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A B S T R A C T

Nonreciprocity and topologically protected wave propagation have significant implications on
how energy and information are transmitted or guided within materials to control or mitigate
its effects. The major challenge in tailoring interface mode arises from challenges related to
the customizability and linearity of interface lattice, moreover, there is a scarce of experi-
mental analysis reported in the literature. Our study has focused on obtaining topologically
protected nontrivial interface modes at a specific frequency by breaking the inversion symmetry
through novel hourglass metastructure both theoretically and experimentally. Detailed work on
wave transmission, dispersion, and bandgap analysis are carried out considering topological
metamaterials. New cellular configurations based on regular honeycomb and auxetic cells, and
variations of their geometric parameters responsible for interface mode tuning are reported here.
A generalized theoretical scheme for different combinations of the hourglass lattice is derived at
the interface, and consequent energy harvesting and damping prospects are reported. Analytical
modeling of topological metamaterial lattice along with numerical simulation, additive layer
manufacturing (3D printing), and finally experimental validations are carried out to justify
the behavior and reveal the underlying physics responsible for its unique behavior. Three
types of configurations including hourglass lattice at the interface define a general framework
for introducing lattice-based imperfections in the continuous elastic structure for potential
engineering applications. The localized topological interface mode obtained within the bandgap
can be tuned significantly with the help of latticed hourglass and may be utilized for the purpose
of wave guiding, wave focusing, and energy harvesting within the isolation zone.

. Introduction

Wave propagation including wave manipulation and waveguiding in engineered microstructures have been extensively pursued
y the researchers associated with condensed matter physics [1]. With reference to acoustic, elastic, electromagnetic, and electronic
ield, topologically protected energy transmission by waves is a well studied phenomenon in physics and engineering [2]. Various
ields of applications such as aerospace, acoustics [3,4], electronics [5], photonics [6], mechanics [7], and optomechanics [8] have
rought out the characteristics of such wave propagation. Recently, this study has been extended to elastic wave propagation by
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Nomenclature

𝜒 Modified stiffness parameter
𝛾 Stiffness parameter
𝜇 Wave number
𝜈 Poisson’s ratio
𝛺 Non-dimensional frequency
𝜔 Natural frequency
𝜔𝑟 Natural resonant frequency
𝜏 Non-dimensional time scale
𝜃𝑐 Cell lattice angle
𝐸𝑠 Modulus of Elasticity of hourglass
𝐻 Height of hourglass metastructure
ℎ Height of single dome of hourglass
𝑘 Mean stiffness value of spring
𝑘1 Spring stiffness higher than mean stiffness
𝑘2 Spring stiffness lower than mean stiffness
𝑙𝑐 Beam length of regular honeycomb and auxetic cells
𝑚 Mass of unit cell
𝑟 Radius of curvature joining double dome
𝑡 Thickness of hourglass metastructure
𝑡𝑐 Beam thickness of regular honeycomb and auxetic cells
𝑢𝑐,0 Displacement of the 𝑐th mass in 0th unit cell
𝑢𝑣,𝑗 Displacement of the 𝑣th mass in 𝑗th unit cell
𝑢𝑤,𝑗 Displacement of the 𝑤th mass in 𝑗th unit cell

metamaterials whose distinctive material properties are due to their structure and geometry, rather than their inherent material
property [9–12]. These materials have periodic structures or systems that exhibit spatial periodicity manifested by internal system
geometry, material phases, or repeating boundary conditions. The engineering of band structure using metamaterials serves as a
unifying subject of research in a vast range of physical domains, including directional propagation, wave focusing [13], acoustic
cloaking [14], negative Poisson’s ratio [15], negative refraction [16], wave alteration [17], topological edge states [11,18],
multistable metamaterials [19] and subwavelength bandgaps [20].

More recently, in this direction a novel class of wave mechanisms known as ‘‘topological edge states’’ [18], has been explored
rom the mechanical wave propagation perspective. The ability of a wave to travel in a single direction along a surface without
ack-scattering, regardless of the existence of defects or disorder, is known to be inspired by the electronic edge states occurring in
opological insulators, and possess a striking and technologically promising area of research. One of the important properties that
an be achieved to understand how information and energy are transmitted using wave-based phenomena is the band topology in
opological metamaterials, which results in unique characteristics like localized interface mode within the bandgap [21,22].

Two phononic crystal lattices with different configurations combined with each other would lead to edge state modes within
he bandgap [18,23,24]. The present study is based on linking periodic assemblies that are inverted copies of each other and
reaking inversion symmetry within a unit cell of a periodic medium. The one-dimensional linear chain incorporated comprises
he spring–mass lattice with the stiffness values of the springs alternating about the mean. The interface mass acts as a point of
reaking symmetry, and the phenomena of a localized mode within the bandgap are observed [18,25–28]. In order to study the
ynamic response, the springs attached adjacent to the interface mass are replaced with the hourglass metastructures [29–31] of
ifferent classes namely auxetic and honeycomb, and integrated into the system. The hourglass metastructure behaves as a spring
n the linear chain, as it has been observed that the equivalent stiffness of the hourglass metastructure can be assumed to be
inear within a small deflection range. It is required to create an ideally dome-shaped structures, popularly known as synclastic
hapes [32], using these auxetic structures [33–35] with negative Poisson’s ratios. On a large scale, it is presumable that the
oneycomb is a continuous part or sample made up of a sufficient number of periodic unit cells, enabling homogeneity of its
verall mechanical properties. In order to analyze the system as a whole, periodic boundary conditions were applied using the Bloch
ave formulation [36,37]. The band diagrams contain information on bandgaps, frequency, and interface modes that have been
btained by applying Floquet–Bloch periodic boundary conditions with the consideration of topological effects [37–39]. Recently
dvancements have been made in the realization of interface modes in topological lattices using beams with periodically varying
tructures [18,26,40] and symmetry-breaking principles, where the idea of alternating spring stiffness is created by periodically
hanging the cross-section of beam [41,41]. Topological metamaterials provide an exciting pathway towards materials with robust
unctionalities [42]. Origami and Kirigami, have recently emerged as prototypical routes for the design of mechanical metamaterials
ue to their characteristics such as easy fabrication and folding patterns, bistability, and self-assembly ability [43]. Moreover, the
2
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Fig. 1. (a) Details of geometric specifications of hourglass lattice metastructure along with the honeycomb and auxetic cellular configurations and their dimensions.
(b) Schematic representation of a novel 1D periodic spring–mass system with the introduction of hourglass metastructure at the interface junction to break the
inversion symmetry. (c, d, e) Representation of homogeneous type hourglass lattice metastructure with the honeycomb, auxetic and solid shell configurations.

effect of material damping on the topological interface states and energy localization performance is analyzed and it is found that
at high frequencies, the damping could play a vital role in the strength of the interface state [44,45]. Very little literature has been
reported on the application of such metastructures as the customizable interface lattice in topological metamaterials. The challenges
to achieving singularity at its precise interface location pose major challenges to implementing it practically. We demonstrated
experimentally and validated the claims made in this report so far. However, the experimental demonstration of interface mode using
spring–mass based one-dimensional lattice and the tuning of the same by inserting hourglass metastructure is currently reported in
this study. Further, the piezoelectric transduction is used for transforming vibrational energy into electrical energy such that the
proposed system can also be used for energy harvesting [46].

The primary goal of this research is to create interface modes in topological metamaterial lattices with the aid of metastructures,
which results in a novel idea for obtaining high amplitude response within the bandgap that may be used for wave focusing
at particular frequencies. With the integration of tunable metastructure, we successfully achieve our main objective of realizing
interface modes in topological metamaterial lattice. Experimental validations were conducted using Laser Doppler Vibrometer (LDV)
to analyze the complete dynamics and wave propagation behavior. Additionally, we have demonstrated the idea of energy harvesting
within the bandgap at specific frequencies, which has promising applications in the areas of wave tuning, and energy harvesting.
The interdependency of hourglass stiffness with its constitutive cell angle has been utilized to tune the interface modes, which has
good potential for energy harvesting. This is a new idea for energy harvesting inside the bandgap that has not been reported in the
literature.

2. Mathematical modeling

The existence of interface modes in topological metamaterial can be exemplified with an one-dimensional diatomic spring mass
lattice chain (shown in Fig. 1) which comprises two sublattices joined through an interface, namely the sublattice - A and sublattice -
B. The sublattice chains are made up of diatomic unit cells comprising of identical masses 𝑚 and alternating springs having stiffnesses
𝑘1 and 𝑘2 respectively. Arrangement of the entire topological lattice is such that at both the sides of the interface mass, stiffness of
the spring attached on adjacent sides is the same i.e. either 𝑘1 or 𝑘2. The novel hourglass metastructure [30] possessing stiffness 𝑘ℎ
is inserted at the adjacent sides of the interface mass keeping rest of the lattice intact as shown in Fig. 1. The sublattices mounted
on adjacent sides of the interface mass are inverted copies (mirror images) of each other which results in topological polarization,
achieved by breaking symmetry.

The governing equations of motion under free vibration for a unit cell 𝑗 on sublattice - A of topological metamaterial can be
obtained as,

𝑚�̈�𝑣,𝑗 + 𝑘2(𝑢𝑣,𝑗 − 𝑢𝑤,𝑗 ) + 𝑘1(𝑢𝑣,𝑗 − 𝑢𝑤,𝑗−1) = 0 (1)

𝑚�̈�𝑤,𝑗 + 𝑘2(𝑢𝑤,𝑗 − 𝑢𝑣,𝑗 ) + 𝑘1(𝑢𝑤,𝑗 − 𝑢𝑣,𝑗+1) = 0 (2)

Similarly, the governing equations of motion for a unit cell 𝑗 on sublattice - B of topological metamaterial can be obtained as,

𝑚�̈� + 𝑘 (𝑢 − 𝑢 ) + 𝑘 (𝑢 − 𝑢 ) = 0 (3)
3

𝑣,𝑗 1 𝑣,𝑗 𝑤,𝑗 2 𝑣,𝑗 𝑤,𝑗−1



Journal of Sound and Vibration 562 (2023) 117814H. Mirani et al.

T
a

𝑚�̈�𝑤,𝑗 + 𝑘1(𝑢𝑤,𝑗 − 𝑢𝑣,𝑗 ) + 𝑘2(𝑢𝑤,𝑗 − 𝑢𝑣,𝑗+1) = 0 (4)

The governing equations of motion for the interface mass (interface unit cell consisting of two masses having displacements 𝑢𝑐,0 and
𝑢𝑤,0) are given by,

𝑚�̈�𝑐,0 + 𝑘ℎ(𝑢𝑐,0 − 𝑢𝑤,−1) + 𝑘ℎ(𝑢𝑐,0 − 𝑢𝑤,0) = 0 (5)

𝑚�̈�𝑐,0 + 𝑘ℎ(2𝑢𝑐,0 − 𝑢𝑤,−1 − 𝑢𝑤,0) = 0 (6)

𝑚�̈�𝑤,0 + 𝑘ℎ(𝑢𝑤,0 − 𝑢𝑐,0) + 𝑘2(𝑢𝑤,0 − 𝑢𝑣,1) = 0 (7)

For expressing the above derived governing equations into the non-dimensional form, a non-dimensional time scale 𝜏 =

(

√

𝑘
𝑚

)

𝑡

is incorporated, where 𝑡 is time.

