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A framework for creating and updating digital twins for dynamical systems from a library of physics-
based functions is proposed. The sparse Bayesian machine learning is used to update and derive an inter-
pretable expression for the digital twin. Two approaches for updating the digital twin are proposed. The
first approach makes use of both the input and output information from a dynamical system, whereas the
second approach utilizes output-only observations to update the digital twin. Both methods use a library
of candidate functions representing certain physics to infer new perturbation terms in the existing digital
twin model. In both cases, the resulting expressions of updated digital twins are identical, and in addition,
the epistemic uncertainties are quantified. In the first approach, the regression problem is derived from a
state-space model, whereas in the latter case, the output-only information is treated as a stochastic pro-
cess. The concepts of Itô calculus and Kramers-Moyal expansion are being utilized to derive the regres-
sion equation. The performance of the proposed approaches is demonstrated using highly nonlinear
dynamical systems such as the crack-degradation problem. Numerical results demonstrated in this paper
almost exactly identify the correct perturbation terms along with their associated parameters in the
dynamical system. The probabilistic nature of the proposed approach also helps in quantifying the uncer-
tainties associated with updated models. The proposed approaches provide an exact and explainable
description of the perturbations in digital twin models, which can be directly used for better cyber-
physical integration, long-term future predictions, degradation monitoring, and model-agnostic control.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

A digital twin (DT) is described as a virtual counterpart of a
physical entity. As a whole, it consists of a physical system denot-
ing the physical space, a virtual model denoting mirror space, and a
linking mechanism between them [1]. The origin of DT is mainly
attributed to the concept of product life-cycle management [2,3];
however, the first practical definition was provided in [4]. Due to
recent growth in the smart manufacturing industry, such as Indus-
try 4.0 and Industrial Internet, the DT has received strategic prior-
ies and is being increasingly explored to improve physical entities’
performance further [5,6]. In practice, the DT can exist in a local
computer or the cloud platform [7,8], and recent innovations in
computer-aided modeling, cloud computing, 5G networks, and
wireless sensors have provided the opportunity to create digital
twin models in such platforms [9,10]. A DT attempts continuous
time synchronization of the physical and digital twins by means
of modern machine learning/Internet-of-Things (IoT) and mechan-
ical actuators [11]. While the machine learning models attempt to
update the digital twin using real-time streaming data, the actua-
tor can be used to invoke changes in the physical model. Using
machine learning and modern artificial intelligence techniques
[12–15], it is possible to seamlessly update the digital model based
on real-time streaming data and perform required operations such
as health monitoring, the discovery of failure causes, analysis of
remaining useful life, regulating the supply chain, and optimizing
product performance.

In academic publications, the ‘‘digital twin” terminology first
appeared in [16]. Then the concept of DT was first put into use
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by NASA’s Apollo space program, whose aimwas to build two iden-
tical space vehicles so that the space vehicle could be mirrored and
monitored in real-time using the twin in the earth [3,17]. Since
then, the presence of DTs in different industries has become more
and more [5,18]. Applications of DTs in the engineering field for
health monitoring, diagnosis, and prognostics are evident in the lit-
erature [19–24]. DT also enables intelligent manufacturing for effi-
cient product planning, higher productivity, and low-cost
manufacturing [25–28]. The presence of DT in the automotive
and aerospace industry for automation of gearboxes, aircraft struc-
tural life prediction, and many more is evident in [29–31]. More
details on the state-of-the-art DT research are available in [5,32].
In this work, we focus on predictive digital twins for nonlinear
dynamical systems. In the purview of dynamical systems, the
development of DT technology is a non-trivial task due to the pres-
ence of multiple time scales [33]. An example is the crack growth
in the dynamical systems, where the dynamical behavior of the
system dynamics is on a faster time scale, and the Paris-Erdogan
law determines the propagation of a crack in the system on a slow
time scale [34].

In the multi-time scale dynamics, the DT models can be broadly
classified into pure physics-based, pure data-based, or a hybrid
between them. In the literature [35], a physics-based DT is pro-
posed for monitoring dynamical systems. When the physics is
exact, and the real-time data are noise-free, a physics-based DT
can outperform its data-driven counterparts. They can adapt and
obtain accurate predictions in changing environments. However,
the physics is often inexact and simplified, which may not repre-
sent the actual system. Another issue is the presence of environ-
mental noise in the sensor measurements. In such cases, solely
relying on the physics-based models may not cater to the intended
purpose. Purely data-driven DTs provide an alternative solution to
eliminating these issues [19]. Although the data-driven DTs can
take into account the noise in the data, they fail to generalize in
an unseen environment, such as a sharp change in the trajectory
path. As a consequence, the synchronization between the physical
and virtual space gets hindered, and the desired performance is not
achieved. To alleviate these shortcomings, a hybrid alternative
between the physics and data-riven DTs is proposed in [33,36].
This hybrid approach utilizes machine learning techniques to learn
and compensates for incomplete physics from the real-time
streaming data.

From the above discussion, it is clear that a DT is a virtual sha-
dow of its physical counterpart, which is supposed to replicate the
physical changes in the system during its entire service life. The
DTs discussed above are based on the assumption that the under-
lying physics of the dynamical system does not evolve with time
and evolution of the system can be perfectly captured through
changes in its system parameters. This is merely an approximation
and not practically true because the changes in the system may
also arise due to the evolution of the underlying physics of the
physical twin. This is evident in the degrading dynamical system
[34], where the physics of the underlying system changes on a
slow-time scale due to fatigue. If the physics of the DT is not
updated properly, accounting for the effect of change in physics
using changes in the parameter may not result in accurate predic-
tions. Over the course of time, the physical and digital twins will be
unsynchronized, and the actual purpose of devising the DT will not
be achieved. Therefore, a robust DT should be able to track changes
in both the system parameters as well as in the underlying physics.
In this course, an important aspect of the development of DT is the
identification of model-form errors. Such work is carried out in
[37], which is again a hybrid framework that utilizes machine
learning models to learn the missing physics. As a result, the
updated model is difficult to interpret, and generalization is not
2

ensured. In a nutshell, currently, in the literature on DT, the con-
cept of updating the physics of virtual models using physics-
based interpretable functions is greatly missing.

In this paper, we aim to propose a framework for updating the
DT model using interpretable physical functions from a predefined
library. A predefined library is constructed from the various phys-
ical and mathematical expressions, each of which represents the
physics of various dynamical characteristics of a dynamical system.
Using this library, a regression problem is constructed. From the
library, only the key terms representing the perturbations in the
underlying physics of physical twins are identified for the purpose
of updating the DT. The sparse Bayesian regression is used to iden-
tify the correct perturbation terms from the library accurately.
Additionally, the epistemic uncertainty arising due to noisy and
limited data is also captured using sparse Bayesian regression.
Using the proposed approach, we discover any change in underly-
ing physics through new physical terms from the predefined
library. Since the perturbation in physics is learned using exact
physical terms, the updated DTs are highly interpretable and pos-
sess the ability to generalize to unseen environments. This allows
for accurate long-term predictions, estimates of remaining useful
life, and failure probabilities.

The proposed predictive DT framework consists of two
approaches. The first framework utilizes both the input–output
sensor measurements, whereas the second framework uses only
the output observation data from the physical twin. While the first
approach is a simplified case, the second approach is more
advanced and general. In the first approach, the library is con-
structed from the input–output observations, and then a regression
problem is constructed using the derivatives of state measure-
ments as labels. In the second approach, the output-only observa-
tions are treated as a stochastic process, and the governing physics
of perturbed DT is expressed as stochastic differential equations
(SDEs). The drift and diffusion components of the SDEs are identi-
fied separately using the Itô calculus [38] and Kramers-Moyal for-
mula [39]. The labels of the regression are constructed from SDE
generators, whereas the library is constructed for the drift and dif-
fusion terms from the linear and quadratic variations of the output
observations, respectively. The performance of the proposed
approaches is exemplified using three nonlinear examples. Results
show that both approaches provide exact identical expressions for
the perturbations in the governing physics.

The remainder of the paper is organized as follows: firstly, in
Section 2 the problem is stated where we have a readily available
nominal model, and we aim to find the new perturbation terms in
the nominal model. In Section 3, we review the concepts of sparse
Bayesian regression briefly. In Section 4, two approaches for updat-
ing the digital twin from physics-based library functions are illus-
trated with sufficient mathematical descriptions. In Section 5, for
demonstration purposes, three numerical examples are taken. Case
studies for different levels of noise are also carried out here. Finally,
in Section 6, a brief discussion on the salient features of the pro-
posed framework and possible future extensions is given.

