences in optimal frequency and damping ratios versus
the damper mass ratio for different values of negative stiffness ratio
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Fig. 15. The contour diagrams of (a) effective mass and (b) effective stiffness as a function of inerter mass ratio and damper mass ratio.
𝜎2𝑥𝑠 =

2𝑆0𝜋

(

(

𝜇𝑑 + 1
)4 (𝜇𝑑 + 𝜇ℎ

)2 (𝛼 − 1)2 𝜔𝑑
4 +

((

𝜇ℎ + 1
)

𝜇𝑑 + 𝜇ℎ
)2 𝜔𝑠

4

−
(

𝜇𝑑 + 1
)2 (𝛼 − 1)

(

𝜇𝑑 + 𝜇ℎ
) (

𝜇𝑑2 +
(

−2𝜇ℎ − 2
)

𝜇𝑑 − 2𝜇ℎ
)

𝜔𝑠
2𝜔𝑑

2

)

𝜔𝑑
(

𝜇𝑑 + 𝜇ℎ
)

𝜇𝑑2𝜔𝑠
6

√

√

√

√

√

√

(

𝜇𝑑 + 1
)4 (𝜇𝑑 + 𝜇ℎ

)2 (𝛼 − 1)2 𝜔𝑑
4 + 𝜔𝑠

4 ((𝜇ℎ + 1
)

𝜇𝑑 + 𝜇ℎ
)2

− (𝛼 − 1)𝜔𝑠
2 (𝜇𝑑 + 𝜇ℎ

) (

𝜇𝑑2 +
(

−2𝜇ℎ − 2
)

𝜇𝑑 − 2𝜇ℎ
) (

𝜇𝑑 + 1
)2 𝜔𝑑

2

𝜔𝑑 2𝜔𝑠2(𝜇𝑑+1)3(𝜇𝑑+𝜇ℎ)2

.
(47)

Box I.
𝐴

Fig. 16. The difference in effective stiffness ratio versus negative stiffness ratio of
STMD.

f NSTMD are displayed in Figs. 18(a) and 18(b). The frequency and
amping ratios decrease with the increment of the damper mass ratio.
he frequency ratio increase and the damping ratio decrease with the

ncrement of the negative stiffness ratio. In addition, the tendency of
igs. 17 and 18 are same. As the in-build negative stiffness of the core
aterial of the NSITMD and NSTMD affects the optimal frequency and
amping ratios of NSITMD and NSTMD.

Precisely, to distinguish the effect of inerters on the optimal fre-
uency parameters of the NSITMD and NSTMD, The differences in
12
optimal frequency ratio 𝜂𝑑 versus damper mass ratio 𝜇𝑑 for different
values of inerter mass ratio 𝜇ℎ of novel tuned mass dampers are shown
in Fig. 19(a). The optimal frequency ratio increases as the inerter mass
ratio increases; accordingly, the tuning ratio of NSITMD is more than
the NSTMD. Besides, the effects of inerters on the damping of the novel
dampers are determined. The differences in optimal damping ratio 𝜁𝑑
versus damper mass ratio 𝜇𝑑 for different values of inerter mass ratio
𝜇ℎ of novel tuned mass dampers are shown in Fig. 19(b). The damping
ratio of the novel dampers decreases as the inerter mass ratio increases.
Hence, the damping of the NSITMD is less than that of NSTMD, which
is affordable. Therefore, a moderate inerter mass ratio is recommended
to achieve robust vibration reduction for NSITMD and NSTMD with an
affordable range.

8. 𝑯∞ optimization for NSITMD and NSTMD

𝐻∞ optimization is employed to derive the optimal design param-
eters for NSITMD and NSTMD subjected to harmonic excitation [20].
𝜁𝑠 = 0 considers to perform this optimization. The transfer function in
Eq. (35) is transformed into a non-dimensional manner. Therefore, the
non-dimensional transfer function is derived as
[

−𝜂2 + 1 + 2 𝑖𝜂 𝜁𝑠 𝐴12

−𝜂2𝜇𝑑 𝐴22

]

{

𝑋𝑠
𝑋𝑑

}

= −

[

1
𝜇𝑑

]

𝐴𝑔

𝜔2
𝑠
,

𝐴12 = 𝜂2𝜇ℎ − 2 𝑖𝜂 𝜁𝑑
(

𝜇𝑑 + 𝜇ℎ
)

𝜂𝑑 −
(

𝜇𝑑 + 𝜇ℎ
)

𝜂𝑑
2 + 𝛼

(

𝜇𝑑 + 𝜇ℎ
)

𝜂𝑑
2,

22 = −𝜂2𝜇𝑑−𝜂2𝜇ℎ+2 𝑖𝜂 𝜁𝑑
(

𝜇𝑑+𝜇ℎ
)

𝜂𝑑+
(

𝜇𝑑 + 𝜇ℎ
)

𝜂𝑑
2 − 𝛼

(

𝜇𝑑 + 𝜇ℎ
)

