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A B S T R A C T   

The performance of cellular core sandwich panels is influenced significantly by the choice of geometric and 
material parameters of the cellular core and skins. In order to determine the optimal design of sandwich panels, it 
is important to relate the geometric and material parameters of the cellular core to the resulting performance of 
the sandwich panel. Theoretical homogenisation models are computationally efficient and plays an important 
role in the inverse design of sandwich panel. This paper presents a methodology to determine the equivalent 
homogenised properties for composite cellular core systems. The methodology was developed based on a strain 
energy-based homogenisation approach. Unlike other existing models, the proposed model in this paper is 
applicable to different core shapes and different composite wall layer configurations. An existing model was 
further extended for comparison purposes to determine the equivalent properties of hexagonal composite hon-
eycomb core. Results from both models were compared with finite element (FE) results for hexagonal honeycomb 
cores, and the predictions from the proposed model are also compared with FE results for different cellular core 
shapes. A good agreement was found between the predicted and FE results. The proposed model was found to be 
superior to existing models in its ability to consider different core shapes and composite wall layer 
configurations.   

1. Introduction 

Sandwich structures are widely used in aerospace, automobile, civil 
infrastructure, and many other applications [1–9]. Sandwich structures 
consist of a core sandwiched between two face sheets. Key design pa-
rameters of sandwich structures, i.e. stiffness and strength depends on 
the mechanical and geometric properties of the core and the face sheets. 
Designers are given the option to select from many different materials 
for the face sheets, while both material and geometry choices are 
available for the core [10–12]. Amongst many different core types used 
in sandwich structures, the honeycomb core is one of the most used due 
to its high specific stiffness and strength [12–14]. Most of the existing 
honeycomb core sandwich structures have used metallic honeycomb 
cores, such as aluminium honeycomb and metallic or composite mate-
rials for the face sheets [15–17]. Recent developments in material and 
manufacturing technologies have opened the door for multi-layer 
composites and many different geometries to be used for cellular cores 
in sandwich panels [18–24]. The sandwich panels with laminated 
composite face sheets and cellular core are commonly referred using a 

term ‘all-composite sandwich panels’ in the literature [19]. Due to the 
high strength-to-weight ratio, all-composite sandwich panels are 
particularly attractive for applications requiring weight savings 
[23–24]. The versatility of the composites has revolutionized the ar-
chitecture of sandwich structures by providing a variety of material and 
geometric choices for the core and face sheets. A large number of ma-
terial and geometric choices available for sandwich cores also presents a 
major challenge to the designers in terms of deciding on the best ma-
terial and geometry combinations for sandwich panels. For specific 
types of sandwich panels, including metallic or foam core sandwich 
panels, guidelines are available for the optimal design of the panels 
[25–28]. However, those guidelines cannot be directly used for com-
posite cellular core sandwich panels due to added complexity of com-
posite laminates (e.g., fibre direction of each lamina). So far, only 
limited studies have been conducted on the design optimisation of all- 
composite cellular core sandwich panels. 

The complexity of modelling the cellular core makes the develop-
ment of methodologies towards the optimal design of sandwich panels 
with a cellular core difficult. Generally, homogenised mechanical 
properties of the cellular core are used in optimising the design of the 
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sandwich panel using failure maps or search algorithms [27–29]. 
Because of the inherent nature of the inverse design problem having 
multiple geometric and material variables, design procedure requires 
many iterative calculations to reach the preliminary optimal design 
parameters for the design. Therefore, considering computational effi-
ciency, theoretical homogenisation models become very useful and play 
an important role in the inverse design of the sandwich panels. 

Elastic stiffness of the sandwich panels is a key parameter affecting 
the performance of the sandwich panels, thus is of high importance in 
design of sandwich panels. Current approaches often simplify the 
modelling of sandwich panels by modelling the core as an equivalent 
shell [30–31]. Many different approaches exist towards obtaining the 
equivalent stiffness properties of the cellular core [32]. Amongst those, 
the most widely used is the force-equilibrium-based approach proposed 
by Gibson et al. [33]. This model assumes that honeycomb core wall 
response is linear-elastic and only consists of bending deformation. In 
calculating the bending deformation, the core wall was assumed to 
behave as an Euler-Bernoulli beam. Gibson et al.’s [33] model has been 
further refined by other researchers based on different approaches for 
homogenisation [34–49]. Some of these models only proposed equa-
tions to determine either in-plane or out-of-plane stiffness properties 
[34–45], while more advanced models considered both in-plane and 
out-of-plane stiffness properties [46–48]. However, most models can 
only predict the effective stiffness properties of the hexagonal honey-
comb cores and cannot be used for other types of cellular core geome-
tries. By adopting a strain-energy based homogenisation approach, Hohe 
and Becker [47–48] proposed a methodology for predicting the effective 
stiffness properties of cellular cores with different geometries. Some 

other researchers used finite element (FE) based approaches for evalu-
ating the effective stiffness properties for different types of cellular cores 
[49–53]. However, FE based approaches require modelling of the 
representative volume elements (RVEs) of the core, thus difficult to use 
as a general method applicable for different types of cellular core ge-
ometries. All these methods were developed only considering isotropic 
cell walls for the cellular core. 

