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The optimum inertial amplifier viscoelastic base isolators for dynamic response 
mitigation of structures: an analytical study
Sudip Chowdhurya, Arnab Banerjeea and Sondipon Adhikarib

aCivil Engineering Department, Indian Institute of Technology Delhi (IITD), New Delhi, India; bJames Watt School of Engineering, The University of 
Glasgow, Glasgow, Scotland, UK

ABSTRACT
The inertial amplifier viscoelastic base isolators (IAVBI) are introduced in this paper. The viscoelastic 
materials are implanted inside the core material of the inertial amplifier base isolators. The standard 
linear solid (SLS) models are applied to formulate the viscoelastic material mathematically. The 
viscoelastic materials are also implanted inside the traditional base isolators to enhance their dynamic 
response reduction capacity. The optimal dynamic responses of structures controlled by novel 
viscoelastic base isolators are derived analytically. The exact closed-form expressions for optimal 
design parameters of novel viscoelastic base isolators for structures are derived using H2 and H1
optimization methods. The feasibility of these optimal design parameters has been tested by 
frequency domain analysis. The optimal dynamic response reduction capacity of inertial amplifier 
viscoelastic base isolators has been determined to investigate the robustness of the H2 and H1
optimized design parameters. The closed-form expressions for optimal design parameters of novel 
base isolators are mathematically correct and effective for design purposes.
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Introduction

Base isolation mechanisms, together with the performance 
and different forms of the structure Aly and Salem (2013); Du 
et al. (2011); Ebrahimi et al. (2011); Wei et al. (2011), have been 
studied intensively since 1870 when the base isolation device 
was first discovered Touaillon (1870). Passive vibration control 
devices, such as vibration isolation bases and absorbers, have 
been installed in a wide variety of aeronautical, mechanical, 
and civil engineering structures, including vehicle suspen-
sions Bai et al. (2017); Lindberg et al. (2014), liquid storage 
tanks Abal and Uckan (2010); X. Cheng et al. (2017), buildings 
Chowdhury et al. (2022a); Furinghetti et al. (2020, 2019, 2021); 
Mazza (2019); Sierra et al. (2019), bridges Sheng et al. (2022); 
Tubaldi et al. (2018), aircraft landing gear Han et al. (2019); de 
Haro Moraes et al. (2018), articulated towers D. C. Nguyen 
(2022), and nuclear power plant Tran et al. (2018) to control 
their dynamic responses Salman et al. (2020) subjected to 
earthquakes Minh Le et al. (2019), high wind pressure through 
the storm Pan et al. (2022). These isolation tools have wide-
spread use in the building sector of civil engineering Jensen 
and Kusanovic (2014); Kim et al. (2016). To lessen the ampli-
tude of resonant accelerations and inter-story drift Marian 
and Giaralis (2014), vibration isolation devices have been 
installed between the building’s foundation and upper stories 
Hwang and Chiou (1996); Kazeminezhad et al. (2020); Tyapin 
(2016). There has also been nonlinear Chowdhury et al. 
(2022c) base isolation systems X. B. Nguyen et al. (2022), 
such as a New Zealand bearing Buckle (1985), a lead rubber 
bearing Robinson (1982), a resilient friction base isolator 
Jangid (2005a), a friction-pendulum system Jangid (2005b), 
and a pure-friction system Shakib and Fuladgar (2003); Su and 
Ahmadi (1988). It is common practice to employ H2 optimiza-
tion strategies Baduidana and Kenfack-Jiotsa (2021); Čakmak 
et al. (2021); Hu and Chen (2015) to construct closed-form 

equations for the optimum design Banerjee and Ghosh (2020) 
parameters of base isolation systems Asami et al. (2002); 
Z. Cheng et al. (2020); H. Sun et al. (2019). The controlled 
structures were randomly vibrated, and the standard devia-
tion of the responses was reduced using the H2 optimization 
Narkis and Lyrintzis (1994); Podworna et al. (2021) approach 
Crandall and Mark (2014); Palazzo and Petti (1999); Qian et al. 
(2019a); Roberts and Spanos (2003). However, when isolated 
structures are vibrated to harmonic excitations, the maximum 
dynamic responses of the main structures are minimized 
using H1 optimized isolators Allen (2012); Cheung and 
Wong (2011); Chun et al. (2015); Den Hartog (1985); Hua 
et al. (2018) effectively.