𝜂𝑑
2.
(51)
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𝐻

Fig. 17. (a) The differences in optimal frequency ratio 𝜂𝑑 versus damper mass ratio 𝜇𝑑 for different values of negative stiffness ratio 𝛼 of NSITMD. The black solid (𝛼 = 0.10), red
dash-dotted (𝛼 = 0.20), blue dashed (𝛼 = 0.30), and cyan dotted (𝛼 = 0.40) lines with markers are employed to address these plots. (b) The differences in optimal viscous damping
ratio 𝜁𝑑 versus damper mass ratio 𝜇𝑑 for different values of negative stiffness ratio 𝛼 of NSITMD. The black solid (𝛼 = 0.10), red dash-dotted (𝛼 = 0.20), blue dashed (𝛼 = 0.30),
and cyan dotted (𝛼 = 0.40) lines with markers are employed to address these plots. 𝜇ℎ = 0.01 is applied for both graphs. Eqs. (49) and (50) are employed to obtain both graphs.
Fig. 18. (a) The differences in optimal frequency ratio 𝜂𝑑 versus damper mass ratio 𝜇𝑑 for different values of negative stiffness ratio 𝛼 of NSTMD. The black solid (𝛼 = 0.10), red
dash-dotted (𝛼 = 0.20), blue dashed (𝛼 = 0.30), and cyan dotted (𝛼 = 0.40) lines with markers are employed to address these plots. (b) The differences in optimal viscous damping
ratio 𝜁𝑑 versus damper mass ratio 𝜇𝑑 for different values of negative stiffness ratio 𝛼 of NSTMD. The black solid (𝛼 = 0.10), red dash-dotted (𝛼 = 0.20), blue dashed (𝛼 = 0.30), and
cyan dotted (𝛼 = 0.40) lines with markers are employed to address these plots. 𝜇ℎ = 0 is applied for both graphs. Substituting 𝜇ℎ = 0 in Eqs. (49) and (50), the exact closed-form
expressions for the optimal frequency and damping ratios of NSTMD are derived and applied to obtain both graphs.
w
n

The dynamic response of the primary structure is derived as

𝐻𝑠(𝜂)=
𝑋𝑠
𝐴𝑔

𝜔2
𝑠 =

−𝛼 𝜂𝑑2𝜇𝑑2 − 𝛼 𝜂𝑑2𝜇𝑑𝜇ℎ − 𝛼 𝜂𝑑2𝜇𝑑 − 𝛼 𝜂𝑑2𝜇ℎ − 𝜂2𝜇𝑑𝜇ℎ
+𝜂𝑑2𝜇𝑑2 + 𝜂𝑑2𝜇𝑑𝜇ℎ − 𝜂2𝜇𝑑 − 𝜂2𝜇ℎ + 𝜂𝑑2𝜇𝑑 + 𝜂𝑑2𝜇ℎ

+2i𝜂𝑑𝜂 𝜁𝑑
(

𝜇𝑑 + 1
) (

𝜇𝑑 + 𝜇ℎ
)

𝛥
.

(52)

he dynamic response NSITMD is derived as

𝑑 (𝜂) =
𝑋𝑑 𝜔2

𝑠 =
𝜇𝑑

(

2i𝜂 𝜁𝑠 + 1
)

. (53)
13

𝐴𝑔 𝛥 d
The denominator (𝛥) of the dynamic response function is separated into
its real and imaginary parts as obtains as

𝛥 =

−𝛼 𝜂2𝜂𝑑 2𝜇𝑑
2 − 𝛼 𝜂2𝜂𝑑 2𝜇𝑑𝜇ℎ − 𝛼 𝜂2𝜂𝑑 2𝜇𝑑 − 𝛼 𝜂2𝜂𝑑 2𝜇ℎ − 𝜂4𝜇𝑑𝜇ℎ + 𝜂2𝜇ℎ

+4 𝜂2𝜁𝑑𝜁𝑠𝜂𝑑𝜇𝑑 + 4 𝜂2𝜁𝑑𝜁𝑠𝜂𝑑𝜇ℎ + 𝜂2𝜂𝑑 2𝜇𝑑
2 + 𝜂2𝜂𝑑 2𝜇𝑑𝜇ℎ − 𝜂4𝜇𝑑 − 𝜂𝑑 2𝜇𝑑

−𝜂4𝜇ℎ + 𝜂2𝜂𝑑 2𝜇𝑑 + 𝜂2𝜂𝑑 2𝜇ℎ + 𝛼 𝜂𝑑 2𝜇𝑑 + 𝛼 𝜂𝑑 2𝜇ℎ + 𝜂2𝜇𝑑 − 𝜂𝑑 2𝜇ℎ
+2i

(

𝜇𝑑 + 𝜇ℎ
)

𝜂
(

𝜁𝑠 (𝛼 − 1) 𝜂𝑑 2 +
(

−1 +
(

𝜇𝑑 + 1
)

𝜂2
)

