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Abstract
This paper introduces the inertial amplifier viscoelastic tuned mass dampers (IAVTMD). The viscoelastic materials are im-

planted inside the core material of the inertial amplifier tuned mass dampers. The standard linear solid models are applied

mathematically to formulate the viscoelastic material. H2 and H∞ optimization mechanisms apply to derive the exact

mathematical closed-form formulations for optimal design parameters for novel inertial amplifier viscoelastic tuned mass

dampers. The optimum IAVTMD installs at the top of the structures to mitigate the dynamic responses, determining the

dynamic responses analytically through transfer function formation. At first, IAVTMD’s dynamic response reduction capacity

compares with the conventional tuned mass damper’s (CTMD) dynamic response reduction capacity. As a result,H2 optimized

IAVTMD’s dynamic response reduction capacity is significantly 20.87% and 26.47% superior to two well-established H2

optimized conventional tuned mass damper’s dynamic response reduction capacity. In addition, H∞ optimized IAVTMD has

15.48%more dynamic response reduction capacity thanH∞ conventional tunedmass damper.H2 andH∞ optimized tunedmass

damper inerters with optimal closed-form solutions are introduced in this paper. A higher damper mass ratio and a lower

inerter mass ratio are recommended to produce H2 and H∞ optimized tuned mass damper inerter (TMDI) with a lower

frequency and damping ratio in an affordable range. Accordingly, H2 and H∞ optimized IAVTMD’s dynamic response reduction

capacities are significantly 6.94% and 23.29% superior to H2 and H∞ optimized TMDI’s dynamic response reduction capacity.

The closed-form expressions for optimal design parameters of inertial amplifier viscoelastic tuned mass dampers and tuned

mass damper inerters are mathematically correct and effective for practical applications.

Keywords
inertial amplifier viscoelastic tuned mass dampers, tuned mass damper inerter, conventional tuned mass dampers, standard

linear solid, exact closed-form, H2 and H∞ optimization methods

Highlights

1. The inertial amplifier viscoelastic tuned mass dampers
(IAVTMD) are introduced.

2. The new closed-form expressions for optimal design
parameters of inertial amplifier viscoelastic tuned
mass dampers (IAVTMD).

3. The H2 and H∞ optimization based closed-form ex-
pressions for optimal design parameters.

4. The inertial amplifier viscoelastic tuned mass dampers
(IAVTMD) can enhance the vibration reduction
performance by around 26% compared to conven-
tional tuned mass dampers.

Introduction

Passive vibration control devices mitigate the dynamic re-
sponse during natural calamities, such as earthquakes and high

wind pressure through the storm, to protect the structures and
living creatures. Tunedmass dampers are one of the prominent
passive vibration control devices, controlling the dynamic
responses of the structures and preventing structural damage
during the above-mentioned vibratory events. In 1909, Frahm
patented tuned mass dampers (TMD) (Frahm, 1909) without
damping, resulting in vibration attenuation at only resonating
frequency (Rana and Soong, 1998), that is, TMD’s natural
frequency close to the excitation frequency (Chowdhury et al.,
2023a). However, the vibration attenuation performance
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degrades at other frequency zones, such as minima and anti-
resonance (Jimin and Zhi-Fang, 2001). To omit this drawback,
system damping was provided by Ormondroyd and Den
Hartog, deriving optimal design parameters in terms of closed-
form expressions (Ormondroyd, 1928). The fixed-point theory
was applied to derive these optimal closed-form solutions
(Chowdhury and Banerjee, 2022b). However, later, J.P. Den
Hartog thoroughly illustrated this optimization mechanism in
his book (Den Hartog, 1985), namely “Mechanical Vi-
brations.” Later, H∞ optimization nomenclature introduces to
address the fixed-point theory (Baduidana and Kenfack-Jiotsa,
2021; Čakmak et al., 2021; Chen and Hu, 2019a; Sun et al.,
2019). Along with H∞ optimization mechanism, another
optimization method is concerned with deriving mathematical
closed-form expressions for the damper’s optimal design
parameters, called H2 optimization, applicable for randomly
excited dynamic systems (Adhikari et al., 2016; Chowdhury
et al., 2022b; Khodaparast et al., 2008; Palmeri and Lombardo,
2011). An immense study was conducted on the TMD to
mitigate the dynamic responses of automotive suspension
systems, offshore platforms, buildings, and bridges with dif-
ferent solution procedures, analytical and numerical (Adhikari
and Bhattacharya, 2012; Batou and Adhikari, 2019; Kasinos
et al., 2021). The vibration reduction performance of TMD
was amplified through a conventional approach, increasing the
static mass of the damper, causing increasing the dead load,
and affecting collapse during any seismic events with the
presence of the damper. Therefore, to overcome this situation
without affecting the static mass of the damper, recently, in-
erter (Smith, 2020) and inertial amplifiers (IA) Yilmaz et al.,
2007) have started applying to the TMD to amplify the
dampers’ effective mass, resulting in an increment in the
dynamic response reduction capacity (Smith, 2020; Pietrosanti
et al., 2017). Hence, the inerter-based (Petrini et al., 2020;
Wagg, 2021) vibration absorbers (Chen and Hu, 2019b) are
applied to mitigate the dynamic responses of the mechanical
engineering machinery (De Domenico et al., 2019) and parts,
notably automotive and train suspensions (Shen et al., 2016;
Wang et al., 2006), buildings (Chowdhury et al., 2022b), wind
turbines (Hu et al., 2018; Zhang and Fitzgerald, 2020; Zhang
et al., 2019; Zhang and Høeg, 2021), and bridges (Song et al.
(2021); Liang et al. (2021)). There are different types of
inerter-inspired (Chowdhury and Banerjee, 2022a) TMD
which were developed, such as tuned mass damper inerter (De
Domenico and Ricciardi, 2018a; Su et al., 2022), tuned inerter
damper (Shen et al., 2019; Wang et al., 2021), tuned viscous
mass damper (Ma et al., 2021; Ikago et al., 2012), inerter-based
dynamic vibration absorber (Hu and Chen, 2015), angular
mass damper (Pradono et al., 2008), gyro-mass dampers
(Hessabi andMercan, 2016), rotational inertia viscous damper
(Javidialesaadi and Wierschem, 2019a), viscous inertial mass
damper (Lu et al., 2021), electromagnetic inertial mass
dampers (Nakamura et al., 2014), rotational inertia dampers
(Hwang et al., 2007), clutching inerter damper (Wang and Sun,
2018), tuned inertial mass electromagnetic transducers