For example, mass amplification Chowdhury and Banerjee 
(2022a), negative stiffness, and negative mass, among other 
devices, have all been the subject of recent research into how 
they may be used to augment the effectiveness of existing 
vibration isolation methods Ayad, Karathanasopoulos, 
Ganghoffer, et al. (2020); Čakmak et al. (2022); Chen and Hu 
(2019); De Domenico et al. (2019); Jiang et al. (2020); Kuhnert 
et al. (2020); Moghimi and Makris (2020); Qian et al. (2019b); 
Smith and Wang (2004); F.-C. Wang et al. (2009); Zhang et al. 
(2019, 2018); Z. Zhao et al. (2019, 2020, 2020). Low-frequency 
effective mass amplification characteristics Chowdhury et al. 
(2023) have also been achieved using massive, wide-bandgap 
inertial amplifiers Ayad, Karathanasopoulos, Reda, et al. 
(2020); Barys et al. (2018); Barys and Zalewski (2018); 
Chowdhury et al. (2021, 2022b); Frandsen et al. (2016); Hou 
et al. (2017); Karathanasopoulos et al. (2020); Miniaci et al. 
(2020); Muhammad et al. (2020); F. Sun et al. (2021); Taniker 
and Yilmaz (2013, 2017); Yilmaz and Hulbert (2010, 2017); 
Yilmaz et al. (2007); Yuksel and Yilmaz (2015); Zhou et al. 
(2019). Magnetic negative stiffness dampers Shi and Zhu 
(2017); W. Wu et al. (2014), Euler buckled beams as negative 

CONTACT Sudip Chowdhury sudip.chowdhury@civil.iitd.ac.in

JOURNAL OF STRUCTURAL INTEGRITY AND MAINTENANCE 
2023, VOL. 8, NO. 3, 150–160 
https://doi.org/10.1080/24705314.2023.2176619

© 2023 Korea Institute for Structural Maintenance and Inspection 

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/24705314.2023.2176619&domain=pdf&date_stamp=2023-08-16


stiffness components Fulcher et al. (2014); Huang et al. (2014); 
Liu et al. (2013); Winterflood et al. (2002); Yuan et al. (2021), 
pseudo-negative-stiffness Iemura et al. (2006); Iemura and 
Pradono (2009); Kapasakalis et al. (2020, 2021); M. Wang 
et al. (2018), and high-static-low-dynamic-stiffness Carrella 
et al. (2009, 2007); Hao and Cao (2015); Li et al. (2021); 
Robertson et al. (2009); F. Zhao et al. (2021) inclusions 
C. Cheng et al. (2016); J. Wu et al. (2022); Zheng et al. (2016) 
are all examples of negative stiffness devices. However, the 
current state of the art on isolation systems does not include 
using a viscoelastic material at the base isolator level to 
improve the system’s overall vibration reduction capability 
or providing rigorous explicit analytical closed-form equa-
tions for the best possible design parameters. Most of the 
published works do not provide a closed-form formula but 
instead use contour plots to find the best possible outcomes.

The primary purpose of this work is to evaluate the effi-
ciency of the inertial amplifier base viscoelastic isolators con-
nected to a single degree of freedom system, thereby filling 
the aforementioned void in the literature. The standard linear 
model (SLS) has been applied to formulate the viscoelastic 
material mathematically. Closed-form equations for the opti-
mal design parameters of the proposed base isolator are 
commonly derived using the H2 and H1 optimization meth-
ods Chowdhury and Banerjee (2022b). To further ensure the 
correctness of the analytical closed-form equations for opti-
mal design parameters, near-field earthquake ground move-
ments were also analysed analytically in the frequency 
domain and numerically in the time domain.