When the core walls are fabricated out of multi-layered/laminated 
composite materials, the above models fail to predict the effective 
elastic properties accurately [33–49]. In multilayer composites, the 
effective elastic modulus measured under membrane action (called 
‘membrane elastic modulus’ for brevity) may differ from the effective 
elastic modulus measured under flexural action (called ‘flexural elastic 
modulus’ for brevity) [54], which results in prediction of inaccurate 
effective elastic properties by the existing models. In addition, especially 
for asymmetric multilayer laminates, assuming the neutral plane to be 
the mid-plane may also not be correct, leading to inaccurate predictions 
of effective elastic properties by the existing models. 

An analytical model for calculating the effective elastic properties of 
composite honeycomb core [55] was developed based on classical 
laminate theory (CLT) [56] and Gibson et al.’s [33] homogenisation 
model. Only the bending deformations of the cell walls were considered, 
and axial deformations were ignored. Therefore, the applicability of 
such model may not be accurate when axial stiffness is relatively high 
and/or when axial-bending coupling exists. More recently, Saether and 
Krishnamurthy [57] combined CLT [56] and the model given by Gibson 
et al. [33] to derive analytical equations to calculate the equivalent in- 
plane elastic properties for composite honeycomb cores. However, as 

Nomenclature 

Aij,Dij,Bij Membrane, bending, and membrane-bending coupling 
stiffness components of laminate with respect to mid-plane 
in 1, 2,3 coordinate system 

aij,dij,bij Membrane, bending, and membrane-bending coupling 
compliance components of laminate with respect to mid- 
plane in 1,2, 3 coordinate system 

A′
ij,D

′
ij Membrane and bending stiffness components of laminate 

with respect to the flexural neutral axis in 1,2, 3 coordinate 
system 

a′
ij,d

′
ij Membrane and bending compliance components of 

laminate with respect to flexural neutral axis in 1,2, 3 
coordinate system 

ABD Combined membrane, membrane-bending coupling, and 
bending stiffness matrix of laminate with respect to 
midplane in 1, 2,3 coordinate system 

b Depth of the core 
CH Effective elasticity tensor of the core in 1, 2,3 coordinate 

system 
CH

ijkl Component of the effective elasticity tensor 
d Distance between the neutral plane and mid plane of cell 

wall 
EH

i Effective elastic modulus of the core 
F Generalised nodal force vector of the wall in 1,2, 3 

coordinate system 
F(i)j Normal force at node i in the local j direction 
F(i)j Normal force at node i in the local j direction 
GH

ij Effective shear modulus of the core 
H Compliance matrix of laminate with respect to mid plane in 

1,2, 3 coordinatesystem 

h, l Length of the vertical and inclined wall of the cellular core 
kij Curvature of the composite wall in 1, 2, 3 coordinate 

system 
M(i) Moment at node i about 3 direction 
QH Effective plane stress stiffness matrix of the core in 1,2, 3 

coordinate system 
QH

ij Component of the effective plane stress stiffness matrix 
SH Effective transverse stiffness matrix of the core in 1,2, 3 

coordinate system 
SH

ij Component of the effective transverse stiffness matrix 
t Thickness of the core wall 
u(i),u Nodal displacement vector of node i in 1,2, 3 and 1, 2,3 

coordinate systems 
u(i)j,u(i)j Displacement of node i in the global and local j direction 
ua

i ,u
b
i ,u

s
i Normal displacement components due to axial, bending 

and shear in local idirection 
vH

ij Effective Poisson’s ratio of the core 
w Strain energy density of the RVE 
φ(i) Rotation of ith node about 3 direction 
ε0,ij Normal strain at the reference plane of composite wall in 1,

2,3 coordinate system 
εij Normal strain of composite wall in 1,2, 3 coordinate 

system 
εij Strain component of a representative volume element of 

the cellular core 
γij Shear strain of composite wall in 1,2, 3 coordinate system 
γ0,ij Normal strain at the reference plane of composite wall in 1,

2,3 coordinate system 
σij Normal stress of composite wall in 1,2, 3 coordinate 

system 
τ13 Shear stress of composite wall in 1, 2,3 coordinate system  
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only membrane elastic modulus is considered, their method fails to 
capture the effects due to different layer sequencing. In addition, in the 
example provided in Ref. [57] (Tables 12-15 in Ref. [57]), in-plane 
Poisson’s ratio value was found to be 1. A Poisson’s ratio of 1 results 
in infinite in-plane stiffness for the equivalent shell, thus providing 
inaccurate results. In addition, existing methods for composite cellular 
cores only considered honeycomb core; thus, the applicability of such 
models to other types of cellular core shapes remains unverified. 

Against this background, this paper presents an investigation carried 
out to develop a homogenisation model for general cellular core ge-
ometries consisting of laminated composite walls. A strain energy-based 
approach together with CLT is used to develop a unified homogenisation 
model for laminated composite cellular core. Developed approach can 
be applied to predict the effective properties of the laminated composite 
cellular core with various geometric configurations. The developed 
method was verified against FE results of various composite cellular core 
configurations. 

