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The optimum inerter-based additional viscoelastic mass
dampers for dynamic response mitigation of structures

Sudip Chowdhurya , Arnab Banerjeea , and Sondipon Adhikarib

aCivil Engineering Department, Indian Institute of Technology Delhi, India; bJames Watt School of
Engineering, The University of Glasgow, Glasgow, Scotland, UK

ABSTRACT
The additional inerter-based viscoelastic mass dampers (AIVMD) and add-
itional viscoelastic mass damper inerters (AVMDI) are introduced in this art-
icle. H2 and H1 optimization schemes are utilized to derive the optimal
closed-form solutions for these novel dampers analytically. A parametric
study performs to investigate the sensitivity of the optimal design parame-
ters with other system parameters such as damper mass ratio, inerter mass
ratio, and stiffness ratio. Thus, a higher damper mass ratio, a higher inerter
mass ratio, and a higher stiffness ratio are recommended to design opti-
mum novel dampers for achieving robust vibration reduction capacities.
Therefore, H2 optimized AIVMD and AVMDI have 53:23% and 57:73%
dynamic response reduction capacities while H1 optimized AIVMD and
AVMDI can provide 72:97% and 75:57% dynamic response reduction
capacities subjected to harmonic excitation, respectively. In addition, ran-
dom-white noise excitations are also applied instead of harmonic excita-
tion to cross-check the accuracy of the optimal design parameters. The
overall result shows that 74:24% and 82:17% dynamic response reduction
capacities for H2 optimized AIVMD and AVMDI, furthermore, 92:14% and
94.36% dynamic response reduction capacities for H1 optimized AIVMD
and AVMDI. These optimal closed-form solutions are mathematically accur-
ate and relevant for practical applications.
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1. Introduction

Mass dampers such as tuned mass dampers (Kaynia, Veneziano, and Biggs 1981), tuned inerter
dampers (Deastra et al. 2020), and tuned mass damper inerter (Marian and Giaralis 2014) are
effective passive vibration control devices to mitigate the dynamic responses of the structures
from multi-hazard scenarios (Zuo, Bi, and Hao 2017; Qiao et al. 2022; Petrini, Giaralis, and
Wang 2020), earthquakes (De Domenico and Ricciardi 2018; Shen et al. 2019; Djerouni et al.
2021), cyclones (Elias and Matsagar 2018; Wang et al. 2019; Giaralis and Petrini 2017), and high-
level water pressure (Zhang and Fitzgerald 2020; Jahangiri, Sun, and Kong 2021; Zhang and Høeg
2021). The energy dissipation through these devices occurs when their natural frequency inter-
sects exactly with the excitation frequency, and out-of-phase conditions happen at this resonating
frequency (Marano, Greco, and Sgobba 2010; Pellizzari et al. 2022). Frahm introduces tuned mass
damper for undamped dynamic systems without providing optimal design parameters (Frahm
1909). After that, several studies have been conducted on these devices, and different optimization
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schemes have been applied to determine the optimal design parameters for these mass dampers
(Leung et al. 2008; Morga and Marano 2014; Rathi and Chakraborty 2017; Ruiz et al. 2018;
Kaveh et al. 2020; Chowdhury and Banerjee 2022b). However, to mathematically derive exact
closed-form expressions for these dampers, H2 and H1 optimization schemes are the most prom-
inent and oldest (Chowdhury, Banerjee, and Adhikari 2022b). Den Hartog and Ormondroyd first
introduced the H1 optimization method for harmonically excited structures as a name of the
fixed-point theory, considering damped structures and also providing closed-form expressions for
optimal design parameters (Den Hartog 1985). In contrast, the H2 optimization method applies
to the random vibration excited structures (Chowdhury and Banerjee 2022a). Applying both opti-
mization schemes, the mathematical formulations for optimal design parameters are derived ana-
lytically (Zhao et al. 2020, 2019).

The inerters are one of the effective mass amplification devices installed inside the tuned mass
dampers to increase their vibration reduction capacity without increasing the static mass of the damp-
ers (Smith 2002; Papageorgiou, Houghton, and Smith 2009; Chen and Hu 2019; Wagg 2021). These
inerters are placed inside the tuned mass dampers with different structural configurations and pro-
duce tuned inerter damper, tuned mass damper inerter, tuned inerter viscous damper, etc. (Ma, Bi,
and Hao 2021; Kuhnert et al. 2021; Liu et al. 2022; Zheng, Li, and Zhang 2022). Inertial amplifiers
(Chowdhury, Banerjee, and Adhikari 2023) are also one of the effective mass amplification devices
(Chowdhury, Banerjee, and Adhikari 2021). However, the effective mass amplifications through iner-
tial amplifiers (Chowdhury, Banerjee, and Adhikari 2022a, 2023) occur through their geometrical con-
figurations, generating the inertial forces, whereas inerter produces effective masses through motion
amplifiers. However, all these devices are generally contained viscous damping (Adhikari and
Woodhouse 2001a). Non-viscous damping (Adhikari and Woodhouse 2001b) and viscoelastic
materials (Adhikari and Pascual 2009) can also be applied to these devices. Only tuned viscoelastic
damper (Batou and Adhikari 2019) exists with optimal closed-form solutions using fixed-point theory.
Therefore, H2 optimization method can be applied for the optimization process and also, non-viscous
damping and viscoelastic materials can be applied to the inerter-base mass dampers. Thus, a research
scope detects and addresses this research gap, and viscoelastic materials are installed inside the
inerter-based mass dampers, producing two novel mass dampers, namely, additional inerter-based
viscoelastic mass dampers (AIVMD) and additional viscoelastic mass damper inerters (AVMDI).

The mathematical formulations for the optimal design parameters of these novel dampers
derive through H2 and H1 optimization schemes. These dampers are installed at the top of sin-
gle-degree-of-freedom systems, and the vibration reduction capacities of these novel dampers are
determined for harmonic and random-white noise.

2. Structural model and equations of motion

The structural diagram of a single degree of freedom system controlled by additional inerter-
based viscoelastic mass dampers displays in Fig. 1(a). Besides, another single degree of freedom
system controlled by additional viscoelastic mass damper inerters has also been shown in Fig.
1(b). For both controlled structures, md and kd define the mass and the stiffness of the proposed
dampers. kv and cd are the stiffness and damping of the viscoelastic material induced inside the
mass dampers. mb defines the mass of the inerters. ms, cs, and ks refer to the mass, damping, and
stiffness of the single degree of freedom systems (SDOF). ud and us define the unknown degree
of freedom of the dampers and the SDOF system. €xg refers to the base excitation.

2.1. Additional inerter-based viscoelastic mass dampers

An additional inerter-based viscoelastic mass dampers (AIVMD) with viscoelastic damping has
been shown in Fig. 1(a). The standard linear solid (SLS) models are applied mathematically to
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formulate the viscoelastic material. Therefore, the governing equation of motion for the additional
inerter-based viscoelastic mass damper has been derived as

md þmbð Þ€xd þ N _xd þ kdxd ¼ �md€xg (1)

where xd ¼ ud – us refers to the relative displacement of AIVMD w.r.t primary structure. N refers
to the hereditary function. N _xd has been solved by the convolution integral and expressed as

N _xd ¼
ðt
�1

Nðt � sÞ _xdðsÞds (2)

The novel tuned mass damper is in the static state at t¼ 0. Therefore, Eq. (1) has been derived as

md þmbð Þ€xd þ
ðt
�1

Nðt � sÞ _xdðsÞdsþ kdxd ¼ �md€xg (3)

The hereditary function N expresses as NðtÞ ¼ kve
�kvt

cd and the integrating form is a dirac func-
tion at kv ! 1: The steady state solutions are considered as xd ¼ Xdeixt and €xg ¼ Ageixt:
Therefore, the transfer function of Eq. (3) has been derived as

XdðxÞ ¼ � md þmbð Þ
�x2 md þmbð Þ þ ixNðxÞ þ kd
� �Ag (4)