2.1. Relating 𝛾 parameter with the stiffness of auxetic and honeycomb hourglass lattice

Given that the stiffness corresponding to the regular honeycomb hourglass lattice is denoted as 𝑘ℎ and stiffness corresponding
to the auxetic hourglass lattice is denoted as 𝑘𝑎, we incorporate these lattices in the arrangement as shown in Fig. 1(b) having 𝑘ℎ
at the adjacent side of interface mass and rest of the lattice comprising of linear springs with stiffness 𝑘1 and 𝑘2 respectively. A
similar arrangement can also be made for auxetic hourglass metastructures configuration having stiffness 𝑘𝑎 at the adjacent sides
of the interface mass. Considering,

𝑘1 = 𝑘(1 + 𝛾) and 𝑘2 = 𝑘(1 − 𝛾) (8)

In order to introduce tunability of the stiffnesses that depend on the geometrical parameters of the hourglass, we take 𝑘1 (which
represents higher stiffness) as stiffness of regular honeycomb 𝑘ℎ and 𝑘2 (which represents lower stiffness) as stiffness of auxetic
hourglass 𝑘𝑎. The linear stiffness is approximated for small deflections of the hourglass lattice [30] which implies,

𝑘ℎ = 𝑘(1 + 𝛾) and 𝑘𝑎 = 𝑘(1 − 𝛾) (9)

On comparing the value of 𝛾 from Eq. (9), we further obtain

𝛾 =
(

𝑘ℎ
𝑘

− 1
)

=
(

1 −
𝑘2
𝑘

)

(10)

𝛾 =
𝑘ℎ − 𝑘2
𝑘ℎ + 𝑘2

(11)

Eq. (11) shows that the 𝛾 parameter is dependent on the stiffness of hourglass metastructure 𝑘ℎ and thereby reflects its dependency
on the cell lattice angle 𝜃𝑐 present on the dome shape of the hourglass metastructure.

𝛾 = 𝑓
(

𝑘ℎ
)

= 𝑓
(

𝜃𝑐
)

By using the load–deflection relationship available related to the dome-shaped hourglass metastructure with lattice on its dome
from our previously published results [30], the final expression for the external load P and moment 𝑀𝑅 generated corresponding
to the deflection of a single dome of hourglass metastructure is given by

𝑃 =
(

𝑡𝑐
𝑙𝑐

)3 𝐸𝑠
cos 𝜃𝑐 sin 𝜃𝑐

𝛿
(1 − 𝜈2)𝑀𝑎3

[

(ℎ − 𝛿)(ℎ − 𝛿
2
)𝑡 + 𝑡3

]

(12)

Representing the load–deflection relationship from Eq. (12) as a simplified cubic polynomial having 𝐾1, 𝐾2 and 𝐾3 as controlling
parameters of nonlinear stiffness in terms of 𝛿, one can express

𝑃 = 𝐾1𝛿 +𝐾2𝛿
2 +𝐾3𝛿

3 (13)

where,

𝐾1 = (𝐶1 𝑡 ℎ2 + 𝐶1 𝑡3), 𝐾2 = −
( 3
2
ℎ 𝑡 𝐶1

)

, 𝐾3 =
( 1
2
𝑡 𝐶1

)

𝐶1 =
(

𝑡𝑐
𝑙𝑐

)3 𝐸𝑠 cos 𝜃𝑐
(

ℎ𝑐
𝑙𝑐

+ sin 𝜃𝑐

)

(sin 𝜃𝑐 )2

1
(1 − 𝜈2)𝑀𝑎2

1
𝑀

=
[

𝑟 + 1
𝑟 − 1

− 2
log 𝑟

]

𝜋
( 𝑟
𝑟 − 1

)2
, where 𝑟 = 𝑎

𝑏

o obtain the relation of load–deflection, assuming it as a combination of two nonlinear springs in series with spring constants 𝐶1
nd 𝐶2 resulting in satisfying the force characteristics 𝑃1 = 𝐶1𝑥𝑁 and 𝑃2 = 𝐶2𝑦𝑁 which after expressing them as 𝑧 = 𝑥 + 𝑦 lead to

the following expression as obtained in [30], and reported here for completeness.
4
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For odd power of 𝑁 ; 𝑁 = 2𝑛 + 1

𝑃 = 1

⎛

⎜

⎜

⎜

⎝

(

1
𝐶1

)

1
2𝑛 + 1 +

(

1
𝐶2

)

1
2𝑛 + 1

⎞

⎟

⎟

⎟

⎠

2𝑛+1
𝑍2𝑛+1 (14)

or even power of 𝑁 ; 𝑁 = 2𝑛

𝑃 = 1

⎛

⎜

⎜

⎜

⎝

(

1
𝐶1

)

1
2𝑛 +

(

1
𝐶2

)

1
2𝑛

⎞

⎟

⎟

⎟

⎠

2𝑛
𝑍2𝑛 (15)

onsidering the hourglass metastructure as the series combination of two identical nonlinear springs expressed by Eq. (13) upon
ncorporating Eqs. (14) and (15), yields the expression of equivalent load 𝑃𝑒𝑞 for homogeneous configuration as

𝑃𝑒𝑞 =
𝐾1
2
𝛿𝑒𝑞 +

𝐾2
4
𝛿2𝑒𝑞 +

𝐾3
8
𝛿3𝑒𝑞 (16)

The experimental results and load–deflection plot mentioned in [30] take into consideration only the linear relation between load
and deflection since in the small deflection range, it shows a linear relationship. Finally, relating the stiffness 𝑘ℎ to lattice cell angle
𝜃𝑐 i.e., 𝑘ℎ = 𝑓

(

𝜃𝑐
)

, we can relate the dependency of 𝛾 to 𝜃𝑐 as 𝛾 = 𝑓
(

𝜃𝑐
)

.
In order to obtain the dispersion relationship using Bloch formulations, an infinite periodic diatomic lattice having identical

masses and alternating spring stiffness as 𝑘1 and 𝑘2 is considered without the presence of interface mass which earlier acted as a
point of breaking symmetry [47]. Let the governing equation of the unit cell 𝑗 of the diatomic periodic lattice be given as,

𝑚�̈�𝑣,𝑗 + 𝑘1(𝑢𝑣,𝑗 − 𝑢𝑤,𝑗 ) + 𝑘2(𝑢𝑣,𝑗 − 𝑢𝑤,𝑗−1) = 0 (17)

𝑚�̈�𝑤,𝑗 + 𝑘1(𝑢𝑤,𝑗 − 𝑢𝑣,𝑗 ) + 𝑘2(𝑢𝑤,𝑗 − 𝑢𝑣,𝑗+1) = 0 (18)

Substituting the value of 𝑘1 = 𝑘(1 + 𝛾) and 𝑘2 = 𝑘(1 − 𝛾) in Eqs. (17) and (18) results in the non-dimensional form as:

�̈�𝑣,𝑗 + 2𝑢𝑣,𝑗 − (1 + 𝛾)𝑢𝑤,𝑗 − (1 − 𝛾)𝑢𝑤,𝑗−1 = 0 (19)

�̈�𝑤,𝑗 + 2𝑢𝑤,𝑗 − (1 + 𝛾)𝑢𝑣,𝑗 − (1 − 𝛾)𝑢𝑣,𝑗+1 = 0 (20)

The plane wave solution of the form 𝑢𝑗 = (𝑢𝑣,𝑗 , 𝑢𝑤,𝑗 ) = 𝐴(𝜇)𝑒𝑖(𝛺𝜏+𝜇𝑗) is implemented in Eqs. (19) and (20) which results in the eigen
value problem of Eq. (21), where 𝛺 is used to represent frequency, 𝑖 =

√

−1 is imaginary number and 𝜇 is non-dimensional wave
number.

(

2 −𝛺2 −(1 + 𝛾) − (1 − 𝛾)𝑒−𝑖𝜇

−(1 + 𝛾) − (1 − 𝛾)𝑒𝑖𝜇 2 −𝛺2

)(

𝐴𝑣
𝐴𝑤

)

= 𝛺2
(

𝐴𝑣
𝐴𝑤

)

(21)

aking into account wavenumber along the first Irreducible Brillouin zone (IBZ) i.e. 𝜇 ∈ [0, 𝜋] and evaluating the expression
eads to dispersion relation 𝛺 depending upon 𝜇 and 𝛾.

𝛺 =
√

2 ±
√

2 + 2𝛾2 + 2(1 − 𝛾2) cos𝜇 (22)

he two solutions correspond to optical branch 𝛺1 =
√

2 +
√

2 + 2𝛾2 + 2(1 − 𝛾2) cos𝜇 and acoustic branch 𝛺2 =
√

2 −
√

2 + 2𝛾2 + 2(1 − 𝛾2) cos𝜇 can be utilized to obtain the plots of the dispersion relation for varying values of 𝛾 as represented
n Fig. 2. For 𝛾 = 0, the bandgap is zero leading to the acoustic and optical branch meeting each other when evaluated at 𝜇 = 𝜋.

hile for 𝛾 ≠ 0 the non-dimensional parametric width of the bandgap is given by

𝛺 ∈
(

√

2(1 − |𝛾|),
√

2(1 + |𝛾|)
)

(23)

The eigenvector corresponding to the optical and acoustic branch can be obtained respectively as
⎡

⎢

⎢

⎣

−
(𝛾 + 1)𝑒−𝑖𝜇 − 𝛾 + 1

√

2 − 2𝛾2 cos𝜇 + 2𝛾2 + 2 cos𝜇
1

⎤

⎥

⎥

⎦

and
⎡

⎢

⎢

⎣

(𝛾 + 1)𝑒−𝑖𝜇 − 𝛾 + 1
√

2 − 2𝛾2 cos𝜇 + 2𝛾2 + 2 cos𝜇
1

⎤

⎥

⎥

⎦

. Also evaluating them at 𝜇 = 𝜋, we obtain the eigenvector corresponding to the frequency of

symmetric mode which is given by
(

𝐴𝑣
𝐴𝑤

)

= 1
√

2

(

1
1

)

while the eigenvector corresponding to the frequency of anti-symmetric mode

s given by
(

𝐴𝑣
)

= 1
√

(

1
)

.

5

𝐴𝑤 2 −1
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Fig. 2. (a) Acoustic and optical mode frequency variation with the 𝛾 parameter along with proportional variation of included angle 𝜃𝑐 (ranging from auxetic to
honeycomb cell). The value of 𝜇 = 𝜋 and showing interdependence on lattice of different hourglass metastructures (b) Variation of non-dimensional frequency
𝛺 for optical and acoustic mode with respect to varying values of 𝛾 and wave number 𝜇.