2. Proposed methodology 

2.1. The general background 

The ability to model a cellular core as a continuum could make 
modelling of the core much simpler, thus leading to models that may be 
used to determine the optimal design for cellular cores. Therefore, the 
general aim of the approach is to define an equivalent continuum model 
to capture the behaviour of the cellular cores with different shapes. In 
the proposed approach, a periodic cellular core structure (Fig. 1) with a 
domain Ω and an external boundary Γ is replaced with a homogenous 
effective continuum body ΩH with the same shape and an external 
boundary ΓH. In the strain energy-based homogenisation adopted in this 
study, both bodies are considered to be equivalent in terms of me-
chanical behaviour at the macroscopic level if the strain energy of the 
representative volume elements (RVEs) of both the bodies are equal 
under the same external loading and boundary conditions. 

Condition of equivalent strain energy between the RVEs of the 
cellular structure and the homogenised continuum can be written as: 

1
VRVE

∫

V

w(εij)dV =
1

VRVE

∫

V

wH
(

εH
ij

)
dVH , (1)  

where w(εij) and wH
(

εH
ij

)
are strain energy density of the RVEs of Ω and 

ΩH respectively, VRVE is the volume of the RVEs, εij and εH
ij are strain 

tensor components of RVEs of the cellular core structure and the effec-
tive homogenous continuum medium respectively. Here, Latin indices, 
{i, j, k, …}, refer to the 1, 2 or 3 directions. RVEs of different types of 
cellular core geometries can be defined using a unit-cell parallelogram 
(Fig. 2), as proposed in Ref. [47]. 

The stiffness components CH
ijkl of effective elasticity tensor for three- 

dimensional (3D) analysis can be derived by partial differentiation of 
strain energy density of the RVE with respect to strain components εij: 

CH
ijkl =

∂2w
∂εij∂εkl

(2) 

Eq. (2) yields 21 independent components (CH
ijkl) of effective elasticity 

tensor. Assuming the equivalent core at the continuum level behaves as 
a linear elastic orthotropic material, nine non-zero components are 
required to define the effective elastic stiffness tensor. In Voigt’s matrix 
notation, the effective elastic stiffness for an equivalent orthotropic 
continuum core can be written as: 

CH =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CH
1111 CH

1122 CH
1133 0 0 0

CH
1122 CH

2222 CH
2233 0 0 0

CH
1133 CH

2233 CH
3333 0 0 0

0 0 0 CH
1212 0 0

0 0 0 0 CH
1313 0

0 0 0 o 0 CH
2323

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3) 

By assuming the equivalent continuum core as a shell, effective 
stiffness components for the equivalent shell of the core can be derived 
by reducing the effective elasticity matrix in Eq. (3) considering a plane- 
stress condition, i.e., normal stresses in direction 3 (i.e. through core 
thickness/outer plane direction) are zero. Plane stress effective stiffness 
matrix QH and transverse shear effective stiffness matrix SHare given as 
follows: 

Fig. 1. Periodic cellular core structure: (a) actual configuration and (b) homogenised equivalent continuum body.  

Fig. 2. RVEs of: (a) honeycomb (b) square (c) triangular and (d) mixed rhombus-triangular cellular core configuration.  
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QH =

⎡

⎢
⎢
⎣

QH
11 QH

12 0
QH

12 QH
22 0

0 0 QH
66

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CH
1111 −

CH
1133*CH

1133

CH
3333

CH
1122 −

CH
1133*CH

2233

CH
3333

0

CH
1122 −

CH
1133*CH

2233

CH
3333

CH
2222 −

CH
2233*CH

2233

CH
3333

0

0 0 CH
1212

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)  

SH =

[
SH

44 0
0 SH

55

]

=

[
CH

1313 0
0 CH

2323

]

. (5) 

Effective engineering constants of the core can be calculated from the 
compliance matrix 

(
CH)− 1, which is found from the inverse of the 

effective elasticity matrix: 

(
CH)− 1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
EH

1
−

vH
21

EH
2

−
vH

31

EH
3

0 0 0

−
vH

12

EH
1

1
EH

2
−

vH
32

EH
3

0 0 0

−
vH

13

EH
1

−
vH

23

EH
2

1
EH

3
0 0 0

0 0 0
1

GH
12

0 0

0 0 0 0
1

GH
13

0

0 0 0 0 0
1

GH
23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)  

where EH
1 ,EH

2 and EH
3 are elastic moduli in 1, 2 and 3 directions, respec-

tively. GH
12 is the in-plane shear modulus, and GH

13 and GH
23 are out-of- 

plane shear moduli. vH
12 and vH

21 are in-plane Poisson’s ratios, and vH
13, 

vH
31, vH

23 and vH
32 are out-of-plane Poisson’s ratios. If the strain energy 

density of the core is known, the effective elastic constants in Eq. (6) can 
be calculated by partial differentiation of the strain energy with respect 
to respective strain components. 

2.2. Strain energy density of RVE of the cellular core 

This section presents the derivation of strain energy density for a RVE 
of the cellular core. When determining the strain energy for the RVE, it is 
necessary to use the stress–strain relationship of the composite core 
walls. Therefore, the stress–strain relationship based on CLT is first 
presented briefly for completeness. 