(Asai et al., 2018), spring-dashpot-inerter (Basili et al., 2019),
rotational inertial double tuned mass dampers (Javidialesaadi
and Wierschem, 2018), tuned heave plate inerter (Ma et al.,
2018), inerter-enhanced nonlinear energy sink (Javidialesaadi
and Wierschem, 2019b), tuned liquid inerter system (Zhao
et al., 2019b), tuned liquid column damper inerter (Di Matteo
et al., 2022), shape memory alloy-tuned mass damper inerter
(Tiwari et al., 2021), inerter-based isolators (Hu et al., 2015),
inerter-based vibration isolation (Liu et al., 2022), friction
pendulum inerter system (Zhao et al., 2019a), base-isolated
structures via tuned mass damper and inerter devices (De
Domenico and Ricciardi, 2018b), inerter-equipped vibrating
barrier (Cacciola et al., 2020), nonlinear inerter-based vibra-
tion isolators (Yang et al., 2020), inerter-based isolator (De
Souza Pippi et al., 2022), and full-scale hydraulic inerter-
damper (Nakaminami et al., 2017) to mitigate the dynamic
responses of structural systems (Marian and Giaralis, 2014).
The effective mass amplifications, without affecting the static
mass, of the dynamic systems have occurred through inertial
amplifiers (IA) (Adhikari and Banerjee, 2021; Banerjee et al.,
2021; Frandsen et al., 2016; Hussein et al., 2022; Phani and
Hussein, 2017; Settimi et al., 2021; Taniker and Yilmaz, 2013;
Yilmaz and Hulbert, 2010), apart from the inerters. This ef-
fective mass amplification occurs through the generation of
inertial forces through the rigid links, the amplifier’s mass, and
the geometric configurations of the entire IA system (Adhikari
and Banerjee, 2021; Banerjee et al., 2019, 2021). The inertial
amplifiers (Frandsen et al., 2016) have been applied to the
conventional base isolators and conventional TMD to increase
their vibration reduction capacities without affecting the static
mass of the entire system (Chowdhury et al., 2022b, 2023b),
like inerters with different mass amplification mechanisms
(Chowdhury et al., 2021, 2022b). These inertial amplifier-
inspired passive vibration control devices (Chowdhury et al.,
2022a) are installed in the single and multi-degree of freedom
systems to mitigate the dynamic responses during vibratory
situations (Chowdhury et al., 2022a, 2023a; Chowdhury and
Banerjee, 2022b]. Apart from the different structural config-
urations for enhancement of the vibration reduction perfor-
mance, from the material perspective, the viscoelastic
materials can also be applied to the traditional tuned mass
damper to improve their dynamic response capacity (Batou
and Adhikari, 2019). However, according to the existing lit-
erature review, best of the authors’ knowledge, the viscoelastic
materials have not been implemented in the inertial amplifier-
based TMD for enhancing their dynamic response reduction
capacity. These could be the research scope for this paper.

Therefore, the optimum inertial amplifier viscoelastic tuned
mass dampers (IAVTMD) are introduced in this paper. Ad-
ditionally, the exact closed-form expressions for the optimal
design parameters of IAVTMD have been introduced in this
paper. H2 and H∞ optimization methods are applied to ana-
lytically derive these closed-form expressions (Chowdhury
and Banerjee, 2022b). H2 and H∞ optimized tuned mass
damper inerters with optimal closed-form solutions are also

2 Journal of Vibration and Control 0(0)



introduced in this paper to make a fair comparison with op-
timum IAVTMD in mechanism and vibration control effec-
tiveness. The dynamic response reduction capacity of optimum
IAVTMD has been compared with the dynamic response
reduction capacity of optimum conventional tuned mass
dampers (CTMD) and tuned mass damper inerter (TMDI).

Structural model and equations of motion

The mathematical diagram of a single degree of freedom
system controlled by inertial amplifier viscoelastic tuned
mass dampers (IAVTMD) displays in Figure 1.

md and kd represent the static mass and stiffness of
IAVTMD. cd and kv represent the static hereditary damping
and stiffness of the viscoelastic material, implanting inside
the core material of inertial amplifier TMD. ma and θ
represent the mass and inertial angle of the inertial amplifier.

€xg notation denotes for the base excitation. The effective
mass amplification characteristic of the IA is taken into
consideration. Therefore, the static system properties, such
as md and kd are converted to mdv and kdv, representing
effective mass and effective stiffness of the novel dampers.
In addition, cd and kv are converted to cdv and kav, repre-
senting effective hereditary damping and stiffness of the
viscoelastic material. These design parameters are also
known as the loss factor and storage coefficient. ms, ks, and
cs refer to the mass, stiffness, and viscous damping of the
primary structure. us and ud refer to the absolute dis-
placement of the primary structure and IAVTMD. xa and ya
refer to the displacement of amplifier’s mass ma in x and y-
directions. An inertial amplifier viscoelastic tuned mass
damper with hereditary damping has been shown in
Figure 1. Therefore, the equation of motion for the novel
tuned mass damper derives as

Figure 1. The schematic diagram of a single degree of freedom system equipped with IAVTMD subjected to base excitation.
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mdv€xd þ Ξ _xd þ kdvxd ¼ �mdv €xg (1)

where xd = ud � us refers to the relative displacement of
IAVTMD w.r.t primary structure. Ξ refers to the hered-
itary function and Ξ _xd has been solved by the convolution
integral

Ξ _xd ¼
Z t

�∞
Ξðt � τÞ _xdðτÞdτ (2)

The novel tuned mass damper is in the static condition at
t = 0. Therefore, equation (1) has been derived as

mdv€xd þ
Z t

�∞
Ξðt � τÞ _xdðτÞdτ þ kdvxd ¼ �mdv €xg (3)

The hereditary function Ξ has also been expressed as
ΞðtÞ ¼ kave�kavt=cdv and the integrating form is a Dirac
function at kav → ∞. The steady state solutions are con-
sidered as xd = Xde

iωt and €xg ¼ Ageiωt. Therefore, the
transfer function of equation (3) has been derived as

XdðωÞ ¼ � mdv

½� ω2mdv þ iωΞðωÞ þ kdv
�Ag (4)

ΞðωÞ ¼ kavcdv=ðiωcdv þ kavÞ has been substituted in
equation (4). Equation (4) has been expressed as

XdðωÞ ¼ � mdv�
�ω2mdv þ iωkavcdv

iωcdv þ kav
þ kdv

�Ag
(5)

The derivation for effective system properties such as
mdv, cdv, kdv, and kav has been listed below. The displacement
responses of amplifier’s mass ma in x and y-directions are
derived as

xa ¼ ud þ us
2

and ya ¼ ±
ud � us
2tanθ

(6)

The inertial forces developed through the amplifier’s
masses ma in x and y-directions are derived as

px ¼ ma€xa and py ¼ ma€ya (7)

The internal forces generated through the rigid links have
been derived as

p1 ¼ 1

2

� py
sinθ

� px
cosθ

�
and p2 ¼ 1

2

� py
sinθ

þ px
cosθ

�
(8)

The resultant forces are generated towards the mass of
the novel TMDwhich increases the effective property of the
novel dampers. Therefore, the resultant forces are derived as

F ¼ 2p2cosθ þ kdðud � usÞ

¼ 0:5ma

tan2θ|fflffl{zfflffl}
c1

�
€ud � €us

�
þ 0:5ma|fflffl{zfflffl}

c2

�
€ud þ €us

�
þ kdvðud � usÞ (9)

where c1 ¼ ð0:5ma=tan2θÞ and c2 = 0.5ma are the com-
ponents of effective mass which have been added to the
static mass of the novel tuned mass damper md. Hence, the
effective mass of IAVTMD has been derived as

mdv ¼ md þ 0:5ma

�
1þ 1

tan2θ

	
(10)

The effective stiffness of IAVTMD has been derived as

kdv ¼ mdvω
2
d (11)

The effective damping of IAVTMD has been derived as

cdv ¼ 2ζ dmdvωd (12)

The effective stiffness of viscoelastic material has been
derived as

kav ¼ αkdv (13)

where α = kav/kdv refers to the stiffness ratio of the damper to
the viscoelastic material. The equations of motion of the
main structure isolated by IAVTMD subjected to base
excitations have been derived and expressed as

mdv€xd þ
Z t

�∞
Ξðt� τÞ _xdðτÞdτþ kdvxd þmdv€xs ¼�mdv€xg

ms€xsþ cs _xsþ ksxs�
Z t

�∞
Ξðt� τÞ _xdðτÞdτ� kdvxd ¼�ms€xg

(14)

Equation (14) has also been derived as

mdv€xd þ
Z ∞

0

kave
�ðkav=cdvÞðt�τÞ _xdðτÞ dτ þ kdvxd þ mdv€xs

¼ �mdv€xg

ms€xs þ cs _xs þ ksxs �
Z ∞

0

kave
�ðkav=cdvÞðt�τÞ _xdðτÞ dτ � kdvxd

¼ �ms€xg

(15)

where xd = ud � us and xs = us � xg. The steady-state
solutions for dynamic responses of controlled structures are
derived as xs = Xse

iωt, xd = Xde
iωt, and €xg ¼ Ageiωt. The

viscous damping ratio of IAVTMD has been defined as ζ d =
cdv/2ωdmdv. The natural frequency of IAVTMD defines as
ωd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kdv=mdv

p
. The ratio of damper mass to the main

structural mass defines as μd = md/ms. The ratio of amplifier
mass to the main structural mass defines as μa = ma/ms. The
ratio of effectivemass tomain structural mass defines as μdv=
mdv/ms. ηb defines the ratio of damper frequency to the main
structure’s frequency. The stiffness of the main structure
defines as ks ¼ ω2

sms. The viscous damping ratio of main
structure defines as ζ s = cs/2msωs. The steady state solutions
and the design parameters are substituted in equations (14)
and (15). Therefore, the transfer function has been derived as

4 Journal of Vibration and Control 0(0)



Equations (17) and (19) are applied to derive the stan-
dard deviation and corresponding closed-form expressions
for optimal design parameters of IAVTMD.