Structural model and equations of motion

The mathematical diagram of single degree of freedom sys-
tems (SDOF) isolated by inertial amplifier viscoelastic base 
isolators (IAVBI) subjected to base excitation has been 
shown in Figure 1.

mb and kb define the mass and stiffness of IAVBI without 
the mass amplification effect of the inertial amplifier. cb refers 
to the hereditary damping of IAVBI. kv defines the stiffness of 
viscoelastic material. ma refers to the mass of the inertial 
amplifier. θ refers to the inertial angle between the spring 
and the rigid links. xg refers to the displacement of base 
excitation. ms, ks, and cs refer to the mass, stiffness, and 

viscous damping of the main structure. us and ub are the 
absolute displacement of Main structure and IAVBI. xa and 
ya refer to the displacement of amplifier’s mass ma in x and y- 
directions. mbv , kbv , and cbv refer to the effective mass, stiff-
ness, and viscous damping of the IAVBI with the mass ampli-
fication effect of the inertial amplifier and viscoelastic 
material kav refers to the stiffness of the viscoelastic material 
after adding the effect of mass amplification effect of the 
inertial amplifier. kav and cbv represent the elastic and viscous 
damping property of viscoelastic material induced inside the 
inertial amplifier base isolators. These design parameters are 
also known as the storage coefficient and loss factor.

The mathematical model of inertial amplifier 
viscoelastic base isolators

An inertial amplifier viscoelastic base isolator with hereditary 
damping has been shown in Figure 1. Therefore, the equation 
of motion for the isolator has been derived as follows: 

where xb ¼ ub � xg, defines the relative displacement of IAVBI 
w.r.t base. Ξ is the hereditary function and Ξ _xb has been 
solved by the convolution integral. 

It has been considered that the isolator is in the static condi-
tion at t ¼ 0. Therefore, Equation (1) has been derived as 

The hereditary function Ξ can be expressed as, ΞðtÞ ¼ kave�
kav t
cbv 

and the integrating form has Dirac function, ΞðtÞ ¼ cbvδ 
at kav !1. The steady-state solutions are considered 
as xb ¼ Xbeiωt and €xg ¼ Ageiωt . Therefore, the transfer function 
of Equation (3) has been derived as

ΞðωÞ ¼ kavcbv= iωcbv þ kavð Þ has been substituted in Equation 
(4). Therefore, Equation (4) has been rewritten as 

Figure 1. The schematic diagram of a single degree of freedom system isolated by inertial amplifier viscoelastic base isolators (IAVBI) subjected to base excitation.
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Now, the derivation for effective mass amplification through 
the inertial amplifier has been performed to derive mbv , cbv , 
kbv , and kav . The deflections of amplifier’s mass ma in x and y- 
directions are derived as 

Therefore, the inertial forces developed through the ampli-
fier’s masses ma in x and y- directions are derived as 

The internal forces through the rigid links of the isolator have 
been derived as 

The total resultant forces generated towards the end of the 
horizontal terminals are derived as 

where c1 ¼ 0:5ma= tan2 θð Þ and c2 ¼ 0:5ma are the effective 
masses generated through the entire inertial amplifier and 
added to the base mass of the isolator mb. Therefore, the total 
effective mass of the inertial amplifier viscoelastic base iso-
lator has been derived as 

The total effective stiffness for the inertial amplifier viscoelas-
tic base isolator has been derived as 

The total effective damping for inertial amplifier viscoelastic 
base isolator has been derived as 

The effective mass for the stiffness of viscoelastic material 
induced inside the IAVBI has been derived as 

where κ ¼ kav=kbv refers to the ratio of isolator stiffness to the 
viscoelastic material. The equations of motion of the main 
structure isolated by IAVBI subjected to base excitations have 
been derived and expressed as 

The first equation of Equation (14) has also been derived as 

where xb ¼ ub � xg and xs ¼ us � ub. The steady-state solu-
tions for dynamic responses for isolated structures are 
determined as xs ¼ Xseiωt , xb ¼ Xbeiωt , and €xg ¼ Ageiωt . The 
viscous damping ratio of IAVBI has been defined as 
ζb ¼

cbv
2ωbmbv

. The natural frequency of IAVBI is defined as 

ωb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbv=mbv

p
. The ratio of base mass to the main struc-

tural mass is defined as μb ¼ mb=ms. The ratio of amplifier 
mass to the main structural mass is defined as μa ¼ ma=ms. 
The ratio of effective mass to main structural mass is 
defined as μbv ¼ mbv=ms. ηb defines the ratio of isolator 
frequency to the main structure’s frequency. The stiffness 
of the main structure is defined as ks ¼ ω2

s ms. The viscous 
damping ratio of main structure defines as ζs ¼

cs
2msωs

. The 
steady-state solutions and the design parameters are sub-
stituted in Equations (14) and (15). Therefore, the transfer 
function has been derived as 