Fig. 3. (a) RVE of periodic honeycomb core fabricated out of (b) laminated composite walls consisting of (c) fibre layers at different orientations.  
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2.2.1. Stiffness matrix components of a composite core wall 
A RVE of a periodic honeycomb core is shown in Fig. 3a, while a 

typical ply arrangement of a laminated composite wall of the core is 
shown in Fig. 3c. The combined stiffness matrix (ABD) and compliance 
matrix (H)of the laminated composite plate (Fig. 3b) with respect to the 
arbitrarily chosen reference plane1 are respectively given by the 
following expressions: 

ABD =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 A13 A16 B11 B13 B16
A13 A33 A36 B13 B33 B36
A16 A36 A66 B16 B36 B66
B11 B13 B16 D11 D13 D16
B13 B33 B36 D13 D33 D36
B16 B36 B66 D16 D36 D66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)  

H = ABD− 1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a13 a16 b11 b13 b16
a13 a33 a36 b31 b33 b36
a16 a36 a66 b61 b63 b66
b11 b31 b61 d11 d13 d16
b13 b33 b63 d13 d33 d36
b16 b36 b66 d16 d36 d66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8) 

If only a normal force F1 and a moment M11 (per unit length) are 

acting on the plate, axial strain (ε11) and curvature (k11) of the plane 
1 − 3 can be written as: 

ε11 = a′
11F11 + b′

11M11 (9)  

k11 = b′
11F11 + d′

11M11. (10) 

The components a′
11, b

′
11 and d

′
11 are the elements of compliance 

matrix calculated with respect to the plane 1 − 3. 
To find a simple solution, in the current study, the plane 1 − 3 is 

assumed to be the neutral plane for bending of the plate. In doing so, the 
plate is assumed to be only subjected to bending about a single axis only, 
and bend-twist coupling is ignored. This assumption of the neutral plane 
also means the coupling terms between axial and bending can be made 
equal to zero, i.e. b′

11 should be equal to zero. Using the above condition, 
the following equation can be written for b′

11: 

b′
11 = b11 + dd11 = 0, (11)  

where d is the distance between the plane 1 − 3 and the reference plane 
(Fig. 3b). As b′

11 = 0, d can be obtained from Eq. (11) as: 

d = −
b11

d11
. (12) 

At the neutral plane, Eqs. (9) and (10) can be written as: 

ε11 = a′
11F11 (13)  

k11 = d′
11M11 (14) 

Now the stiffness matrix components of the plate with respect to 
plane 1 − 3 can be written as [56]: 

A′
ij = Aij (15)  

B′
ij = Bij − dAij = 0 (16)  

D′
ij = Dij − 2dBij + d2Aij. (17)  

2.2.2. Strain energy density 
The strain energy of the RVE is calculated as the sum of the strain 

energy of each cell wall of the RVE under applied loading and boundary 
conditions. A honeycomb core shown in Fig. 4 is used to demonstrate 
this process. An extension of the methodology to other types of periodic 
cellular core geometries is given at the end of this section. 

The strain energy of each cell wall (Fig. 4) is calculated under plane 
stress conditions by solving for the nodal displacements and nodal forces 

Fig. 4. The decomposition of a RVE into cell wall elements. RVE of the honeycomb core is divided into cell wall elements, and strain energy of each wall is calculated 
and summed up to get the strain energy of the RVE considered. 

Fig. 5. Nodal displacements of the core wall in (a) global (b) local coordinates.  

1 In the current study, the reference plane is taken as the mid-plane of the 
section. The possible effects of this choice on model assumptions are discussed 
where necessary. 
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based on an assumed displacement field for the deformation of the wall. 
Each node of the composite core wall element consists of four degrees of 
freedom, i.e. translational degrees of freedom in 1, 2, and 3 directions 
(or 1, 2 and 3 directions) and rotation about axis 3 (or 3) (Fig. 5). In 
Fig. 5, u(i)1, u(i)2 and u(i)3 refer to the nodal displacements of the com-
posite cell wall in the local 1, 2 and 3 directions respectively and φ(i)
refers to rotation at ith node about 3 direction. Global displacements and 
local displacements are related using the transformation matrix Tas: 

u = Tu , (18)  

where 

u =
{

u(i)1, u(i)2, u(i)3,φ(i), u(j)1, u(j)2, u(j)3,φ(j)
}T

, (19)  

u =
{

u(i)1, u(i)2, u(i)3,φ(i), u(j)1, u(j)2, u(j)3,φ(j)
}T

, (20)  

and 

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(φ0) − sin(φ0) 0 0 0 0 0 0
sin(φ0) cos(φ0) 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 cos(φ0) − sin(φ0) 0 0
0 0 0 0 sin(φ0) cos(φ0) 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21) 

The displacement field of each wall is assumed to consist of three 
components: (a) normal deformation due to axial force in the 1 − 3 plane 
(Eqs. (22)–(24)), (b) normal deformation due to bending in the 1 − 2 
plane (Eqs. (25)–(27)), and (c) normal deformation due to shear in the 
1 − 3 plane (Eqs. (32)–(34)). 