The anti-symmetric vector will correspond to a higher frequency from Eq. (23) as the value of 𝛾 changes from negative to positive
due to band inversion represented in Fig. 2. The localized modes are obtained at the interface of lattices where symmetry breaking
happens i.e. 𝛾 < 0 and 𝛾 > 0 in case of hourglass mounted at adjacent sides of the interface mass. The cell lattice angle (𝜃𝑐) of the
hourglass metastructure can be related to the stiffness parameter 𝛾 of the lattice as mentioned in the same section earlier where the
value of 𝛾 varies from −1 to 1.

2.2. Analytical computation of interface modes

It is known that a non-trivial localized mode is obtained when the two periodic lattices having different Zak phases [48–50] are
attached in such a way that one lattice is a mirror copy of another and the point of symmetry breaking assists in obtaining the non-
trivial localized mode within the bandgap. The frequency at which the localized mode is observed at the interface in a linear chain
can be calculated and the corresponding mode shapes can be derived explicitly. For the purpose of studying the harmonic response
of the topological lattice with symmetry broken at the interface, we would consider a finite lattice upon having a considerably large
number of unit cells on either side of the interface mass, which would result in the boundary effects being negligible. The unit cells
are numbered by parameter 𝑗 ranging from 𝑗 = −𝑁 to 𝑁 , while the position of the interface mass is defined at 𝑗 = 0. A harmonic
solution of the form 𝑢𝑗 (𝑡) = 𝑢𝑗𝑒𝑖𝛺𝜏 is imposed in the bandgap frequencies to understand the lattice dynamics. The interval of the
bandgap frequency may be expressed as

𝛺 ∈
[

√

2(1 − |𝛾|),
√

2(1 + |𝛾|)
]

(24)

or 𝛺 > 2 (25)

For the implementation of the harmonic solution to the interface mass, we would relate the displacements of adjacent neighboring
unit cells 𝑗 − 1 and 𝑗 on any side of the interface mass either left or right. The masses attached to the interface mass 𝑚𝑐,0 are 𝑚𝑤,𝑗−1
and 𝑚𝑤,𝑗 on the left side and right side sublattices respectively. To relate how the displacements of the diatomic atoms of two
different unit cells vary as we move from center to right side or left side, we would write the governing equations of the masses of
two adjacent unit cells 𝑗 − 1 and 𝑗. The governing equations of the two masses 𝑚𝑤,𝑗−1 and 𝑚𝑣,𝑗 where 𝑗 > 0 (since we are considering
the unit cells on the right-hand side of the interface mass 𝑚𝑐,0) are as follows :

𝑚�̈�𝑣,𝑗 + 𝑘1(𝑢𝑣,𝑗 − 𝑢𝑤,𝑗 ) + 𝑘2(𝑢𝑣,𝑗 − 𝑢𝑤,𝑗−1) = 0 (26)

𝑚�̈�𝑤,𝑗−1 + 𝑘2(𝑢𝑤,𝑗−1 − 𝑢𝑣,𝑗 ) + 𝑘1(𝑢𝑤,𝑗−1 − 𝑢𝑣,𝑗−1) = 0 (27)

The non-dimensional form of Eqs. (26) and (27) would result in

(2 −𝛺2)𝑢𝑣,𝑗 − (1 + 𝛾)𝑢𝑤,𝑗 − (1 − 𝛾)𝑢𝑤,𝑗−1 = 0 (28)

(2 −𝛺2)𝑢 − (1 − 𝛾)𝑢 − (1 + 𝛾)𝑢 = 0 (29)
6
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The relationship between displacements of two adjacent unit cells on the right side of the interface mass would be revealed after
rearranging the terms of Eqs. (28) and (29). On the left side of the interface mass, a similar procedure can be used to determine the
relationships between neighboring unit cells.

(

𝑢𝑣
𝑢𝑤

)

𝑗
=

⎛

⎜

⎜

⎜

⎜

⎝

𝛾 + 1
𝛾 − 1

2 −𝛺2

1 − 𝛾

−2 −𝛺2

1 − 𝛾
(2 −𝛺2)2 − (𝛾 − 1)2

1 − 𝛾2

⎞

⎟

⎟

⎟

⎟

⎠

(

𝑢𝑣
𝑢𝑤

)

𝑗−1
= 𝑇

(

𝑢𝑣
𝑢𝑤

)

𝑗−1
(30)

where the notation 𝑇 is used to denote the Transfer matrix which relates displacement of masses in the two adjacent unit cells.
Similarly, we can also relate displacement of masses of interface unit cell and the 𝑁th unit cell using the Transfer Matrix method

𝑢𝑁 = 𝑇𝑁𝑢0 (31)

where 𝑢0 =
(

𝑢𝑐,0
𝑢𝑤,0

)𝑇

and 𝑢𝑁 =
(

𝑢𝑣,𝑁
𝑢𝑤,𝑁

)𝑇

are the vector components corresponding to the displacements of masses of the interface

unit cell and the 𝑁th unit cell respectively. The relation obtained in Eq. (31) depicts that as we move away from the interface unit
cell to either left or right the displacements of the unit cells decay exponentially with a power of transfer matrix [10]. Solution
of frequency is obtained when the eigenvectors found from the transfer matrix of the considered lattice would satisfy the decay
condition. In the bandgap frequency, the eigenvector of 𝑇 found corresponding to the eigenvalues which are less than 1 are

𝑒 =

(

2(𝛺2 − 2)(1 + 𝛾)
(𝛺2 − 2)2 + 4𝛾 +𝛺

√

(𝛺2 − 4)((𝛺2 − 2)2 − 4𝛾2)

)

(32)

he interface mass governing equation can be written as

2
(

1 − 𝛺2

2(1 + 𝛾)
𝑢𝑐,0

)

= (𝑢𝑤,0 + 𝑢𝑤,−1) (33)

lthough the sublattice at the adjacent sides of the interface mass is symmetric and there is a presence of a non-propagating localized
ode, the conditions being symmetric about the interface mass would lead to equal displacement movement for the masses which

re positioned adjacent to the interface mass
|

|

𝑢𝑤,0
|

|

= |

|

𝑢𝑤,−1
|

|

(34)

mplementing the wave solution to the above condition, we may write as 𝑢𝑤,−1 = 𝑒2𝑖𝜃𝑢𝑤,0 and form the governing equation in the
vector form as

𝑢0 =
(

𝑢𝑐,0
𝑢𝑤,0

)

=
⎛

⎜

⎜

⎝

𝑒𝑖𝜃 cos 𝜃

1 − 𝛺2

2(1 + 𝛾)

⎞

⎟

⎟

⎠

(35)

The decay condition as mentioned in Eq. (31) can be satisfied and we can have 𝑢0 as a non-trivial solution if and only if 𝑢 is in
the subspace which is spanned by 𝑒 eigenvector having eigenvalue less than 1, i.e. 𝑒 = 𝑠𝑢0 where 𝑠 is considered as a scalar value.

ow comparing the two eigenvectors as 𝑢0 and 𝑒 i.e. Eqs. (32) and (35); equating them with each other would lead to the explicit
expressions for the frequencies at which the localized modes are obtained.

𝑒 = 𝑢0 (36)

𝑒 =
[

𝑒1
𝑒2

]

=
[

𝑢𝑐,0
𝑢𝑤,0

]

(37)

his would lead to the computation of the two eigen vectors as
[

2(𝛺2 − 2)(1 + 𝛾)
(𝛺2 − 2)2 − 4𝛾 +𝛺

√

(𝛺2 − 4)((𝛺2 − 2)2 − 4𝛾2)

]

=
⎡

⎢

⎢

⎣

𝑒𝑖𝜃 cos 𝜃

1 − 𝛺2

2(1 + 𝛾)

⎤

⎥

⎥

⎦

(38)

Upon further solving, the expressions would lead to an equation whose root values of 𝛺 would give the frequency of the localized
mode. The component 𝑢𝑐,0 of the eigenvector 𝑢0 which is the corresponding mode shape for the interface unit cell comprising the
two masses is given by 𝑒𝑖𝜃 cos 𝜃. Hence, the component 𝑢𝑐,0 = 𝑒𝑖𝜃 cos 𝜃 can take the value as either 0 or 1 due to the condition of the
eigen vector 𝑒 being a scalar multiple of the interface unit cell mode shape 𝑢0 leading to

𝑒1
𝑢𝑐,0

=
𝑒2
𝑢𝑤,0

= 𝑐 (39)

2(𝛺2 − 2)(1 + 𝛾)
(

1 − 𝛺2

2(1 + 𝛾)

)

= (𝛺2 − 2)2 − 4𝛾 +𝛺
√

(𝛺2 − 4)((𝛺2 − 2)2 − 4𝛾2)𝑒𝑖𝜃 cos 𝜃 (40)

Substituting the value of 𝜃 = 𝜋∕2 in Eq. (40) would lead to the expression of following condition 𝑢𝑤,−1 = −𝑢𝑤,0 which can be further
expressed as |𝑢𝑤,−1| = |𝑢𝑤,0| and 𝑢𝑐,0 = 0; that makes the interface unit cell mode shape as symmetric.

2(𝛺2 − 2)(1 + 𝛾)
(

1 − 𝛺2 )

= 0 (41)
7
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Hence,

(𝛺2 − 2𝛾 − 2)(𝛺2 − 2) = 0 (42)

where non-zero value of 𝛾 would result in the value of 𝛺 as

𝛺 =
√

2 (43)

While substituting the value of 𝜃 = 0 in Eq. (40) would lead to the condition 𝑢𝑤,0 = 𝑢𝑤,−1, and by observing the expression of the
transfer matrix and eigenvector one can understand that the mode shape is antisymmetric with respect to the interface mass.