2. Problem statement

The main hypothesis behind the digital twin (DT) is that it
begins with a nominal model, and in the future, the nominal model
gets perturbed owing to the operational and environmental condi-
tions. The nominal model can be imagined as either a laboratory-
scale miniature or a computer model of the physical twin. During
the evolution, it is assumed that the nominal model evolves at a
considerably slower rate than the evolution of the system
responses. This allows for the identification of perturbations in
the system parameters as a function of slow time scale [33,40].
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To put it into a mathematical framework, let us consider the fol-
lowing D-dimensional second-order partial differential equation,

M tsð Þ@tt
€X t; tsð Þ þ C tsð Þ@t

_X t; tsð Þ þ K tsð ÞX t; tsð Þ þ H _X;X; t; ts
� �

þ Q _X;X; t; ts
� �

¼ R _B t; tsð Þ ð1Þ

where M;C and K represent the RD�D mass, damping, and linear
stiffness matrices of the system, respectively. The functions

H _X;X; t; ts
� �

: RD # RD and Q _X;X; t; ts
� �

: RD # RD, denote the lin-

ear and nonlinear perturbations in the system, respectively. The
term B t; tsð Þ 2 RD on the right-hand side represents the white noise
(the generalized derivative of Brownian motion) with noise inten-
sity matrix R 2 RD�D. In the above equation, two-time scales, t and
ts are used, which represent the intrinsic time and the service time,
respectively. The service time refers to the periods over which the
underlying structure or a component is expected to be inspected.
The time scale ts is comparatively much slower than t and since
X t; tsð Þ is a function of both the time scale, therefore, the Eq. (1) is
written in terms of the partial derivatives. It can be understood that
the evolution in M tsð Þ;C tsð Þ and K tsð Þ occurs very slowly with
respect to time scale ts. The forcing term R _B t; tsð Þ however can
change with respect to both the times scales t and ts. We call Eq.
(1) as the model of the proposed digital twin. Since it is already
mentioned that the system evolves with respect to the slower time
scale, we rephrase the Eq. (1) when ts ¼ 0 as,

M0
€X tð Þ þ C0

_X tð Þ þ K0X tð Þ ¼ R _B tð Þ: ð2Þ
The above equation denotes the beginning of the service life of the
underlying system and is often called the nominal model in DT.
Here, M0;C0 and K0 are the parameters of the nominal model. Fur-
ther, we assumed that as the time scale ts shifts from the initial con-
dition, the nominal system gets perturbed by new terms, expressed

using the functions H _X;X; t; ts
� �

and Q _X;X; t; ts
� �

as,

M0
€X tð Þ þ C0

_X tð Þ þ K0X t; tsð Þ þ H _X;X; t
� �

þ Q _X;X; t
� �

¼ R _B tð Þ ð3Þ
It is straightforward to note that any changes in the physical model
can be incorporated into the DT using the linear and nonlinear func-
tions H :ð Þ and Q :ð Þ. Therefore, in order to use the DT in practice, we
need to characterize the functions H :ð Þ and Q :ð Þ. In this work, it is
assumed that a linking mechanism between the twins is established
by using sensors and actuators. The sensors provide measurements
of the system states and the force, whenever available, at the time
instant ts. At each time instant ts, the measurements are obtained
for ts þ 1s, which means that we have access to only one second
of noisy data. We aim to discover the functions H :ð Þ and Q :ð Þ from
these limited and noisy measurements. Once discovered, they are
used to update the nominal model in Eq. (2). In the discovery of
H :ð Þ and Q :ð Þ, we aim to learn them in their interpretable forms
instead of the black-box type surrogate models [36]. In order to
assess the performance in an unseen scenario, we also aim to learn
the uncertainties associated with the parameters of the functions
H :ð Þ and Q :ð Þ. For these, the sparse Bayesian inference is employed.
The resulting framework thus is white in nature, and since the func-
tions are learned in a probabilistic framework, the chances of over-
fitting are very low. Further, the physics of the underlying
perturbations is learned using actual mathematical functions.
Therefore it is conjectured that the proposed DT will be able to track
the evolution of the physical twin accurately. In the coming chap-
ters, we provide a brief introduction to sparse Bayesian regression
and the proposed DT framework.
3

3. Background on sparse Bayesian regression

Let us consider that we have a set of the noisy measurements of
system states X 2 RN�m, where N is the number of measured points
andm is the dimension of system states. Also, assume that we have
the output of the system Y 2 RN�1. Then without loss of generality,
any dynamical system can be expressed in the following form:

Y ¼ f X; hð Þ þ �; ð4Þ
where f X; hð Þ is the system that describes the governing physics of
the system and � 2 RN�1 is the measurement error. The system
f X; hð Þ is a function of the inputs X and a set of model parameters
h. Here we assume that the dependency of f X; hð Þ on X and h can
be modeled as a linear superposition over a set of basis functions
described by,

f X; hð Þ ¼ Lh ð5Þ
where L ¼ ‘1; ‘2; . . . ; ‘K½ � is the RN�K library with columns repre-
senting the candidate functions with respect to the state mea-
surements X and h 2 RK�1 is the weight vector representing the
system parameters. Instead of the deterministic values, we intend
to identify the distribution of parameters. For estimating the dis-
tribution of the weight vector h, we apply the Bayes formula in
Eq. (4) yielding,

P hjYð Þ ¼ P hð ÞP Y jhð Þ
P Yð Þ : ð6Þ

where P hjYð Þ is the posterior distribution of h; P Y jhð Þ is the like-
lihood function, P Yð Þ is the normalizing factor and P hð Þ is the
prior distribution representing the prior knowledge about the
model. The mismatch error � are modeled as independent and
identically distributed (i.i.d.) zero mean Gaussian variable with
variance r2. With this information, the conditional probability
of Y given the system parameters h and noise variance r2 can
be written as,

P Y jhð Þ ¼ N Lh;r2IN�N
� �

; ð7Þ
where IN�N denotes the N � N identity matrix. In order to discover a
parsimonious solution for the governing physics, i.e., to allow most
of the components in the library to be removed, we introduce spar-
sity in the weight vector h using the spike and slab (SS) prior [41–
43]. The SS-prior has high shrinkage properties due to its sharp
spike at zero and a diffused density spanned over a large range of
possible parameter values. Although there are many variants of
SS-prior available, we particularly model the spike using a Dirac
delta function and the slab using Normal distribution. The Dirac-
delta spike concentrates most of the probability mass at zero, thus
allowing most of the samples to take a value of zero, and the dif-
fused tail distributes a small amount of probability mass over a
large range of possible values allowing only very few samples with
very high probability to escape the shrinkage. More details on the
selected SS-prior are available in Ref. [44].

In order to allow automated classification of weights into the
spike and slab components of the SS-prior, we further introduce
a latent indicator variable W ¼ w1; . . . ;wK½ � for each of the compo-
nent hk in h. The latent indicator variables wk behave as a Boolean
function which takes a value of 1 if the weight corresponds to the
slab component; otherwise, takes a value of 0. Since the latent vari-
ables wk either takes a value 0 or 1, the automation is done by
assigning the latent vector the Bernoulli prior with common hyper-
parameter p0 as p wkjp0ð Þ ¼ Bern p0ð Þ for k ¼ 1 . . .K. The hyperpa-
rameter p p0ð Þ ¼ Beta ap; bp

� �
is simulated from the Beta prior with

the hyperparameters ap and bp. Since the effect of the components
of the weight vector that belongs to the spike does not contribute
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to the selection of the key functions, we construct a reduced
weight vector hr 2 Rr : r � Kf g, composed from the elements of
the weight vector h for which wk ¼ 1. Denoting hr as the weight
vector containing only those variables from h for which wk ¼ 1,
the SS-prior is defined as [41,44],

p hjWð Þ ¼ pslab hrð Þ
Y

k;wk¼0

pspike hkð Þ; ð8Þ

where the distributions are defined as, pspike hkð Þ ¼ d0 and
pslab hrð Þ ¼ N 0;r2#sIr�r

� �
. The noise variance p r2

� � ¼ IG ar;brð Þ is
simulated from the Inverse-gamma distribution with the hyperpa-
rameters ar and br, and the slab variance p #sð Þ ¼ IG a#;b#ð Þ is
assigned the Inverse-gamma prior with the hyperparameters a#

and b#. The complete hierarchical prior distribution is summarized
in Fig. 1. In the model the hyperparameters a#; b#;ap;bp;ar, and br
are provided as a deterministic constants.