In the case (a), homogeneously distributed normal deformations ua
1, 

ua
2 and ua

3 are due to the axial force in the 1 − 3 plane. For the wall 
component given in Fig. 5, homogeneously distributed normal de-
formations in 1,2, and 3 due to an axial force in the 1 − 3 plane can be 
written as: 

ua
1 = u(i)1 +

u(j)1 − u(i)1

l
x1 (22)  

ua
2 = 0 (23)  

ua
3 = ε33x3 (24) 

The normal deformation in the direction 2 (as in Eq. (23)) is assumed 
to be negligible. However, this assumption does not have any effect on 
the strain energy of the RVE, as the plane stress assumption is used in 
calculating the strain energy of each wall. 

In case (b), normal deformations ub
1, ub

2 and ub
3 are due to bending in 

1 − 2 plane (about direction-3). For a wall component given in Fig. 5, 
homogeneously distributed normal deformations in 1, 2, and 3 due to 
bending in 1 − 2 plane can be written as: 

ub
1 = −

(
d′

11

b

(
1
2
C1x2

1 + C2x1 + C3

))

x2 (25)  

ub
2 =

d′
11

b

(
1
6
C1x3

1 +
1
2
C2x2

1 +C3x1 +C4

)

(26)  

ub
3 = 0 (27)  

where C1,C2,C3andC4 are obtained by applying nodal displacement 
values at 1 and 2: 

C1 =
6*b
d′

11*l

(
− 2

u(j)2 − u(i)2

l
+φ(i) +φ(j)

)
(28)  

C2 =
b

d′
11*l

(
6

u(j)2 − u(i)2

l
− 4φ(i) − 2φ(j)

)
(29)  

C3 =
b

d′
11

φ(i) (30)  

C4 =
b

d′
11

u(i)2 (31) 

Transverse shear deformation is assumed to be negligible, and the 
displacement function for the bending is derived assuming the com-
posite wall behaves as the Euler-Bernoulli beam. The reference plane for 
bending of the core wall was taken as the neutral plane given by Eq. 
(12). 

In case (c), normal deformations us
1, u

s
2 and us

3 are due to shear 
deformation in the 1 − 3 plane. For a wall component given in Fig. 5, 
homogeneously distributed normal deformations in 1, 2, and 3 due to 
shear deformations in 1 − 3 plane can be written as: 

us
1 = 0 (32)  

us
2 = 0 (33)  

us
3 = u(i)3 +

u(j)3 − u(i)3

l
x1. (34) 

The coordinates x1, x2 and x2 (Eqs. (22)–(34)) are considered in 1,2 
and 3 directions, respectively. The addition of the displacement com-
ponents in each direction will give the effective displacements of the 
core wall in each direction. 

Assuming plane stress condition for the homogenised shell, σ22 = 0, 
stress–strain relationship of any ply in the laminated composite wall can 
be written as: 
⎧
⎨

⎩

σ11
σ33
τ13

⎫
⎬

⎭
=

⎡

⎣
Q11 Q13 Q16
Q13 Q33 Q36
Q16 Q36 Q66

⎤

⎦

⎧
⎨

⎩

ε11
ε33
γ13

⎫
⎬

⎭
(35)  

where Qij are the components of the stiffness matrix of the ply of the 
laminated composite wall in 1 − 3 coordinate system. Strain components 
in Eq. (35) can be written as: 

ε11 = ε0,11 + x2k11 (36)  

ε33 = ε0,33 + x2k33 (37)  

γ13 = γ0,13 + x2k13 (38)  

where ε0,11, ε0,33and γ0,13 are the strains in the reference plane, k11, k33 

and k13 are the curvatures of the core wall, and x2 is the distance be-
tween the plane considered and the reference plane (i.e. the distance to 
the neutral plane). Strain ε11 can also be obtained by differentiating the 
effective displacements in 1 direction (i.e. Eqs. (22), (25), and (32)) with 
respect to x1. By comparing the components of the differential of 
effective displacement in 1 direction and Eq. (36), the following re-
lationships can be obtained: 

ε0,11 =
u(j)1 − u(i)1

l
(39)  

k11 = −
d′

11

b
(C1x1 +C2). (40) 

Differentiating the effective displacement in 3 direction (i.e. Eqs. 
(23), (26), and (33)) with respect to x3, and comparing with Eq. (37) the 
following relationship can be obtained: 

ε0,33 = ε33 (41) 
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k33 = 0 (42) 

Now, differentiating effective displacement in direction 1 with 
respect to x3 and adding that to the differential of effective displacement 
in direction 3 with respect to x1, shear strain γ13 can be obtained. 
Comparing that with Eq. (38), the following relationship can be 
established: 

γ0,13 =
u(j)3 − u(i)3

l
(43)  

k13 = 0 (44) 

The total strain energy of a core wall element i (i refers to core wall I, 
II and III in Fig. 4) can be expressed as: 

Wi =
1
2

∫ l

0

∫ b

0

∫ (t/2− d)

− ( t
2+d)

(σ11ε11 + σ33ε33 + τ13γ13)dx2dx3dx1. (45) 