H2 optimization for IAVTMD

H2 optimization method has been applied to derive the
closed-form expressions for optimal design parameters for
IAVTMD (Chowdhury and Banerjee, 2022b; Chowdhury
et al., 2022b) subjected to random-white noise ex-
citations. The viscous damping ratio of the primary
structure considers as ζ s = 0. A mathematical equation has
been derived to determine the standard deviation of the
dynamic responses of the controlled structures and ex-
pressed as

σ2xs, d ¼
Z ∞

�∞

ΞnðωÞdω
ΛnðiωÞΛ�n ðiωÞ

¼ π
u4

det½N4�
det½D4� (20)

N4 ¼

2
6664

v3 v2 v1 v0
�u4 u2 �u0 0

0 �u3 u1 0

0 u4 �u2 u0

3
7775 and

D4 ¼

2
6664

u3 �u1 0 0

�u4 u2 �u0 0

0 �u3 u1 0

0 u4 �u2 u0

3
7775 (21)

The standard deviation of the dynamic response of the
primary structure has been derived as

2
664
2 ζ sqωs þ q2 þ ωs

2 �2
qαω3

dμ
2
dvζ d

αω2
dμdv þ 2 μdv qωdζ d

� ω2
dμdv

μdv q
2 μdv q

2 þ 2
qαω3

dμ
2
dvζ d

αω2
dμdv þ 2 μdv qωdζd

þ ω2
dμdv

3
775
�
Xs

Xd

�
¼ �

�
1
μdv

�
Ag (16)

where q = iω. The dynamic response of the primary structure derives as

HsðqÞ ¼ Xs

Ag
¼

�2 α μdv qωd
2ζ d � ωd

3α μdv � 2 α qωd
2ζ d

�2 μdv qωd
2ζ d � α q2ωd � ωd

3α� 2 q3ζ d � 2ωd
2ζ d q

Δ
(17)

The dynamic response of IAVTMD derives as

HdðqÞ ¼ Xd

Ag
¼ �ðαωd þ 2 qζ dÞωsð2 qζ s þ ωsÞ

Δ
(18)

Δ has been derived as

Δ ¼

2 α μdv q
3ωd

2ζ d þ 4 α q2ωd
2ζ d ζ sωs þ α μdv q

2ωd
3 þ 2 α q3ωd

2ζ d þ 2 α q3ωdζ sωs

þ2 α qωd
3ζ sωs þ 2 α qωd

2ζ d ωs
2 þ 2 μdv q

3ωd
2ζ d þ 4 q4ζ d ζ sωs þ 4 q2ωd

2ζ d ζ sωs

þα q4ωd þ α q2ωd
3 þ α q2ωdωs

2 þ αωd
3ωs

2 þ 2 q5ζ d þ 2 q3ωd
2ζ d þ 2 q3ζ d ωs

2

þ2 qωd
2ζ d ωs

2

(19)

σ2xs ¼

S0π

0
BBBBBBBBBBBBB@

4 α2μdv
3ωd

4ζ d
2ωs

2 þ α2μdv
4ωd

6 þ 12 α2μdv
2ωd

4ζ d
2ωs

2 þ 8 α μdv
3ωd

4ζ d
2ωs

2

þ4 α2μdv
3ωd

6 þ α2μdv
3ωd

4ωs
2 þ 12 α2μdv ωd

4ζ d
2ωs

2 þ 24 α μdv
2ωd

4ζ d
2ωs

2

þ4 α2ωd
4ζ d

2ωs
2 þ 24 α μdv ωd

4ζ d
2ωs

2 � 8 α μdv ωd
2ζ d

2ωs
4 þ 12 μdv

2ωd
4ζ d

2ωs
2

þ4 α2μdv ωd
6 � 3 α2μdv ωd

4ωs
2 þ 8 α ωd

4ζ d
2ωs

2 � 8 α ωd
2ζ d

2ωs
4

þ4 μdv
3ωd

4ζ d
2ωs

2 þ 12 μdv ωd
4ζ d

2ωs
2 � 8 μdv ωd

2ζ d
2ωs

4 þ α2ωd
6 � 2 α2ωd

4ωs
2

þα2ωd
2ωs

4 þ 4 ωd
4ζ d

2ωs
2 � 8 ωd

2ζ d
2ωs

4 þ 4 ζ d
2ωs

6 þ 6 α2μdv
2ωd

6

1
CCCCCCCCCCCCCA

2 α2ωd
3ζ d μdv ωs

6

(22)
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Equation (22) has been partially differentiated with
respect to the viscous damping ratio ζ d and natural
frequency ωd of IAVTMD. Therefore, the mathematical

equations for partial differentiation have been derived
as

∂σ2
xs

∂ζ d
¼ 0 and

∂σ2xs
∂ωd

¼ 0 (23)

Equation (22) has been substituted in the first equation of
equation (23). As a result, the closed-form expression for the
viscous damping ratio of IAVTMD has been derived as

The optimal frequency of IAVTMD needs to be separated
from equation (24) to achieve the exact closed-form ex-
pression for IAVTMD. To perform that, equation (24) has
been substituted in equation (22). The modified SD sub-
stitutes in the second equation of equation (23). Hence, the
closed-form expression for the optimal frequency of
IAVTMD has been derived as

ðζ dÞopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2μdv

4ωd
6 þ 4 α2μdv

3ωd
6 þ α2μdv

3ωd
4ωs

2

þ6 α2μdv
2ωd

6 þ 4 α2μdv ωd
6 � 3 α2μdv ωd

4ωs
2

þα2ωd
6 � 2 α2ωd

4ωs
2 þ α2ωd

2ωs
4

4 α2μdv
3ωd

4ωs
2 þ 12 α2μdv

2ωd
4ωs

2 þ 8 α μdv
3ωd

4ωs
2 þ 12 α2μdv ωd

4ωs
2

þ24 α μdv
2ωd

4ωs
2 þ 4 μdv

3ωd
4ωs

2 þ 4 α2ωd
4ωs

2 þ 24 α μdv ωd
4ωs

2

�8 α μdv ωd
2ωs

4 þ 12 μdv
2ωd

4ωs
2 þ 4ωs

6 þ 8 αωd
4ωs

2 � 8ωd
2ωs

4

�8 αωd
2ωs

4 þ 12 μdv ωd
4ωs

2 � 8 μdv ωd
2ωs

4 þ 4ωd
4ωs

2

vuuuuuuuuuuuuuuuut
(24)