Theoretically the random hyperparameters W; #s;r2 and p0

should be inferred from the posterior distribution
p h;W; #s;r2; p0jY
� �

, given as,

p h;W; #s;r2; p0jY
� � ¼ p Y jh;r2

� �
p hjW; #s;r2
� �

p Wjp0ð Þp #sð Þp r2
� �

p p0ð Þ
p Yð Þ

ð9aÞ
/ p Y jh;r2� �

p hjW; #s;r2� �
p Wjp0ð Þp #sð Þp r2� �

p p0ð Þ; ð9bÞ

where p h;W; #s;r2;p0jY
� �

denotes the joint distribution of the ran-
dom variables, p Y jh;r2

� �
denotes the likelihood function,

p hjW; #s;r2
� �

is the prior distribution for the weight vector
h;p Wjp0ð Þ is the prior distribution for the latent vector W; p #sð Þ is
the prior distribution for the slab variance #s;p r2

� �
is the prior dis-

tribution for the noise variance, p p0ð Þ is the prior distribution for the
success probability p0 and p Yð Þ is the marginal likelihood. Due to
the definition of the SS-prior direct sampling from the joint distri-
bution in (9) is intractable. Thus, we adopt an MCMC using the
Gibbs sampling technique to draw the random samples from the
joint distribution [45]. The Gibbs sampler requires the conditional
distributions of the random variables, which are derived in Ref.
[44]. The pseudo-code to obtain the sequence of the random vari-

ables h ið Þ;r2 ið Þ; # ið Þ
s ;p ið Þ

0 ;W ið Þ in the ith-iteration is given in Algorithm 1.
Fig. 1. Hierarchical Bayesian network of the spike and slab distribution. The
green square boxes indicate the deterministic parameters, and the white circles
represent the random variables. The parameters a#; b#;ap; bp ;ar , and br indicates
the hyperparameters of the hierarchical prior distribution.

4

Algorithm 1. Pseudo code of the sparse Bayesian regression
Input: State measurements: X tð Þ 2 RN�m and

hyperparameters: ap; bp;ar; br;a#; b#; p
0ð Þ
0 ; #

0ð Þ
s

1: Obtain the library L using the candidate basis functions.
2: Estimate the initial variance of noise: r2; 0ð Þ = Var(Lh� Y).

3: Estimate the initial latent vector W 0ð Þ= w 0ð Þ
1 ;w 0ð Þ

2 ; . . . ;w 0ð Þ
K

h i
subjected to argmin

h

MSE Lh� Yð Þ.
4: Estimate

l ið Þ
h ¼ R ið Þ

h L ið ÞT
r Y ;R ið Þ

h ¼ r2 ið Þ L ið ÞT
r L ið Þ

r þ #
ið Þ�1
s R ið Þ�1

0;r

� ��1
, and

find the initial weight vector h 0ð Þ
r from the Gaussian

distribution with mean lh and variance Rh as,

p h ið Þ
r jY ; # ið Þ

s ;r2 ið Þ
� �

¼ N l ið Þ
h ;R ið Þ

h

� �
:

5: for i = 1; . . . ;MCMC do
6: Estimate uk ¼ p0

p0þk 1�p0ð Þ and

k ¼ p Y jw ið Þ
k
¼0;W ið Þ

�k
;#

ið Þ
s

� �
p Y jw ið Þ

k
¼1;W ið Þ

�k
;#

ið Þ
s

� �. .Eq. (A.2)

7: Then update the latent variable vector W iþ1ð Þ from the
Bernoulli distribution as,

p w iþ1ð Þ
k jY ; # ið Þ

s ;p ið Þ
0

� �
¼ Bern ukð Þ:

8: Update the noise variance r2 iþ1ð Þ from the Inverse-
gamma distribution as,

p r2 iþ1ð ÞjY ;W iþ1ð Þ; # ið Þ
s

� �
¼ IG ar þ 0:5N; br þ 0:5 YTY � l ið ÞT

h R ið Þ�1
h l ið Þ

h

� �� �
:

9: Update the slab variance #
iþ1ð Þ
s from Inverse-gamma

distribution as,

p # iþ1ð Þ
s jh ið Þ;W iþ1ð Þ;r2 iþ1ð Þ

� �
¼ IG a# þ 0:5hz;b# þ

1
2r2 h

ið ÞT
r R ið Þ�1

0;r h ið Þ
r

� �
:

10: Estimate hz ¼
PK

k¼1w
iþ1ð Þ
k and update the success rate

p ið Þ
0 from the Beta distribution as,

p p iþ1ð Þ
0 jW iþ1ð Þ

� �
¼ Beta ap þ hz;bp þ K � hz

� �
:

11: Update the weight vector h iþ1ð Þ
r from step 7.

12: Repeat steps 7!11
13: Discard the burn-in MCMC samples and calculate the

marginal PIP values p wk ¼ 1jYð Þ. .Eq. (10)
14: Select the basis function in the final model with desired

PIP values.
Output: The mean lh and covariance Rh.

In the MCMC initial 500 samples are discarded as the burn-in
samples for obtaining the posterior distributions of the parameters
h. In order to select the basis functions in the final model, the mar-
ginal posterior inclusion probabilities are calculated by taking the
mean over the MCMC samples of latent variable vector W. If nMC

denote the number of MCMC required to achieve the stationary
distribution after the burn-in samples are discarded then for the

kth latent vector wk the PIP is defined as [44],



T. Tripura, A.S. Desai, S. Adhikari et al. Computers and Structures 281 (2023) 107008
p wk ¼ 1jYð Þ � 1
nMC

XnMC

j¼1

wj
k; k ¼ 1; . . . ;K: ð10Þ

In this work, the basis functions that are observed more than fifty
percent of the time in the MCMC simulations, i.e., whose corre-
sponding PIP values are more than 0.5, are included in the final
model. Once the final basis functions are selected after neglecting
those with PIP<0.5, the mean and covariance of the weight vector
h can be estimated using the empirical formulas. While the mean
gives the expected value, the standard deviation provides the con-
fidence interval of the predictions performed using the identified
parameters in an unseen environment. The mean lh and covariance
Rh will have non-zero entry at only those places where the PIP>0.5.
The future predictions using the obtained model can be performed
using the following formulas,

lyp ¼ Lplh ð11aÞ
Ryp ¼ LpRhL

pT þ lr2 INp�Np ; ð11bÞ

where Lp 2 RNp�K is the test dictionary obtained from the newly

obtained unseen measurements, lyp 2 RNp�1 is the predicted mean,

Ryp 2 RNp�Np
is the predicted covariance, and lr2 2 R is the mean of

the measurement noise variance.
4. Interpretable and predictive digital twin for model updating
of dynamical systems

Digital Twins (DT) are one of the key components in the Mirror
spaced model that was first tossed in the Ref. [2]. The mirror-
spaced models consist of three primary components, namely the
physical model, the nominal mirror model, and the linking mech-
anisms that connect the virtual model with its physical twin
[1,46]. The idea behind creating the digital twin is to mimic the
physical model using streaming data obtained from the physical
model in real-time [47]. A few of the main applications of DT
include remote access, real-time monitoring, future prediction of
remaining useful life, predictive maintenance, prolonging the life-
Fig. 2. Schematic architecture of the proposed predictive digital twin framework fo
components, namely the physical model, the mirror model, and the linking mechanis
assimilation and processing, the updating of the nominal mirror model, and making pre
twin. For updating the virtual mirror model using explainable functions, the data assimila
makes use of two independent frameworks which are well equipped to obtain the par
available. The input refers to the source, and the output refers to the state measuremen
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cycle, and designing [17,48,49]. The available DT models are
mostly grey in nature, whereas the physics-based nominal models
are coupled with machine learning-based surrogate models.
Although the machine learning models like Gaussian process
[33,36,40] and neural networks [50,51] can learn almost every-
thing, their ability to generalize beyond the training data in the
long run is poor. On the other hand, learning the perturbations in
the physical model using interpretable mathematical functions
greatly enhances the predictive capability of the nominal model
in case of unseen environmental conditions.

In this section, we illustrate the proposed predictive digital twin
framework for dynamical systems. The schematic architecture of
the framework is provided in Fig. 2. The network architecture
has three primary components - (a) the physical model, (b) the dig-
ital twin, and (c) the linking mechanism. The linking mechanism
further consists of three independent modules - (i) the data assim-
ilation and processing module, (ii) the model updating module, and
(iii) the prediction module. The data processing is performed by
using a physics-based nominal model, and in the updating module,
the sparse Bayesian regression is employed. Since the perturba-
tions in the physical model are obtained in terms of interpretable
functions, we consider the digital twin as white in nature. Although
the proposed framework should theoretically work for higher-
order dynamical systems, in this work, we assume only the
second-order dynamical systems. Furthermore, we consider that
the second-order dynamical systems can be completely repre-
sented using displacement and velocity measurements.