The frequency domain function of NðxÞ, i.e., NðxÞ ¼ kvcd=ðixcd þ kvÞ has been substituted in
Eq. (4). Thereofore, the modified version of Eq. (4) has been expressed as

XdðxÞ ¼ � md þmbð Þ
�x2 md þmbð Þ þ ixkvcd

ixcdþkv
þ kd

h iAg (5)

Now, the additional inerter-based viscoelastic mass dampers are installed at the top of a single
degree of freedom systems to mitigate their dynamic responses subjected to base excitations.
Newton’s second law has been applied to derive the governing equations of motion for the single
degree of freedom system controlled by the additional inerter-based viscoelastic mass dampers

Figure 1. The schematic diagrams of the single degree of freedom systems equipped with (a) additional inerter-based viscoelas-
tic mass dampers and (b) additional viscoelastic mass damper inerters.
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(AIVMD). The governing equations of motion for the SDOF system equipped with additional
inerter-based viscoelastic mass dampers (AIVMD) have been derived and expressed as

md þmbð Þ€xd þ
ðt
�1

Nðt � sÞ _xdðsÞdsþ kdxd þmd€xs ¼ �md €xg

ms€xs þ cs _xs þ ksxs �
ðt
�1

Nðt � sÞ _xdðsÞds� kdxd ¼ �ms €xg

(6)

Nðt � sÞ function has been derived and substitutes in Eq. (6). Therefore, Eq. (6) has been re-written as

md þmbð Þ€xd þ
ð1
0
kve

�ðkv=cdÞðt�sÞ _xdðsÞ dsþ kdxd þmd€xs ¼ �md €xg

ms€xs þ cs _xs þ ksxs �
ð1
0
kve

�ðkv=cdÞðt�sÞ _xdðsÞ ds� kdxd ¼ �ms €xg

(7)

where xdðtÞ and xsðtÞ denote the relative lateral dynamic responses of the damper and the SDOF
system, which is a function of time and drive as xd ¼ ud – us and xs ¼ us – xg. The steady-state
solutions for the above governing equations of motion have been derived for harmonic excitation
and can be expressed as xd ¼ Xdeixt and xs ¼ Xseixt: The steady-state solutions substitute in Eq.
(7) and the transfer function has been derived as

2 qfsxs þ q2 þ xs
2 � 2xd

2 ld þ lbð Þ q aþ 1ð Þfd þ 1=2 a xd

� �
a xd þ 2 qfd

ldq
2 2 ld þ lbð Þ q3fd þ 1=2 q2xdaþ xd

2fd aþ 1ð Þqþ 1=2 xd
3a

� �
a xd þ 2 qfd

2
66664

3
77775

Xs

Xd

( )
¼ � 1

ld

" #
Ag

(8)

where a ¼ kv=kd, denotes the ratio of stiffness of viscoelastic material to the damper. ld ¼ md=ms

and lb ¼ mb=ms are representing the mass ratio of damper and inerter to the primary structure.
q ¼ ix represents the multiplication of the unit imaginary number (i.e., i ¼ ffiffiffiffiffiffiffi�1

p
and the excita-

tion frequency x. The dynamic response of the primary structure has been derived as

HsðqÞ ¼ Xs

Ag
¼

�2 a qxd
2fd ld � 2 a qxd

2fd � xd
3a ld

�2 qxd
2fd ld � xdq

2a� xd
3a� 2 fd q3 � 2 xd

2fd q
D

(9)

The dynamic response of AIVMD has been derived as

HdðqÞ ¼ Xd

Ag
¼ �ld a xd þ 2 qfdð Þxs 2 qfs þ xsð Þ

D
(10)

D has been derived as

D ¼

2 fd q5 þ 4 fd fsxs þ a xdð Þq4

þ 2 a xd
2fd ld þ 2 a xd

2fd þ 2 a fsxsxd

þ2 xd
2fd ld þ 2 xd

2fd þ 2 fd xs
2

 !
q3

þ 4 a xd
2fd fsxs þ xd

3a ld þ 4 xd
2fd fsxs

þxd
3aþ a xdxs

2

 !
q2

þ 2 a xd
3fsxs þ 2 a xd

2fd xs
2 þ 2 xd

2fd xs
2

� �
q

þxs
2xd

3a

(11)
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Equations (9) and (11) are applied to derive the standard deviation and the corresponding
closed-form expressions for optimal design parameters of AIVMD.

2.2. Additional viscoelastic mass damper inerters

Newton’s second law has been applied to derive the governing equations of motion for the single
degree of freedom system controlled by the additional viscoelastic mass damper inerters
(AVMDI). The equations of motion of a single degree of freedom system equipped with add-
itional viscoelastic mass damper inerters are derived and expressed as

md þmbð Þ€xd þ
ðt
�1

Nðt � sÞ _xdðsÞdsþ kdxd þ md þmbð Þ€xs ¼ �md €xg

ms€xs þ cs _xs þ ksxs �
ðt
�1

Nðt � sÞ _xdðsÞds� kdxd ¼ �ms €xg

(12)

Nðt � sÞ derives for viscoelastic material, followed by the standard linear solid model and substi-
tutes in Eq. (12). Therefore, Eq. (12) has been re-written as

md þmbð Þ€xd þ
ð1
0
kve

�ðkv=cdÞðt�sÞ _xdðsÞ dsþ kdxd þ md þmbð Þ€xs ¼ �md €xg

ms€xs þ cs _xs þ ksxs �
ð1
0
kve

�ðkv=cdÞðt�sÞ _xdðsÞ ds� kdxd ¼ �ms €xg

(13)

As the controlled structures are subjected to harmonic excitation. Therefore, the steady-
state solutions are derived as xd ¼ Xdeixt and xs ¼ Xseixt: xs ¼ us – xg and xd ¼ ud – us refer
to the relative dynamic responses of primary structure and the novel damper. These harmonic
solutions are substituted in Eq. (13), leading to the transfer function from where the dynamic
responses of the primary structure and the damper have been derived analytically and
expressed as

2 qfsxs þ q2 þ xs
2 � 2xd

2 q aþ 1ð Þfd þ 1=2 a xd

� �
ld þ lbð Þ

a xd þ 2 qfd

ld þ lbð Þq2 2 ld þ lbð Þ q3fd þ 1=2 q2xdaþ xd
2fd aþ 1ð Þqþ 1=2 xd

3a
� �

a xd þ 2 qfd

2
66664

3
77775

Xs

Xd

( )
¼ � 1

ld

" #
Ag

(14)

where a ¼ kv=kd, representing the stiffness ratio of viscoelastic material to the proposed damper.
ld ¼ md=ms denotes the mass ratio of the damper to the primary structure. lb ¼ mb=ms denotes
the mass ratio of the inerter to the primary structure. q ¼ ix, where i and x represent unit
imaginary number (i.e., i ¼ ffiffiffiffiffiffiffi�1

p
and the excitation frequency. The dynamic response of the pri-

mary structure has been derived as

HsðqÞ ¼ Xs

Ag
¼

�2 qa xd
2fd ld � 2 qa xd

2fd � a xd
3ld � 2 qxd

2fd ld
�xdq

2a� xd
3a� 2 fd q3 � 2 fd xd

2q
D

(15)
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The dynamic response of AVMDI has been derived as

HdðqÞ ¼ Xd

Ag
¼ a xd þ 2 qfdð Þ �2 qfsldxs þ q2lb � ldxs

2
� �

D
(16)

D has been derived as

D ¼

2 fd q5 þ 4 fd fsxs þ a xdð Þq4

þ
2 a xd

2fd lb þ 2 a xd
2fd ld þ 2 a xd

2fd

þ2 a fsxsxd þ 2 xd
2fd lb þ 2 xd

2fd ld
þ2 fd xd

2 þ 2 fd xs
2

0
BB@

1
CCAq3

þ 4 a xd
2fd fsxs þ a xd

3lb þ a xd
3ld

þ4 xd
2fd fsxs þ xd

3aþ a xdxs
2

 !
q2

þ 2 a xd
3fsxs þ 2 a xd

2fd xs
2 þ 2 xd

2fd xs
2

� �
q

þxs
2xd

3a

(17)

Equations (15) and (17) utilize to determine the standard deviation (SD) and the exact closed-
form expressions for the optimal design parameters for AVMDI analytically.