𝜁𝑑𝜂𝑑 + 𝜂2𝜁𝑠
)

,

(54)

here 𝜂 = 𝜔∕𝜔𝑠 refers to the ratio of excitation frequency to the
atural frequency of the primary structure. To minimize the maximum

isplacement of the primary structure, the modulus of 𝐻𝑠(𝜂) is derived
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Fig. 19. (a) The differences in optimal frequency ratio 𝜂𝑑 versus damper mass ratio 𝜇𝑑 for different values of inerter mass ratio 𝜇ℎ of novel tuned mass dampers. The black solid
𝜇ℎ = 0), red dashed (𝜇ℎ = 0.01) lines with markers are employed to address plots for NSTMD and NSITMD. (b) The differences in optimal damping ratio 𝜁𝑑 versus damper mass
atio 𝜇𝑑 for different values of inerter mass ratio 𝜇ℎ of novel tuned mass dampers. The black solid (𝜇ℎ = 0), red dashed (𝜇ℎ = 0.01) lines with markers are employed to address
lots for NSTMD and NSITMD. Eqs. (49) and (50) are applied to obtain both graphs. 𝛼 = 0.10 is considered for both graphs.
T

𝜂

T
s

T
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o

nd expressed as

∣ 𝐻𝑠(𝜂) ∣=

√

√

√

√

𝐴2 + 𝜁2𝑑𝐵
2

𝐶2 + 𝜁2𝑑𝐷
2
=
|

|

|

|

|

𝐵
𝐷

|

|

|

|

|

√

√

√

√

√

√

√

(

𝐴
𝐵

)2
+ 𝜁2𝑑

(

𝐶
𝐷

)2
+ 𝜁2𝑑

. (55)

The closed-form expression for 𝐴, 𝐵, 𝐶, and 𝐷 are derived as

𝐴 = −𝛼 𝜂𝑑2𝜇𝑑2 − 𝛼 𝜂𝑑2𝜇𝑑𝜇ℎ − 𝛼 𝜂𝑑2𝜇𝑑 − 𝛼 𝜂𝑑2𝜇ℎ − 𝜂2𝜇𝑑𝜇ℎ
+𝜇𝑑2𝜂𝑑2 + 𝜂𝑑2𝜇𝑑𝜇ℎ − 𝜂2𝜇𝑑 − 𝜂2𝜇ℎ + 𝜂𝑑2𝜇𝑑 + 𝜂𝑑2𝜇ℎ,

𝐵 = 2 𝜂 𝜁𝑑𝜂𝑑𝜇𝑑2 + 2 𝜂 𝜁𝑑𝜂𝑑𝜇𝑑𝜇ℎ + 2 𝜂 𝜁𝑑𝜂𝑑𝜇𝑑 + 2 𝜂 𝜁𝑑𝜂𝑑𝜇ℎ,

𝐶 =

−𝛼 𝜂2𝜂𝑑2𝜇𝑑2 − 𝛼 𝜂2𝜂𝑑2𝜇𝑑𝜇ℎ − 𝛼 𝜂2𝜂𝑑2𝜇𝑑
−𝛼 𝜂2𝜂𝑑2𝜇ℎ − 𝜂4𝜇𝑑𝜇ℎ + 𝜇𝑑2𝜂2𝜂𝑑2

+𝜂2𝜂𝑑2𝜇𝑑𝜇ℎ − 𝜂4𝜇𝑑 − 𝜂4𝜇ℎ + 𝜂2𝜂𝑑2𝜇𝑑 + 𝜂2𝜂𝑑2𝜇ℎ + 𝛼 𝜂𝑑2𝜇𝑑
+𝛼 𝜂𝑑2𝜇ℎ + 𝜂2𝜇𝑑

+𝜂2𝜇ℎ − 𝜂𝑑2𝜇𝑑 − 𝜂𝑑2𝜇ℎ

,

𝐷 = 2 𝜂3𝜁𝑑𝜂𝑑𝜇𝑑2 + 2 𝜂3𝜁𝑑𝜂𝑑𝜇𝑑𝜇ℎ + 2 𝜂3𝜁𝑑𝜂𝑑𝜇𝑑
+2 𝜂3𝜁𝑑𝜂𝑑𝜇ℎ − 2 𝜂 𝜁𝑑𝜂𝑑𝜇𝑑 − 2 𝜂 𝜁𝑑𝜂𝑑𝜇ℎ.

(56)

Two constraints have been applied to derive the optimal frequency and
damping ratio of the primary structure using the fixed point theory/
𝐻∞ optimization method [20,23]. The mathematical constraints are
listed below.