Due to the advances in the development of sensor technologies,
it is possible to measure the displacement and velocity time histo-
ries of a dynamical system. However, often the measurement of
input forces is not feasible. Towards this, we propose two frame-
works - (i) when both the input–output measurements are avail-
able and (ii) when only the state measurements are measurable.
In framework-1, we simply remove the information of the nominal
model using the measured state measurements and then perform
sparse regression to identify the perturbation terms. In
framework-2, similar to the previous, we first remove the informa-
tion of the nominal model and then employ the sparse Bayesian
r model updating of dynamical systems. The network primarily consists of three
m. The linking mechanism performs three simultaneous operations that are data
dictions in the presence of unseen environmental agents using the updated digital
tion and processing unit utilizes sparse Bayesian regression. The Bayesian regression
simonious solution when both or either of the input and output measurements is
ts.
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regression in the purview of the Kramers-Moyal expansion [39] to
identify the perturbations in terms of stochastic differential equa-
tions [38,52].

4.1. Model updating using input–output measurement

The premise of identification of the perturbations from noisy
input–output measurements and updating the original model is
that the measurements can be expressed as a linear superposition
of certain basis functions. The basis functions can be identity func-
tion, polynomial, trigonometric, exponential, logarithmic, signum,
modulus, or combinations between them. These basses are evalu-
ated on the input–output measurements, and a library, often called
a design matrix is formed. However, due to the inclusion of a large
number of candidate functions in the library, most of the candidate
model components are likely to be incorrect. Further, there will
always be some level of confusion as few of the basis functions will
have high correlations. As a whole, the ’true’ model components
will not be identified, leading to the model discrepancy and bias
in the identified system parameters. In order to allow the model
components that do not provide a significant contribution in repre-
senting the data to be removed, the sparse Bayesian regression
introduced in Section 3 is used. Further, the Bayesian nature of
the model updating framework helps in removing the terms inside
the library in a probabilistic manner, thereby requiring less human
intervention.

Before moving into the mathematical description, we note that
the higher-order dynamical systems are commonly described
using a projected space, for example, the second-order systems
are often expressed in terms of their displacement and velocity
states. The benefit of the projected space is that all the states in this
space are directly observable. Towards this, let us represent the
projection by a map T : Rd ! Rm where d and m are the dimension
of the original and projected space. In the projected space, let us
assume that there exists a dynamical system of the following form,

_Xt ¼ f Xt; tð Þ; X t ¼ t0ð Þ ¼ X0; t 2 0; T½ �; ð12Þ
where Xt 2 Rm denotes the system states and f Xt; tð Þ : Rm # Rm rep-
resents the dynamics of the underlying system. Since we assume
that due to operational and environmental conditions, the underly-
ing nominal gets perturbed, we rephrase the above equation as,

_Xt ¼ f Xt ; tð Þ|fflfflfflffl{zfflfflfflffl}
Nominal model

þ h Xt ; tð Þ|fflfflfflffl{zfflfflfflffl}
Perturbation

; X t ¼ t0ð Þ ¼ X0; t 2 0; T½ �; ð13Þ

where h Xt ; tð Þ : Rm # Rm represents the perturbations terms. In the
proposed digital twin framework, the nominal model f Xt; tð Þ is
known to us a priori and we aim correct the nominal model by
learning the perturbation term h Xt ; tð Þ from freshly obtained
input–output measurements. In order to only discover the pertur-
bation terms, we first remove the information about the nominal
model from the measured output as,

_Zt ¼ _Xt � f Xt; tð Þ
¼ h Zt ; tð Þ ð14Þ

Let ‘k Ztð Þ; k ¼ 1; . . . ;Kf g be the set of candidate library functions,
h ¼ h1; h2; . . . ; hK½ �T be the associated parameters and K is the dimen-
sion of the library. In order to discover f Zt ; tð Þ in terms of the ana-
lytical functions, we express f Zt ; tð Þ as linear combination of the
basis functions as,

f i Zt ; tð Þ ¼ hi1‘1 Ztð Þ þ . . .þ hik‘k Ztð Þ þ . . .þ hiK ‘K Ztð Þ: ð15Þ

In the above equation i represents the ith state of m-dimensional

state-space and hik denote the kth basis function of ith state. In the
regression format, the above equation is expressed as,
6

Y i ¼ Lhi þ �i; ð16Þ

where Y i ¼ _Zi and L 2 RN�K :¼ ‘1 Ztð Þ; . . . ; ‘K Ztð Þ½ � is the library. For
constructing the target and library in the above equation, both the
states Zt and _Zt can be measured using the sensors. However, in case
of restrictions one can choose to measure only Zt and obtain _Zt from
Zt using higher order numerical differentiation schemes. Once con-
structed, it can be understood that the above equation is identical
to Eq. (4) and can be solved using the sparse Algorithm1 in Section 3.

4.2. Model updating using output only measurements

In the previous section, we demonstrated the model updating
framework using both the input–output information. However,
often an accurate measurement of inputs is not feasible. In such
cases, the library of candidate functions becomes ill-conditioned,
and this leads to the selection of the wrong basis functions. Since
the input information is assumed to be unavailable, we try to repre-
sent the underlying governing physics in terms of the stochastic dif-
ferential equation (SDEs) [38,52]. To represent the systems in terms
of SDEs we treat the output measurements as a stochastic process
and perform sparse Bayesian learning in the purview of stochastic
calculus. We again use the state-space to represent the higher-
order dynamical systems in terms of the SDEs. Let the state-space
be realized by a map T : Rd ! Rm that maps the d-dimensional sys-
tem to the m-dimensional SDEs with d < m. Then using T, any per-
turbed higher-order system can be reduced to the following SDEs:

_X ¼ f Xt ; tð Þ|fflfflfflffl{zfflfflfflffl}
Nominal model

þ h Xt ; tð Þ|fflfflfflffl{zfflfflfflffl}
Perturbation

þ g Xt ; tð Þn tð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Diffusion

ð17Þ

where f Xt ; tð Þ : Rm # Rm represents the dynamics of the nominal
model, h Xt ; tð Þ : Rm # Rm represents the nature of the perturbation,
g Xt ; tð Þ : Rm # Rm�n represents the volatility associated with the
dynamics, and n tð Þ represents the stochastic input often represented
aswhite noise [38]. To applymathematical operations over the noise
n tð Þ it is oftenappropriate to represent theaboveequation through Itô
SDEs which arises naturally in non-linear dynamical systems sub-
jected to stochastic excitation such as earthquake, wind force, wave
force, etc. [38]. Let X;F; Pð Þ be the complete probability space with
Ft; 0 6 t 6 Tf Þg be the natural filtration constructed from sub r-
algebras of the filtration F. Further note that the white noises are
generalized derivative of Brownian motions, i.e. n tð Þ ¼ _B tð Þ. There-
fore, under X;F; Pð Þ an m-dimensional n-factor SDE driven by n-
dimensional Brownian motion {Bj tð Þ; j ¼ 1; . . .n} can be written as,

dXt ¼ f Xt ; tð Þ þh Xt ; tð Þð Þdtþ g Xt ; tð ÞdB tð Þ; X t ¼ t0ð Þ ¼ X0; t 2 0;T½ �:
ð18Þ

Here Xt 2 Rm denotes the Ft-measurable state measurements.
In the Itô calculus, the first term within the bracket on the right-
hand side is called the drift vector, the second term is termed as
diffusion matrix, and Bj tð Þ 2 Rn is known as Brownian motion. In
addition to classical methods, [52], for obtaining the solution of
Eq. (18) many modern stochastic integration schemes are previ-
ously proposed by the authors [53,54]. In the digital twin frame-
work, the nominal model f Xt ; tð Þ is known to us a priori with the
help of which we aim to learn the perturbation term h Xt ; tð Þ using
the freshly obtained measurements. For this, we first remove the
information about the nominal model from the measured signal
using the following operations,

dZt ¼ f Xt ; tð Þ þ h Xt ; tð Þð Þdt þ g Xt; tð ÞdB tð Þ � f Xt ; tð Þdt
¼ h Zt ; tð Þdt þ g Zt ; tð ÞdB tð Þ ð19Þ

The above SDE is now the function of the nominal model removed
state measurements and contained the information of - (i) pertur-



Table 1
Parameters of the undertaken systems.