3. H2 optimization

H2 optimization method applies to analytically derive the exact mathematical formulations in
terms of closed-form expressions for the optimal design parameters, such as frequency and damp-
ing ratio of AIVMD and AVMDI subjected to random-white noise excitation. Additionally, the
standard deviation of the dynamic responses of the single degree of freedom systems controlled
by AIVMD and AVMDI has been minimized using this optimization method.

3.1. Additional inerter-based viscoelastic mass dampers

H2 optimization method applies to derive the exact closed-form expressions for optimal design parame-
ters for additional inerter-based viscoelastic mass dampers (Chowdhury, Banerjee, and Adhikari 2022b;
Chowdhury and Banerjee 2022b) subjected to random-white noise excitations, and in addition, fs ¼ 0
considers. The mathematical expressions for determining the standard deviation (Roberts and Spanos
2003) of the dynamic responses of controlled structures are derived and expressed as

r2xs,d ¼
ð1
�1

NnðxÞ dx
KnðixÞK�

nðixÞ
¼ p

a5

det N5½ �
det D5½ � (18)

N4 ¼

b4 b3 b2 b1 b0

�a5 a3 �a1 0 0

0 �a4 a2 �a0 0

0 a5 �a3 a1 0

0 0 a4 �a2 a0

2
66666664

3
77777775

and D4 ¼

a4 �a2 a0 0 0

�a5 a3 �a1 0 0

0 �a4 a2 �a0 0

0 a5 �a3 a1 0

0 0 a4 �a2 a0

2
66666664

3
77777775

(19)

Equations (9) and (11) are substituted in Eqs. (18) and (19). Therefore, the SD of the dynamic
response of the primary structure derives as
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r2xs ¼

S0p

4 xs
2xd

4a2fd
2ld

3 þ a2xd
6ld

4 þ 12 xs
2xd

4a2fd
2ld

2 � 8 xd
2fd

2xs
4

þ8 xs
2xd

4a fd
2ld

3 þ 4 a2xd
6ld

3 þ 12 xs
2xd

4a2fd
2ld þ xs

2xd
4a2ld

3

þ24 xs
2xd

4a fd
2ld

2 þ 4 xs
2xd

4fd
2ld

3 þ 6 a2xd
6ld

2 þ 4 xs
2xd

4a2fd
2

þ24 xs
2xd

4fd
2a ld � 8 a xd

2fd
2ldxs

4 þ 12 xs
2xd

4fd
2ld

2 þ 4 a2xd
6ld

þ8 xs
2xd

4a fd
2 � 8 a xd

2fd
2xs

4 þ 12 xs
2xd

4fd
2ld � 8 xd

2fd
2ldxs

4

þa2xd
6 � 2 xs

2xd
4a2 þ a2xd

2xs
4 � 3 xs

2xd
4a2ld þ 4 xs

2xd
4fd

2 þ 4 fd
2xs

6

0
BBBBBBBBBB@

1
CCCCCCCCCCA

2 a2xd
3fd ldxs

6

(20)

Equation (20) partially differentiates w.r.t the viscous damping ratio fd and the natural fre-
quency xd of AIVMD. Therefore, the mathematical expressions are derived as follows,

@r2xs
@fd

¼ 0 and
@r2xs
@xd

¼ 0 (21)

Equation (20) substitutes in the first expression of Equation (21). Correspondingly, the exact
closed-form expression for the viscous damping ratio of AIVMD derives as

ðfdÞopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ld þ 1ð Þ4w4 þ xs
2 ld � 2ð Þ ld þ 1ð Þ2w2 þ xs

4
� �

a2w2

4 xs
2 ld þ 1ð Þ3 aþ 1ð Þ2w4 � 2 xs

2 ld þ 1ð Þ aþ 1ð Þw2 þ xs
4

� �
vuut (22)

Equation (22) contains the optimal natural frequency of the AIVMD, which needs to be sub-
tracted. To perform that, Eq. (22) substitutes in Eq. (20). Accordingly, the modified SD for the
dynamic response of the primary structure derives as

r2xs ¼
2S0p ld þ 1ð Þ4xd

4 þ xs
2 ld � 2ð Þ ld þ 1ð Þ2xd

2 þ xs
4

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2xd
2 ldþ1ð Þ4xd

4þxs
2 ld�2ð Þ ldþ1ð Þ2xd

2þxs
4ð Þ

ldþ1ð Þ3 aþ1ð Þ2xd
4�2 xs

2 ldþ1ð Þ aþ1ð Þxd
2þxs

4ð Þxs
2

r
xdldxs

6
(23)

Equation (23) replaces in the second expression of Eq. (21). As a result, the exact closed-form
expression for the optimal frequency of AIVMD derives as

2 ld þ 1ð Þ7 aþ 1ð Þ2xd
8 þ aþ 1ð Þ aþ 1ð Þld � 2 a� 4

� �
ld þ 1ð Þ5xs

2xd
6

þ2 �1=2 ld
2 þ aþ 1=2 ld þ 2

� �
ld þ 1ð Þxs

6xd
2 � 2 xs

8 ¼ 0

ðxdÞopt ¼
ffiffiffi
2

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 1ð Þld � 2 a� 4

� �
xs

2

ld þ 1ð Þ2 aþ 1ð Þ

s
and ðgdÞopt ¼

ffiffiffi
2

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 1ð Þld � 2 a� 4

� �
ld þ 1ð Þ2 aþ 1ð Þ

s

(24)

Equation (24) substitutes in Eq. (22), and the optimal viscous damping ratio for AIVMD
determines eventually. The variations of the optimal frequency ratio of AIVMD versus damper
mass ratio are shown in Fig. 2(a). Equation (24) applies for Fig. 2(a) and a ¼ 1:0 considers for
this figure. The optimal frequency ratio of AIVMD decreases as the damper mass ratio increases.
The effect of the damper mass ratio on the optimal viscous damping ratio of AIVMD has also
been investigated. Accordingly, the variations of the optimal viscous damping ratio of AIVMD
versus damper mass ratio are shown in Fig. 2(b). Equation (22) and a ¼ 1:0 implement for Fig.
2(b). The optimal viscous damping ratio of AIVMD decreases as the damper mass ratio increases.
Hence, a higher damper mass ratio recommends achieving the robust vibration reduction capacity
for optimum AIVMD with moderate frequency and lower viscous damping ratios at affordable
ranges.
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3.2. Additional viscoelastic mass damper inerters

Equations (15) and (17) are substituted in Eqs. (18) and (19). Therefore, the standard deviation
(SD) of the dynamic response of the primary structure controlled by AVMDI has been derived as

r2xs ¼

S0p

4 a2fd
2lbld

2xd
4xs

2 þ 4 a2fd
2ld

3xd
4xs

2 � 8 fd
2xd

2xs
4

þ12 a2fd
2ld

2xd
4xs

2 þ a2lb
2ld

2xd
6 þ 2 a2lbld

3xd
6

þa2ld
4xd

6 þ 8 a fd
2lbld

2xd
4xs

2 þ 8 a fd
2ld

3xd
4xs

2

þ4 a2fd
2lbxd

4xs
2 þ 12 a2fd

2ldxd
4xs

2 þ 2 a2lb
2ldxd

6

þ6 a2lbld
2xd

6 þ a2lbld
2xd

4xs
2 þ 4 a2ld

3xd
6

þa2ld
3xd

4xs
2 þ 16 a fd

2lbldxd
4xs

2 þ 24 a fd
2ld

2xd
4xs

2

þ4 fd
2lbld

2xd
4xs

2 þ 4 fd
2ld

3xd
4xs

2 þ 4 a2fd
2xd

4xs
2

þa2lb
2xd

6 þ 6 a2lbldxd
6 þ 6 a2ld

2xd
6 þ 8 a fd

2lbxd
4xs

2

þ24 a fd
2ldxd

4xs
2 � 8 a fd

2ldxd
2xs

4 þ 8 fd
2ldxd

4lbxs
2

þ12 fd
2ld

2xd
4xs

2 þ 2 a2lbxd
6 � a2lbxd

4xs
2 þ 4 a2ldxd

6

�3 a2ldxd
4xs

2 þ 8 a fd
2xd

4xs
2 � 8 a fd

2xd
2xs

4

þ4 fd
2xd

4lbxs
2 þ 12 fd

2ldxd
4xs

2 � 8 fd
2ldxd

2xs
4

þa2xd
6 � 2 a2xd

4xs
2 þ a2xd

2xs
4 þ 4 fd

2xd
4xs

2

þ8 a2fd
2lbldxd

4xs
2 þ 4 fd

2xs
6

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

2 a2fdxd
3xs

6 lb þ ldð Þ

(25)