(𝐴
𝐵

)2 |
|

|

|

|𝜂
=
(𝐶
𝐷

)2 |
|

|

|

|𝜂
and

(𝐵
𝐷

)2 |
|

|

|

|𝜂1

=
(𝐵
𝐷

)2 |
|

|

|

|𝜂2

. (57)

A closed-form expression has been derived from the first equation of
Eq. (57) and expressed as [20]

(

2𝜇𝑑2𝜇ℎ + 2𝜇𝑑2 + 4𝜇𝑑𝜇ℎ + 2𝜇𝑑 + 2𝜇ℎ
)

𝜂4

+

⎛

⎜

⎜

⎜

⎜

⎝

2 𝛼 𝜂𝑑2𝜇𝑑3 + 2 𝛼 𝜂𝑑2𝜇𝑑2𝜇ℎ + 4 𝛼 𝜂𝑑2𝜇𝑑2 + 4 𝛼 𝜂𝑑2𝜇𝑑𝜇ℎ
−2 𝜂𝑑2𝜇𝑑3 − 2𝜇𝑑2𝜂𝑑2𝜇ℎ + 2 𝛼 𝜂𝑑2𝜇𝑑 + 2 𝛼 𝜂𝑑2𝜇ℎ
−4𝜇𝑑2𝜂𝑑2 − 4 𝜂𝑑2𝜇𝑑𝜇ℎ − 2 𝜂𝑑2𝜇𝑑 − 2 𝜂𝑑2𝜇ℎ

−𝜇𝑑2 − 2𝜇𝑑𝜇ℎ − 2𝜇𝑑 − 2𝜇ℎ

⎞

⎟

⎟

⎟

⎟

⎠

𝜂2

−2 𝛼 𝜂𝑑2𝜇𝑑2 − 2 𝛼 𝜂𝑑2𝜇𝑑𝜇ℎ − 2 𝛼 𝜂𝑑2𝜇𝑑 − 2 𝛼 𝜂𝑑2𝜇ℎ
+2𝜇𝑑2𝜂𝑑2 + 2 𝜂𝑑2𝜇𝑑𝜇ℎ + 2 𝜂𝑑2𝜇𝑑 + 2 𝜂𝑑2𝜇ℎ

= 0.

(58)
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F

Another equation has also been derived using the second equation of
Eq. (57) and expressed as

𝜂21 + 𝜂22 = 2
(

𝜇𝑑 + 1
) . (59)

The closed-form expression for the optimal frequency ratio of NSITMD
has been derived using Eq. (58) and expressed as

(𝜂𝑑 )𝑜𝑝𝑡 =

√

√

√

√

√

√

√

√

√

√

√

2𝜇𝑑2𝜇ℎ + 𝜇𝑑2 + 4𝜇𝑑𝜇ℎ + 2𝜇𝑑 + 2𝜇ℎ − 𝜇𝑑3

6𝜇𝑑2 + 6𝜇𝑑𝜇ℎ + 2𝜇𝑑 + 2𝜇ℎ − 2 𝛼 𝜇𝑑4

−2 𝛼 𝜇𝑑3𝜇ℎ − 6 𝛼 𝜇𝑑3 − 6 𝛼 𝜇𝑑2𝜇ℎ
+2𝜇𝑑4 + 2𝜇𝑑3𝜇ℎ − 6 𝛼 𝜇𝑑2 − 6 𝛼 𝜇𝑑𝜇ℎ
+6𝜇𝑑3 + 6𝜇𝑑2𝜇ℎ − 2 𝛼 𝜇𝑑 − 2 𝛼 𝜇ℎ

.

(60)

he closed-form expressions for 𝜂21,2 are derived as

2
1,2 =

1 ±
√

1 + 4
(

𝜇𝑑 + 1
)4 (𝜇ℎ + 𝜇𝑑

)

(𝛼 − 1)
((

𝜇ℎ
)

𝜇𝑑 + 𝜇ℎ
)

𝜂𝑑2

2
(

𝜇𝑑 + 1
)2 ((𝜇ℎ + 1

)

𝜇𝑑 + 𝜇ℎ
)

. (61)

Therefore, the optimal 𝜂21,2 is derived by substituting Eq. (60) into
Eq. (61) and expressed as

(𝜂21,2)𝑜𝑝𝑡

=
1 ±

√

2𝜇𝑑
(

𝜇𝑑 − 4
) (

𝜇𝑑 + 1
)3 𝜇ℎ + 2𝜇𝑑

5 − 4
(

𝜇𝑑 + 1
)4 𝜇ℎ

2 − 6𝜇𝑑
3 − 4𝜇𝑑

2 + 1

2
(

𝜇𝑑 + 1
)2 ((𝜇ℎ + 1

)

𝜇𝑑 + 𝜇ℎ
)

.

(62)

he mathematical expression for determining the closed-form expres-
ion for the optimal viscous damping ratio of NSITMD is derived as

𝜕|𝐻𝑠(𝜂)|
2

𝜕𝜂2
|𝜂21,2

= 0 and (𝜁𝑑 )𝑜𝑝𝑡 =

√

𝜁2𝑑1 + 𝜁2𝑑2
2

, (63)

𝐴𝑑𝜁
4
𝑑 + 𝐵𝑑𝜁

2
𝑑 + 𝐶𝑑 = 0

and 𝜁2𝑑1,𝑑2 =
−𝐵𝑑 ±

√

𝐵2
𝑑 − 4𝐴𝑑𝐶𝑑

2𝐴𝑑
.