Simulated
systems

Parameters

Example 1(5.1) m; c; k;a;rf g = 1;2;1000;100000;0:5f g
Example 2(5.2) m1;m2; c1; c2; k1; k2;a;r1;r2f g =

1;1;4;4;4000;2000;50000;0:5;0:5f g
Example 3(5.3) m; c; k;a1;a2;a3;a4; c;b;rf g =

1;2;2000;0:5;0:5;1;1;0:001;2;1f g
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bation in the drift and (ii) diffusion. At this point, it is straightfor-
ward to understand that the discovery of governing physics in
terms of Eq. (18) requires the independent identifications of the
drift and diffusion components. In contrast to the diffusion term,
the deterministic drift functions behave as smooth functions, i.e.,
they are assumed to be at least twice differential. Thus there exists
a finite variation of drifts. On the contrary, the stochastic Brownian
motions are not differentiable everywhere with respect to the pro-
cess Z tð Þ. Due to such non-differentiability property, the Brownian
motions are assumed to have only the quadratic variation. As a con-
sequence, they are defined in the mean square sense only.

Mathematically, let us consider the interval s 2 0; t½ � that is par-
titioned into n parts. If Zt denotes arbitrary random process then
according to the Itô calculus, as n ! 1 the finite variation
Vn Z; tð Þ : Pn

i Z sið Þ � Z si�1ð Þj j	 
 ! V Z; tð Þ and the quadratic variation

Qn Z; tð Þ : Pn
i Z sið Þ � Z si�1ð Þj j2

n o
! Q Z; tð Þ [38]. This suggests that if

the sampling rate is sufficiently small, then the drift and diffusion
components of an SDE in Eq. (18) can be learned using only the
state measurements in terms of their linear and quadratic varia-
tions, respectively [45]. However, it should be noted that the diffu-
sion components - (i) have zero finite variations and (ii) are
bounded by the quadratic variations. Thus, the diffusion compo-
nents are recoverable only through their covariation terms. There-
fore, we express the drift and diffusion components of the SDE in
Eq. (18) in terms of the state measurements as follows:

hi Zt ; tð Þ ¼ lim
Dt!0

1
Dt

E Zi tþDtð Þ � Zi tð Þ½ � 8 k¼ 1;2; . . .N; ð20aÞ

Cij Zt ; tð Þ ¼ 1
2
lim
Dt!0

1
Dt

E Zi tþDtð Þ� Zi tð Þj j Zj tþDtð Þ � Zj tð Þ�� ��� 
8 k¼ 1;2; . . .N; ð20bÞ

where hi Zt; tð Þ is the ith drift component and Cij is the ijð Þth compo-
nent of the diffusion covariance matrix C 2 Rn�n :¼ ggT

� �
Zt ; tð Þ. In

order to derive the analytical form of the drift and diffusion compo-
nents from state measurements, we represent the drift and diffu-
sion as a linear superposition of candidate basis functions.

Let ‘k Ztð Þ; k ¼ 1; . . . ;Kf g be the set of candidate library functions
where ‘k Ztð Þ represents the various linear and non-linear mathe-
matical functions defined with respect to the system states. We

first construct the libraries Lf 2 RN�K and Lg 2 RN�K from the sub-

sets ‘fk Ztð Þ
n o

# ‘k Ztð Þf g and ‘gk Ztð Þ	 

# ‘k Ztð Þf g for drift and diffu-

sion, respectively. Then, we express the ith drift component and

the ijth term of diffusion covariance matrix as a linear superposition
of the library functions as,

hi Zt ; tð Þ ¼ hfi1‘
f
1 Ztð Þ þ . . .þ hfik‘

f
k Ztð Þ þ . . .þ hfiK ‘

f
K Ztð Þ ð21aÞ

Cij Zt ; tð Þ ¼ hgij1‘
g
1 Ztð Þ þ . . .þ hgijk‘

g
k Ztð Þ þ . . .þ hgijK ‘

g
K Ztð Þ; ð21bÞ

where hfik and hgijk are the weights associated with the kth basis func-

tion of ith drift and ijth diffusion covariance components, respec-
tively. In a compact form, the above equations can be represented
as similar to Eq. (4),

Y i ¼ Lf
h
f
i þ �i ð22aÞ

Y ij ¼ Lg
h
g
ij þ gij: ð22bÞ

In the above equations h
f
i ¼ hi1 ; hi2 ; . . . ; hiK

� T , and

h
g
ij ¼ hij1 ; hij2 ; . . . ; hijK

� T , which corresponds to ith drift component

and ijth element of diffusion covariance matrix, respectively. Simi-

larly, the target vectors Y i and Y ij corresponds to the ith-drift com-

ponent and ijð Þth component of the diffusion covariance matrix,
respectively. The terms �i and gij represent the corresponding mea-
7

surement error vectors. For the discovery, the target vectors are
constructed using the Eq. (20) as,

Y i ¼ 1
Dt

Zi;1 � ni;1
� �

; . . . ; Zi;N � ni;N
� �� T ð23aÞ

Y ij ¼ 1
Dt

Zi;1 � ni;1
� �

Zj;1 � nj;1
� �	 


; . . . ; Zi;N � ni;N
� �

Xj;N � nj;N
� �	 
� T

ð23bÞ
The straightforward application of the Algorithm 1 in Section 3 in
the above directly yields - (i) the perturbation terms in drift and

(ii) the diffusion, along with their parameters h
f
i and h

g
ij. For more

information on the discovery of these drift and diffusion terms,
one can refer [45,55].

5. Example problems

We demonstrate the efficacy, effectiveness, and robustness of
the proposed digital twin framework using the following test beds,
(a) an SDOF nonlinear Duffing oscillator, (b) a 2DOF nonlinear sys-
tem, and (c) a degrading dynamical system. The system parameters
are listed in Table 1. In the deterministic framework, it is assumed
that we have access to the noisy measurements of both the system
states and input. Therefore, we have included the force vector f tð Þ
as a basis function in the library. In this case, the input to the sys-
tems is modeled as zero mean Gaussian white noise with appropri-
ate noise intensities, and the system responses are simulated using
the Runge–Kutta 45 scheme. On the contrary, for the stochastic
framework, it is assumed that we have access to the noisy mea-
surements of system states only. The unknown input to the sys-
tems is modeled as Brownian motions with appropriate
intensities. The Euler Maruyama (EM) scheme [52] with a sampling
frequency of 1000 Hz is utilized to obtain the ensemble of stochas-
tic system responses.

Reiterating the fact that we want to discover the interpretable
form of any new function that might have introduced nonlinearity
and/or change in the behavior in the original system, the previous
information of the system is removed from the measured
responses. Since the measurements in practice are always affected
by the quality of sensors and the platform of operation, the mea-
surements are corrupted with noise modeled as zero-mean Gaus-
sian noises with a standard deviation equal to 5% of the standard
deviation of the measurements. Once the corresponding responses
are finally prepared, the target vectors and the libraries of candi-
date functions for the respective frameworks are obtained. With
the target vectors and libraries ready, next, the sparse Bayesian
regression is performed to identify the presence of new functions
that accurately describes the change in the behavior of the under-
lying system. In this work, the dictionary L 2 RN�K is constructed
from the following 8 types of mathematical functions, each func-
tion representing a mapping of the m-dimensional state vector
X ¼ X1;X2; . . .Xmf g:

L Xð Þ ¼ 1 P1 Xð Þ P2 Xð Þ . . . P6 Xð Þ sgn Xð Þ e�X e�XX
Xj j X Xj j sin Xð Þ cos Xð Þ

" #
:

ð24Þ
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Here, for i; j ¼ 1; . . . ;m 1 2 RN denotes the N-dimensional vector of
1, PP Xð Þ 2 RN�m denotes the set of terms present in the multinomial
expansion X1 þ X2 þ . . .þ Xmð ÞP;8P ¼ 1; . . . ;6; sgn Xð Þ 2 RN�m repre-
sents the signum function of the states as, sgn Xið Þ; e�X and e�XX rep-
resents the functions e�Xi and e�XiXj; Xj j 2 RN�m denotes the
absolute mapping of the states as, Xij j;X Xj j represents the set of
functions: Xi Xj

�� ��, and, sin Xð Þ and cos Xð Þ represents the sine and
cosine functions of systems states.

To start the Bayesian model updating algorithm, the determin-
istic hyperparameters are initialized as ap=0.1, bp=1, av ¼ bv=0.5,

ar ¼ br=10
4 and the following values are used as an initial guess

for the random hyperparameters: p 0ð Þ
0 =0.1, # 0ð Þ=10, and r2 0ð Þ is set

equal to the residual variance from ordinary least-squares regres-
sion [43,44]. The initial vector of binary latent variables Z 0ð Þ is com-
puted by initializing Z 0ð Þ as zero vector and then activating the
components Zk 2 Z 0ð Þ that reduce the mean-squared error between
the training data and the obtained model from ordinary least-
squares. With the above parameters, the initial value of h 0ð Þ is then
obtained from Algorithm 1. A Markov chain with 3000 Monte Carlo
samples is utilized to obtain the posterior distributions of candi-
date library functions.