Equation (25) partially differentiates w.r.t the viscous damping ratio fd and natural frequency
xd of AVMDI. The mathematical expressions for partial differentiation are derived as

@r2xs
@fd

¼ 0 and
@r2xs
@xd

¼ 0 (26)

Equation (25) has been substituted in the first equation of Eq. (26). As a result, the closed-
form expression for the viscous damping ratio of AVMDI has been derived as

Figure 2. The variations of optimal (a) frequency ratio and (b) viscous damping ratio of AIVMD versus damper mass ratio.
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ðfdÞopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xd

2 ld þ 1ð Þ2 lb þ ld þ 1ð Þ2xd
4 þ xs

4

þxs
2 ld

2 þ lb � 1ð Þld � lb � 2
� �

ld þ 1ð Þxd
2

 !
a2

4 xs
2 ld þ 1ð Þ2 aþ 1ð Þ2 lb þ ld þ 1ð Þxd

4

�2 xs
2 ld þ 1ð Þ aþ 1ð Þxd

2 þ xs
4

 !
vuuuuuuut (27)

The optimal frequency of AVMDI needs to be separated from Eq. (22) to achieve the exact
closed-form expression for AVMDI. To perform that Eq. (27) has been substituted in Eq. (25).
The modified SD of the dynamic response of the primary structure derives as

r2xs ¼
2S0p

ld þ 1ð Þ2 lb þ ld þ 1ð Þ2xd
4 þ xs

4

þ ld þ 1ð Þxs
2 ld

2 þ lb � 1ð Þld � lb � 2
� �

xd
2

 !

xdxs
6 lb þ ldð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xd

2
ld þ 1ð Þ2 lb þ ld þ 1ð Þ2xd

4 þ xs
4

þ ld þ 1ð Þxs
2 ld

2 þ lb � 1ð Þld � lb � 2
� �

xd
2

 !
a2

xs
2

ld þ 1ð Þ2 aþ 1ð Þ2 lb þ ld þ 1ð Þxd
4

�2 ld þ 1ð Þxs
2 aþ 1ð Þxd

2 þ xs
4

 !
vuuuuuuut

(28)

Equation (28) substitutes in the second equation of Eq. (26). The closed-form expression for
the optimal frequency of AVMDI has been derived as

2 ld þ 1ð Þ4 lb þ ld þ 1ð Þ3 aþ 1ð Þ2xd
8

þ aþ 1ð Þld2 þ lb � 1ð Þaþ lb � 3ð Þld þ �lb � 2ð Þa� 3 lb � 4
� �

aþ 1ð Þxs
2 ld þ 1ð Þ3 lb þ ld þ 1ð Þxd

6

þ2 �1=2 ld
2 þ �1=2 lb þ 1=2ð Þld þ aþ 1=2 lb þ 2

� �
xs

6 ld þ 1ð Þxd
2 � 2 xs

8

¼ 0

ðxdÞopt ¼
ffiffiffi
2

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ld2 þ lb � 1ð Þld � lb � 2
� �

aþ ld2 þ lb � 3ð Þld � 3 lb � 4
� �

xs
2

aþ 1ð Þ ld þ 1ð Þ lb þ ld þ 1ð Þ2
s

ðgdÞopt ¼
ffiffiffi
2

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ld2 þ lb � 1ð Þld � lb � 2
� �

aþ ld2 þ lb � 3ð Þld � 3 lb � 4
� �

aþ 1ð Þ ld þ 1ð Þ lb þ ld þ 1ð Þ2
s

(29)

The variations of the optimal frequency ratio of AVMDI versus damper mass ratio for differ-
ent values of inerter mass ratio have been shown in Fig. 3(a). Equation (29) and a ¼ 1:0 are
applied for this figure. The optimal frequency ratio decreases when the damper and inerter mass
ratios increase. The variations of the optimal viscous damping ratio of AVMDI versus damper
mass ratio for different values of inerter mass ratio have been shown in Fig. 3(b). Equation (27)
and a ¼ 1:0 are applied for this figure. The optimal viscous damping ratio decreases when the
damper and inerter mass ratios increase. According to the parametric study, for achieving opti-
mum dynamic response reduction capacity from AVMDI, a higher damper mass ratio and a
higher inerter mass ratio recommend. Applying one of the above-determined optimal design
parameters for optimum AVMDI, the variations of the optimal dynamic response graphs are
determined for SODF systems controlled by AIVMD and AVMDI. Precisely, the variations of the
optimal dynamic responses of the primary structures controlled by H2 optimized AIVMD versus
frequency ratio for different values of viscous damping ratios of the dampers are shown in Fig.
4(a). The system parameters are utilized for this figure are ld ¼ 0:04, lb ¼ 0:01, and a ¼ 1:0:
These parameters are substituted in Eqs. (24) and (22), and the optimal frequency and damping
ratios are obtained at 0.5849 and 0.2324. At fd ¼ 0, the controlled dynamic systems are oscillating
to their eigen frequencies, i.e., g ¼ 0:579 and g ¼ 1:01: The frequency points are shifted from
these eigen frequencies at fd > 0: At ðfdÞopt ¼ 0:2324, the resonance occurs, and the maximum

displacement of the primary structure minimizes effectively. The resonating frequencies are
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obtained at g ¼ 0:6003 and g ¼ 1:015: After increasing fd > ðfdÞopt, the dynamic responses are

slightly increases and massively increases at fd ¼ 1: Two frequency points are located at g ¼
0:7977 and g ¼ 1:037: The optimal performance of optimal design parameters for AVMDI has
also been investigated through optimal dynamic response plots. Therefore, the differences in
responses of the main structures equipped H2 optimized AVMDI with frequency ratio to the dif-
ferent values of damping ratios are displayed in Fig. 4(b). ld ¼ 0:04, lb ¼ 0:01, and a ¼ 1:0 are
selected for this graph and also applied to Eqs. (29) and (27). The optimal frequency and damp-
ing ratios are obtained at gd ¼ 0:5812 and fd ¼ 0:2315: g ¼ 0:574 and g ¼ 1:013 are the eigen
frequencies at fd ¼ 0 which are shifted to g ¼ 0:5873 and g ¼ 1:018 at ðfdÞopt ¼ 0:2315, men-

tioned as the resonating frequency zones. Massive response amplifications are occurred at fd ¼
1 and frequency regions are g ¼ 0:7876 and g ¼ 1:044:

Figure 3. The variations of optimal (a) frequency ratio and (b) viscous damping ratio of AVMDI versus damper mass ratio for dif-
ferent values of inerter mass ratio.

Figure 4. The variations of optimal dynamic responses of primary structure controlled by (a) AIVMD, (b) AVMDI versus frequency
ratio for different values of viscous damping ratios of the dampers.
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4. H‘ optimization

H1 optimization method applies to analytically derive the exact mathematical formulations in terms of
closed-form expressions for the optimal design parameters, such as frequency and damping ratio of
AIVMD and AVMDI subjected to harmonic excitation. Additionally, the dynamic responses of the single
degree of freedom systems controlled by AIVMD and AVMDI have been minimized using this optimiza-
tionmethod.