2(𝛺2 − 2)(1 + 𝛾)
(

1 − 𝛺2

2(1 + 𝛾)

)

= (𝛺2 − 2)2 − 4𝛾 +𝛺
√

(𝛺2 − 4)((𝛺2 − 2)2 − 4𝛾2) (44)

Solving Eq. (44), the roots of the equation may be obtained as
𝛺 =

√

2; which is symmetric and within the bandgap between acoustic and optical mode
𝛺 =

√

3 +
√

1 + 8𝛾2; which is antisymmetric and above the optical mode

𝛺 =
√

3 −
√

1 + 8𝛾2; which is antisymmetric and within the bandgap between acoustic and optical mode
Fig. 3(a) and (b) shows the occurrence of localized interface mode for topological lattice with regular honeycomb hourglass

etastructure incorporated; while, Fig. 3(c) and (d) corresponds to auxetic hourglass configuration mounted at adjacent side of
he interface. The first and second interface mode frequencies are related to symmetric and antisymmetric mode respectively
orresponding to 𝛾 > 0 in the expression 𝑘ℎ = 𝑘1 = 𝑘(1 + 𝛾) and 𝑘𝑎 = 𝑘2 = 𝑘(1 − 𝛾) following the arrangement at adjacent side

of interface mass shown in Fig. 1(b). This represents the case of hard-hard spring mass topological arrangement about the interface
mass (𝑘1−𝑘1) that is depicted in Fig. 4(a). The third interface mode frequency which is antisymmetric is obtained when the value of
𝛾 < 0. It can be interpreted that it represents the case of soft-soft spring mass topological arrangement (𝑘2 − 𝑘2) about the interface
mass where the interface mass is having the highest amplitude and the masses adjacent to the interface mass have an amplitude
of equal magnitude as depicted in Fig. 4(b). The second and the third frequency of the localized modes obtained are related to the
antisymmetric mode which indicates that the unit cells on both sides of the interface move in phase with zero phase difference;
while the first frequency mode is associated with the symmetric mode which implies unit cell on adjacent sides of the interface
mass move relative to each other with a phase difference of 𝜋. From Fig. 4(a) it can be observed that the alternate mass particles
are immobile since their normalized displacement is zero causing the remaining mass particles to oscillate about their equilibrium
positions. In the symmetric mode, the displacement of the interface mass is equal to zero while the adjacent masses oscillate about
their mean position but are in opposite phase. Fig. 4(b) depicts that the absolute displacements at any 𝑗th position in the spring–
mass lattice system having a topological arrangement with lower stiffness springs at the adjacent sides of the interface mass can be
easily obtained using the symmetric condition about the central interface mass. This is because the central interface mode would be
non-propagating and similar sub-lattice are attached at their adjacent sides. Hence, for the antisymmetric mode, the displacement
of the interface mass is non-zero. The displacement of adjacent masses are equal and in phase. Due to this reason, for the response
of 𝑘1 − 𝑘1 arrangement at the interface, we measure the response at the mass adjacent to the interface. Contrary to this, in the case
of the 𝑘2−𝑘2 arrangement, the response is measured at the interface mass. The normalized amplitude diagram as shown in Fig. 4(a)
and (b) assist in understanding the reason for measurement of response at those specific masses i.e. one on the interface while the
other on the mass adjacent to the interface for different cases.

The frequency response of the lattice can be found by considering a finite lattice, however, the length must be large enough so
that the boundary effects are negligible. Considering a topological metamaterial lattice consisting of 122 masses having diatomic
masses and alternating stiffness spring in one unit cell results in 61 unit cells out of which there is one interface unit cell at the
center and 30 unit cells on the left side and 30 on the right side respectively. The value of stiffness parameter 𝛾 is considered as
0.4 for numerical computation and the system is given a forced harmonic excitation at one end keeping the other end of the system
free. The dynamics of the complete lattice is governed by the following equation

�̃��̈�(𝜏) + �̃�𝑢(𝜏) = 𝑓 (𝜏) (45)

where the lattice is subjected to an externally applied harmonic force 𝑓𝑐𝑜𝑠(𝛺𝜏). Assuming the solution of the form 𝑢 (𝜏) = 𝑢𝑒𝑖𝛺𝜏 , we
can reduce the equation to the following form as,

(

�̃� −𝛺2�̃�
)

𝑢 = 𝑓 (46)

Eq. (46) can be transformed into eigenvalue problem by taking 𝑓 = 0 and can be used to find out the eigen frequencies of the chain,
such that

(

�̃� −𝛺2�̃�
)

𝑢 = 0 (47)

The band gap is obtained for the diatomic periodic chain of spring mass. Converse to this, a localized mode is obtained at the interface
mass within the bandgap when the symmetry of the periodic lattice is broken in such a way that the left side sub-lattice and right
side sub-lattice of interface mass are mirror replica of each other, as shown in Fig. 3. Acoustic and optical modes are observed and
in between them an interface mode at frequency 𝛺 =

√

2 is observed in the bandgap frequency when the stiffness parameter 𝛾 > 0.
Another interface mode is obtained above the optical mode at frequency 𝛺 =

√

3 +
√

1 + 8𝛾2 for the same configuration. Considering
8
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Fig. 3. (a) Frequency response function plot for a 1D topological metamaterial spring–mass lattice with the regular honeycomb hourglass metastructure attached
to the opposite sides of the interface mass: identical masses 𝑚, 𝑘1 = 𝑘(1 + 𝛾), and 𝑘2 = 𝑘(1 − 𝛾), 𝛾 = 0.4. In the central region of the bandgap, a localized interface
mode is seen at the interface mass. (b) Natural frequencies of the finite 1D topologically arranged mechanical metamaterial spring–mass lattice comprising 122
masses with regular honeycomb hourglass metastructure 𝑘ℎ attached at both the adjacent sides of the interface mass exhibiting resonating and interface modes
over the range of non-dimensional frequencies. (c) Frequency response function plot for 1D topological metamaterial spring–mass lattice : identical masses 𝑚,
𝑘1 = 𝑘(1 + 𝛾) and 𝑘2 = 𝑘(1 − 𝛾), 𝛾 = −0.4 with auxetic re-entrant angle hourglass metastructure attached at the adjacent sides of the interface mass. A localized
interface mode is observed at the interface mass within the bandgap from the start point of the bandgap to its center. (d) Natural frequencies of the finite 1D
topologically arranged mechanical metamaterial spring–mass lattice comprising 122 masses with auxetic hourglass metastructure 𝑘𝑎 attached at both the adjacent
sides of the interface mass exhibiting resonating and interface modes over the range of non-dimensional frequencies.

the value of stiffness parameter as 𝛾 < 0 and springs with stiffness lesser than the mean value attached at the adjacent sides of the
interface mass results in interface mode which is obtained anywhere from center of the bandgap to the left-hand side of the bandgap
depending on the value of 𝛾 parameter at the frequency 𝛺 =

√

3 −
√

1 + 8𝛾2. It is observed that as the value of stiffness parameter
𝛾 changes from positive to negative, the symmetric mode obtained for 𝛾 > 0 within the bandgap gets converted into the localized
anti-symmetric mode for 𝛾 < 0. The amplitude obtained at the interface mass is large enough than the desired one which can be used
for various applications like energy harvesting. The localized interface mode obtained within the bandgap of the lattice structure
resembles a sharp peak of base displacement and gives a better illustration of guiding the wave at a precise frequency. Implementing
the hourglass metastructures, instead of linear springs at the position adjacent to the interface mass, we can have a new way of
energy harvesting in topologically protected edge states with the help of hourglass lattice-based mechanical metamaterials due to the
customizable stiffness of hourglass possible from the presence of lattice on its dome shape. The energy harvested would be dependent
on the cell angle (𝜃𝑐 ) of the hourglass metastructures implemented in the topological metamaterial lattice. The stiffness of hourglass
metastructures would correspond to honeycomb lattice when stiffness parameter 𝛾 > 0, and it would correspond to auxetic lattice
when 𝛾 < 0. For distinguishing between bandgap and interface mode, we considered the periodic diatomic lattice without interface
mass and without breaking symmetry which would result in the bandgap present in the frequency response function plot of the
diatomic lattice where vibration can be isolated. For the realization of interface mode within the bandgap, we consider the lattice
comprising 122 masses out of which 60 masses are on the left side of the interface unit cell corresponding to the left-hand diatomic
9
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Fig. 4. Considering lattice with 122 masses attached using springs (a) Normalized amplitude versus mass mode number with the 𝑘1 − 𝑚 − 𝑘1 arrangement at
djacent sides of interface mass having 𝛾 = 0.4 about the interface frequency at 𝛺 =

√

2. (b) Normalized amplitude versus mass mode number with the 𝑘2−𝑚−𝑘2
rrangement at adjacent sides of interface mass having 𝛾 = - 0.4 about the interface frequency at 𝛺 = 1.2206.

ublattice and 60 masses on the right side of the interface unit cell corresponding to right-hand diatomic sublattice. Since the system
s one dimensional, we would assume the boundary conditions at the extreme left end of the sublattice is given a harmonic excitation
isplacement of 𝑢𝑤,−30 = cos (𝛺𝜏) for (𝑗 = −30) while keeping the extreme right end of the sublattice free. The frequency response
f the lattice is taken at the interface unit cell of the topological metamaterial lattice. The displacement for the center-mass can
e obtained by formulating the eigenvalue problem given in Eq. (47). We observed that the regular diatomic lattice with identical
asses and alternating springs does not support any localized modes within the bandgap. In the case where symmetry is broken,

here is a localized mode obtained within the bandgap. The frequency at which the interface mode is obtained within the bandgap
s predicted by the analytical solution, which is derived explicitly using Eq. (44). These frequencies support the localized interface
odes for various arrangements of the lattice, i.e., 𝑘1 −𝑘1 (hard-hard) or 𝑘2 −𝑘2 (soft-soft) spring arrangement at the adjacent sides

f the interface mass.

. Experimental method

.1. Additive manufacturing of 3D printed hourglass metastructure samples

The double dome of the hourglass metastructure is connected through the radial surface to avoid any stress concentration. The
AD model is converted to a STereoLithography file (STL) to fabricate additive manufactured samples. The 3D printing material
CTPE is flexible in nature, procured from Taulman 3D and utilized for printing the hourglass metastructure samples using Ultimaker
.0 Extended 3D printer having a multi-material printing facility. The filament diameter of the PCTPE is 2.85 mm. The mechanical
roperties of PCTPE material are : density 𝜌 = 1.25 gm/cm3, Poisson’s ratio 𝜈 = 0.285, and Modulus of Elasticity 𝐸 = 73 MPa,
espectively. Specifications of 3D printing and its associated control parameters are provided in Table 1. Fig. 5 shows the three
ifferent types of 3D printed hourglass samples.

.2. Dynamic testing of the hourglass samples

Non-contact vibration measurement techniques are adapted for measuring the dynamic response of hourglass metastructure.
hree samples of the hourglass, namely regular honeycomb, auxetic, and solid shell were 3D printed and their responses were
ompared by carrying out dynamic testing using the 3D Laser Doppler Vibrometer (LDV) of Polytec. The samples were mounted on
he Electrodynamic LDS shaker system (V201). The hourglass metastructure samples are attached to the aluminum plate at the top
nd bottom. The hourglass metastructures are placed between the two plates in a sandwiched manner upon which retro-reflective
ape is attached which is used to reflect the incident laser beam, as shown in Fig. 6. Laser sensor heads recorded the velocity of the
ibrating surface by measuring the phase shift of incident and reflected laser beam from it. At the same time, NI-DAQ systems are
sed for data acquisition and signal processing. Base excitation technique was used to determine the transmissibility of hourglass
amples for which 1600 FFT lines with pseudo-random signal were provided by the LDS shaker. Experiments were performed for an
xcitation frequency range of 0 to 300 Hz, with two different gains of g = 1 and g = 1.6, and corresponding displacement readings
f top and bottom aluminium plates of hourglass metastructure is recorded. In turn, from the measured data, transmissibility was
alculated. The recorded data was post-processed with a Saitzky-Golay filter with frame length 5 and of order 1, thereby filtering
10
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Fig. 5. 3D printed hourglass samples using PCTPE (Plasticized Copolyamide Thermoplastic Elastomer) material with different lattices namely (a) honeycomb (b)
auxetic and (c) solidshell respectively. Hourglass metastructures with different cellular lattices are designed using the CAD modeling software SolidWorks with
specified dimensions of the free height of the hourglass metastructure, H = 24 mm (the height of each dome is h = 12 mm). The spherical radius of domes is
40 mm, and the thickness in the radial direction is 2 mm, while the base radius is 38 mm.