5.1. Example 1

As a first test bed, we consider an SDOF dynamical system,
where we first assume that the nominal model is in the form of a
linear mass-spring-dashpot system. However, due to the opera-
tional and environmental conditions, the physics is perturbed by
a cubic dissipation term, in which case the system evolves as a
Duffing oscillator. Towards the problem statement, the governing
motion equations of the dynamical system in its nominal and per-
turbed form are described as,

m€X þ c _X þ kX ¼ rf tð Þ; Nominal model;

m€X þ c _X þ kX þ aX3 ¼ rf tð Þ; Perturbed model;
X t ¼ t0ð Þ ¼ X0; t 2 0; T½ �;

9>=
>; ð25Þ

where m 2 R; c 2 R; k 2 R and a 2 R are the parameters of the oscil-
lator. The parameter a represents the nonlinear spring constants,
and based on the sign of a, the system exhibits the hardening
(a > 0) and softening (a < 0) behavior. The term f tð Þ 2 Rn denotes
the n-dimensional external forcing function. For framework-1,
where both the input–output measurements are available, the force
term f tð Þ is modeled as zero-mean standard Gaussian noise with
intensity 1. In the case of framework-2, where only the output state
measurements are available, the non-measurable force f tð Þ is mod-
eled as stochastic Brownian motion. The values of the parameters
are provided in Table 1. Here our aim is to correct the nominal
model using the freshly observed noisy sensor measurements. In
addition to discovering the nonlinear dissipation term, we invoke
the constraint that the new terms should be in explainable form.
Further, when only the output information is available, we addi-
tionally aim to identify the diffusion term r. For this purpose, we
first simulated the perturbed system using the state-space

X; _X
h i

¼ X1;X2½ � and then removed the information of the nominal

model from the simulated data as, aX3
1 ¼ f tð Þ �m _X2 � kX1 � cX2.

The response simulation for framework-1 is done using fourth-
order Runge–Kutta, and for framework-2, we used the EM scheme.

5.2. Example 2

In the second example, we consider a two-DOF dynamical sys-
tem. Similar to the previous case, the nominal model is considered
to be a two-DOF linear mass-spring-dashpot system which later
8

gets perturbed by the cubic dissipation terms. The governing
motion equations of the nominal and perturbed model are as
follows,

m1 0
0 m2

� � €X1

€X2

" #
þ c1 þ c2 �c2

�c2 c2

� � _X1

_X2

" #
þ k1 þ k2 �k2

�k2 k2

� �
X1

X2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nominal model

þ

aX3
1 þ a X1 � X2ð Þ3
a X2 � X1ð Þ3

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Perturbation

¼ r1 0
0 r2

� �
f 1 tð Þ
f 2 tð Þ

� �
;

ð26Þ

where mi; ci and ki for i ¼ 1;2 are the mass, damping and stiffness

parameters of the ith floor. The term a is the nonlinear spring con-
stant, f i tð Þ is the external forcing functions, and ri is the intensity
of the forcing function. Here, X ¼ X1;X2½ � is the solution vector of
the system. In framework-1, the force vector is generated from
the zero mean Gaussian white noise, whereas, in framework-2,
the force vector is modeled from the Brownian motion. For solving
the systems we adopted the same schemes as mentioned previ-
ously. In this example, we firstly aim to discover the nonlinear per-

turbation terms (aX3
1 þ a X1 � X2ð Þ3 in the first DOF and a X2 � X1ð Þ3

in the second DOF) in their explainable forms. Secondly, when the
input information is not available we also try to identify the diffu-
sion (r2

1=m
2
1 in the first DOF and r2

2=m
2
2 in the second DOF). We have

demonstrated the results in terms of the state-space

X1; _X1;X2; _X2

h i
¼ X1;X2;X3;X4½ �. Once the responses are simulated

using the mentioned numerical schemes, the information about
the nominal model is removed from the responses, as mentioned
in the previous example.
5.3. Example 3

In this example, we considered a more sophisticated and near-
realistic problem that involves the discovery of crack degradation
in a linear dynamical system. The degradation of stiffness due to
fatigue accumulation during the vibration process is a real phe-
nomenon and has great importance in engineering practice. For
simulating the degradation, we particularly adopted the model
proposed in Ref. [34]. With this, the governing motion equations
of the underlying problem are given as,

m€X1 tð Þ þ c _X1 tð Þ þ kkX1 tð Þ ¼ f tð Þ ð27aÞ
k ¼ a1 þ a2 exp �a3q tð Þa4� � ð27bÞ

_q tð Þ ¼ c X2
1 tð Þ þ _X2

1 tð Þ
� �b

2
: ð27cÞ

Here m 2 R; c 2 R, and k 2 R are the mass, damping, and stiffness
parameters of an actual linear system. The scalar k 2 R character-
izes the dependency of stiffness on the degradation and
a1 2 Rþ;a2 2 Rþ;a3 2 Rþ;a4 2 Rþ defines the extent and rate of
degradation. While the Eq. (27a) represents the actual system, the
Eq. (27c) denotes the evolution of the degradation measure q tð Þ.
For more details, the readers are referred to Ref. [34]. In a similar
fashion to previous examples, here we aim to simultaneously dis-
cover the Eq. (27c), the nonlinear degradation terms
k x3ð Þ ¼ k a1 þ a2 exp �a3q

a4
3

� �� �
in Eq. (27a) and the diffusion r=m

in Eq. (27a). Thus it can be noticed that although the initial system
was linear, the identified system is highly nonlinear in nature. As it
was explained in the previous examples, the forcing f tð Þ is simu-
lated as zero mean Gaussian white noise for framework-1 and as
Brownian motion for framework-2.
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5.4. Discovery results when both noisy input–output information are
available

The discovery results for the DVP, two-DOF, and crack-
degradation examples are illustrated both quantitatively and
graphically in Table 2 and Fig. 3–6. In Fig. 3 the posterior inclusion
probabilities of the candidate library functions are shown. In Fig. 3
Table 2
Posterior mean and standard deviations of the selected basis functions.

Systems Basis function

Example 1(5.1) X3

u
zr Xt ; tð Þ

Example 2(5.2) First DOF X3

X2 _X

X _X2

_X3

u1

zr1 Xt ; tð Þ
Second DOF X3

X2 _X

X _X2

_X3

u2

zr2 Xt ; tð Þ
Example 3(5.3) Crack Path X2

_X2

System a1X

a2e�a3w
a4 X

u
zr Xt ; tð Þ

� The deterministic refers to the case when both the input–output information are availa
Note that the diffusion terms are discovered in terms of their covariation, i.e., to discover t
matrix C.

Fig. 3. Basis function selection for example problems when both input–output measu
first DOF of example-2, (c) model selection in the second DOF of example-2, and (d) mo
L 2 R216 for example-2 and L 2 R27 for example-3. Out of 31 only 2 in example-1, out o
indicates the ability of the proposed framework to introduce sparsity and retain only th
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(a), it is clearly evident that the proposed digital twin framework
has correctly identified the basis function corresponding to the
cubic nonlinearity in the perturbed model of Example 1. This sim-
ilarity can be observed in Fig. 3b) and and Fig. 3(c), where all the
coupled cubic nonlinear basis functions in the perturbed model
of the two-DOF system are identified. In 3(d), the results are no
exception, where we can observe that the proposed framework is
�Deterministic yStochastic

100000 � 0.5587 100074 � 124.48

1.00 � 2:78� 10�7 –

– 0.5101 � 0.0142

�100000 � 1.43 �100173 � 1206.32

150000 � 2.38 150287 � 1786.58

�150000 � 1.27 �150234 � 841.33

50000 � 0.2259 49967.9 � 123.33

1.00 � 2:74� 10�7 –

– 0.5346 � 0.0042
50000 � 1.41 49939.9 � 1322.00

�150000 � 2.35 �150098 � 1934.90

150000 � 1.25 150051 � 883.81

�50000 � 0.2247 �49992.6 � 128.34

1.00 � 2:89� 10�7 –

– 0.5021 � 0.0029

0.0099 � 5:29� 10�5 0.0099 � 8:00� 10�4

0.0100 � 4:02� 10�8 0.0099 � 4:52� 10�7

�1000 � 3:51� 10�5 �995.74 � 22.62

�1000 � 1:00� 10�4 �1003.93 � 22.74

1.00 � 1:39� 10�5 –

– 1.00 � 0.0549

ble, and y stochastic refers to the case when the output-only response is available. z

he diffusion terms one needs to perform the square root operation on the covariance

rements are available. (a) Model selection in Example-1, (b) model selection in the
del selection in the example-3. The library is constructed as L 2 R31 for example-1,
f 216 only 5 in example-2, and out of 27 only 5 in example-3 have PIP > 0.5. This
e most important basis functions in the solution.