4.1. Additional inerter-based viscoelastic mass dampers

The closed-form expressions for optimal design parameters of AIVMDhave also been derived through the
H1 optimization method when the controlled structures are subjected to harmonic excitations. To per-
form that, the transfer function in Eq. (8) has been non-dimensionalized and expressed as

�g2 þ 2 ifsgþ 1
�2 ig a gd

3fd ld þ lbð Þ2
a gd2 ld þ lbð Þ þ i 2 ld þ 2 lbð Þg fd gd

� gd
2 ld þ lbð Þ

�ldg
2 A22

2
64

3
75 Xs

Xd

	 

¼ � 1

ld

� �
Ag

x2
s

A22 ¼ � ld þ lbð Þg2 þ 2 ig a gd
3fd ld þ lbð Þ2

a gd2 ld þ lbð Þ þ i 2 ld þ 2 lbð Þg fd gd
þ gd

2 ld þ lbð Þ

(30)

The dynamic response of the primary structure has been derived as

Hs ¼ Xs

Ag
x2

s ¼

gd
3a ld � gdg

2aþ gd
3a

þi 2 a g gd
2fd ld þ 2 a g gd

2fd þ 2 g gd
2fd ld � 2 g3fd þ 2 g gd

2fd
� �

D

(31)

The dynamic response of AIVMD has been derived as

Hd ¼ Xd

Ag
x2

s ¼
�4 ldfsg

2fd þ lda gd þ i 2 ldfsg a gd þ 2 ldg fdð Þ
D

(32)

D has been derived as

D ¼
a g2gd

3ld þ 4 a g2gd
2fd fs � a g4gd þ a g2gd

3 � 4 g4fd fs þ 4 g2gd
2fd fs þ gdg

2a� gd
3a

þi
2 a g3gd

2fd ld þ 2 a g3gd
2fd þ 2 g3gd

2fd ld þ 2 a g3gdfs � 2 a g gd
3fs � 2 fd g5

þ2 g3gd
2fd � 2 a g gd

2fd þ 2 g3fd � 2 g gd
2fd

 !

(33)

The resultant of Hs has been summarized as

Hsj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ f2dy

2
2

y23 þ f2dy
2
4

s
¼ y2

y4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y21
y22
þ f2d

y23
y24
þ f2d

vuuut (34)

From Eq. (58), the first restraint (Den Hartog 1985) for H1 optimization has been derived as

y1
y2


 ¼ y3

y4


 (35)
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An equation has been derived after applying Eq. (35) and expressed as

g6 þ �lda gd
2 � a gd

2 � 2 ldgd
2 � 2 gd

2 � 1
� �

g4

þ ld
2a gd

4 þ 2 a gd
4ld þ ld

2gd
4 þ a gd

4 þ 2 gd
4ld

þ1=2 lda gd
2 þ gd

4 þ a gd
2 þ ldgd

2 þ 2 gd
2

 !
g2

�a gd
4ld � a gd

4 � gd
4ld � gd

4

¼ 0 (36)

Equation (36) has been summarized as

g6 þ �g1
2 � g2

2 � g3
2

� �
g4 þ g1

2g2
2 þ g3

2g1
2 þ g2

2g3
2

� �
g2 � g1

2g2
2g3

2 ¼ 0 (37)

Therefore, the roots for Equation (36) have been derived as

g1
2 þ g2

2 þ g3
2 ¼ lda gd

2 þ a gd
2 þ 2 gd

2ld þ 2 gd
2 þ 1

g1
2g2

2 þ g3
2g1

2 þ g2
2g3

2 ¼
ld

2a gd
4 þ 2 a gd

4ld þ ld
2gd

4 þ a gd
4 þ 2 gd

4ld
þ1=2 lda gd

2 þ gd
4 þ a gd

2 þ gd
2ld þ 2 gd

2

g21g
2
2g

2
3 ¼ a gd

4ld þ a gd
4 þ gd

4ld þ gd
4

(38)

From Eq. (58), the second constraint (Den Hartog 1985) has been derived as

ðHsÞg1,g2 ¼
y2
y4


 (39)

g21 þ g22 ¼ 0 (40)

Equation (64) substitutes in the first equation of Eq. (38). Hence, g23 derives as

g3
2 ¼ lda gd

2 þ a gd
2 þ 2 gd

2ld þ 2 gd
2 þ 1 (41)

Equation (41) has been substituted in the second and third equations of Equation (38).
Therefore, the closed-form expressions for g1

2g2
2 have been derived as

g1
2g2

2 ¼
ld

2a gd
4 þ 2 a gd

4ld þ ld
2gd

4 þ a gd
4 þ 2 gd

4ld
þ1=2 lda gd

2 þ gd
4 þ a gd

2 þ gd
2ld þ 2 gd

2

g21g
2
2g

2
3 ¼ a gd

4ld þ a gd
4 þ gd

4ld þ gd
4

(42)

g1
2g2

2 ¼ gd
4 ld þ 1ð Þ aþ 1ð Þ

1þ ld þ 1ð Þ aþ 2ð Þgd2
(43)

Equations (42) and (43) are equated, and the closed-form expression for the optimal frequency
ratio of AIVMD has been derived as

2 a2ld
3 þ 6 a2ld

2 þ 6 a ld
3 þ 6 a2ld þ 18 a ld

2 þ 4 ld
3 þ 2 a2

þ18 a ld þ 12 ld
2 þ 6 aþ 12 ld þ 4

 !
gd

4

þ a2ld
2 þ 3 a2ld þ 6 a ld

2 þ 2 a2 þ 14 a ld þ 6 ld
2 þ 8 aþ 14 ld þ 8

� �
gd

2

þa ld þ 2 aþ 2 ld þ 4

¼ 0 (44)

w2gd
4 þ w1gd

2 þ w0 ¼ 0 (45)

ðgd1Þ2opt ¼
�w1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1

2 � 4 w2w0
p

2w2
and ðgd2Þ2opt ¼

�w1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1

2 � 4 w2w0
p

2w2
(46)
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After applying Eqs. (42) and (43), the closed-form expressions for g21,2 are derived as

g21,2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ld

2a gd
4 þ 2 a gd

4ld þ ld
2gd

4 þ a gd
4 þ 2 gd

4ld
þ1=2 lda gd

2 þ gd
4 þ a gd

2 þ gd
2ld þ 2 gd

2

s
(47)

g21,2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gd4 ld þ 1ð Þ aþ 1ð Þ

1þ ld þ 1ð Þ aþ 2ð Þgd2

s
(48)

The mathematical expressions for determining the closed-form expression for the optimal vis-
cous damping ratio of AIVMD have been derived as

@jHsðgÞj2
@g2


g21,2

¼ 0 and ðfdÞopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2d1 þ f2d2

2

s
(49)

Therefore, the closed-form expression for the optimal viscous damping ratio of AIVMD has
been derived as

z2f
4
d þ z1f

2
d þ z0 ¼ 0 and f2d1,d2 ¼

�z16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�4 z2z0 þ z12

p
2z2

(50)

The closed-form expressions for z2, z1, and z0 have been derived as

z2 ¼

�32 � ld þ 1ð Þ aþ 1ð Þgd1,d22 þ g21,2

� �
� aþ 1ð Þ g21,2ld þ g21,2 � 1

� �
gd1,d2

2 þ g21,2
2 � g21,2

� �
g41,2

ld þ 1ð Þ2 aþ 1ð Þ2gd1,d24 � 2 aþ 1ð Þ g21,2 � 1=2
� �

ld þ g21,2

� �
gd1,d2

2 þ g41,2

� � (51)

z1 ¼
�16

ld þ 1ð Þ3 �1þ ld þ 1ð Þg21,2
� �

aþ 1ð Þ2w8

�2 ld þ 1ð Þ aþ 1ð Þ ld þ 1ð Þ2 aþ 2ð Þg41,2 þ 1=2 ld

�1=4 ld þ 1ð Þ aþ 4ð Þld þ 4 aþ 8
� �

g21,2

 !
gd1,d2

6

þ ld þ 1ð Þg21,2 � 1=2 ld � 1
� �

a2 þ 6 aþ 6ð Þ ld þ 1ð Þg21,2 � 1=2 ld a2 þ 2 aþ 4ð Þ
� �

g21,2g
4
d1,d2

�2
ld þ 1ð Þ aþ 2ð Þg41,2 þ 1=2 ld

þ �3=4 a� 2ð Þld � a� 2ð Þg21,2

 !
g21,2

2gd1,d2
2 þ g81,2 g21,2 � 1

� �

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

a2g21,2gd1,d2
2

(52)

z0 ¼

�2 ld þ 1ð Þ2gd1,d24 þ �2 ld � 2ð Þg21,2 þ ld
� �

gd1,d2
2 þ g41,2

� �
gd1,d2

4

�ld � 1ð Þgd1,d22 þ g21,2

� �
1þ �ld � 1ð Þg21,2
� �

gd1,d2
2 þ g41,2 � g21,2

� �
a4

(53)