Aω6
d þ Bω4

d þ Cω2
d þ E ¼ 0

ω2
d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�108EA2 þ 36ABC þ 12

ffiffiffi
3

p
V1 A� 8B33

p
6A

� 2


3AC � B2

�
3A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�108EA2 þ 36ABC þ 12

ffiffiffi
3

p
V1 A� 8B33

p � B

3A

ω2
d2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�108EA2 þ 36ABC þ 12

ffiffiffi
3

p
V1 A� 8B33

p
12A

þ 3AC � B2

3A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�108EA2 þ 36ABC þ 12

ffiffiffi
3

p
V1 A� 8B33

p � B

3A

þ1

2

0
BBBBBB@i

ffiffiffi
3

p

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�108EA2 þ 36ABC þ 12

ffiffiffi
3

p
V1 A� 8B33

q
6A

þ 2


3AC � B2

�
3A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�108EA2 þ 36ABC þ 12
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where

V1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27A2E2 � 18ABCE þ 4AC3 þ 4B3E � B2C2

p
(26)

where the closed-form expressions for A, B, C, and E have
been derived as

A ¼ 3 α2μdv
4 þ 12 α2μdv

3 þ 18 α2μdv
2 þ 12 α2μdv þ 3 α2

5 α2μdv
3ωs

2 þ 12 α2μdv
2ωs

2 þ 8 α μdv
3ωs

2

B ¼ þ9 α2μdv ωs
2 þ 24 α μdv

2ωs
2 þ 4 μdv

3ωs
2

þ2 α2ωs
2 þ 24 α μdv ωs

2 þ 12 μdv
2ωs

2

þ8 α ωs
2 þ 12 μdv ωs

2 þ 4 ωs
2 (27)

C¼�α2ωs
4þ8αμdvωs

4þ8αωs
4þ8μdvωs

4þ8ωs
4

E ¼ �12 ωs
6

Equation (25) has been substituted in equation (24) to
derive the optimal viscous damping ratio for IAVTMD.
The second equation of equation (25) provides the optimal
frequency ratio for IAVTMD. Therefore, the optimal
closed-form expression for the optimal frequency of
IAVTMD has been derived as

ω2
d1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�108 EA2þ36 ABCþ12

ffiffiffi
3

p
V1 A�8 B33

q
6A

� 2


3 AC�B2

�
3A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�108 EA2þ36 ABCþ12

ffiffiffi
3

p
V1 A�8 B33

q � B

3A

(28)

The variations of the optimal frequency ratio of
IAVTMD versus damper mass ratio for the different values
of inertial angles are shown in Figure 2(a). The system
parameters are considered as μa = 0.01 and α = 1.0. The
optimal frequency ratio of IAVTMD decreases as the in-
ertial angle decreases.

The variations of the optimal frequency ratio of
IAVTMD versus damper mass ratio for the different values
of the amplifier’s mass ratio are shown in Figure 2(b). The
system parameters are considered as θ = 10° and α = 1.0.
The optimal frequency ratio decreases as the damper mass
ratio and amplifier’s mass ratio increase. As a result,
a higher damper mass ratio, a higher amplifier’s mass ratio,
and a lower inertial angle are recommended for H2 opti-
mized IAVTMD for achieving a lower frequency ratio
without reducing the static mass of the entire system. The
variations of optimal viscous damping ratio of IAVTMD
versus damper mass ratio for the different values of inertial
angles are shown in Figure 3(a). The system parameters are
considered as μa = 0.01 and α = 1.0. The optimal viscous
damping ratio of IAVTMD decreases as the inertial angle
decreases.

The variations of the optimal viscous damping ratio
of IAVTMD versus damper mass ratio for the different
values of the amplifier’s mass ratio are shown in
Figure 3(b). The system parameters are considered as θ =
10° and α = 1.0. The optimal viscous damping ratio de-
creases as the damper mass ratio increases and decreases
as the amplifier’s mass ratio increases. As a result, a higher
damper mass ratio, a moderate amplifier’s mass ratio, and
a lower inertial angle are recommended for H2 optimized
IAVTMD to achieve an average viscous damping ratio
without reducing the static mass of the entire controlled
structure.

Figure 2. The variations of optimal frequency ratio of IAVTMD versus damper mass ratio for different values of (a) inertial angle and (b)

amplifier’s mass ratio.
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H∞ optimization for IAVTMD

The closed-form expressions for optimal design parameters of
IAVTMD have also been derived through the H∞ optimization
method when the controlled structures are subjected to har-
monic excitations. To perform that, the transfer function in
equation (16) has been non-dimensionalized and expressed as2
66664
� η2þ2 iζ sηþ1

�2 iηαηd
3μdv

2ζ d
αηd

2μdvþ2 iμdv ηηdζ d
�ηd

2μdv

� μdv η
2 � μdv η

2þ 2 iηαηd
3μdv

2ζ d
αηd

2μdvþ2 iμdv ηηdζ d
þηd

2μdv

3
77775

(
Xs

Xd

)
¼�

"
1

μdv

#
Ag

ω2
s

(29)

The dynamic response of the primary structure has been
derived as

Hs ¼ Xs

Ag
ω2

s ¼
α μdvηd

3 � α η2ωd þ α ηd
3

�2i

�ðμdv þ 1Þðαþ 1Þηd2 þ η2

�
η ζ d

Δ

(30)

The dynamic response of IAVTMD has been derived
as

Hd ¼Xd

Ag
ω2

s ¼
� 4 η2ζ d ζ sþα ηd þ i2 η ðα ζ sηd þ ζ dÞ

Δ

(31)

Δ has been derived as

Δ ¼

4 α η2ζ d ζ sηd
2 þ α η2μdvηd

3 � α η4ωd þ α η2ηd
3

� 4 η4ζ d ζ s þ 4 η2ζ d ζ sηd
2 þ α η2ηd � α ηd

3

þ i 2 α η3ζ d μdvηd
2 þ 2 α η3ζ d ηd

2 þ 2 η3ζ d μdvηd
2



þ2 α η3ζ sηd� 2 α η ζ sηd

3 � 2 η5ζ d þ 2 η3ζ d ηd
2

�2 η α ηd
2ζ d þ 2 η3ζ d � 2 η ζ d ηd

2
�

(32)

The resultant of Hs has been summarized as

jHsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ ζ 2dy

2
2

y23 þ ζ 2dy
2
4

s
¼ y2

y4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21
y22

þ ζ 2d

y23
y24

þ ζ 2d

vuuuuut (33)

From equation (33), the first restraint (Den Hartog, 1985)
for H∞ optimization has been derived as

����y1y2
���� ¼

����y3y4
���� (34)

An equation has been derived after applying equation
(34) and expressed as

Figure 3. The variations of optimal viscous damping ratio of IAVTMD versus damper mass ratio for different values of (a) inertial angle

and (b) amplifier’s mass ratio.
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2η6þ
�2αμdvηd
2�2αηd

2�4μdvηd
2�4ηd

2�2
�
η4

þ 2αμdv
2ηd

4þ4αμdvωd
4þ2μdv

2ηd
4þ2αηd

4

þ 4μdvηd
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2þ4ηd
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 !
η2
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4�2ηd
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(35)

Equation (35) has been summarized as

η6 þ 
� η1
2 � η2

2 � η3
2
�
η4

þ
η12η22 þ η3
2η1

2 þ η2
2η3

2
�
η2 � η1

2η2
2η3

2 ¼ 0
(36)

Therefore, the roots for equation (35) have been derived as

η1
2 þ η2

2 þ η3
2 ¼ α μdvηd

2 þ α ηd
2 þ 2 μdvηd

2

þ 2 ηd
2 þ 1η1

2η2
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2η1
2 þ η2

2η3
2 ¼ α μdv

2ηd
4

þ 2 α μdvηd
4 þ μdv

2ηd
4 þ α ηd
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4

þ 1
�
2 α μdvηd

2 þ ηd
4 þ α ηd

2 þ μdvηd
2

þ 2 ηd
2η21η

2
2η

2
3 ¼ α μdvηd

4 þ α ηd
4 þ μdvηd

4 þ ηd
4

(37)