(64)

he coefficients of 𝜁𝑑 such as 𝐴𝑑 , 𝐵𝑑 , 𝐶𝑑 are listed in Appendix B. The
ariations of the optimal frequency ratio versus the damper mass ratio
f NSITMD for different values of negative stiffness ratio are shown in
ig. 20(a). To determine the graph, Eq. (60) is employed. The optimal
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Fig. 20. (a) The variations of the optimal frequency ratio 𝜂𝑑 versus the damper mass ratio 𝜇𝑑 of NSITMD for different values of negative stiffness ratio 𝛼. 𝜇ℎ = 0.01 and Eq. (60)
are employed to determine the graph. (b) The variations of the optimal viscous damping ratio 𝜁𝑑 versus the damper mass ratio 𝜇𝑑 of NSITMD for different values of negative
tiffness ratio 𝛼. 𝜇ℎ = 0.01, Eqs. (63) and (64) are employed to determine the graph.
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requency ratio increases as the stiffness ratio increases and decreases
s the damper mass ratio increases. A higher damper mass ratio,
nerter mass ratio, and lower stiffness ratio have been recommended for
chieving a flexible damper base with sufficient load-bearing capacity.

The variations of the optimal viscous damping ratio versus the
amper mass ratio of NSITMD for different values of stiffness ratio
re shown in Fig. 20(b). To obtain the graph, Eqs. (63) and (64) are
mployed. The optimal viscous damping ratio decreases as the stiffness
atio increases and slightly increases as the damper mass ratio in-
reases. However, a higher stiffness ratio provides very lower damping,
hich can make the controlled structures under-damped. Moderate
iscous damping ratios are affordable and easily implementable for
ractical applications. Therefore, a higher damper mass, inerter mass,
nd lower stiffness ratios have been recommended for achieving robust
ynamic response reduction capacity at a moderate viscous damping
ange for NSITMD. The optimal closed-form solutions for optimal fre-
uency and damping ratios of Negative stiffness tuned mass damper
NSTMD) are derived after 𝜇ℎ = 0 in Eqs. (60) and (64).

The variations of the optimal frequency ratio versus the damper
ass ratio of NSTMD for different values of negative stiffness ratio are

hown in Fig. 21(a). The optimal frequency ratio increases as the stiff-
ess ratio increases and decreases as the damper mass ratio increases.
higher damper mass ratio and lower stiffness ratio are recommended

or achieving a flexible base of the novel damper with sufficient load-
earing capacity. The variations of the optimal viscous damping ratio
ersus the base mass ratio of NSTMD for different values of negative
tiffness ratio are shown in Fig. 21(b). The optimal viscous damping
atio decreases as the negative stiffness ratio increases and slightly
ncreases as the damper mass ratio increases. A higher stiffness ratio
rovides very lower damping, which can make the isolated structures
nder-damped. Moderate viscous damping ratios are affordable and
asily implementable for practical applications. Therefore, a higher
amper mass and lower stiffness ratios have been recommended for
chieving robust dynamic response reduction capacity at a moderate
15

iscous damping range.
9. Robustness of NSITMD and NSTMD

The variations of optimal dynamic responses of the primary struc-
ture controlled by 𝐻2 optimized NSITMD for different values of viscous
damping ratio are shown in Fig. 22(a). 𝜇𝑑 = 0.05, 𝜇ℎ = 0.01, 𝛼 = 0.10,
𝑠 = 0 are substituted in Eqs. (49) and (50), evaluating (𝜂𝑑 )𝑜𝑝𝑡 = 0.9976
nd (𝜁𝑑 )𝑜𝑝𝑡 = 0.095. 𝜂 = 0.8767, 1.075 are the Eigen frequencies at
𝑑 = 0 and the anti-resonance frequency determines at 𝜂 = 0.9658.
= 0.8824, 1.06 is the resonating frequency point; the maximum

ynamic responses are mitigated at these frequency points. The minima
requency point is obtained at 𝜂 = 0.969. At 𝜁𝑑 = ∞, the two degrees
f freedom system dynamically behaves as a single degree of freedom
ystem. 𝜂 = 0.9759 is the frequency point for the response peak. The
aximum dynamic response of the main structure is determined as
.6539.