The variations of the optimal frequency ratio of the AIVMD versus damper mass ratio are shown in
Fig. 5(a). a ¼ 1:0 is accounted for in this graph. Equation (46) contains two exact closed-form expressions
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for optimal frequency ratio. Each solution has been accounted for and shows in Fig. 5(a). The optimal fre-
quency ratio decreases for both solutions as the damper mass ratio increases. However, the first expression
of Eq. (46) provides lower frequency ratios than the second expression of Eq. (46). Later, the optimal
dynamic response graphs for each optimal frequency are drawn to investigate the efficiency of these solu-
tions. These solutions are also utilized to achieve an optimal damping ratio for optimum AIVMD.
Furthermore, the differences in the optimal damping ratio for optimum AIVMD are determined by vary-
ing the damper mass ratio and exhibited in Fig. 5(b). Equation (50) utilizes for this graph and appears that
contains two solutions. a ¼ 1:0 considers drawing this figure. Therefore, two additional solutions for opti-
mal damping ratio have been achieved for each optimal frequency ratio. Therefore, four solutions are
achieved from Eq. (50) and shown in Fig. 5(b). The best possible outcomes are considered to design opti-
mumAIVMD and utilized later for optimum dynamic response graphs. This parametric study, it observes
that the optimal damping ratio decreases as the damper mass ratio increases. Thus, a higher damper mass
ratio recommends for optimum AIVMD having a lower frequency and damping ratio at an affordable
range. The optimal dynamic response diagrams are determined using these optimal system parameters to
obtain their effectiveness. As a result, the variations of the optimal dynamic responses of the primary struc-
tures controlled byH1 optimized AIVMD versus frequency ratio for different values of viscous damping
ratios of the dampers are shown in Fig. 6(a). The system parameters are utilized for this figure are ld ¼
0:04, lb ¼ 0:01, and a ¼ 1:0: The first equations of Eqs. (46) and (50) are applied, which provide gd1 ¼
0:6911 and fd1 ¼ 0:2682 are determined. g ¼ 0:6792 and g ¼ 1:018 are the eigen frequencies at
undamped condition, i.e., fd ¼ 0: g ¼ 0:743 and g ¼ 1:023 are the resonating frequencies when
ðfdÞopt ¼ 0:2682: Massive increments of dynamic responses have occurred at fd ¼ 1 with frequency

points of g ¼ 0:8951 and g ¼ 1:092: The second equation of Eq. (46) has been utilized, and the optimal
dynamic response diagram has been determined. Therefore, the variations of the optimal dynamic
responses of the primary structures controlled byH1 optimized AIVMD versus frequency ratio for differ-
ent values of viscous damping ratios of the dampers are shown in Fig. 6(b) with different solutions for opti-
mal frequency and viscous damping ratios. The system parameters are utilized for this figure are
ld ¼ 0:04, lb ¼ 0:01, and a ¼ 1:0: The second equations of Eqs. (46) and (50) are applied, which pro-
vide gd2 ¼ 0:9743 and fd2 ¼ 0:3043 are determined. g ¼ 0:8937 and g ¼ 1:09 are the eigen frequencies
at undamped condition, i.e., fd ¼ 0: g ¼ 0:9568 is the resonating frequency when ðfdÞopt ¼ 0:3043:

Massive increments of dynamic responses have occurred at fd ¼ 1 with frequency points of g ¼ 0:9631
and g ¼ 1:431:

Figure 5. The variations of optimal (a) frequency and (b) viscous damping ratio of the structure controlled by AIVMD versus fre-
quency ratio. Two solutions of Eq. (46) are applied for the optimal frequency ratio evaluation. Equations (50), (47), and (48) are
applied for the evaluation of the optimal viscous damping ratio.
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4.2. Additional viscoelastic mass damper inerters

The closed-form expressions for optimal design parameters of AVMDI have also been derived through
the H1 optimization method when the controlled structures are subjected to harmonic excitations. To
perform that the transfer function in Eq. (14) has been non-dimensionalized and expressed as

2 ig fs � g2 þ 1 �2
gd

2 ld þ lbð Þ g aþ 1ð Þfd iþ 1=2 a gd
� �
2 ig fd þ a gd

� ld þ lbð Þg2 A22

2
664

3
775 Xs

Xd

( )
¼ � 1

ld

" #
Ag

x2
s

A22 ¼ 2
�ig3fd � 1=2 a g2gd þ igd

2 aþ 1ð Þfd gþ 1=2 a gd
3

� �
ld þ lbð Þ

2 ig fd þ a gd

(54)

The dynamic response of the primary structure has been derived as

Hs ¼ Xs

Ag
x2

s ¼
a gd

3ld � a g2gd þ a gd
3 þ i 2 g ld þ 1ð Þ aþ 1ð Þgd2 � g2

� �
fd

� �
D

(55)

The dynamic response of AVMDI has been derived as

Hd ¼ Xd

Ag
x2

s ¼
g2lba gd � 4 g2fsldfd þ lda gd þ i 2 g fslda gd þ 2 g3lbfd þ 2 g fd ld

� �
D

(56)

D has been derived as

D ¼

a g2gd
3lb þ a g2gd

3ld þ 4 a g2gd
2fd fs � g4a gd þ a g2gd

3 � 4 g4fd fs þ 4 g2gd
2fd fs

þa g2gd � a gd
3

þi
2 a g3gd

2fd lb þ 2 a g3gd
2fd ld þ 2 a g3gd

2fd þ 2 g3gd
2fd lb þ 2 g3gd

2fd ld
þ2 a g3gdfs � 2 a g gd

3fs � 2 fd g5 þ 2 g3gd
2fd � 2 g a gd

2fd þ 2 g3fd � 2 g gd
2fd

 !

(57)

Figure 6. The variations of optimal dynamic responses of the main structure are controlled by AIVMD versus frequency ratio for
different values of viscous damping ratio. Two different solutions for gd1,d2 and fd1,d2 are applied for figure (a) and figure (b).
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The resultant of Hs has been summarized as

Hsj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ f2dy

2
2

y23 þ f2dy
2
4

s
¼ y2

y4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y21
y22
þ f2d

y23
y24
þ f2d

vuuut (58)

From Eq. (55), the first restraint (Den Hartog 1985) for H1 optimization has been derived as

y1
y2


 ¼ y3

y4


 (59)

An equation has been derived after applying Eq. (59) and expressed as

2 g6 � a gd
2lb þ 2 a gd

2ld þ 2 a gd
2 þ 2 gd

2lb þ 4 gd
2ld þ 4 gd

2 þ 2
� �

g4

�
�2 a gd

4lbld � 2 a gd
4ld

2 � 2 a gd
4lb � 4 a gd

4ld
�2 gd

4lbld � 2 gd
4ld

2 � 2 a gd
4 � 2 gd

4lb � 4 gd
4ld

�a gd
2ld � 2 gd

4 � 2 a gd
2 � 2 gd

2ld � 4 gd
2

0
BB@

1
CCAg2

�2 a gd
4ld � 2 a gd

4 � 2 gd
4ld � 2 gd

4

¼ 0 (60)

Equation (60) has been summarized as

g6 þ �g1
2 � g2

2 � g3
2

� �
g4 þ g1

2g2
2 þ g3

2g1
2 þ g2

2g3
2

� �
g2 � g1

2g2
2g3

2 ¼ 0 (61)