Table 1
3D printing detailed specifications for hourglass metastructures.

Sr. No. Specifications in 3D printing Value (unit)

1 3D Printing material PCTPE 2.85 mm nominal diameter
2 Thickness of layer height 0.15 mm
3 Infill density 100%
4 Infill pattern Triangular
5 Speed of printing 70 mm/s
6 Support placement Support overhang angle 45 ◦C
7 Support pattern Zig-zag (auxetic and solid shell) gyroid (honeycomb lattice)
8 Print temperature 240 ◦C
9 Temperature of Built plate 90 ◦C
10 Support density 20%
11 Support line distance, infill layer support line distance 2.5 mm (both)
12 Type of Built plate adhesion Brim, raft

Fig. 6. (a), (b) and (c) shows dynamic testing of hourglass sample using LDS shaker up to frequency range of 300 Hz with the dead weight of 100 gm mounted
at the top of hourglass sample with LDV laser beam incident.
11
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Fig. 7. 3D Hourglass printed samples dynamically tested using LDS shaker with LDV data acquisition system having gain (a) g = 1 and (b) g = 1.6 upto 300 Hz.

the noise. The dead weight of the aluminium plate mounted on the hourglass sample was 100 gm. The stiffness of the hourglass
sample was measured by calculating the natural frequency of the fundamental mode. The peak frequency in Hertz for the auxetic,
regular honeycomb, and solid shell obtained experimentally came out to be 105.5 Hz, 115 Hz, and 251.4 Hz, respectively, which
can be verified from Fig. 7(a) and (b). The masses of hourglass metastructures were 6.05 gm, 4.97 gm, and 12.67 gm, respectively.
Since the mass of hourglass is very small compared to the dead weight applied, the effect of mass of hourglass is neglected for
natural frequency estimation. Accordingly, the stiffness of honeycomb, auxetic and solid shell hourglass were obtained as 52 N/mm,
43.94 N/mm, and 249.51 N/mm, respectively. The natural frequencies were obtained experimentally from the transmissibility plots
through the base excitation technique.

3.3. Experimental setup of topological metamaterial

In order to obtain a non-trivial localized interface mode experimentally, we considered 12 periodic unit cells comprising 24
masses connected by springs of alternate stiffnesses, 𝑘1 and 𝑘2. The springs were designed of two different configurations, i.e., having
different wire and coil diameters keeping the alternating stiffness as 𝑘1 = 825 N/m and 𝑘2 = 175 N/m. The masses are considered
identical, each weighing 150 gm. The experimental setup consists of the system, which is manufactured considering the balancing
aspect (dynamic and static), thereby not requiring any complex attachments to support it. The masses are supported by the cantilever
support structure of considerable length such that when axial longitudinal vibrations are provided to the spring–mass chain, for small
amplitude of vibrations, the motion is assumed to be in the longitudinal direction only. The guideway act as a frame for the masses
attached with rigid link connections (with hinge joint), treated as a 1D pendulum chain for small angular deflections. The schematic
of the complete experimental setup is shown in Fig. 8.

The metamaterial lattice, as shown in Fig. 9, comprises the two fixed guideways supported on the fixtures, and the chain of the
coupled spring–mass system resembles a 1D pendulum chain. The optimum length for the system is calculated to be 2.5 m, and a
total of 24 masses were on it. The objective of obtaining localized interface mode within the bandgap is well achieved theoretically
as well as numerically using MATLAB and COMSOL simulations. The experimental setup was designed as per the proposed schematic
diagram of the experimental setup in Fig. 9; the different components were manufactured and assembled to carry out experiments,
as shown in Fig. 10. In order to achieve the one-dimensional spring–mass chain motion in the horizontal direction, all the masses are
suspended from the fixed end and rigidly supported using guideways by a reasonably large length cantilever support such that they
behave as pendulums individually. The complete system resembles a compound pendulum, and during the operation, the possibility
of the effect of the small angle of tilt of each mass from a horizontal position can be neglected so that the 1D model can be assumed.
The cantilever support shown in Figs. 9 and 10 are of rectangular cross-section so that due to its high moment of inertia in torsion,
the lateral movement of topological metamaterial spring–mass system can be constrained in one direction only.

4. Results and discussion

4.1. FEA simulation of topological metamaterial lattice

In order to identify the bandgap occurrences via simulation, a one-dimensional periodic diatomic lattice with 122 masses and
alternating springs is first explored in the absence of interface mass without breaking symmetry. The frequency response function
(FRF) and phase diagram are obtained using the lumped mechanical system model in COMSOL, the excitation is given at one end
12
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Fig. 8. (a) Schematic diagram of the experimental setup with topological metamaterial lattice along with interface mode (b) Laser Doppler Vibrometer.

Fig. 9. Conceptual schematic diagram of topological metamaterial lattice with hourglass mounted at the adjacent sides of the interface mass along with integrated
piezoelectric energy harvesting circuit.

of the lattice keeping the other end free, and response is measured at the interface mass. The bandgap is evident in the frequency
response function plot and is further confirmed by phase plot, which reveals no phase change in the bandgap, as shown in Fig. 11(a)
and (b) respectively.

The FEA simulation of topological metamaterial lattice comprising 61 unit cells, out of which 30 unit cells are on the left sub-
lattice, and 30 unit cells on the right sub-lattice with the central unit cell acting as an interface, i.e., with 122 identical masses 𝑚 and
alternating springs 𝑘1 and 𝑘2 attached sequentially with a broken symmetry at the interface mass is performed in COMSOL, and the
frequency response is obtained thereby verifying the presence of localized interface mode at the same frequency as obtained using
the analytical formulation. Harmonic excitation is given at one end of the lattice keeping the other end free, while the response
was calculated at the interface mass. The simulations with springs at the adjacent sides of interface mass for two different types
13
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Fig. 10. Experimental setup of topological metamaterial lattice with hard-hard springs arrangement at adjacent sides of interface mass i.e. 𝑘1−𝑘1 to demonstrate
interface mode.

Fig. 11. 1D diatomic spring–mass lattice subjected to harmonic excitation at one end keeping other end free while response measured at center mass (a)
Frequency Response Function in COMSOL and (b) Phase plot in COMSOL. The parameters considered are : 𝑚 = 1 kg, 𝑘 = 1 N∕m, 𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘(1 − 𝛾),
𝛾 = 0.4.

of arrangements, i.e. hard-hard (𝑘1 − 𝑘1) and soft-soft (𝑘2 − 𝑘2) springs, are carried out. Hourglass metastructure with honeycomb
and auxetic cells were placed at the adjacent sides of interface mass, considering linear stiffness. With the help of simulations,
it is possible to study the frequency response function and phase plot when auxetic hourglass and regular honeycomb hourglass
lattices are coupled next to the interface mass under the linear stiffness assumption as shown in Fig. 12. The modified topological
metamaterial is having different stiffness adjacent to interface mass governed by 𝜒 parameter, with 𝜒 being any scalar value. It is
observed that with an increasing value of 𝜒 , for 𝛾 < 0 lattice arrangement case at neighboring sides of a topological lattice, the
generalized case of a modified lattice with interface mass under consideration would cause the interface mode frequency to move
from left to right. For the modified topological lattice with added 𝜒 parameter for 𝛾 > 0, the interface mode at 𝛺 =

√

2, obtained
at symmetric mode, would not change.

The experimental FRF results obtained by attaching 24 identical masses 𝑚 = 150 gm along with the alternating springs having
stiffness 𝑘1 = 825 N∕m and 𝑘2 = 175 N∕m and 𝛾 = 0.65 for topological metamaterial lattice with hard-hard (𝑘1−𝑘1) spring arrangement
at the adjacent sides of interface mass clearly show good agreement of the localized interface mode obtained via simulation in
COMSOL where same parameters were used and results match within the bandgap as shown in Fig. 13.

The response is measured at the interface mass unit cell i.e. second mass of the interface unit cell where displacement obtained
is maximum. It is observed that damping conditions are present, and the amplitude of side resonating masses is reduced to some
14
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Fig. 12. 1D topological metamaterial spring–mass lattice subjected to harmonic excitation at one end keeping other end free while response measured at center
mass when regular honeycomb hourglass structure 𝑘ℎ or auxetic hourglass structure 𝑘𝑎 is attached adjacent to interface mass. (a),(c) Frequency Response Function
in COMSOL and (b),(d) Phase plot in COMSOL for regular honeycomb and auxetic hourglass respectively. The parameters considered are : 𝑚 = 1 kg, 𝑘 = 1 N∕m,
𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘(1 − 𝛾), 𝛾 = 0.4 for regular honeycomb hourglass adjacent to interface mass, while 𝛾 = −0.4 for auxetic hourglass adjacent to interface mass.

extent rather than on the interface mass, as shown in the experimental plots. Fig. 13(b) clearly depicts the localized interface mode
present within the bandgap located at the center of the bandgap. The analysis is carried out in a low-frequency range i.e. from 0
to 25 Hz, which is our area of interest. The interface mode is obtained at the frequency of 12.64 Hz when the frequency response
function is plotted as a transmissibility plot i.e. ratio of the response signal and base excitation signal. While Fig. 13(b) represents
the comparison of FRF plots obtained from COMSOL as well as experimentally obtained FRF plots, which shows good agreement
with each other. This study is majorly focused on the interface mode obtained within the bandgap. Thus the interface mode above
the optical mode is not explored in this case. Furthermore, the phase plot for the same obtained in COMSOL can be observed, as
shown in Fig. 13(c), which agrees with the presence of localized interface mode at the center of the bandgap, indicated by a single
blue-colored line inside the gray color of the bandgap.

4.2. Energy harvesting within the bandgap

We obtained a localized interface mode within the bandgap by incorporating hourglass metastructure in topological metamaterial
lattice within the adjacent sides of interface mass. The dependence of the cell lattice angle (𝜃𝑐 ) of hourglass metastructure was found
to affect energy harvesting significantly. The amplitude obtained at the localized interface mode, where the symmetry of lattice is
broken, is of high magnitude from which energy harvesting is carried out and can be utilized to power the electronic devices within
the bandgap. The voltage and power plots obtained by integrating a cantilevered bimorph piezoelectric energy harvester give us
the implications of the voltage and power obtained corresponds to the fundamental mode, as shown in Fig. 14. The properties of
the macro fiber composite along with the dimensions taken into consideration, are provided in Table 2.