The variations of optimal dynamic responses of the primary struc-
ure controlled by 𝐻∞ optimized NSITMD for different values of viscous
amping ratio are shown in Fig. 22(b). 𝜇𝑑 = 0.05, 𝜇ℎ = 0.01, 𝛼 =
.10, 𝜁𝑠 = 0 are substituted in Eqs. (60), (63), and (64), evaluating
𝜂𝑑 )𝑜𝑝𝑡 = 0.9976 and (𝜁𝑑 )𝑜𝑝𝑡 = 0.1214. 𝜂 = 0.8765, 1.075 are the Eigen
requencies at 𝜁𝑑 = 0 and the anti-resonance frequency determines
t 𝜂 = 0.9658. 𝜂 = 0.903, 1.04 is the resonating frequency point; the
aximum dynamic responses are mitigated at these frequency points.
he minima frequency point is obtained at 𝜂 = 0.9715. At 𝜁𝑑 = ∞,

the two degrees of freedom system dynamically behaves as a single
degree of freedom system. 𝜂 = 0.9759 is the frequency point for the
response peak. The maximum dynamic response of the main structure
is determined as 7.3379.

The variations of optimal dynamic responses of the primary struc-
ture controlled by 𝐻2 optimized NSTMD for different values of viscous
damping ratio are shown in Fig. 23(a). 𝜇𝑑 = 0.06, 𝜇ℎ = 0.0, 𝛼 = 0.10,
𝑠 = 0 are substituted in Eqs. (49) and (50), evaluating (𝜂𝑑 )𝑜𝑝𝑡 = 0.9794
nd (𝜁𝑑 )𝑜𝑝𝑡 = 0.1137. 𝜂 = 0.852, 1.09 are the Eigen frequencies at
𝑑 = 0 and the anti-resonance frequency determines at 𝜂 = 0.9563.
= 0.8579, 1.069 is the resonating frequency point; the maximum

ynamic responses are mitigated at these frequency points. The minima
requency point is obtained at 𝜂 = 0.9627. At 𝜁𝑑 = ∞, the two degrees

of freedom system dynamically behaves as a single degree of freedom

system. 𝜂 = 0.9713 is the frequency point for the response peak. The
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Fig. 21. (a) The variations of the optimal frequency ratio 𝜂𝑑 versus the damper mass ratio 𝜇𝑑 of NSTMD for different values of negative stiffness ratio 𝛼. (b) The variations of
the optimal viscous damping ratio 𝜁𝑑 versus the damper mass ratio 𝜇𝑑 of NSTMD for different values of negative stiffness ratio 𝛼. 𝜇ℎ = 0, Eqs. (60), and (64) are employed to
determine both graphs.
Fig. 22. (a) The differences in main structural optimal dynamic responses isolated by 𝐻2 optimized NSITMD versus frequency ratio for various damping ratios. 𝜇𝑑 = 0.05, 𝜇ℎ = 0.01,
= 0.10, 𝜁𝑠 = 0 are considered system parameters. The optimal frequency and damping ratios are derived using Eqs. (49) and (50), i.e., (𝜂𝑑 )𝑜𝑝𝑡 = 0.9976 and (𝜁𝑑 )𝑜𝑝𝑡 = 0.095. The

ed dashed (𝜁𝑑 = 0), black dash-dotted (𝜁𝑑 = ∞), and cyan solid ((𝜁𝑑 )𝑜𝑝𝑡 = 0.095) lines are employed to address these plots. (b) The differences in main structural optimal
ynamic responses isolated by 𝐻∞ optimized NSITMD versus frequency ratio for various damping ratios. 𝜇𝑑 = 0.05, 𝜇ℎ = 0.01, 𝛼 = 0.10, 𝜁𝑠 = 0 are considered system parameters.
qs. (60), (63), and (64) are applied to derive the optimal frequency and damping ratios, i.e., (𝜂𝑑 )𝑜𝑝𝑡 = 0.9976 and (𝜁𝑑 )𝑜𝑝𝑡 = 0.1214. The red dashed (𝜁𝑑 = 0), black dash-dotted
𝜁𝑑 = ∞), and sky blue solid ((𝜁𝑑 )𝑜𝑝𝑡 = 0.1214) lines are employed to address these plots. P, Q, and R indicate the fixed points for both graphs.
t
N

aximum dynamic response of the main structure is determined as
.4161.

The variations of optimal dynamic responses of the primary struc-
ure controlled by 𝐻∞ optimized NSTMD for different values of viscous
amping ratio are shown in Fig. 23(b). 𝜇𝑑 = 0.06, 𝜇ℎ = 0.0, 𝛼 = 0.10,
𝑠 = 0 are substituted in Eqs. (60) and (64), evaluating (𝜂𝑑 )𝑜𝑝𝑡 = 0.9794
nd (𝜁𝑑 )𝑜𝑝𝑡 = 0.1453. 𝜂 = 0.8521, 1.09 are the Eigen frequencies at
𝑑 = 0 and the anti-resonance frequency determines at 𝜂 = 0.9566.
= 0.8844, 1.043 is the resonating frequency point; the maximum

ynamic responses are mitigated at these frequency points. The minima
requency point is obtained at 𝜂 = 0.962. At 𝜁𝑑 = ∞, the two degrees
f freedom system dynamically behaves as a single degree of freedom
ystem. 𝜂 = 0.9713 is the frequency point for the response peak. The
aximum dynamic response of the main structure is determined as
.1497. 𝐻2 optimized design parameters for novel and conventional
uned mass dampers are listed in Table 8.
16
Table 8
𝐻2 optimized design parameters for novel and conventional tuned mass dampers.