Therefore, the dynamic response of the main structure has 
been derived as 

The dynamic response of IAVBI has been derived as 

Δ has been derived as 

H2 optimization for white-noise random excitation

H2 optimization method has been applied to derive the 
closed-form expressions for optimal design parameters for 
IAVBI Chowdhury and Banerjee (2022b); Chowdhury et al. 
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(2022b). The viscous damping ratio of the main structure has 
been considered as ζs ¼ 0. Therefore, the standard deviation 
of the dynamic response of the main structure has been 
derived using Equations (17) and (19) and expressed as 

Equation (20) has been partially differentiated with respect to 
the viscous damping ratio ζb and natural frequency ωb of 
IAVBI. Therefore, the mathematical equations for partial dif-
ferentiation have been derived as 

Equation (20) has been substituted in the first equation of Eq. 
(21). Therefore, the closed-form expression for the viscous 
damping ratio of IAVBI has been derived as 

Equation (22) has been substituted in Equation (20). 
Therefore, the newly modified closed-form expression for 
the standard deviation of dynamic responses of the main 
structure has been derived as 

Equation (23) has been substituted in the second equation of 
Equation (21). Therefore, the closed-form expression for the 
optimal frequency of IAVBI has been derived as 

The non-dimensional form of Equation (24) has been 
derived as 

where ηb ¼ ωb=ωs refers to the frequency ratio of IAVBI. 
Equation (24) has been substituted in Equations (22) and 
(23). Therefore, the optimal viscous damping ratio of IAVBI 
has been derived as 

The variations of the optimal frequency ratio of IAVBI versus 
base mass ratio for different values of amplifier mass ratio 
have been shown in Figure 2(a). θ¼ 10o has been considered 
for this graph. The optimal frequency ratio decreases when 
the base mass ratio and the amplifier’s mass ratio increase.

The variations of the optimal frequency ratio of IAVBI 
versus base mass ratio for different values of the amplifier’s 
inertial angle have been displayed in Figure 2(b). μa ¼ 0:10 
has been considered for the amplifier’s mass ratio. The fre-
quency ratio increases when the amplifier’s inertial angle 
increases and decreases when the base mass ratio increases. 
Therefore, a higher base mass ratio, a higher amplifier’s mass 
ratio, and a lower inertial angle have been recommended to 
design an optimal IAVBI for enhancing the time period of the 
isolated structure during vibration. The variations of optimal 
viscous damping ratio of IAVBI versus base mass ratio for 
different values of amplifier’s mass ratio have been displayed 
in Figure 3(a). κ ¼ 1 has been considered for these graphs. 
The viscous damping ratio of IAVBI decreases when the base 
mass ratio and amplifier’s mass ratio increase.

The variations of optimal viscous damping ratio of IAVBI 
versus base mass ratio for different values of the amplifier’s 
inertial angle have been displayed in Figure 3(b). The viscous 
damping ratio increases when the inertial angle increases 
and decreases when the base mass ratio increases. The 
lower values of viscous damping for an isolator are co- 
effective and smoothly implementable. Therefore, a higher 
base mass ratio, a higher amplifier’s mass ratio, and a lower 
inertial angle are recommended for optimum IAVBI to 
achieve robust vibration reduction capacity at lower viscous 
damping.

H1optimization for harmonic excitation

H1 optimization method has also been applied to derive the 
closed-form expressions for optimal design parameters of 
IAVBI Chowdhury et al. (2022b). The transfer function for the 
dynamic responses of the structure and IAVBI has been rede-
fined as 

Figure 2. The variations of optimal frequency ratio versus base mass ratio for different values of (a) amplifier’s mass ratio and (b) amplifier’s inertial angle.
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The dynamic response of the main structure has been 
derived as 

The dynamic response of IAVBI has been derived as 

Δ has been derived as 

where η ¼ ω=ωs refers to the ratio of excitation frequency to 
the main structure. HsðηÞ has been rewritten as 

From Equation (32), two constraint have been derived 
Chowdhury et al. (2022b); Den Hartog (1985) and 
expressed as 