From equation (33), the second constraint (Den Hartog,
1985) has been derived as

ðHsÞη1, η2 ¼
����y2y4
���� (38)

η21 þ η22 ¼ 0 (39)

Equation (39) substitutes in the first equation of equation
(37). Hence, η23 derives as

η3
2 ¼ α μdvηd

2 þ α ηd
2 þ 2 μdvηd

2 þ 2 ηd
2 þ 1 (40)

Equation (40) has been substitutes in the second and
third equations of equation (37). Therefore, the closed-form
expressions for η1

2η2
2 have been derived as

η1
2η2

2 ¼ α μdv
2ηd

4 þ 2 α μdvηd
4 þ μdv

2ηd
4

þ α ηd
4 þ 2 μdvηd

4þ 1
�
2 α μdvηd

2

þ ηd
4 þ α ηd

2 þ μdvηd
2 þ 2 ηd

2

(41)

η1
2η2

2 ¼ ηd
4ðμdv þ 1Þðαþ 1Þ

1þ ðμdv þ 1Þðαþ 2Þηd2
(42)

Equations (41) and (42) are equated, and the closed-form
expression for the optimal frequency ratio of IAVTMD has
been derived as

0
BB@
2 α2μdv

3þ 6 α2μdv
2þ 6 α μdv

3 þ 6 α2μdv

þ18 α μdv
2 þ 4 μdv

3þ 2 α2þ 18 α μdv

þ12 μdv
2þ 6 αþ 12 μdvþ 4

1
CCAηd

4

þ α2μdv
2þ 3 α2μdvþ 6 α μdv

2 þ 2 α2

þ14 α μdvþ 6 μdv
2þ 8 αþ 14 μdv þ 8

 !
ηd

2

þα μdv þ 2 αþ 2 μdvþ 4

¼ 0 (43)

w2ηd
4 þ w1ηd

2 þ w0 ¼ 0 (44)

ðηd1Þ2opt ¼
�w1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1

2 � 4 w2w0

p
2w2

and

ðηd2Þ2opt ¼
�w1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1

2 � 4 w2w0

p
2w2

(45)

After applying equations (41) and (42), the closed-form
expressions for η21;2 are derived as

η21;2 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηd

4ðμdv þ 1Þðαþ 1Þ
1þ ðμdv þ 1Þðαþ 2Þηd2

s
(47)

The mathematical expressions for determining the
closed-form expression for the optimal viscous damping
ratio of IAVTMD have been derived as

∂jHsðηÞj2
∂η2 η2

1;2
¼ 0 and ðζ dÞopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ 2
d1 þ ζ 2

d2

2

s������ (48)

Therefore, the closed-form expression for the optimal
viscous damping ratio of IAVTMD has been derived as

z2ζ
4
d þ z1ζ

2
d þ z0 ¼ 0 and ζ 2

d1, d2

¼ �z1 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4 z2z0 þ z1

2
p

2z2

(49)

The closed-form expressions for z2, z1, and z0 have been
derived as

z2¼

�32η41;2

�
ðαþ1Þ
μdv η21;2þη21;2�1

�

ηd1,d2

�2
opt
�η41;2þη21;2

�
�
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�
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� 2ðαþ1Þ
��

η21;2�1
�
2
�
μdvþη21;2

�
ηd1,d2

2

0
@

1
A
(50)

η21;2 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α μdv

2ηd
4 þ 2 α μdvηd

4 þ μdv
2ηd
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(46)
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z0 ¼

� 2
�
ðμdv þ 1Þη2d1, d2 � η21;2

��
ðμdv þ 1Þ2η4d1, d2

þ
�
ð� 2 μdv � 2Þη21;2 þμdv

�
η2d1, d2 þ η41;2

�
η4d1, d2

��
� 1þ ðμdv þ 1Þη21;2

�
η2d1, d2 �η41;2 þ η21;2

�
α4

(52)

The variations of the optimal frequency ratio of
IAVTMD versus damper mass ratio for the different values
of inertial angles are shown in Figure 4(a). The system
parameters are considered as μa = 0.01 and α = 1.0. The
optimal frequency ratio of IAVTMD decreases as the
inertial angle decreases.

The variations of the optimal frequency ratio of IAVTMD
versus damper mass ratio for the different values of the
amplifier’s mass ratio are shown in Figure 4(b). The system
parameters are considered as θ = 10° and α = 1.0. The optimal
frequency ratio decreases as the damper mass ratio and
amplifier’s mass ratio increase. As a result, a higher damper
mass ratio, a higher amplifier’s mass ratio, and a lower in-
ertial angle are recommended forH∞ optimized IAVTMD for
achieving a lower frequency ratio without reducing the static
mass of the entire system. The variations of the optimal
frequency ratio of IAVTMD versus damper mass ratio for the
different values of inertial angles are shown in Figure 5(a).
The system parameters are considered as μa = 0.01 and
α = 1.0. The optimal frequency ratio of IAVTMD decreases
as the inertial angle decreases.

z1 ¼ �16 η2d1, d2η
2
1;2α

2

ðαþ 1Þ2
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�
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η4d1, d2
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(51)

Figure 4. The variations of optimal frequency ratio of IAVTMD versus damper mass ratio for different values of (a) inertial angle and (b)

amplifier’s mass ratio.
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The variations of the optimal frequency ratio of IAVTMD
versus damper mass ratio for the different values of the am-
plifier’s mass ratio are shown in Figure 5(b). The system pa-
rameters are considered as θ = 10° and α = 1.0. The optimal
frequency ratio decreases as the damper mass ratio and am-
plifier’s mass ratio increase. As a result, a higher damper mass
ratio, a higher amplifier’s mass ratio, and a lower inertial angle
are recommended for H∞ optimized IAVTMD for achieving
a lower frequency ratio without reducing the static mass of the
entire system. The variations of optimal viscous damping ratio
of IAVTMDversus dampermass ratio for the different values of
inertial angles are shown in Figure 6(a). The system parameters
are considered as μa = 0.01 and α = 1.0. The optimal viscous
damping ratio of IAVTMD decreases as the inertial angle
decreases.

The variations of optimal viscous damping ratio of
IAVTMD versus damper mass ratio for the different values
of the amplifier’s mass ratio are shown in Figure 6(b). The
system parameters are considered as θ = 10° and α = 1.0.
The optimal viscous damping ratio decreases as the damper
mass ratio increases and decreases as the amplifier’s mass
ratio increases. As a result, a higher damper mass ratio,
a moderate amplifier’s mass ratio, and a lower inertial angle
are recommended for H∞ optimized IAVTMD to achieve an
average viscous damping ratio without reducing the static
mass of the entire controlled structure. The variations of
optimal viscous damping ratio of IAVTMD versus damper
mass ratio for the different values of inertial angles are
shown in Figure 7(a). The system parameters are considered
as μa = 0.01 and α = 1.0. The optimal viscous damping ratio
of IAVTMD decreases as the inertial angle decreases.

The variations of the optimal viscous damping ratio of
IAVTMD versus damper mass ratio for the different values of
the amplifier’smass ratio are shown in Figure 7(b). The system
parameters are considered as θ = 10° and α = 1.0. The optimal

viscous damping ratio decreases as the damper mass ratio
increases and decreases as the amplifier’s mass ratio increases.
As a result, a higher damper mass ratio, a moderate amplifier’s
mass ratio, and a lower inertial angle are recommended forH∞

optimized IAVTMD to achieve an average viscous damping
ratio without reducing the static mass of the entire controlled
structure.