By substituting Eqs. (39)-(44) into Eq. (45) and simplifying using the 
definition in Eqs. (15)-(17), the strain energy of the core wall element 
can be written as: 

Wi =
1
2

(

u Ku T + 2u Gε33 +A33ε2
33

)

, (46)  

where 

K =
b
l

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A′
11 0 A′

16 0 − A′
11 0 − A′

16 0

0
12
l2 D′

11 0
6
l
D′

11 0 −
12
l2 D′

11 0
6
l
D′

11

A′
16 0 A′

66 0 − A′
16 0 − A′

66 0

0
6
l
D′

11 0 4D′
11 0 −

6
l
D′

11 0 2D′
11

− A′
11 0 − A′

16 0 A′
11 0 A′

16 0

0 −
12
l2 D′

11 0 −
6
l
D′

11 0
12
l2 D′

11 0 −
6
l
D′

11

A′
16 0 − A′

66 0 A′
16 0 A′

66 0

0
6
l
D′

11 0 2D′
11 0 −

6
l
D′

11 0 4D′
11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(47)  

G = b[ − A′
13 0 − A′

36 0 A′
13 0 A′

36 0 ]
T
. (48) 

Now the strain energy density of the RVE can be expressed as volume 
average of the sum of the strain energy of each wall in the RVE: 

w =
1

VRVE

∑n

i=I
Wi . (49)  

2.2.3. Solving equations to get the effective stiffness components 
In order to determine the strain energy of the core wall given in Eq. 

(46), the nodal displacement vector u must be known. This is possible 
because, first, the nodal forces are related to the nodal displacements by 
differentiating Eq. (46) with respect to corresponding nodal displace-
ments. The generalised vectors of nodal forces and nodal displacements 
are related as given by the following expression: 

F = Ku +Gε33, (50)  

where 

F =
{

F(i)1 F(i)2 F(i)3 M(i) F(j)1 F(j)2 F(j)3 M(j)
}T (51)  

refers to the generalized vector of nodal force of the wall element. 
Using the force–displacement relationship in Eq. (50), nodal dis-

placements of the core walls are determined considering the periodic 
boundary conditions. Once the nodal displacements are obtained, they 
can be used to determine the effective stiffness matrix components 
defined in Eq. (3). The procedure for obtaining effective stiffness matrix 
components, CH

ijkl is presented in 5 steps: 

Step 1: In step 1, a suitable RVE of the cellular core (e.g., as in Fig. 6) 
is selected. 
Step 2: For the selected RVE, nine reference strain states of the RVE 
are selected at a time to obtain nine independent CH

ijkl components of 
effective elasticity tensor as: 

εij = δif : i = j, k = landi = k  

εij = δif : i ∕= j, k ∕= l, i = kandj = l (52)  

εij = δandεkl = δif : i = j, k = landi ∕= k.

The volume average strain components of the RVE can be defined 
using Gauss’s theorem as an integration around the boundary surface 
Γof the RVE [47,58]: 

εij =
1

2VRVE

∫

Γ

(
uinj + ujni

)
dΓ, (53)  

where ni is outward normal vector at the boundary surface Γ of the RVE. 
Using Eq. (53), the average strain components of the RVE (Fig. 6a) 

are defined based on the characteristic dimensions and the nodal dis-
placements of the RVE as: 

ε11 =
u(3)1 − u(1)1

p
(54)  

ε22 =
u(2)2 − u(1)2

q
+

r
p

u(3)2 − u(1)2

q
(55)  

ε33 = ε33 (56) 

Fig. 6. RVEs of (a) honeycomb (b) square (c) triangular, and (d) mixed rhombus-triangular cellular core.  
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ε12 =
1
2

(
u(3)2 − u(1)2

p
+

u(2)1 − u(1)1

q
+

r
p

u(3)1 − u(1)1

q

)

(57)  

ε13 =
1
2

u(3)3 − u(1)3

p
(58)  

ε23 =
1
2

(
u(2)3 − u(1)3

q
+

r
p

u(3)3 − u(1)3

q

)

. (59)   

Step 3: Determine the nodal displacements of each wall of the RVE 
with respect to local coordinates, considering the periodic boundary 
conditions and the equilibrium conditions of the nodal forces (see 
Appendix). Detailed explanations of solving for nodal displacements 
are not included in this paper as this has already been discussed in 
detail in Ref. [47]. 
Step 4: Calculate the strain energy of each wall (Eq. (46)) and then 
calculate the sum of the strain energy of all the walls in RVE and 
divide the total strain energy by the volume of the RVE to get the 
strain energy density of the RVE (Eq. (49)). 

Step 5: Apply Eq. (60) to find the stiffness components of the 
effective elasticity tensor CH: 

CH
ijkl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2w
(
ε(ij)
) 1

ε2
(ij)

if : i = j, k = landi = k

1
2

w
(
ε(ij)
) 1

ε2
(ij)

if : i ∕= j, k ∕= l, i = kandj = l

(
w
(
ε(ij),ε(kl)

)
− w

(
ε(ij)
)
− w

(
ε(kl)

) ) 1
ε(ij)ε(kl)

if : i = j, k = landi ∕= k.

(60) 

The above procedure can be carried out using a simple MATLAB or 
Python program, thus, it can be solved for different material and cellular 
geometry configurations with little effort. 