Similar experimentation is performed with soft-soft (𝑘2 − 𝑘2) spring arrangement at adjacent sides of interface mass as shown in
Fig. 15(a) and the unit harmonic excitation displacement is given at base mass, keeping another end free, and response is measured
15
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Fig. 13. (a) Schematic diagram of topological metamaterial lattice with hard-hard (𝑘1 − 𝑘1) springs attached at adjacent sides of interface mass excitation given
at one end and response measured at interface. The parameters considered are : 𝑚 = 150 gm, 𝑘1 = 825 N∕m, 𝑘2 = 175 N∕m. (b) Experimental and COMSOL FRF
comparison showing interface mode at 12.64 Hz for hard-hard (𝑘1 − 𝑘1) arrangement (c) Phase plot for hard-hard (𝑘1 − 𝑘1) arrangement in COMSOL depicting
interface mode phase change within the bandgap at same frequency. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 2
Piezoelectric material properties : MFC M-2814-P1.
Sr. No. Property parameter Value

1 Length of piezo (𝐿𝑝) 118 mm
2 Width of piezo (𝑊𝑝) 35 mm
3 Height of piezo (𝑡𝑝) 0.08 mm
4 density (𝜌𝑝) 5650 kg/m3

5 Capacitance of each layer (𝐶𝑝) 15.11 nF
6 Series connection (𝜒) 0.5
7 𝑑31 −170 pC/N or pm/V
8 𝑑33 374 pm/V
9 Young’s modulus of piezo (𝐸𝑝) 30.336 GPa

at interface mass unit cell, i.e. first mass of interface unit cell where the displacement obtained is maximum for this case. A good
agreement is achieved with experimental frequency response function plots and simulation results on the presence of the interface
mode within the bandgap, which is found to be shifted slightly towards the left side from the center of the bandgap. The considered
masses are identical 𝑚 = 150 gm and stiffness of springs 𝑘1 = 825 N∕m and 𝑘2 = 175 N∕m. Localized interface mode of this lattice is
obtained at a frequency of 9.56 Hz. However, both plots give a clear idea of the shifting of interface mode towards the left side from
the center of the bandgap, as shown in Fig. 15(b) and (c). Using a bimorph cantilevered piezoelectric energy harvester attached
to the interface mass as formulated [51,52]. The peak voltage is obtained at the same frequency at which the interface mode is
obtained, as shown in Fig. 16(a) and (b), representing peak experimental voltage and comparison of experimental and analytical
voltage. Thus, by appropriately choosing the dimensions of the bimorph cantilevered PZEH such that the fundamental mode of the
cantilever occurs at the same frequency at which the interface mode has appeared within the bandgap and by utilizing its high
amplitude available at the interface mass, one can obtain the value of voltage. The maximum value of experimental voltage and
power available for (𝑘2−𝑘2) configuration as depicted in Fig. 16(a) and (b) is 12.59 mV and 0.062 μW respectively when connected
with a load resistance of 2500 Ω in series. In addition to that, the FRF and phase plot provide a good agreement of the interface
mode shifting towards left side from the center of the bandgap.
16
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Fig. 14. Analytically calculated (a) Voltage (b) Current (c) Power plots for cantilever bimorph piezoelectric energy harvester subjected to harmonic base
excitation. (d) Schematic representation of cantilever bimorph PZEH.

4.3. Generalized case of modified lattice with interface mass and experimental validation

Hourglass metamaterial lattice with modified spring stiffness mounted from both sides of interface mass, whose stiffness is
governed by the stiffness tuning parameter 𝜒 , is schematically represented in Fig. 17. In order to consider a generalized case,
where the placement of different stiffness of springs is allowed at the adjacent sides of interface mass other than 𝑘1 or 𝑘2, the new
stiffness is denoted by expression 𝑘3 = 𝜒𝑘1, and corresponding analytical expressions are derived. Subsequently, the experimental
validations are also presented.

We have performed analytical solution for eigenfrequency and displacement of the 𝑁th unit cell for modified topological lattice.
Considering the overall height of hourglass as 24 mm and single dome height of 12 mm. The governing equation of the interface
mass with modified stiffness is given by

𝑚�̈�𝑐,0 + 𝜒𝑘1(2𝑢𝑐,0 − 𝑢𝑤,−1 − 𝑢𝑤,0) = 0 (48)

−𝛺2𝑢𝑐,0 + 𝜒(1 + 𝛾)(2𝑢𝑐,0 − 𝑢𝑤,0 + 𝑢𝑤,−1) = 0 (49)

The localized interface mode is obtained for different values of the modified spring stiffness mounted adjacent to interface mass.
The displacement relationship for any unit cell on sublattice - B and interface mass unit cell as well as that between any unit cell on
sublattice - A and interface mass unit cell of modified topological metamaterial can be obtained from Eq. (A.1.15) in Appendix A.1
and Eq. (A.2.30) in Appendix A.2 respectively.

Computation of the exact resonant natural frequencies or mode shapes for modified topological metamaterial lattice analytically
leads to complex calculations. As a result, the closed form resonant frequency for modified topological lattice cannot be obtained. It
is dependent on the value of 𝜒 and number of unit cells taken into account for given range of 𝛾. The interface mode frequency
of the modified topological lattice with definite number of unit cells for varying values of 𝛾 is obtained by investigating the
governing equation of interface mass mentioned in Eqs. (48) and (49), and its corresponding mode shape for different values of
𝜒 , as shown in Fig. 18. The outer curves shown in red and blue color specifies the limits bounding the interface mode frequency
for different values of 𝜒 . The displacement amplitude of interface mode for modified topological metamaterial lattice acquired on
17
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Fig. 15. (a) Schematic diagram of topological metamaterial lattice with soft-soft (𝑘2 − 𝑘2) springs attached at adjacent sides of interface mass excitation given
at one end and response measured at interface. The parameters considered are : 𝑚 = 150 gm, 𝑘1 = 825 N∕m, 𝑘2 = 175 N∕m. (b) Experimental and COMSOL
FRF comparison showing interface mode at 9.56 Hz for soft-soft (𝑘2 − 𝑘2) arrangement (c) Phase plot for soft-soft (𝑘2 − 𝑘2) arrangement in COMSOL depicting
interface mode phase change within the bandgap at same frequency.

Fig. 16. Topological metamaterial lattice with soft-soft (𝑘2 − 𝑘2) spring arrangement attached at the adjacent sides of interface mass along with the piezobeam
attached to it for voltage and power measurement showing peak at 9.56 Hz (a) Comparison between experimental and analytical Voltage FRF (b) Comparison
between experimental and analytical Power FRF.

Fig. 17. 1D topological metamaterial lattice having diatomic unit cells comprising identical masses 𝑚 and inversion symmetry broken at the interface with
hourglass metastructure having stiffness 𝑘ℎ = 𝜒𝑘1 while the remaining lattice is connected with the linear springs having stiffness 𝑘1 and 𝑘2, where 𝑘1 = 𝑘(1+ 𝛾),
𝑘2 = 𝑘(1 − 𝛾), 𝛾 = −0.4.
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Fig. 18. (a) Plot of interface mass frequency versus 𝛾 parameter for different values of 𝜒 for the modified interface mass lattice consideration where 𝜒 =
0.7,1,2,10 and 100. Curves in red and blue color shows limits of frequencies that bound bandgap for lattice. (b) Representation of modified topological lattice
with interface mass sandwiched by hourglass on adjacent sides. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 19. COMSOL simulation for 1D diatomic modified topological metamaterial lattice having symmetry broken at the interface when hourglass auxetic
metastructure 𝑘𝑎 or 𝑘3 − 𝑘3 i.e. (𝜒𝑘1 − 𝜒𝑘1) springs are attached adjacent to interface mass along with excitation given at one end and response is taken at the
interface. (a), (b) and (c) Frequency Response Function corresponding to modified stiffness parameter as 𝜒 = 2, 3 and 4 respectively. (d), (e) and (f) Phase plot
corresponding to modified stiffness parameter as 𝜒 = 2, 3 and 4 respectively. The parameters considered are : 𝑚 = 1 kg, 𝑘 = 1 N∕m, 𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘(1 − 𝛾),
𝛾 = −0.4.

logarithmic displacement scale is very small due to unavailability of the exact resonant frequency expression. To confirm existence
of the interface mode in modified topological lattice and determine corresponding resonant frequencies, phase diagrams and their
inflection points are obtained as shown in Fig. 19.

For further analysis of the system using COMSOL and validate the same through experimental FRF, modified topological
metamaterial lattice (𝑘3 − 𝑘3) i.e. (𝜒𝑘1 − 𝜒𝑘1) arrangement was considered as 𝑘3 = 𝑘𝑎 = 43,500 N∕m while keeping 𝑚, 𝑘1 and
𝑘2 unchanged. The COMSOL simulation results are shown in Fig. 19 and the validation with respect to the experimental results are
shown in Fig. 20. The localized interface mode for this lattice having 24 masses came out to be at frequency of 15.63 Hz which is
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Fig. 20. (a) Schematic diagram of modified topological metamaterial lattice with auxetic hourglass metastructure having stiffness 𝑘𝑎 = 𝑘3 = 𝜒𝑘1 where 𝜒 is a
parameter with 𝑘3 −𝑘3 arrangement at the adjacent sides of interface mass with excitation given at one end and response measured at interface. The parameters
considered are : 𝑚 = 150 gm, 𝑘1 = 825 N∕m, 𝑘2 = 175 N∕m, 𝑘3 = 43,500 N∕m, 𝜒 ≈ 50. (b) Experimental and COMSOL FRF comparison showing interface mode at
15.63 Hz for modified lattice (𝑘3 − 𝑘3) arrangement (c) Phase plot for modified lattice (𝑘3 − 𝑘3) arrangement in COMSOL depicting interface mode phase change
within the bandgap at same frequency.

Fig. 21. Modified topological lattice with (𝑘3 − 𝑘3) auxetic hourglass arrangement at adjacent sides of interface mass having stiffness parameter 𝜒 ≈ 50 along
with the piezobeam attached to the interface mass for voltage and power measurement showing peak at 15.63 Hz (a) Comparison between experimental and
analytical Voltage FRF (b) Comparison between experimental and analytical Power FRF.

in good agreement with that obtained from FRF and phase plot in COMSOL which is presented in Fig. 20(b) and (c). The interface
mode with increase in 𝜒 is observed to be shifting towards the right bands in the COMSOL simulation. The experimental peak
voltage and power for modified topological lattice is found to be 8.72 mV and 0.03 μW respectively for load resistance of 2500 Ω
in series and its comparison with the analytical solution for PZEH bimorph cantilevered beam is shown in Fig. 21(a) and (b), which
are found to be in good agreement. As depicted in Fig. 20, simulations show significant amplification of peaks when compared
to the experimental response. This amplification is primarily caused by not considering the damping effects due to friction and
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Table 3
Stiffness comparison for distinct parameters of hourglass metastructures.
Type 𝜃𝑐 ℎ 𝑡 ℎ∕𝑡 M K

Auxetic −72.169 24 2 12 0.7877 41.60 × 103

Auxetic −75.5 24 2 12 0.7877 38.93 × 103

Auxetic −72.169 24 3 8 0.7877 64.68 × 103

Auxetic −75.5 24 3 8 0.7877 60.53 × 103

Honeycomb +29.984 24 2 12 0.7877 48.70 × 103

Honeycomb +30.015 24 2 12 0.7877 52.52 × 103

Honeycomb +29.984 24 3 8 0.7877 75.71 × 103

Honeycomb +30.015 24 3 8 0.7877 81.66 × 103

Solidshell – 24 2.7 ≈ 12 – 237.81 × 103

Solidshell – 24 2.75 ≈ 12 – 251.50 × 103

Solidshell – 24 3.5 ≈ 8 – 236.57 × 103

Solidshell – 24 3.6 ≈ 8 – 257.84 × 103

Table 4
𝛾 parameter dependence on lattice of different hourglass metastructures.