Fig. 4. Posterior probabilities of the selected basis functions in the final model obtained using framework-1. (a) Example-1: the density plots of the basis X3 and u. (b)
Example-2: posterior and joint posterior probabilities of the basis functions X3; _X3;X2 _X;X _X2;u1 and u2. (c) Example-3: posterior densities of the basis functions h X2

� �
; h X2
� �

and Xe �qð Þ . The red region in the joint posterior density indicates the mean of parameters, whose values are given in Table 2.

Fig. 5. Basis function selection for the example problems when only state measurements are available. (a) Example-1, (b) example-2: drift, (c) example-2: diffusion, (d)
example-3. The blue bars correspond to perturbation terms in drift, and the red bars represent diffusion. A total of R36;R215, and R32 basis functions are considered for the
examples, respectively. The PIP > 0.5 criteria are invoked to discover the final model.
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able to identify the basis functions corresponding to crack path and
degradation exactly.

The posterior distributions of the parameters of the identified
basis functions are further depicted in Fig. 4. For quantitative
understanding, the mean and standard deviations of the parame-
ters are provided in Table 2. For testing the fidelity of the proposed
framework, we compare the parameter values in entries against
the deterministic framework of Table 2 with those in the actual
system (given in Table 1). From the comparison results, it can be
stated that the mean values of the corresponding parameters (zero
error) exactly match with actual values in Table 1. The standard
deviation results demonstrate the uncertainties associated with
the selection of basis functions in the final model. From the results,
it is evident that the uncertainties associated with the correspond-
ing basis functions that are identified using the proposed scheme
are quite small. This indicates the efficacy of the proposed frame-
work in discovering the perturbations in the system in their inter-
pretable forms.
5.5. Discovery results when only the noisy output measurements are
available

The results of the discovery of the drift and diffusion terms in
the perturbed models of undertaken examples, when the input
force information is unavailable are presented in Fig. 5 and 6. In
Fig. 6. Posterior distributions of the identified basis functions obtained using the fram
r2. (b) Example-2: joint posterior distributions of the basis functions X3;X2 _X;X _X2; _X3;

distributions of the basis functions X2; _X2;Xe �qð Þ and r2. The values of the diffusion term
Table 1 are obtained by performing the square root operation on the covariance.
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the first example, we aimed to discover the nonlinear drift term
ax3 and the diffusion constant r from the output state measure-
ments only. From the results for the basis function selection in
example-1, displayed in Fig. 5(a), it is evident that the proposed
digital twin framework is able to identify the perturbation terms
in their interpretable forms correctly. In the second example, in

addition to the nonlinear dissipating terms (aX3
1 þ a X1 � X2ð Þ3 in

the first DOF and a X2 � X1ð Þ3 in the second DOF), we also aim at
discovering the diffusion terms r1/m1 and r2/m2. Similar to
example-1, from the basis function selection results presented in
5(b) and 5(c) it is easy to comprehend that the proposed frame-
work is able to correctly identify the highly nonlinear basis func-
tions without any greater difficulty. In the third example,
similarly, we try to identify the diffusion term r in addition to
the crack growth and stiffness degradation without using the input
force measurements explicitly. The results in Fig. 5(d) show the
exact identification of the corresponding perturbation terms,
which introduces the degradation in the underlying dynamical
system.

For a quantitative understanding of the performance of the pro-
posed framework, the posterior distributions of the parameters of
the identified basis functions in the undertaken models are pre-
sented in Fig. 6. Further, the statistical properties of the parameters
are given in Table 2 for easy reference. In the first observation on
comparing the values provided in Table 2 against stochastic entry
ework-2. (a) Example-1: posterior distributions of the drift term X3 and covariance
r2

1=m
2
1 and r2

2=m
2
2 in first and second DOF, respectively. (c) Example-3: posterior

s are obtained in terms of their covariance. The final values of diffusion provided in
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with those in Table 1, it can be stated that the error in the identi-
fied parameters is very small (around 0.06–3.93% for drift and
0.42–6.92% for diffusion). This means that the proposed digital
twin framework can discover the correct perturbation terms with
sufficient accuracy. On referring to the associated standard devia-
tion values of the corresponding parameters, it is straightforward
to understand that when the input force information is not avail-
able to the proposed algorithm, the uncertainty in the identified
parameters increases. On the contrary, when both input–output
information is available the uncertainty in the identified parame-
ters decreases significantly.

5.6. Prediction using the proposed DT

The true potential of a DT is generally visualized by its ability to
predict the future in the presence of unseen environmental distur-
bances. In order to judge the predictive performance of the pro-
posed DT we have carried out predictions using the previously
updated models on new random forcing values. The random forc-
ing functions are simulated from a standard normal distribution
with the intensities provided in Table 2. The predictions are per-
formed using the identified models of both frameworks 1 and 2.
The results on the prediction of system states of example-1, 2,
and 3 are illustrated in Fig. 7–9, respectively. In Fig. 7, the predic-
tion results for example-1 along with the 95% confidence interval
are shown. It can be seen that the prediction results exactly emu-
late the original response. Additionally, it can be observed that the
standard deviations are so small (given in Table 2) that the confi-
dence interval completely overlaps the mean prediction results.
This means that the predictions performed using the mean value
of the parameters of the updated model have very less chance of
diverging away from the actual results.

In Fig. 8, the prediction results along with their 95% confidence
interval for system states of example-2 are demonstrated. The
observations are similar to example-1, i.e. the predictions per-
formed using the updated model are nearly the same as the origi-
Fig. 7. Predictive performance of the proposed predictive digital twin. (a) and (b) Pre
(c) and (d) Prediction results of the DT with output-only measurement. In both ca
uncertainties associated with the identified parameters are so less that it does not get
employed in implementations where high precision in the identifications is of primary
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nal predictions. On close observation, it can be seen that the
updated model has also captured the sharp changes in the actual
system. Similar to the previous case, the standard deviations in
the identified system parameters are so small that the 95% confi-
dence interval is very small, indicating negligible uncertainty in
the identified model. Thus it can be envisaged that the proposed
DT can learn the underlying physics of highly nonlinear perturba-
tions and thereby can be used to update models in very complex
environmental conditions. In Fig. 9, the results for example-2 are
portrayed. The mean prediction results for the system states are
very much similar to the actual system. The updated model has
almost exactly predicted the actual system responses. However,
in this case, it can be observed that when only the output measure-
ments are used to update the DT, the uncertainties in the identified
parameters increase. As a consequence, the uncertainties in the
predictions performed using the updated model increase.

Further, to assess the long-term predictive ability of the pro-
posed framework, we have performed predictions for the nonlinear
oscillator in example-2 for a total duration of 500s at a sampling
frequency of 1000 Hz using the EM scheme. During the predictions,
the system parameters are kept the same as in Table 2. The results
are shown for the second DOF in Fig. 10. We observe that the mean
predictions emulate the actual solutions almost exactly in the ini-
tial phase. Consequently, the corresponding confidence interval is
also very narrow. The long-term predictions after the 250s show
very small deviations from the actual results, which is further
depicted by the increased width of the confidence interval. Never-
theless, we observe that during the prediction period of 500s, the
predicted responses oscillate very close to the actual solution indi-
cating the robustness of the identified models and so as the robust-
ness of the proposed frameworks.

5.7. Sensitivity to measurement noise

In the presence of environmental disturbances and operational
faults, the measurements of system responses using sensors from
dictions result for the DT when both the input–output measurements are available.
ses, the proposed DT showcases exceptional predictive ability. Additionally, the
reflected in the predicted responses. This indicates that the proposed DT can be

importance.