System Proposed by 𝐻2 optimization

𝜂𝑑 𝜁𝑑
NSITMD This study Eq. (60) Eq. (63), Eq. (64)
NSTMD (𝜇ℎ = 0) This study Eq. (60) Eq. (63), Eq. (64)

TMD Iwata [50], Warburton et al. [51] 1
1+𝛾

√

2+𝛾
2

√

𝛾(4+3𝛾)
8(1+𝛾)(2+𝛾)

TMD Warburton et al. [51], Zilletti [52] 1
√

1+𝛾

√

𝛾
2

Where 𝛾 = 𝜇𝑑 + 𝜇ℎ = 𝜇𝑑 , i.e., the total static mass of TMD = NSITMD = NSTMD. TMD:
𝛾 = 0.06, NSITMD: 𝜇𝑑 + 𝜇ℎ = 0.05 + 0.01, and NSTMD: 𝜇𝑑 + 𝜇ℎ = 0.05 + 0.

The variations of optimal dynamic responses of uncontrolled struc-
ures and structures controlled by 𝐻2 optimized NSITMD, 𝐻2 optimized
STMD, and 𝐻2 optimized TMD Iwata [50], Warburton et al. [51]

and Warburton et al. [51], Zilletti [52] versus frequency ratio for
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Fig. 23. (a) The differences in main structural optimal dynamic responses isolated by 𝐻2 optimized NSTMD versus frequency ratio for various damping ratios. 𝜇𝑑 = 0.06, 𝜇ℎ = 0.0,
= 0.10, 𝜁𝑠 = 0 are considered system parameters. Eqs. (49) and (50) are applied to derive the optimal frequency and damping ratios, i.e., (𝜂𝑑 )𝑜𝑝𝑡 = 0.9794 and (𝜁𝑑 )𝑜𝑝𝑡 = 0.1137. The
lack dash-dotted (𝜁𝑑 = 0), red dashed (𝜁𝑑 = ∞), and royal blue solid ((𝜁𝑑 )𝑜𝑝𝑡 = 0.1137) lines are employed to address these plots. (b) The differences in main structural optimal
ynamic responses isolated by 𝐻∞ optimized NSTMD versus frequency ratio for various damping ratios. 𝜇𝑑 = 0.06, 𝜇ℎ = 0.0, 𝛼 = 0.10, 𝜁𝑠 = 0 are considered system parameters.
qs. (60), (63), and (64) are applied to derive the optimal frequency and damping ratios, i.e., (𝜂𝑑 )𝑜𝑝𝑡 = 0.9794 and (𝜁𝑑 )𝑜𝑝𝑡 = 0.1453. The black dash-dotted (𝜁𝑑 = 0), red dashed
𝜁𝑑 = ∞), and royal blue solid ((𝜁𝑑 )𝑜𝑝𝑡 = 0.1453) lines are employed to address these plots. P, Q, and R indicate the fixed points for both graphs.
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Table 9
The system parameters of main structures (uncon-
trolled and controlled structures).

Name Symbol Values

Damping ratio 𝜁𝑠 0.05

different damping ratio values are displayed in Figs. 24(a) and 24(b).
𝜁𝑠 = 0.05 is the damping ratio of the main structure. The system
parameter for the main structure is listed in Table 9. The maximum dy-
namic response of the uncontrolled structure is determined as 10.0125.
The maximum dynamic responses of the structures controlled by 𝐻2
ptimized TMD developed by Iwata [50], Warburton et al. [51] and
arburton et al. [51], Zilletti [52] are derived as 5.3049 and 5.5314.

he maximum dynamic responses of the structures controlled by 𝐻2
ptimized NSITMD and NSTMD are determined as 5.2821 and 4.786.
2 optimized NSITMD is 0.42% and 10.84% superior to 𝐻2 optimized

TMD developed by Iwata [50], Warburton et al. [51]. 𝐻2 optimized
NSTMD is 4.5% and 13.48% superior to 𝐻2 optimized TMD developed
by Warburton et al. [51], Zilletti [52].

10. Conclusions

The negative stiffness inerter-based base isolator (NSIBI), negative
stiffness base-isolated (NSBI), negative stiffness inerter-based tuned
mass damper (NSITMD), and negative stiffness tuned mass dampers
(NSTMD) are introduced in this paper. 𝐻2 and 𝐻∞ optimization meth-
ods are applied to derive the optimal design parameters for these novel
passive vibration control devices in terms of closed-form expressions.
The transfer function formation and Newmark-beta method are applied
to determine dynamic responses of the controlled structures analyti-
cally and numerically. The parametric study shows that the effective
mass and stiffness ratios increase as the base and inerter mass ratios
increase for the NSIBI (𝜇𝑑 ≠ 0) system. In contrast, the effective stiffness
ecreases as the negative stiffness ratio of NSBI (𝜇𝑑 = 0) increases.