Considers ζs ¼ 0. Initially, the first constraint has been applied 
Chowdhury and Banerjee (2022b), and an equation has been 
derived. Therefore, the equation has been derived as 

The second equation of Equation (33) has been applied, and 
an equation has been derived. Therefore, the equation has 
been derived as 

Equations (34) and (35) are equating, and the closed-form 
expression for the optimal frequency ratio of IAVBI has been 
derived as 

The closed-form expression for η2
1;2 has been derived as 

Figure 3. The variations of optimal viscous damping ratio versus base mass ratio for different values of (a) amplifier’s mass ratio and (b) amplifier’s inertial angle.
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Equation (36) has been substituted in Equation (37). 
Therefore, the closed-form expression for optimal η2

1;2 has 
been derived as 

The mathematical expression for determining the closed- 
form expression for the optimal viscous damping ratio of 
IAVBI has been derived as 

The closed-form expression for the optimal damping ratio of 
IAVBI has been derived as 

The coefficients of ζb are listed in Appendix A. The variations 
of the optimal frequency ratio of IAVBI as a function of base 
mass ratio and amplifier mass ratio have been shown in 
Figure 4(a). θ¼ 10o has been considered for this graph. The 
optimal frequency ratio decreases when the base mass ratio 
and the amplifier’s mass ratio increase.

The variations of the optimal frequency ratio of IAVBI as 
a function of base mass ratio and the amplifier’s inertial angle 
have been displayed in Figure 4(b). μa ¼ 0:10 has been con-
sidered for the amplifier’s mass ratio. The frequency ratio 
increases when the amplifier’s inertial angle increases and 
decreases when the base mass ratio increases. Therefore, 
a higher base mass ratio, a higher amplifier’s mass ratio, and 
a lower inertial angle have been recommended to design an 
optimal IAVBI for enhancing the time period of the isolated 
structure during vibration. The variation of optimal frequency 
ratio of H1 optimized IAVBI versus frequency ratio for differ-
ent values of amplifier’s mass ratio have been displayed in 
Figure 5(a). The optimal viscous damping ratio slightly 

increases as the base mass ratio and amplifier’s mass ratio 
increase.

The variation of optimal frequency ratio of H1 optimized 
IAVBI versus frequency ratio for different values of ampli-
fier’s inertial angle have been displayed in Figure 5(b). The 
viscous damping ratio decreases as the inertial angle 
increases. However, small values of viscous damping ratio 
for viscoelastic isolators are made the total isolated struc-
ture under-damped. The dynamic response reduction capa-
city of IAVBI may decrease. Therefore, a higher base mass 
ratio, a higher amplifier’s mass ratio, and lower inertial 
angles are recommended for designing H1 optimized 
IAVBI.

Robustness of H2 and H1 optimized design 
parameters

The variations of optimal dynamic responses of main struc-
tures isolated by H2 optimized IAVBI for different values of 
viscous damping ratio have been displayed in Figure 6(a). 
Equations (25) and (26) are applied to determine the optimal 
frequency and viscous damping ratio of H2 optimized IAVBI. 
The other system parameters are considered as μb ¼ 0:70, 
μa ¼ 0:10, θ¼ 14o, κ ¼ 2:0. The dynamic responses of the 
isolated structures are unrestrained for ζb ¼ 0, and the iso-
lated structures are vibrated at their eigen frequencies, i.e. 
η ¼ 0:4255; 1:337. The frequency points are shifted from its 
eigen frequencies when the viscous damping ratios increases, 
i.e. ζb � 1:0. The maximum dynamic responses of main struc-
tures are minimized at the optimal frequency and viscous 
damping ratio points. Therefore, the resonating frequency 
points are determined as η ¼ 0:4403; 1:371. The resonating 
frequency points are more shifted when the viscous damping 
ratios are increasing, i.e. ζb � 1:0 and ζb ¼ 1. The dynamic 
responses are also increasing infinitely. The frequency points 
are determined as η ¼ 0:6667; 1:471. The optimal maximum 
dynamic response of the main structure has been determined 
as 3:16.

The variations of optimal dynamic responses of main struc-
tures isolated by H1 optimized IAVBI for different values of 
viscous damping ratio have been displayed in Figure 6(a). 