Robustness of H2 and H∞ optimized
IAVTMD

The variations of optimal displacements of primary structures
controlled by H2 optimized IAVTMD for different values of
viscous damping ratio have been shown in Figure 8(a). The
system parameters are considered as μd = 0.04, μa = 0.01,
θ = 5°. The optimal frequency and viscous damping ratios are
obtained as ηd = 0.5058 and ζ d = 0.2619. The dynamic re-
sponses are unrestrained at ζ d = 0, and the controlled structures
vibrate at their Eigen frequencies, that is, η = 0.4571, 1.107.
The anti-resonance point is located at η = 0.6591. The fre-
quency regions are shifted from its Eigen frequency regions
when ζ d increases, that is, ζ d > 0. The maximum dynamic
responses are minimized at their resonating frequency regions,
that is, η = 0.3804, 1.148. The maximum peaks of dynamic
responses aremerged into one at ζ d =∞. The frequency point is
located at η = 1.207. An anti-resonance frequency point has
also been located at η = 0.5292.

The variations of optimal displacements of primary structures
controlled by H∞ optimized IAVTMD for different values of
viscous damping ratio have been shown in Figure 8(b).
The system parameters are considered as μd = 0.04, μa =
0.01, θ = 5°. The optimal frequency and viscous damping
ratios are obtained as ηd = 0.5172 and ζ d = 0.3478. The
dynamic responses are unrestrained at ζ d = 0, and the
controlled structures vibrate at their Eigen frequencies,

Figure 5. The variations of optimal frequency ratio of IAVTMD versus damper mass ratio for different values of (a) inertial angle and (b)

amplifier’s mass ratio.
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that is, η = 0.465, 1.113. The anti-resonance point is lo-
cated at η = 0.6738. The frequency regions are shifted from
its Eigen frequency regions when ζ d increases, that is, ζ d >
0. The maximum dynamic responses are minimized at their
resonating frequency regions, that is, η = 0.3488, 1.169.
The maximum peaks of dynamic responses are merged
into one at ζ d = ∞. The frequency point is located at η =
1.214. An anti-resonance frequency point has also been
located at η = 0.5411.

Comparison of dynamic responses

The dynamic responses of optimum
IVATMD-controlled structures compared with

dynamic responses of structures controlled by
optimum conventional tuned mass dampers

The variations of optimal dynamic responses of un-
controlled structures and structures controlled by H2 opti-
mized conventional TMD, inertial amplifier viscoelastic
tuned mass damper have been displayed in Figure 9(a). The
design parameters are listed in Table 1.

The closed-form expressions for optimal design pa-
rameters of H2 optimized conventional tuned mass
dampers (i.e., CTMD1, CTMD2) are accounted from
CTMD1 (Warburton, 1982; Zilletti et al., 2012) and
CTMD2 (Iwata, 1982). Equation (25) and (24) are applied
to determine the optimal design parameters for H2 opti-
mized IAVTMD.

Figure 6. The variations of optimal viscous damping ratio of IAVTMD versus damper mass ratio for different values of (a) inertial angle

and (b) amplifier’s mass ratio.

Figure 7. The variations of optimal viscous damping ratio of IAVTMD versus damper mass ratio for different values of (a) inertial angle

and (b) amplifier’s mass ratio.
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Figure 9. The variations of optimal displacements of primary structures controlled by (a) H2 and (b) H∞ optimized IAVTMD and

conventional tuned mass dampers subjected to harmonic excitation.

Figure 8. The variations of optimal displacements of primary structures controlled by (a)H2 and (b)H∞ optimized IAVTMD for different

values of viscous damping ratio.

Table 1. The optimal design parameters of H2 optimized IAVTMD and conventional tuned mass dampers.

Symbols H2 optimization

CTMD1 CTMD2 IVATMD CTMD1 CTMD2 IVATMD

ζ s ζ s ζ s 0.01 0.01 0.01

ζ d ζ d ζ d 0.1198 0.1225 0.2619

ηd ηd ηd 0.9574 0.9713 0.5058

μd μd μd + 2μa 0.06 0.06 0.06

μd μd μd 0.06 0.06 0.04

— — μa — — 0.01

— — θ — — 5o
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The maximum dynamic response of the uncontrolled
structure has been obtained as 50. The maximum dynamic
responses of the primary structures controlled by CTMD1,
CTMD2, and IAVTMD have been obtained as 7.09, 7.63, and
5.61. The dynamic response capacity of H2 optimized
IAVTMD is significantly 20.87% and 26.47% superior to the
dynamic response capacity of H2 optimized conventional
TMD, respectively. The variations of optimal dynamic re-
sponses of uncontrolled structures and structures controlled by
H∞ optimized conventional tuned mass damper, inertial am-
plifier viscoelastic tuned mass damper have been displayed in
Figure 9(b). The design parameters are listed in Table 2. The
closed-form expressions for optimal design parameters of H∞

optimized conventional tuned mass damper (i.e., CTMD) are
accounted from conventional tuned mass damper’s (CTMD)
(Den Hartog and Ormondroyd, 1928; Krenk, 2005; Nishihara
and Asami, 2002). Equations (45) and (49) are applied to
determine the optimal design parameters for H∞ optimized
IAVTMD. The maximum dynamic response of the un-
controlled structure has been obtained as 50. The maximum

dynamic responses of the primary structures controlled by H∞

optimized CTMD and IAVTMD have been obtained as 6.2
and 5.24. The dynamic response capacity of H∞ optimized
IAVTMD is significantly 15.48% superior to the dynamic
response capacity of H∞ optimized conventional tuned mass
damper. The dynamic response capacities of H2 and H∞

optimized conventional TMD and inertial amplifier TMD are
also evaluated when the controlled structures are subjected to
random white-noise excitations. Therefore, the variations of
optimal dynamic responses of uncontrolled structures and
structures controlled by H2 optimized conventional TMD,
inertial amplifier viscoelastic tuned mass damper subjected to
random-white noise excitations have been displayed in
Figure 10(a). The design parameters are listed in Table 1.

The closed-form expressions for optimal design parameters
of H2 optimized conventional tuned mass dampers (i.e.,
CTMD1, CTMD2) are accounted from CTMD1 (Warburton,
1982, Zilletti et al., 2012) and CTMD2 (Iwata, 1982). Equa-
tions (24) and (25) are applied to determine the optimal design
parameters for H2 optimized IAVTMD. The maximum dy-
namic response of the uncontrolled structure has been obtained
as 3.3023 × 107 dB/Hz. The maximum dynamic responses of
the primary structures controlled by CTMD1, CTMD2, and
IAVTMDhave been obtained as 6.8883 × 105 dB/Hz, 8.7366 ×
105 dB/Hz, and 4.5478 × 105 dB/Hz. The dynamic response
capacity ofH2 optimized IAVTMD is significantly 33.97% and
47.94% superior to the dynamic response capacity of H2

optimized conventional TMD, respectively.
The variations of optimal dynamic responses of un-

controlled structures and structures controlled by H∞ op-
timized conventional tuned mass damper, inertial amplifier
viscoelastic tuned mass damper subjected to random-white
noise excitations have been displayed in Figure 10(b). The
design parameters are listed in Table 2. The closed-form
expressions for optimal design parameters of H∞ optimized

Table 2. The optimal design parameters of H∞ optimized

IAVTMD and conventional tuned mass dampers.

Symbols H∞ optimization

CTMD IVATMD CTMD IVATMD

ζ s ζ s 0.01 0.01

ζ d ζ d 0.1682 0.3478

ηd ηd 0.9434 0.5172

μd μd + 2μa 0.06 0.06

μd μd 0.06 0.04

— μa — 0.01

— θ — 5o

Figure 10. The variations of optimal displacements of primary structures controlled by (a) H2 and (b) H∞ optimized IAVTMD

and conventional tuned mass dampers subjected to random-white noise excitation.
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conventional tuned mass damper (i.e., CTMD) are ac-
counted from CTMD (Den Hartog and Ormondroyd, 1928;
Krenk, 2005; Nishihara and Asami, 2002). Equations (45)
and (49) are applied to determine the optimal design pa-
rameters for H∞ optimized IAVTMD. The maximum dy-
namic response of the uncontrolled structure has been
obtained as 3.6872 × 107 dB/Hz. The maximum dynamic
responses of the primary structures controlled by H∞ op-
timized CTMD and IAVTMD have been obtained as
5.8581 × 105 dB/Hz and 3.9023 × 105 dB/Hz. The dynamic
response capacity of H∞ optimized IAVTMD is signifi-
cantly 33.38% superior to the dynamic response capacity of
H∞ optimized conventional tuned mass damper.