The optimal frequency ratio decreases as the base mass ratio of 𝐻2
nd 𝐻∞ optimized NSIBI and NSBI increase. However, it increases
s the negative stiffness ratio increases. In addition, optimal damping
atios decrease when the base mass and negative stiffness ratio increase.
or 𝐻 and 𝐻 optimized NSITMD (𝜇 ≠ 0) and NSTMD (𝜇 = 0),
17

2 ∞ ℎ ℎ
he optimal frequency ratio decreases and increases when the damper
nd negative stiffness ratios increase. In addition, the optimal damping
atio increases and decreases when the damper and negative stiffness
atios increase. The dynamic response reduction capacity of each novel
amper is determined. Therefore, 𝐻2 optimized NSIBI and NSBI are

45.98% and 46.71% superior to optimum TBI. Whereas 𝐻∞ optimized
SIBI and NSBI are 58.36% and 57.32% superior to optimum TBI.
hereas 𝐻2 optimized NSITMD is 0.42% and 10.84% superior to 𝐻2

optimized TMD developed by Iwata [50], Warburton et al. [51]. 𝐻2
optimized NSTMD is 4.5% and 13.48% superior to 𝐻2 optimized TMD
developed by Warburton et al. [51], Zilletti [52]. The paper’s nov-
elty lies in introducing negative stiffness inerter passive dampers and
their corresponding optimal design parameters. These novel passive
dampers are cost-effective. The proposed dampers’ practical realization,
experimentation, and prototyping are the research’s future scope.
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Fig. 24. The variations of optimal dynamic responses of uncontrolled structures and structures controlled by 𝐻2 optimized NSITMD, 𝐻2 optimized NSTMD, and 𝐻2 optimized
TMD ((a) Iwata [50], Warburton et al. [51] and (b) Warburton et al. [51], Zilletti [52]) versus frequency ratio for different damping ratio values. The black dotted (uncontrolled),
cyan dash-dotted (TMD), blue dashed (NSITMD), and red solid (NSTMD) Tables 8 and 9 are applied for both graphs.
Appendix A. The closed-form expressions for 𝑨𝟏, 𝑩𝟏, and 𝑪𝟏 from
Eq. (31)

𝐴1 = −128 𝜂41,2
(

𝜇𝑏 + 2𝜇𝑑 − 1
)2 (𝜇𝑏 + 𝜇𝑑

)2
(

𝜂21,2 − 1
)

. (A.1)

𝐵1 =
−96

⎛

⎜

⎜

⎜

⎜

⎝

(

4∕3𝜇𝑑2 + 2𝜇𝑏𝜇𝑑 + 𝜇𝑏2
)

𝜂61,2
+
(

−2∕3𝜇𝑏2 + 4∕3𝜇𝑑2 − 2𝜇𝑏 − 8∕3𝜇𝑑
)

𝜂41,2
+
((

−2∕3𝜇𝑑 + 1∕3
)

𝜇𝑏 − 4∕3𝜇𝑑2 + 1
)

𝜂21,2
−1∕3

(

𝜇𝑏 + 2𝜇𝑑 − 1
)2

⎞

⎟

⎟

⎟

⎟

⎠

(𝛽 − 1)
(

𝜇𝑏 + 2𝜇𝑑 − 1
) (

𝜇𝑏 + 𝜇𝑑
)

𝜂21,2

. (A.2)

𝐶1 =

(

(

𝜇𝑑 + 𝜇𝑏
)

𝜂41,2 +
(

−1∕2𝜇𝑏 − 3∕2
)

𝜂21,2 − 1∕2𝜇𝑏 − 𝜇𝑑 + 1∕2
)

−32 (−1 + 𝛽)2
(

𝜂21,2𝜇𝑑 + 1∕2𝜇𝑏 + 𝜇𝑑 − 1∕2
)

(

(

𝜇𝑑 + 𝜇𝑏
)

𝜇𝑑𝜂41,2 +
(

𝜇𝑏 − 1 + 2𝜇𝑑
) (

𝜇𝑑 + 𝜇𝑏
)

𝜂21,2
−1∕4

(

𝜇𝑏 − 1 + 2𝜇𝑑
) (

𝜇𝑏 − 2𝜇𝑑 + 3
)

)
.

(A.3)

Appendix B. The closed-form expression for 𝑨𝒅, 𝑩𝒅, and 𝑪𝒅 from
Eq. (64)

𝐴𝑑 = 64
(

𝜂21,2𝜇𝑑 + 𝜂21,2 − 1
)

(

𝜇𝑑 + 𝜇ℎ
)2 (𝜇𝑑 + 1

)4 𝜂41,2
(

𝜇𝑑
2 +

(

−2𝜇ℎ − 2
)

𝜇𝑑 − 2𝜇ℎ
)2 .

(B.1)

𝐵𝑑 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

64
(

𝜇𝑑 + 1
)2 (𝛼 − 1)

(
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