Configuration of springs at
adjacent sides of interface

ℎ
𝑡

𝜃1 𝜃2 𝑘1 𝑘2 𝛾 Position of localized interface
mode

Frequency
in Hz
from
COMSOL

Towards left
bulk bands

Center of
Bandgap

Towards right
bulk bands

𝑘1 − 𝑚 − 𝑘1

2 +29.984 – 48,700 25,000 0.3125 111.5
2 +30.015 – 52,500 25,000 0.3550 114.5
3 +29.984 – 75,710 25,000 0.5035 130.3

(Hard-hard) 3 +30.015 – 81,660 25,500 0.5312 134.1

𝑘2 − 𝑚 − 𝑘2

2 – −72.169 25,000 41,600 −0.5 84.1
2 – −75.50 25,000 38,930 −0.5250 80.8
3 – −72.169 25,000 64,680 −0.3180 111.9

(Soft-soft) 3 – −75.50 25,000 60,530 −0.3474 107.4

𝑘3 𝜒

2,37,810 2 +29.984 −72.169 48,700 25,000 4.8831 123.5
𝜒𝑘1 − 𝑚 − 𝜒𝑘1 2,51,500 2 +30.015 −75.50 52,520 25,000 4.7886 128.7
(𝑘3 − 𝑚 − 𝑘3) 2,36,570 3 +29.984 −72.169 75,710 25,000 3.1268 150.1
(Generalized case) 2,57,840 3 +30.015 −75.50 81,660 25,000 3.1574 155.5

viscoelastic energy dissipation of the hourglass material [29,53]. Additionally, presence of system noise represents a major cause of
signal distortion.

Theoretical load–deflection profile dependent upon constitutive cell angle (𝜃𝑐) mentioned in Eq. (12) is considered to evaluate
stiffness (approximated to be linear for small deflection) of the hourglass metastructure system as the same is incorporated in Table 3.
The parameter 𝛾 is then examined for tunable frequency-dependent interface modes that span the system’s bandgap from lower to
upper frequency bands. The interface mode is found to be at the centre of the bandgap for honeycomb lattice metastructure with
assumed linear alternating stiffness at remaining places, and is observed to be shifting towards left (lower frequency band) for
auxetic lattice metastructure with same alternating stiffness. Table 4 shows a range of 𝛾 values together with related stiffnesses (𝑘1,
𝑘2) at respective cell angles (𝜃1 and 𝜃2). The location of the interface mode and the corresponding frequency have been underlined
and categorized. Table 4 also specifically refers to the modified stiffness case for the (𝑘3−𝑘3) arrangement, which has the stiffness of
the hourglass metastructure of higher magnitude, and which causes the interface mode to shift towards the right (higher frequency
band).

Combining piezoelectric or magnetostrictive materials with the hourglass presents a promising opportunity for active mechanical
response tuning. By introducing the hourglass into the topological metamaterial lattice with remotely regulated stiffness variation, a
shift in the interface mode frequency can be observed digitally within the bandgap. The synclastic curvature of the hourglass dome,
which depends on geometrical parameters, can be actively controlled to achieve tunability of the interface mode within the bandgap.
With the utilization of NiTiNoL-based SMA actuators or piezo stacks, it is possible to pre-stress the hourglass and dynamically adjust
the stiffness actively. This advancement in the development of remotely controlled metamaterials enables the realization of active
tuning of interface mode through hourglass integration.

There are enormous applications of this concept in terms of developing localized modes for vibro-acoustic devices that can be used
for medical imaging as well as for developing transducer. The same system can also be used for energy harvesting from vibration.
One potential application is the sensitivity of topological structures to the introduction of defects. By carefully positioning topological
interfaces, waves can be customized and isolated, leading to a variety of potential applications in areas such as acoustic focusing,
impact mitigation, sensing, and noise control [40]. Manipulating finite interface frequency modes in elastic topological structures
has direct implications for structural health monitoring, energy transport, waveguiding without backscattering loss, wave tunneling,
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Fig. 22. COMSOL simulation for 1D topological metamaterial lattice when regular honeycomb hourglass metastructure 𝑘ℎ or hard-hard (𝑘1 − 𝑘1) springs are
attached adjacent to interface mass along with considered damping and excitation given at one end and response is taken at the interface. (a), (b) and (c)
Frequency Response Function corresponding to damping 𝑐 = 0.0001, 0.001 and 0.01 N-s/m respectively. (d), (e) and (f) Phase plot corresponding to damping
𝑐 = 0.0001, 0.001 and 0.01 N-s/m respectively. The parameters considered are : 𝑚 = 1 kg, 𝑘 = 1 N∕m, 𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘(1 − 𝛾), 𝛾 = 0.4.

isolating, switching, filtering, and precision positioning [43]. The resulting localized non-trivial interface mode can also be used to
design antifracture materials, vibration isolators, and on-chip transducers [21]. Applications like sensors, ultrasound imaging, and
therapy may benefit from topological interface states. Surface acoustic wave devices might benefit from the robustness of topological
modes, which is important for wave transfer applications.

4.4. Effect of damping on the topological metamaterial lattice

Finally, the effect of damping on the current topological metamaterial has been analyzed using simulations performed in
COMSOL. Different values of damping coefficients have been taken into account such that 𝑐 = 0.0001, 0.001, and 0.01 N-s/m;
𝑚 = 1 kg, 𝑘 = 1 N/m, 𝛾 = 0.4, 𝜒 = 1, 𝑘1 = 𝑘(1 + 𝛾), and 𝑘2 = 𝑘 (1 − 𝛾), with identical masses 𝑚, in the configuration of the
hard-hard (𝑘1 − 𝑘1) and soft-soft (𝑘2 − 𝑘2) spring mounted at the adjacent sides of the interface mass. The amplitude of the interface
mode tends to diminish when damping is increased, and its presence is observable from the phase shift seen in the phase plot.
Additionally, it was previously noted that in the absence of damping, the phase tended to shoot up, however, this is not the case
in the presence of damping, since the edge of the phase diagram has a smooth curve. In the honeycomb hourglass metastructure,
increasing the damping would lead to a decrease in the amplitude of the second interface mode, also above the optical branch. As
shown in Figs. 22(a) to (f) and 23(a) to (f), the effect of damping on both lattices of a regular honeycomb and auxetic structure
are investigated with frequency response function and phase plot, which indicates the distinct presence of interface mode. The
magnitude of the interface modes in the COMSOL simulation for the modified lattice was not large possibly due to the lack of
proper discretization of frequency range values in COMSOL. However, the experimental findings show high amplitude of the interface
mode.

5. Conclusion

Our study primarily illustrates analytically and also through computational simulation and experimental studies that the tunable
localized modes can be induced at the interface or boundaries of one-dimensional lattices by incorporating the novel hourglass
lattice metastructure. Quantitative measurements for different configurations of springs at the adjacent side of the interface are
presented to switch the position of a localized mode within the bandgap. The piezo-electric-based energy harvesting within the
isolation zone (i.e., bandgap) at a specific frequency has been obtained successfully. The voltage magnitude and related frequency
may be controlled by using an hourglass lattice oscillator by breaking the inversion symmetry in the periodic elastic structures. The
significant findings from the study are as follows:
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Fig. 23. COMSOL simulation for 1D topological metamaterial lattice when auxetic metastructure 𝑘𝑎 or soft-soft (𝑘2 − 𝑘2) springs are attached adjacent to
interface mass along with considered damping and excitation given at one end and response is taken at the interface. (a), (b) and (c) Frequency Response
Function corresponding to damping 𝑐 = 0.0001, 0.001 and 0.01 N-s/m respectively. (d), (e) and (f) Phase plot corresponding to damping 𝑐 = 0.0001, 0.001 and 0.01
N-s/m respectively. The parameters considered are : 𝑚 = 1 kg, 𝑘 = 1 N∕m, 𝑘1 = 𝑘(1 + 𝛾), 𝑘2 = 𝑘(1 − 𝛾), 𝛾 = −0.4.

• In the one-dimensional case, we consider a lattice of point masses connected by alternating springs. The interface mass can be
strategically placed at the desired locations of the lattice where the localized mode is required to be obtained. The localized
interface mode is achieved successfully by placing the mirror copies of the left and the right sublattice for the purpose of
wave-guiding at a precise frequency and energy harvesting.

• We derived explicit expressions for the frequencies of the localized modes for various interface types and their associated
mode shapes. We demonstrated how varying the cellular configuration of the additively manufactured hourglass could lead
to a frequency shift of the interface mode. By choosing the geometrical parameters suitably one can control the location of
interface modes and move them from the left to the right side of the bulk modes. For example, a hard-hard interface can place
the mode at the centre of the bandgap, while a soft-soft interface can shift it to the left. Again, by using a generic hourglass
structure at interface one can shift it to the right side of the bandgap.

• Moreover, piezo-electric-based energy harvesting is carried out using bimorph cantilever model. The power expressions are
derived explicitly and subsequently found depending upon the hourglass lattice parameters, and we demonstrate the frequency-
dependent power modulation experimentally. The amplitude-dependent peak voltages obtained under different conditions of
spring stiffness at the interface positions are 12.59 mV (for soft-soft spring case) and 8.72 mV (for the generalized case),
respectively. The peak power value for these cases turned out to be 0.062 μW and 0.03 μW respectively.

• Finally, the effect of damping has been analyzed, which shows that the amplitude of the interface mode tends to diminish
with damping increments, and its presence is still noticeable from the phase shift seen in the phase plots.