Figure 4. The variations of optimal frequency ratio versus base mass ratio for different values of (a) amplifier’s mass ratio and (b) amplifier’s inertial angle.
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Equations (36) and (40) are applied to determine the optimal 
frequency and viscous damping ratio of H1 optimized IAVBI. 
The other system parameters are considered as μb ¼ 0:70, 
μa ¼ 0:10, θ¼ 14o, κ ¼ 2:0. The dynamic responses of the 
isolated structures are unrestrained for ζb ¼ 0 and the iso-
lated structures are vibrated at their eigen frequencies, i.e. 
η ¼ 0:7018; 1:504. The frequency points are shifted from its 
eigen frequencies when the viscous damping ratios increases, 
i.e. ζb � 1:0. The maximum dynamic responses of main struc-
tures are minimized at the optimal frequency and viscous 
damping ratio points. Therefore, the resonating frequency 
points are determined as η ¼ 0:7114; 1:49. The resonating 
frequency points are more shifted when the viscous damping 
ratios are increasing, i.e. ζb � 1:0 and ζb ¼ 1. The dynamic 
responses are also increasing infinitely. The frequency points 
are determined as η ¼ 0:8865; 2:035. The optimal maximum 
dynamic response of the main structure has been determined 
as 6:88. Therefore, The maximum dynamic responses of the 
isolated structures are lesser than the maximum dynamic 
responses of the uncontrolled structures. The effectiveness 

of the H2 and H1 optimized design parameters are proven 
from these graphs. The results are mathematically accurate 
and feasible for practical design applications.

Summary and conclusions

The inertial amplifier viscoelastic base isolators (IAVBI) are 
introduced in this paper. H2 and H1 optimization methods 
are applied to derive the closed-form expressions for optimal 
design parameters of IAVBI. A parametric study has been 
conducted with optimal closed-form expressions. The opti-
mal dynamic responses of main structures isolated H2 and H1
optimized IAVBI have been determined, and the robustness 
of these optimal closed-form expressions has been investi-
gated. The significant outcomes are listed below.

● A higher base mass ratio, a higher amplifier’s mass ratio 
and a lower inertial angle have been recommended to 
design H2 optimized IAVBI for enhancing the time per-
iod of the isolated structure during vibration.

Figure 6. The variations of optimal dynamic responses of main structures versus frequency ratio for different values of viscous damping ratio of (a) H2 and (b) H1
optimized IAVBI.

Figure 5. The variations of optimal viscous damping ratio versus base mass ratio for different values of (a) amplifier’s mass ratio and (b) amplifier’s inertial angle.
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● A higher base mass ratio, a higher amplifier’s mass ratio 
and a lower inertial angle are recommended for H2 

optimized IAVBI to achieve robust vibration reduction 
capacity at lower viscous damping.

● The trends of the H1 optimized frequency ratios are 
exactly same as H2 optimized frequency ratio. A higher 
base mass ratio, a higher amplifier’s mass ratio and 
a lower inertial angle have been recommended to 
design H1 optimized IAVBI for enhancing the time per-
iod of the isolated structure during vibration.

● The trends of the H1 optimized viscous damping ratios 
are exactly same as H2 optimized viscous damping 
ratios. A higher base mass ratio, a higher amplifier’s 
mass ratio and lower inertial angles are recommended 
for designing H1 optimized IAVBI for achieving robust 
dynamic response reduction capacity.

● The maximum dynamic responses of the isolated struc-
tures are lesser than the maximum dynamic responses 
of the uncontrolled structures. The effectiveness of the 
H2 and H1 optimized design parameters are proven 
from these graphs. The results are mathematically accu-
rate and feasible for practical design applications.

The novelty of the paper stands in introducing the inertial 
amplifier viscoelastic base isolators, which are not present in 
state-of-the-art based on the author’s best knowledge. This 
paper produces many significant contributions. The proposi-
tion of the new closed-form expressions for optimal design 
parameters of the novel inertial amplifier viscoelastic base 
isolators is another significant contribution of this paper. 
These equations resulted in the optimal design of these 
novel isolators, resulting in the maximum amount of dynamic 
response reduction. These novel inertial amplifier viscoelastic 
base isolators are cost-effective. The practical realization, 
experimentation and prototyping of the proposed inertial 
amplifier viscoelastic base isolators will be the future scope 
of the research.
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Appendix A. The coefficients of ζb from Equation (40)
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