Therefore, the roots for Eq. (60) have been derived as

g1
2 þ g2

2 þ g3
2 ¼ 1=2 a gd

2lb þ a gd
2ld þ a gd

2 þ gd
2lb þ 2 gd

2ld þ 2 gd
2 þ 1

g1
2g2

2 þ g3
2g1

2 þ g2
2g3

2 ¼

a gd
4lbld þ a gd

4ld
2 þ a gd

4lb þ 2 a gd
4ld

þgd
4lbld þ gd

4ld
2 þ a gd

4 þ gd
4lb

þ2 gd
4ld þ 1=2 a gd

2ld þ gd
4 þ a gd

2

þgd
2ld þ 2 gd

2

g21g
2
2g

2
3 ¼ a gd

4ld þ a gd
4 þ gd

4ld þ gd
4

(62)

From Eq. (55), the second constraint (Den Hartog 1985) has been derived as

ðHsÞg1,g2 ¼
y2
y4


 (63)

g21 þ g22 ¼ 0 (64)

Equation (64) substitutes in the first equation of Eq. (62). Hence, g23 derives as

g3
2 ¼ 1=2 a gd

2lb þ a gd
2ld þ a gd

2 þ gd
2lb þ 2 gd

2ld þ 2 gd
2 þ 1 (65)

Equation (65) has been substitutes in the second and third equations of Eq. (62). Therefore,
the closed-form expressions for g1,2

2 have been derived as

g1,2
2 ¼ a gd

4lbld þ a gd
4ld

2 þ a gd
4lb þ 2 a gd

4ld þ gd
4lbld þ gd

4ld
2 þ 2 gd

2

þa gd
4 þ gd

4lb þ 2 gd
4ld þ 1=2 a gd

2ld þ gd
4 þ a gd

2 þ gd
2ld

(66)

g1,2
2 ¼ 2gd

4 ld þ 1ð Þ aþ 1ð Þ
2þ lb þ 2 ld þ 2ð Þ aþ 2ð Þgd2

(67)
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Equations (66) and (67) are equated, and the closed-form expression for optimal frequency
ratio of AVMDI has been derived as

2 ld þ 1ð Þ lb þ 2 ld þ 2ð Þ lb þ ld þ 1ð Þ aþ 2ð Þ aþ 1ð Þ� �
gd

4

þ
a2lbld þ 2 a2ld

2 þ 2 a2lb þ 6 a2ld þ 8 a lbld
þ12 a ld

2 þ 4 a2 þ 12 a lb þ 28 a ld
þ8 ldlb þ 12 ld

2 þ 16 aþ 12 lb þ 28 ld þ 16

0
BB@

1
CCAgd

2

þ2 a ld þ 4 aþ 4 ld þ 8

¼ 0 (68)

v2gd
4 þ v1gd

2 þ v0 ¼ 0 (69)

ðgd1Þ2opt ¼
�v1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v12 � 4 v2v0

p

2v2
and ðgd2Þ2opt ¼

�v1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v12 � 4 v2v0

p

2v2
(70)

After applying Eqs. (66) and (67), the closed-form expressions for g21,2 are derived as

g21,2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a gd

4lbld þ a gd
4ld

2 þ a gd
4lb þ 2 a gd

4ld þ gd
4lbld þ gd

4ld
2 þ 2 gd

2

þa gd
4 þ gd

4lb þ 2 gd
4ld þ 1=2 a gd

2ld þ gd
4 þ a gd

2 þ gd
2ld

s
(71)

g21,2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gd4 ld þ 1ð Þ aþ 1ð Þ

2þ lb þ 2 ld þ 2ð Þ aþ 2ð Þgd2

s
(72)

The mathematical expressions for determining the closed-form expression for the optimal vis-
cous damping ratio of AVMDI have been derived as

@jHsðgÞj2
@g2


g21,2

¼ 0 and ðfdÞopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2d1 þ f2d2

2

s
(73)

Therefore, the closed-form expression for the optimal viscous damping ratio of AVMDI has
been derived as

p2f
4
d þ p1f

2
d þ p0 ¼ 0 and f2d1,d2 ¼

�p16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�4 p2p0 þ p12

p
2p2

(74)

The closed-form expressions for p2, p1, and p0 have been derived as

p2 ¼
�32

aþ 1ð Þ2 ld þ 1ð Þ lb þ ld þ 1ð Þgd4
�2 aþ 1ð Þ ld þ 1ð Þu� 1=2 ld

� �
gd

2 þ u2

 !
u2 � ld þ 1ð Þ aþ 1ð Þgd2 þ u
� �

� �1þ lb þ ld þ 1ð Þuð Þ aþ 1ð Þgd2 þ u2 � u
� � (75)

p0 ¼
�2 1þ �lb � ld � 1ð Þuð Þgd2 þ u2 � u

� �
gd

4
� �

ld þ 1ð Þ ld þ lb þ 1ð Þgd4 þ �2 ld � 2ð Þuþ ldð Þgd2 þ u2
� � �ld � 1ð Þgd2 þ u

� �
a4

(76)

where u ¼ g21,2: The variations of the optimal frequency ratio of the AVMDI versus damper mass
ratio are shown in Fig. 7(a). a ¼ 1:0 is accounted for in this graph. Equation (70) contains two
exact closed-form expressions for optimal frequency ratio. Each solution has been accounted for
and shows in Fig. 7(a). The optimal frequency ratio decreases for both solutions as the damper
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mass ratio increases. However, the first expression of Eq. (70) provides lower frequency ratios
than the second expression of Eq. (70). Later, the optimal dynamic response graphs for each opti-
mal frequency are drawn to investigate the efficiency of these solutions. These solutions are also
utilized to achieve an optimal damping ratio for optimum AVMDI. Furthermore, the differences
in the optimal damping ratio for optimum AVMDI are determined by varying the damper mass
ratio and exhibited in Fig. 7(b). Equation (74) utilizes for this graph and appears that contains
two solutions. a ¼ 1:0 considers drawing this figure. Therefore, two additional solutions for opti-
mal damping ratio have been achieved for each optimal frequency ratio. Therefore, four solutions
are achieved from Eq. (74) and shown in Fig. 7(b). The best possible outcomes are considered to
design optimum AVMDI and utilized later for optimum dynamic response graphs. This paramet-
ric study observes that the optimal damping ratio decreases as the damper mass ratio increases.
Thus, a higher damper mass ratio recommends for optimum AVMDI, having a lower frequency
and damping ratio at an affordable range. The optimal dynamic response diagrams are deter-
mined using these optimal system parameters to obtain their effectiveness. As a result, the varia-
tions of the optimal dynamic responses of the primary structures controlled by H1 optimized
AVMDI versus frequency ratio for different values of viscous damping ratios of the dampers are
shown in Fig. 8(a). The system parameters are utilized for this figure are ld ¼ 0:04, lb ¼ 0:01,
and a ¼ 1:0: The first equations of Eqs. (70) and (74) are applied, which provide gd2 ¼ 0:6889
and fd2 ¼ 0:2671 are determined. g ¼ 0:6744 and g ¼ 1:022 are the eigen frequencies at
undamped condition, i.e., fd ¼ 0: g ¼ 0:7079 and g ¼ 1:028 are the resonating frequencies when
ðfdÞopt ¼ 0:2671: Massive increments of dynamic responses have occurred at fd ¼ 1 with fre-

quency points of g ¼ 0:8834 and g ¼ 1:103: The second equation of Eq. (70) has been utilized,
and the optimal dynamic response diagram has been determined. Therefore, the variations of the
optimal dynamic responses of the primary structures controlled by H1 optimized AVMDI versus
frequency ratio for different values of viscous damping ratios of the dampers are shown in Fig.
8(b) with different solutions for optimal frequency and viscous damping ratios. The system
parameters are utilized for this figure are ld ¼ 0:04, lb ¼ 0:01, and a ¼ 1:0: The second equa-
tions of Eqs. (70) and (74) are applied, which provide gd2 ¼ 0:9704 and fd2 ¼ 0:2842 are deter-
mined. g ¼ 0:8817 and g ¼ 1:101 are the eigen frequencies at undamped condition, i.e., fd ¼ 0:
g ¼ 0:9442 is the resonating frequency when ðfdÞopt ¼ 0:2842: Massive increments of dynamic

responses have occurred at fd ¼ 1 with frequency points of g ¼ 0:9548 and g ¼ 1:437: The opti-
mal dynamic responses are also evaluated with structural damping, and according to those values,