3. Force-equilibrium based approach 

As force-equilibrium-based approach is commonly used for deter-
mining the equivalent shell properties [33–49], this section explains and 
employs this method for the honeycomb core. Results from this 
approach are compared with the previously presented strain energy- 
based approach. However, the applicability of the force-equilibrium 
approach is limited to the honeycomb core and cannot be generalised 
for other types of cellular core geometries, whereas the strain-energy 
based method is more broadly applicable. 

The force-equilibrium approach considers the force-equilibrium of 
the walls to determine the deformation of the walls under applied uni-
form external stress and then the applied stress is divided by the average 
strain of the RVE to get the effective elastic modulus as a stress–strain 
ratio. Wang and Wang [55] recently proposed equations for the effective 
elastic properties of the composite honeycomb core. In their model, the 
effective in-plane Poisson’s ratios for the regular hexagonal honeycomb 
core become equal to 1, thus resulting in singularities for QH

11andQH
22.

Therefore, their model cannot be used to determine QH
11andQH

22. 
Mukherjee and Adhikari [37] also proposed equations to determine the 
effective elastic properties of the honeycomb core. Their model, together 
with CLT to determine composite wall properties, are used in this section 
to derive equations for predicting the effective in-plane properties (QH

11,

QH
22andQH

66) of the composite wall honeycomb core. 
The RVE of the honeycomb core, considered for calculating the 

effective elastic modulus in 1-direction is given in Fig. 7. A uniform 
stress field σ11is applied to the RVE in the direction 1, as shown in Fig. 7, 
to derive the expression of the equivalent longitudinal elastic modulus. 
Applied stress field results in a force F1 being applied at points A and B 
on the unit cell. The magnitude of the force F1 is given by: 

F1 = σ11b(h − lcosθ) (61) 

Deformation ub
2of the inclined member AO due to bending can be 

Fig. 7. Schematic diagram of deformation pattern of the unit cell under the application of uniform stress field σ11 in the 1-direction.  

Table 1 
Mechanical properties of composite wall material.  

Material E1(Nmm− 2) E3(Nmm− 2) G13(Nmm− 2) v13(1)

E-glass/Epoxy(G) 38,600 8270 4140  0.26 
Boron/Epoxy(B) 204,000 18,500 5590  0.23  

Table 2 
Material configuration of composite wall.  

Composite 
wall 

Layer arrangement (Material properties for G 
and B are given in Table 1) 

Fibre 
orientation (0) 

1 G/G/G/G/G 45/-45/0/-45/ 
45 

2 G/G/G/G/G 0/0/90/0/0 
3 G/G/G/G/G 90/0/0/0/90 
4 G/G/G/G/G 0/45/90/45/0 
5 G/G/G/G/G 45/0/90/0/45 
6 G/G/G/G/G 45/-45/45/-45/ 

45 
7 B/G/G/G/B 45/-45/0/-45/ 

45 
8 G/B/G/B /G 0/0/90/0/0 
9 B/G/G/G/B 0/0/90/0/0 
10 G/B/G/B/G 90/0/0/0/90 
11 G/G/B /G/G 0/45/90/45/0 
12 G/G/G/G/B 45/0/90/0/45 
13 B/G/G/B/G 0/0/90/0/0 
14 G/G/G/G/B 45/-45/0/-45/ 

45  
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Fig. 8. (a) Boundaries of typical RVEs of (b) honeycomb (c) square (d) triangular and (e) mixed rhombus-triangular core for numerical models.  

Table 3 
Boundary conditions applied to RVEs to get the equivalent shell stiffness.  

Effective 
properties 

At x1 = 0 
∀x2,x3 

At x1 = L 
∀x2,x3 

At x2 = 0 
∀x1,x3 

At x2 = W 
∀x1,x3 

At x3 = 0 
∀x1,x2 

At x3 = H 
∀x1,x2 

QH
11 u1 = 0All other degrees 

of freedom are set to free 
u1 = 1All other degrees 
of freedom are set to free 

u2 = 0All other degrees 
of freedom are set to free 

u2 = 0All other degrees 
of freedom are set to free 

All degrees of freedom 
are set to free. 

All degrees of freedom 
are set to free. 

QH
22 u1 = 0All other degrees 

of freedom are set to free 
u1 = 0All other degrees 
of freedom are set to free 

u2 = 0All other degrees 
of freedom are set to free 

u2 = 1All other degrees 
of freedom are set to free 

All degrees of freedom 
are set to free. 

All degrees of freedom 
are set to free. 

QH
12 u1 = 0All other degrees 

of freedom are set to free 
u1 = 1All other degrees 
of freedom are set to free 

u2 = 0All other degrees 
of freedom are set to free 

u2 = 1All other degrees 
of freedom are set to free 

All degrees of freedom 
are set to free. 

All degrees of freedom 
are set to free. 

QH
66 u1 = u2 = 0All other 

degrees of freedom are 
set to free 

u1 = 0,u2 = 1All other 
degrees of freedom are 
set to free 

u1 = 0All other degrees 
of freedom are set to free 

u1 = 0All other degrees 
of freedom are set to free 

All degrees of freedom 
are set to free. 