The comparison of vibration reduction capacity of
optimum IVATMD to the optimum tuned mass
damper inerters

The equations of motion of a single degree of freedom
system controlled by tuned mass damper inerters (TMDI)
are derived using Newton’s second law and expressed as

ðmd þ mbÞ€xd þ cd


_xd � _xs

�þ kdðxd � xsÞ ¼ �md€xg
ms€xs � cd _xd þ ðcs þ cdÞ _xd � kdxd þ ðks þ kdÞxd ¼ �ms€xg

(53)

The steady-state solutions for harmonic excitation are
applied to equation (53), and the transfer function derives as

where q = iω, xs = Xse
iωt, xd = Xde

iωt, and €xg ¼ Ageiωt. The
damper mass ratio: μd =md/ms, inerter mass ratio: β =mb/ms.
The dynamic responses of TMDI and primary structure
derive as

Hd ¼ Xd

Ag
¼

� 
2 μdωdζ dqþ 2 qζ dωd þ 2 qζ sωs

þ μdωd
2 þ q2 þ ωd

2 þ ωs
2
�
μd

Δ

(55)

Hs ¼ Xs

Ag
¼

� 2 μd
2ωdζ dq� 2 μdωdζ dq� ωd

2μd
2

� q2β � q2μd � μdωd
2

Δ

(56)

Δ ¼

ðμd þ βÞq4 þ 
2 β ζ dμdωd þ 2 ζ dωdμd
2 þ 2 β ζ sωs

þ 2 μdωdζd þ 2 ζsμdωs

�
q3þ 
4 ζdζsμdωdωs þ β μdωd

2

þωd
2μd

2 þ βωs
2 þ μdωd

2 þ μdωs
2
�
q2

þ 
2 ζ dμdωdωs
2 þ 2 ζ sμdωd

2ωs

�
qþ μdωd

2ωs
2

(57)

H2 and H∞ optimization methods are applied to derive
optimal closed-form solutions for TMDI subjected to
harmonic and random excitations.

H2 optimization

The standard deviation of equation (56) derives using
equation (20) and expressed as

ðμd þ βÞq2 þ 2 μdωdζ dqþ μdωd
2 �2 μdωdζ dq� μdωd

2

�2 μdωdζ dq� μdωd
2 q2 þ qð2 μdωdζ d þ 2 ζ sωsÞ þ ωs

2 þ μdωd
2

#(
Xd

Xs

)
¼ �

"
μd

1

#
Ag

"
(54)

σ2
xs
¼

S0π

0
BBBBBBBBBBBBBB@

4 β ζ d
2μd

4ωd
2ωs

2 þ 4 ζ d
2μd

5ωd
2ωs

2 þ β2μd
4ωd

4 þ 8 β ζ d
2μd

3ωd
2ωs

2

þ2 β μd
5ωd

4 þ 12 ζ d
2μd

4ωd
2ωs

2 þ μd
6ωd

4 þ 2 β2μd
3ωd

4 þ β2μd
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2ωs
2

þ4 β ζ d
2μd

2ωd
2ωs

2 þ 6 β μd
4ωd

4 þ 2 β μd
4ωd

2ωs
2 þ 12 ζ d

2μd
3ωd

2ωs
2
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5ωd

4 þ μd
5ωd

2ωs
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2ωd
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4
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2ωs
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4

�2 μd
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2ωs
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2ωs
4
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CCCCCCCCCCCCCCCCA

2 ζ dμdωdωs
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(58)
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The optimal closed-form solution for the natural fre-
quency of TMDI derives using the modified version of
equation (58), second equation of equation (23) and ex-
pressed as (Chowdhury and Banerjee, 2022b)

ðωdÞopt ¼
ωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 μdðμd þ 1Þ
β2 þ 2 β μd þ μd

2 þ 2 β

þ 2 μd � β2μd � 2 β μd
2 � μd

3
�

vuuut
2 μdðμd þ 1Þðβ þ μd þ 1Þ

(60)

Equation (60) substitutes in equation (59) and the op-
timal closed-form solution for the damping ratio of TMDI
derives as (Chowdhury et al., 2023a)

ðζ dÞopt ¼
ffiffiffi
2

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμd2 þ ðβ � 3Þμd � 3 β � 4

�ðμd þ βÞ2
ðβ þ μd þ 1Þμdðμd2 þ ðβ � 1Þμd � β � 2

�
s

(61)

The variations of optimal frequency ratio of H2-opti-
mized TMDI versus damper mass ratio for different values
of inerter mass ratio have been shown in Figure 11(a). The
optimal frequency ratio decreases as the damper mass ratio
increases; in contrast, it increases as the inerter mass ratio
increases.

The differences in optimal damping ratio of H2-opti-
mized TMDI versus damper mass ratio for different values

of inerter mass ratio have been displayed in Figure 11(b).
The optimal damping ratio increases as the damper mass
ratio increases; in contrast, it increases as the inerter mass
ratio increases. Accordingly, a higher damper mass ratio and
a lower inerter mass ratio are recommended to produce H2-
optimized TMDI with a lower frequency and damping ratio
in an affordable range.

H∞ optimization

Equation (54) rewritten in non-dimensional form to apply
H∞ optimization method and expressed as

where η = ω/ωs and TMDI’s frequency ratio: ηd = ωd/ωs.
The dynamic responses of TMDI and primary structure
derive as

Hd ¼ Xd

Ag
ω2

s ¼

ηd
2μd

2 � η2μd þ μdηd
2 þ μd

þ i


2 μd

2ηdζ dηþ 2 μdηdζ dηþ 2 μdη ζ s
�

Δ

(63)

Hs ¼ Xs

Ag
ω2

s ¼

ηd
2μd

2 � η2β � η2μd þ μdηd
2

þ i


2 μd

2ηdζ dηþ 2 μdηdζ dη
�

Δ

(64)

The exact closed-form expression for the damping ratio of TMDI derives using equation (58), the first equation of
equation (23) and expressed as

ζ d ¼
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(59)

�ðμd þ βÞη2 þ 2 iμdηdζ dηþ μdηd
2 �2 iμdηdζ dη� μdηd

2

�2 iμdηdζ dη� μdηd
2 2 iμdηdζ dηþ 2 iη ζ s þ μdηd
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"
μd
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#
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ω2
s

(62)
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Δ ¼ β η2ηd
2μd þ 4 η2ζ dζ sηdμd

þ η2ηd
2μd

2 � β η4� η4μd þ η2ηd
2μd þ η2β þ η2μd

� μdηd
2þ i



2 β η3ζ dηdμd þ 2 η3ζ dηdμd

2 þ 2

η3ζ dηdμdþ 2 β η3ζ s þ 2 η3ζ sμd � 2

η ζ sηd
2μd � 2 μdηdζ dη

�
(65)

Equation (64) rewrites in the form of equation (33), in
addition, equation (34) applies to derive closed-form so-
lution for η21 þ η22 and expressed as



β2 þ 3 β μd þ 2 μd

2 þ 2 β þ 2 μd
�
η4

þ
��2 β ηd

2μd
2� 2 ηd

2μd
3 � 2 β ηd
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2

�2 ηd
2μd � β μd � μd

2� 2 β� 2 μd

	
η2 ¼ 0

þ2 ηd
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2
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(66)