This work can be further extended to evaluate amplitude-dependent frequency response at the interface by exploring the hourglass
lattice-based nonlinearities that can lead to tunable topological lattices.
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ppendix

.1. Sublattice - B : Displacement relation

To obtain relation between two adjacent neighboring unit cells on right side of interface mass of modified topological
etamaterial i.e. sublattice - B, the governing equations of motion for the masses of sub-lattice 𝑤0 and 𝑣1 may be written as

𝑚�̈�𝑣,1 + 𝑘1(𝑢𝑣,1 − 𝑢𝑤,1) + 𝑘2(𝑢𝑣,1 − 𝑢𝑤,0) = 0 (A.1.1)

𝑚�̈�𝑤,0 + 𝜒𝑘1(𝑢𝑤,0 − 𝑢𝑐,0) + 𝑘2(𝑢𝑤,0 − 𝑢𝑣,1) = 0 (A.1.2)

Implementing the plane wave solution of the form 𝑢𝑗 = (𝑢𝑣,𝑗 , 𝑢𝑤,𝑗 ) = 𝐴(𝜇)𝑒𝑖𝜇𝑗+𝑖𝛺𝜏 and substituting the values of stiffness in Eqs. (A.1.1)
and (A.1.2) leads to

−𝛺2 𝑚𝑢𝑣,1 + 𝑘(1 + 𝛾)(𝑢𝑣,1 − 𝑢𝑤,1) + 𝑘(1 − 𝛾)(𝑢𝑣,1 − 𝑢𝑤,1) = 0 (A.1.3)

−𝛺2 𝑚𝑢𝑤,0 + 𝜒𝑘(1 + 𝛾)(𝑢𝑤,0 − 𝑢𝑐,0) + 𝑘(1 − 𝛾)(𝑢𝑤,0 − 𝑢𝑣,1) = 0 (A.1.4)

he non-dimensional form of Eqs. (A.1.3) and (A.1.4) would result in

(2 −𝛺2)𝑢𝑣,1 − (1 + 𝛾)𝑢𝑤,1 − (1 − 𝛾)𝑢𝑤,0 = 0 (A.1.5)

(𝜒 + 𝜒𝛾 + 1 − 𝛾 −𝛺2)𝑢𝑤,0 − (1 − 𝛾)𝑢𝑣,1 − 𝜒(1 + 𝛾)𝑢𝑐,0 = 0 (A.1.6)

𝑢𝑣,1 can be expressed in terms of 𝑢𝑤,0 and 𝑢𝑐,0 as

𝑢𝑣,1 =
𝜒 + 𝜒𝛾 + 1 − 𝛾 −𝛺2

1 − 𝛾
𝑢𝑤,0 +

𝜒(1 + 𝛾)
𝛾 − 1

𝑢𝑐,0 (A.1.7)

𝑢𝑣,1 =
𝜒(1 + 𝛾)
𝛾 − 1

𝑢𝑐,0 +
𝜒 + 𝜒𝛾 + 1 − 𝛾 −𝛺2

1 − 𝛾
𝑢𝑤,0 (A.1.8)

Substituting 𝑢𝑣,1 from Eq. (A.1.8) in Eq. (A.1.5) and finding 𝑢𝑤,1 in terms of 𝑢𝑐,0 and 𝑢𝑤,0

(2 −𝛺2)𝜒
(1 + 𝛾)
𝛾 − 1

𝑢𝑐,0 +
(2 −𝛺2)(𝜒 + 𝜒𝛾 + 1 − 𝛾 −𝛺2)

1 − 𝛾
𝑢𝑤,0 − (1 + 𝛾)𝑢𝑤,1 − (1 − 𝛾)𝑢𝑤,0 = 0 (A.1.9)

𝑢𝑤,1 = −2 −𝛺2

1 − 𝛾
𝜒𝑢𝑐,0 +

(2 −𝛺2)(𝜒 + 𝜒𝛾 + 1 − 𝛾 −𝛺2) − (1 − 𝛾)2

1 − 𝛾2
𝑢𝑤,0 (A.1.10)

Combining Eqs. (A.1.8) and (A.1.10) leads to

(

𝑢𝑣
𝑢𝑤

)

1
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜒(𝛾 + 1)
𝛾 − 1

(𝜒 + 𝜒𝛾 + 1 − 𝛾 −𝛺2)
1 − 𝛾

−
(2 −𝛺2)𝜒

1 − 𝛾
(2 −𝛺2)(𝜒 + 𝜒𝛾 + 1 − 𝛾 −𝛺2) − (1 − 𝛾)2

1 − 𝛾2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(

𝑢𝑐
𝑢𝑤

)

0
= 𝑇1

(

𝑢𝑐
𝑢𝑤

)

0
(A.1.11)

The relation of the unit cell adjacent to the interface mass unit cell is given by
(

𝑢𝑣
𝑢𝑤

)

1
= 𝑇1

(

𝑢𝑐
𝑢𝑤

)

0
(A.1.12)

The relationship between the unit cell next to the interface mass and the other unit cell advancing across the sublattice toward the
free end of the lattice is given by the transfer matrix 𝑇 previously computed in Eq. (31) as

(

𝑢𝑣
)

= 𝑇
(

𝑢𝑣
)

(A.1.13)
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For the unit cell 𝑁 = 2 and unit cell containing interface mass 𝑁 = 0 is related by
(

𝑢𝑣
𝑢𝑤

)

2
= 𝑇𝑇1

(

𝑢𝑐
𝑢𝑤

)

0
(A.1.14)

he displacement relation for the 𝑁th unit cell on sublattice - B and the unit cell containing the localized interface mass can be
btained as

(

𝑢𝑣
𝑢𝑤

)

𝑁
= 𝑇𝑁−1𝑇1

(

𝑢𝑐
𝑢𝑤

)

0
(A.1.15)

.2. Sublattice - A : Displacement relation

The governing equations of motion for the masses 𝑤−1 and 𝑣0 of the sublattice-A may be written as

𝑚�̈�𝑤,−1 + 𝑘2(𝑢𝑤,−1 − 𝑢𝑣,−1) + 𝜒𝑘1(𝑢𝑤,−1 − 𝑢𝑐,0) = 0 (A.2.16)

𝑚�̈�𝑐,0 + 𝜒𝑘1(2𝑢𝑐,0 − 𝑢𝑤,−1 − 𝑢𝑤,0) = 0 (A.2.17)

mplementing the plane wave solution of the form 𝑢𝑗 = (𝑢𝑣,𝑗 , 𝑢𝑤,𝑗 ) = 𝐴(𝜇)𝑒𝑖𝜇𝑗+𝑖𝛺𝜏 and substituting values of stiffness in Eqs. (A.2.16)
nd (A.2.17) leads to

−𝛺2 𝑚𝑢𝑤,−1 + 𝑘(1 − 𝛾)(𝑢𝑤,−1 − 𝑢𝑣,−1) + 𝜒𝑘(1 + 𝛾)(𝑢𝑤,−1 − 𝑢𝑐,𝑜) = 0 (A.2.18)

−𝛺2 𝑚𝑢𝑐,0 + 𝜒𝑘(1 + 𝛾)(2𝑢𝑐,0 − 𝑢𝑤,−1 − 𝑢𝑤,0) = 0 (A.2.19)

on-dimensional form of Eqs. (A.2.18) and (A.2.19) would result in

(1 + 𝜒 −𝛺2)𝑢𝑤,−1 − 𝜒(1 + 𝛾)𝑢𝑐,0 − (1 − 𝛾)𝑢𝑣,−1 = 0 (A.2.20)

(2𝜒 + 2𝜒𝛾 −𝛺2)𝑢𝑐,0 − 𝜒(1 + 𝛾)𝑢𝑤,−1 − 𝜒(1 + 𝛾)𝑢𝑤,0 = 0 (A.2.21)

aking 𝑢𝑤,−1 as subject from previous Eq. (A.2.21) and determining its expression in terms of 𝑢𝑤,0 and 𝑢𝑐,0 as

𝑢𝑤,−1 =
(2𝜒 + 2𝜒𝛾 −𝛺2)

𝜒(1 + 𝛾)
𝑢𝑐,0 − 𝑢𝑤,0 (A.2.22)

Put 𝑢𝑤,−1 from Eq. (A.2.22) into Eq. (A.2.20) and finding 𝑢𝑣,−1 in terms of 𝑢𝑐,0 and 𝑢𝑤,0

(1 + 𝜒 −𝛺2)𝑢𝑤,−1 − 𝜒(1 + 𝛾)𝑢𝑐,𝑜 − (1 − 𝛾)𝑢𝑣,−1 = 0 (A.2.23)

(1 + 𝜒 −𝛺2)(2𝜒 + 2𝜒𝛾 −𝛺2)
𝜒(1 + 𝛾)

𝑢𝑐,0 − (1 + 𝜒 −𝛺2)𝑢𝑤,0 − 𝜒(1 + 𝛾)𝑢𝑐,0 − (1 − 𝛾)𝑢𝑣,−1 = 0 (A.2.24)

𝑢𝑣,−1 =
(((1 + 𝜒 −𝛺2)(2𝜒 + 2𝜒𝛾 −𝛺2)) − (𝜒2(1 + 𝛾)2))

𝜒(1 + 𝛾)(1 − 𝛾)
𝑢𝑐,0 −

(1 + 𝜒 −𝛺2)
1 − 𝛾

𝑢𝑤,0 (A.2.25)

Combining Eqs. (A.2.22) and (A.2.25) leads to

(

𝑢𝑣
𝑢𝑤

)

−1
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(1 + 𝜒 −𝛺2)(2𝜒 + 2𝜒𝛾 −𝛺2) − 𝜒2(1 + 𝛾)2

𝜒(1 + 𝛾)(1 − 𝛾)
−
(1 + 𝜒 −𝛺2)

1 − 𝛾

−
(2𝜒 + 2𝜒𝛾 −𝛺2)

𝜒(1 + 𝛾)
−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(

𝑢𝑐
𝑢𝑤

)

0
= 𝑇2

(

𝑢𝑐
𝑢𝑤

)

0
(A.2.26)

The relation of the unit cell adjacent to the interface mass unit cell is given by
(

𝑢𝑣
𝑢𝑤

)

−1
= 𝑇2

(

𝑢𝑐
𝑢𝑤

)

0
(A.2.27)

While the transfer matrix 𝑇 previously computed in Eq. (31) relates the relationship between the unit cell next to the interface mass
nd the other unit cell traveling along the sublattice towards the free end of the lattice

(

𝑢𝑣
𝑢𝑤

)

−2
= 𝑇

(

𝑢𝑣
𝑢𝑤

)

−1
(A.2.28)

For the unit cell 𝑁 = 2 and the unit cell containing interface mass 𝑁 = 0 are related by
(

𝑢𝑣
)

= 𝑇𝑇2

(

𝑢𝑐
)

(A.2.29)
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Similarly, we can get the displacement relation for the 𝑁th unit cell on the sublattice - A and the unit cell containing the localized
nterface mass as

(

𝑢𝑣
𝑢𝑤

)

−𝑁
= 𝑇𝑁−1𝑇2

(

𝑢𝑐
𝑢𝑤

)

0
(A.2.30)

o determine the relationship between stiffness parameter 𝛾 and non-dimensional frequency 𝛺 for different values of 𝜒 , i.e. 𝜒 =
0.7, 1, 2, 10, 100..., when a certain number of unit cells with altered interface stiffness are used in the numerical analysis, the
eigenvalue problem of topological lattice formulated using Eq. (49) for interface mass is resolved.
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