Figure 7. The variations of optimal (a) frequency and (b) viscous damping ratio of the structure controlled by AVMDI versus fre-
quency ratio. Two solutions of Eq. (70) are applied for frequency ratio evaluation. Equations (74), (71), and (72) are applied for
evaluation of viscous damping ratio.
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each optimum novel damper’s dynamic response capacity is determined. Therefore, to perform
that, the variations of the optimal dynamic responses of the SDOF system equipped with H2 opti-
mized AIVMD are determined and shown in Fig. 9(a). fs ¼ 0:01 considers. The maximum
dynamic responses of the uncontrolled structures are obtained as 50. H2 optimized AIVMD con-
trolled structure’s maximum dynamic response obtains as 23.3865. Thus, 53.23% dynamic
response reduction capacity of H2 optimized AIVMD. The variations of the optimal dynamic
responses of the SDOF system equipped with H2 optimized AVMDI are determined and shown
in Fig. 9(b). fs ¼ 0:01 considers. The maximum dynamic responses of the uncontrolled structures
are obtained as 50. H2 optimized AVMDI controlled structure’s maximum dynamic response
obtains as 21.1375. Thus, 57.73% dynamic response reduction capacity of H2 optimized AVMDI.
The variations of the optimal dynamic responses of the SDOF system equipped with H1 opti-
mized AIVMD are determined and shown in Fig. 10(a). fs ¼ 0:01 considers. The maximum
dynamic responses of the uncontrolled structures are obtained as 50. H1 optimized AIVMD con-
trolled structure’s maximum dynamic response obtains as 13.5147. Thus, 72.97% dynamic

Figure 8. The variations of optimal dynamic responses of the main structure are controlled by AVMDI versus frequency ratio for
different values of viscous damping ratio. Two different solutions for gd1,d2 and fd1,d2 are applied for figure (a) and figure (b).

Figure 9. The variations of optimal dynamic responses of the SDOF systems equipped with H2 optimized (a) AIVMD and (b)
AVMDI. fs ¼ 0:01:
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response reduction capacity of H1 optimized AIVMD. The variations of the optimal dynamic
responses of the SDOF system equipped with H1 optimized AVMDI are determined and shown
in Fig. 10(b). fs ¼ 0:01 considers. The maximum dynamic responses of the uncontrolled struc-
tures are obtained as 50. H1 optimized AVMDI controlled structure’s maximum dynamic
response obtains as 12.2105. Thus, 75.57% dynamic response reduction capacity of H1 optimized
AVMDI. The variations of the optimal dynamic responses of the SDOF system equipped with H2

optimized AIVMD subjected to random-white noise are determined and shown in Fig. 11(a).
fs ¼ 0:01 considers. The maximum dynamic responses of the uncontrolled structures are obtained
as 3:09� 107 dB/Hz. H2 optimized AIVMD controlled structure’s maximum dynamic response
obtains as 7:95� 106 dB/Hz. Thus, 74.24% dynamic response reduction capacity of H2 optimized
AIVMD. The variations of the optimal dynamic responses of the SDOF system equipped with H2

optimized AVMDI subjected to random-white noise are determined and shown in Fig. 11(b).
fs ¼ 0:01 considers. The maximum dynamic responses of the uncontrolled structures are obtained
as 3:49� 107 dB/Hz. H2 optimized AIVMD controlled structure’s maximum dynamic response

Figure 10. The variations of optimal dynamic responses of the SDOF systems equipped with H1 optimized (a) AIVMD and (b)
AVMDI. fs ¼ 0:01:

Figure 11. The variations of optimal dynamic responses of the SDOF systems equipped with H2 optimized (a) AIVMD and (b)
AVMDI subjected to rand-white noise. fs ¼ 0:01:
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obtains as 6:23� 106 dB/Hz. Thus, 82.17% dynamic response reduction capacity of H2 optimized
AVMDI. The variations of the optimal dynamic responses of the SDOF system equipped with
H1 optimized AIVMD subjected to random-white noise are determined and shown in Fig. 12(a).
fs ¼ 0:01 considers. The maximum dynamic responses of the uncontrolled structures are obtained
as 3:15� 107 dB/Hz. H2 optimized AIVMD controlled structure’s maximum dynamic response
obtains as 2:48� 106 dB/Hz. Thus, 92.14% dynamic response reduction capacity of H1 optimized
AIVMD. The variations of the optimal dynamic responses of the SDOF system equipped with
H1 optimized AVMDI subjected to random-white noise are determined and shown in Fig. 12(b).
fs ¼ 0:01 considers. The maximum dynamic responses of the uncontrolled structures are obtained
as 3:83� 107 dB/Hz. H2 optimized AVMDI controlled structure’s maximum dynamic response
obtains as 2:16� 106 dB/Hz. Thus, 94.36% dynamic response reduction capacity of H1 optimized
AIVMD.

5. Summary and conclusions

The additional inerter-based viscoelastic mass dampers (AIVMD) and additional viscoelastic mass
damper inerters (AVMDI) are introduced in this article. These novel dampers are applied to the
single degree of freedom systems to reduce their dynamic responses subjected to base excitations.
The harmonic and random-white noise excitations are applied to the controlled structures as base
excitations. In addition, the optimal closed-form solutions in terms of exact closed-form expres-
sions for design parameters are derived using H2 and H1 optimization process. Hence, using
these optimal closed-form solutions, the optimum performance of AIVMD and AVMDI has been
achieved. In addition, the dynamic reduction capacities of optimum AIVMD and AVMDI are
determined mathematically. Overall, the newly derived exact mathematical formulations for the
optimal design parameters, such as natural frequency and damping ratios of the novel dampers,
namely additional inerter-based viscoelastic mass dampers (AIVMD) and additional viscoelastic
mass damper inerters (AVMDI) are the significant novelty of the article. According to the para-
metric study, a higher damper mass ratio, a higher inerter mass ratio, and a higher stiffness ratio
are recommended to achieve optimum dynamic response reduction capacity from H2 and H1
optimized AIVMD and AVMDI with a lower frequency and damping ratios at affordable ranges.
The dynamic response reduction capacity of each optimum AIVMD and AVMDI has been deter-
mined for harmonic and random-white noise excitations. Therefore, according to harmonic

Figure 12. The variations of optimal dynamic responses of the SDOF systems equipped with H1 optimized (a) AIVMD and (b)
AVMDI subjected to rand-white noise. fs ¼ 0:01:
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excitation-induced dynamic analysis, the dynamic response reduction capacities of H2 optimized
AIVMD and AVMDI are determined as 53:23% and 57:73% and H1 optimized AIVMD and
AVMDI’s dynamic response reduction capacities are obtained as 72:97% and 75:57%: In addition,
the random-white excitations are also applied to estimate each damper’s dynamic response reduc-
tion capacity to verify the accuracy of each optimal closed-form solution for optimal design
parameters. Therefore, for H2 optimized AIVMD and AVMDI, the dynamic response reduction
capacity of H2 optimized AIVMD and AVMDI are determined as 74:24% and 82:17% and H1
optimized AIVMD and AVMDI’s dynamic response reduction capacities are obtained as 92:14%
and 94.36%. Therefore, the newly derived optimal closed-form solutions are mathematically
accurate and relevant for practical applications. The applications of the additional inerter-based
viscoelastic mass dampers and additional viscoelastic mass damper inerters to the multi degree of
freedom systems (MDOF) system, such as for dynamic response mitigation of tall buildings with
derivations of exact closed-form solutions for optimal system parameters are the future scopes of
this study.
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