η21η
2
2 ¼

2 μdηd
2ðμd þ 1Þ

ðβ þ 2 μd þ 2Þðβ þ μdÞ
The second constraint of equation (33) in the form of

equation (38) applies and η21 þ η22 derives as

η21 þ η22 ¼
2

ðβ þ μd þ 1Þ (67)

Equating second equation of equations (66) and (67), the
exact closed-form expression for optimal frequency ratio
derives as



2 β2μd
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(68)

Using, equations (66)–(68), the optimal closed-form
solutions for each root η21 and η22 derives as

Figure 11. The variations of optimal (a) frequency and (b) damping ratio of H2-optimized TMDI versus damper mass ratio for different

values of inerter mass ratio.
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Accordingly, the exact closed-form expression for op-
timal damping ratio derives using equation (48) and is
expressed as

A0ζ
4
d þB0ζ

2
d þC0 ¼ 0 and ζ 2

d1,d2 ¼
�B0 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
0 � 4A0C0

p
2A0

(70)

where A0, B0, and C0 are derived as

A0 ¼ �32 μd
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The variations of optimal frequency ratio of H∞-
optimized TMDI versus damper mass ratio for differ-
ent values of inerter mass ratio have been shown in
Figure 12(a).

The optimal frequency ratio decreases as the damper
mass ratio increases; in contrast, it increases as the inerter
mass ratio increases. The differences in optimal damping
ratio of H∞-optimized TMDI versus damper mass ratio
for different values of inerter mass ratio have been dis-
played in Figure 12(b). The optimal damping ratio in-
creases as the damper mass ratio increases; in contrast, it
increases as the inerter mass ratio increases. Accordingly,
a higher damper mass ratio and a lower inerter mass ratio
are recommended to produce H∞-optimized TMDI with
a lower frequency and damping ratio in an affordable
range.

Robustness of H2 and H∞ optimized TMDI

The variations of optimal dynamic responses of structures
controlled by H2 optimized TMDI versus frequency ratio
for different values of damping ratio have been shown in
Figure 13(a).

The H2 optimized TMDI’s design parameters are listed
in Table 3 and ζ s = 0. Overall, the detailed values of optimal
design parameters of H2 and H∞ optimized TMDI,
IAVTMD are listed in Table 3.

At ζ d = 0, the controlled dynamic systems oscillate to
their eigen frequencies, that is, η = 0.8546 and η = 1.093.
The frequency points are shifted from these eigen fre-
quencies at ζ d > 0. At ðζ dÞopt ¼ 0:1313, the resonance
occurs, and the maximum displacement of the primary
structure minimizes effectively. The resonating fre-
quencies are obtained at η = 0.8656 and η = 1.07. After
increasing ζ d > ðζ dÞopt, the dynamic responses are slightly
increases and massively increases at ζ d = ∞. One
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frequency point locates at η = 0.9713. The maximum
optimal dynamic response of H2 optimized TMDI-
controlled primary structure determines as 6.4512. The
variations of optimal dynamic responses of structures
controlled by H∞ optimized TMDI versus frequency ratio
for different values of damping ratio have been shown in
Figure 13(b). The H∞ optimized TMDI’s design pa-
rameters are listed in Table 3 and ζ s = 0. η = 0.8532 and
η = 1.091 are the eigen frequencies at undamped con-
dition, that is, ζ d = 0. η = 0.8554 and η = 1.083 are the
resonating frequencies when ðζ dÞopt ¼ 0:09562. Massive in-
crements of dynamic responses have occurred at ζ d = ∞ with
a frequency point of η = 0.9713. The maximum optimal dy-
namic response of H∞ optimized TMDI-controlled primary
structure determines as 7.3829.

Dynamic response reduction capacity of TMDI
and IAVTMD

The variations of optimal dynamic responses of structures
controlled by H2 optimized IAVTMD and TMDI versus
frequency ratio with the presence of structural damping
ratio; ζ s = 0.01 have been shown in Figure 14(a). The
maximum dynamic responses of structures controlled byH2

optimized TMDI and IAVTMD are determined as 6.0316
and 5.6129. Therefore, the dynamic response reduction
capacity of H2 optimized IAVTMD is significantly 6.94%
superior to H2 optimized TMDI.

The H∞ optimized IAVTMD and TMDI controlled
structure’s dynamic responses are obtained as 6.8385,
5.2456. Accordingly, H∞ optimized IAVTMD’s dynamic
response reduction capacity is significantly 23.29% supe-
rior to H∞ optimized TMDI.

Summary and conclusions

The IAVTMD are introduced in this paper. H2 and H∞

optimization methods are applied to derive the closed-
form expressions for optimal design parameters for
IAVTMD and TMDI. The dynamic response reduction
capacities of optimum IAVTMD are compared with the
dynamic response reduction capacities of optimum con-
ventional TMD and TMDI. The significant outcomes are
the following:

1. A higher damper mass ratio, a higher amplifier’s
mass ratio, and a lower inertial angle are recom-
mended for H2 and H∞ optimized IAVTMD for
achieving a lower frequency ratio with moderate
damping without reducing the static mass of the
entire system.

2. The dynamic response capacity of H2 optimized
IAVTMD is significantly 20.87% and 26.47% supe-
rior to the dynamic response capacity of H2 optimized

Figure 12. The variations of optimal (a) frequency and (b) damping ratio of H∞-optimized TMDI versus damper mass ratio for different

values of inerter mass ratio.

Table 3. The optimal design parameters of H2 and H∞ optimized

TMDI, IAVTMD.

Symbols H2 optimization H∞ optimization

TMDI IAVTMD TMDI IAVTMD TMDI IAVTMD

ζ d ζ d 0.1313 0.2619 0.096 0.3478

ηd ηd 1.023 0.5058 1.02 0.5172

μd + β μd + 2μa 0.06 0.06 0.06 0.06

μd μd 0.05 0.04 0.05 0.04

β μa 0.01 0.01 0.01 0.01

— θ — 5o — 5o
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conventional tuned mass dampers subjected to har-
monic base excitation.

3. The dynamic response capacity of H∞ optimized
IAVTMD is significantly 15.48% superior to the
dynamic response capacity of H∞ optimized con-
ventional tuned mass damper subjected to harmonic
base excitation.

4. The dynamic response capacity of H2 optimized
IAVTMD is significantly 33.97% and 47.94% supe-
rior to the dynamic response capacity of H2 optimized
conventional tuned mass dampers subjected to
random-white noise base excitation.

5. The dynamic response capacity of H∞ optimized
IAVTMD is significantly 33.38% superior to the

dynamic response capacity of H∞ optimized con-
ventional tuned mass damper subjected to random-
white noise base excitation.

6. A higher damper mass ratio and a lower inerter mass
ratio are recommended to produce H2 and H∞ opti-
mized TMDI with a lower frequency and damping
ratio in an affordable range.

7. The dynamic response reduction capacities of H2 and
H∞ optimized IAVTMD are significantly 6.94% and
23.29% superior to H2 and H∞ optimized TMDI.

The paper’s main novelty is conceptualizing IAVTMD,
TMDI, and the corresponding optimal closed-form sol-
utions. The robust dynamic response capacity of optimum

Figure 13. The variations of optimal dynamic responses of structures controlled by (a)H2 and (b)H∞ optimized TMDI versus frequency

ratio for different values of damping ratio.

Figure 14. The variations of optimal dynamic responses of structures controlled by (a) H2 and (b) H∞ optimized IAVTMD and TMDI

versus frequency ratio with the presence of structural damping ratio; ζ s = 0.01.
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IAVTMD and TMDI is achieved after applying these
closed-form expressions for optimal design parameters. As
per the coauthor’s suggestions, the applications of IAVTMD
and TMDI for multi-degree of freedom systems (MDOF)
can be a future research perspective.
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