Fig. 8. Prediction performance of the proposed predictive digital twin for example-2. (a), (b), (c) and (d) Prediction results of the system states obtained using the model
updated via input–output observations. (e), (f), (g), and (h) Prediction results of the system state when only the output measurements are used for updating the DT. The
prediction results are highly accurate. The updated model is very effective in capturing the highly nonlinear behavior of the undertaken system, as it is able to capture the
sharp changes in the system behavior with very small uncertainties.
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field applications always get corrupted by surrounding noises. To
be able to implement on an industrial scale, a novel framework
should demonstrate the soundness of such noises and effectively
correct the physics of nominal models using freshly observed noisy
measurement data. While in the previous results, the noise of mag-
nitude of 5% of the standard deviation of the input is considered, in
this section, we carried out the same study using 13 different levels
of noise ranging from 0 to 60%. The performance is compared using
the absolute relative error between the actual parameter values
and the mean of the posterior distributions. Similar to previous
cases, the case studies are performed in search of new basis func-
tions in drift and as well as for diffusion terms. The absolute rela-
13
tive error in the results of discovery using framework-1, along with
their statistics, are provided in Fig. 11. In Fig. 11a, the sensitivity of
the deterministic framework where both the input–output infor-
mation is available is presented.

In these figures, the mean error is denoted by the marker star,
and the median of the error is denoted by the black bars of the box-
plot. In the identification of the basis function x3, it is observed that
the mean values of the errors for different levels of noise are quite
negligible (so as the confidence intervals) for noise levels of up to
45%, indicating the soundness of the proposed framework against
noise. However, as the noise level reaches 50%, the proposed
framework predicts the wrong parameters of the actual basis func-



Fig. 9. Predictive performance of the proposed predictive digital twin for example-3. (a) and (b) Results for the DT using framework-1, where both the input–output
observations are available. (c) and (d) Results of the DT when only output measurements are feasible. The DT perfectly identifies the terms of the perturbation along with
their associated parameters. As a result, the prediction results match almost perfectly with the actual system responses. However, when the models are updated using only
the output observations, the uncertainty in the predictions increases by some amount. This ability to learn the uncertainties in the identified system parameters helps us to
perform reliability analysis on the systems designed using the proposed DT.

Fig. 10. Long-term predictive performance of the proposed predictive digital twin for the nonlinear oscillator in Example 2. The displacement and velocity responses
are shown for the second DOF, where predictions are performed for unseen realizations of white noise. The mean prediction responses in the initial stage (< 250s) show an
exact match to the true solution. However, the responses after the 250s show very small deviations. This phenomenon is also depicted by the evolution in the confidence
interval, where the width of the interval in the initial phase is very narrow but later grows with time.
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Fig. 11. Performance of the proposed predictive digital twin for example-1 at different noise levels. (a) The absolute relative error in the identified parameters of the
basis functions X3 and u, respectively. (b) The absolute relative error in the identification of the parameters of basses X3 and _Bt , respectively. The marker star denotes the mean
and the black bars denote the median of the error, and the shaded region indicates the breakpoint of the proposed frameworks.
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tion. In cases of observations with 60% noise, the proposed frame-
work predicts not only predicts wrong basis parameters but also
populates the model with wrong basis functions. Consequently,
the mean error also shoots up, and the deviation of the error
becomes 100%. Similarly, in the identification of the forcing basis
function u, we observe that as the noise level increases, the identi-
fication error of the forcing intensity increases, also indicated by
the increasing confidence interval. Based on the analysis, it can
be envisioned that when both the input–output information is
measurable, the proposed framework can perform well for data
that are corrupted with a noise of magnitude of up to 45%.

In Fig. 11b, the noise sensitivity of framework-2 is evaluated,
where only the noisy measurements of systems responses are
available. The absolute relative error in the identification results
of drift shows that variations in the error mean with the increase
in noise levels are very erratic. Although the associated confidence
intervals are quite stable, the values of the identified parameters
vary over a big range. A similar erratic trend can be seen in the
results of diffusion identification. The proposed framework-2 is
able to diffusion parameters with a mean error of 6 10%. Thus
by considering the mean error levels and the associated bounds
of the parameters we can envision that the proposed framework-
2 can extract the exact basis functions with accurate parameters
from output-only data that are corrupted with noises of the level
of up to 20%.
6. Conclusions

A framework for real-time updating of the DTs using a library of
physics-based functions is proposed. Two approaches for updating
15
the DT are proposed, where the first approach utilizes both input–
output data, and the second approach uses output-only observa-
tions. Since, in noisy and limited data, dealing with the probability
distribution of a random variable would be preferable to dealing
with a predicted value, we utilize the sparse Bayesian regression
to infer the perturbation terms from the library. As compared to
the available grey-box DTs where the precise representation of
the obtained governing physics is unresolved, the proposed frame-
work has high predictive power since the actual governing physics
of the perturbed model is learned using physical functions instead
of surrogate models. Data availability is the foundation of any DT.
However, sometimes obtaining the required data is not possible
due to unavoidable circumstances. In such cases, the resulting
framework can work in situations when either or both the input
and output measurements are available.

Three numerical case studies are undertaken. In the first
example, a simple SDOF linear dynamical system is considered
where the perturbation is assumed to be a cubic dissipating
force. In the second example, a two-DOF dynamical system is
considered, which is assumed to be perturbed by coupled cubic
nonlinear terms. In the third example, a near-realistic problem of
stiffness degradation due to crack propagation is taken. In all the
problems, the primary system is assumed to be linear, but as
time progresses, the perturbed model becomes nonlinear. Fur-
ther case studies on the performance of the proposed framework
against different noise levels indicate that the framework can
identify the exact perturbation from data that are corrupted with
the noise of level - (i) 45% when both the input–output informa-
tion are available and (ii) 20% when only the input information
is available.
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Overall, the salient features of the proposed work can be encap-
sulated in the following points:

	 The actual physics of the perturbations in the physical twin is
discovered using the proposed approach. The discovered terms
are expressed in terms of interpretable functions; thus, the pro-
posed approach is white in nature.

	 The Bayesian approach reduces the chance of overfitting and
avoids the requirementofhuman interventions foroptimal tuning.
Therefore, it canbedirectlyapplied for automation in the real-time
monitoring, diagnosis, and prognosis of dynamical systems.

	 The proposed approach presents a unique way of updating the
governing physics of DT from either both input–output or
output-only observations. The latter case is especially relevant
when the measurement of input forces is intractable.

	 Being probabilistic in nature, the proposed framework provides
first and second-order statistics for quantifying the uncertain-
ties arising due to noisy and low data.

A fewpotentials application of theproposedpredictive framework
includes (i) instances when the governing physics is misspecified or
the physics of the underlying physical twin has changed, (ii) when
the observations are noisy and limited, (iii) situations where only
theoutput observations areavailable, and (iv)when long termpredic-
tions under a rapid change in environmental conditions are required
for predictive maintenance. However, the proposed framework has
certain issues, for e.g., the choice of correct basis functions. In the
absence of correct basis functions and correct state measurements,
the proposed frameworkwill not yield a sparse solution, thereby lim-
iting the generalization of the discovered model. In such cases, the
knowledge of an expert can be combined with the associated uncer-
tainties of the basis functions to gain some diagnostic information.
In this work, we further modeled the input information as stationary
Gaussian white noise, which may not hold true for most of the appli-
cations inDT.Therefore, amorepractical framework is requiredwhich
would generalize for realistic input such as nonstationary processes,
jump adapted processes, narrow band processes, etc.

Additionally, in order to adopt the proposed framework for
industrial and commercial implementations, a few more features
are required to be added to the existing framework. For example,
partial differential equations (PDEs) are commonly used to describe
naturally arising problems like electrodynamics, fluid flow, heat and
sound propagation, etc. Therefore, as an initial thought developing
DT for model updating of systems involving PDEs can be carried
out as an extension of this work. Secondly, if the noise level in the
observations is veryhigh, thenperforming the sparesBayesian infer-
ence usingMCMC could be computationally time-consuming. Thus,
the formulation of computationally tractable probabilistic frame-
works for real-time deployment of DT could be another possible
extension. Thirdly, the most significant improvement would be to
integrate the proposed framework with control algorithms. This
would, instead of physical intervention, enable the digital operation
of the underlying process resulting increase in output, streamlining
of services, and saving in post-investment cost.

Code availability

The source codes to reproduce the results reported in this study
can be downloaded from https://github.com/csccm-iitd/Inter-
pretable-DT.

Data availability

The data used for the research described in the article can be simu-
lated from the source codes available at https://github.com/csccm-
iitd/Interpretable-DT.
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Appendix A. The marginal likelihood function for estimating
the latent indicator vector

Due to the Boolean nature of the latent variable wk, it is sampled
from the Bernoulli distribution using the hyperparameter p0 as,

p w iþ1ð Þ
k jY ; # ið Þ

s ; p ið Þ
0
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sð Þ. Here, W
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�k 2 RK�1 denotes the latent vari-

able vector W with kth element removed. The kth latent variable

w ið Þ
k takes a value 0 or 1 with probabilities in Eq. (A.2a) and Eq.

(A.2b), respectively,
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