All degrees of freedom 
are set to free. 

SH
44 u1 = u2 = u3 = 0All 

other degrees of 
freedom are set to free 

u1 = u2 = 0u3 = 1All 
other degrees of freedom 
are set to free 

u1 = u2 = 0All other 
degrees of freedom are 
set to free 

u1 = u2 = 0All other 
degrees of freedom are 
set to free 

u1 = u2 = 0All other 
degrees of freedom are 
set to free 

u1 = u2 = 0All other 
degrees of freedom are 
set to free 

SH
55 u1 = u2 = 0All other 

degrees of freedom are 
set to free 

u1 = u2 = 0All other 
degrees of freedom are 
set to free 

u1 = u2 = u3 = 0All 
other degrees of 
freedom are set to free  

u1 = u2 = 0u3 = 1All 
other degrees of freedom 
are set to free 

u1 = u2 = 0All other 
degrees of freedom are 
set to free 

u1 = u2 = 0All other 
degrees of freedom are 
set to free   

Table 4 
Effective stiffness QH

11 for the regular composite wall honeycomb core.  

Composite 
wall 

Proposed strain energy based (1) 
(
Nmm− 2)

Modified Mukherjee and Adhikari [37] 
(2)
(
Nmm− 2)

FEM (3) 
(
Nmm− 2)

Difference 
(3 − 1)

3
%  

Difference 
(3 − 2)

3
%  

1 324.71 324.01  322.63  − 0.64  − 0.43 
2 595.17 595.09  591.66  − 0.59  − 0.58 
3 482.53 482.5  477.88  − 0.97  − 0.97 
4 403.27 403.07  398.85  − 1.11  − 1.06 
5 401.5 400.81  399.82  − 0.42  − 0.25 
6 228 227.29  226.96  − 0.46  − 0.14 
7 385.23 380.09  380.83  − 1.15  0.19 
8 1793.8 1793.7  1785.9  − 0.44  − 0.43 
9 1807.1 1807  1760.7  − 2.64  − 2.63 
10 1681.6 1681.5  1662.9  − 1.12  − 1.12 
11 448.45 448.27  445.37  − 0.69  − 0.65 
12 439.45 436.84  435.58  − 0.89  − 0.29 
13 1799.7 1799.6  1715.1  − 4.93  − 4.93 
14 360.7 357.53  356.44  − 1.04  − 0.3  
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written as: 

ub
2 =

− F1cosθ
kl

55
(62) 

Deformation ua
1of the inclined wall AO due to axial forces can be 

written as: 

ua
1 =

F1sinθ
kl

44
. (63) 

In Eqs. (62) and (63), kl
55 and kl

44 are elements of the Euler-Bernoulli 
beam stiffness matrix of the inclined wall AO of length l. Considering the 
symmetry of elements OA and OB, the total deflection in the 1-direction 
can be obtained as: 

u1 = 2
(
ua

1sinθ − ub
2cosθ

)
= 2F1

(
cos2θ

kl
55

+
sin2θ
kl

44

)

= 2F1
cos2θ

kl
55

(

1+ tan2θ
kl

55

kl
44

)

. (64) 

Hence, the strain in 1-direction is obtained as: 

ε11 =
u1

2lsinθ
=

2F1
cos2θ

kl
55

(

1 + tan2θ kl
55

kl
44

)

2lsinθ
. (65) 

From the normal stress and strain in direction − 1, the effective 
elastic modulus of the honeycomb core in direction-1 can be obtained as: 

EH
1 =

σ11

ε11
=

kl
55lsinθ

b(h − lcosθ)cos2θ

(

1 + tan2θ kl
55

kl
44

) (66) 

If the cell walls of the honeycomb core are made of laminated 
composite/multi-layered material, then the stretching modulus and 
bending modulus of the wall could be different, and deformations must 

Table 5 
Effective stiffness QH

22 for the regular composite wall honeycomb core.  

Composite 
wall 

Proposed 
strain 
energy 
based (1) 
(
Nmm− 2)

Modified 
Mukherjee 
and 
Adhikari  
[37] (2) 
(
Nmm− 2)

FEM(3) 
(
Nmm− 2)

Difference 
(3 − 1)

3
%  

Difference 
(3 − 2)

3
%  

1 324.71 324.01  322.61  − 0.65 − 0.43 
2 595.17 595.09  591.64  − 0.6 − 0.58 
3 482.53 482.5  477.85  − 0.98 − 0.97 
4 403.27 403.07  398.84  − 1.11 − 1.06 
5 401.5 400.81  399.84  − 0.42 − 0.24 
6 228 227.29  226.96  − 0.46 − 0.14 
7 385.23 380.09  380.92  − 1.13 0.22 
8 1793.8 1793.7  1785.8  − 0.45 − 0.44 
9 1807.1 1807  1760.7  − 2.64 − 2.63 
10 1681.6 1681.5  1662.8  − 1.13 − 1.12 
11 448.45 448.27  445.36  − 0.69 − 0.65 
12 439.45 436.84  435.6  − 0.88 2 
13 1799.7 1799.6  1714.9  − 4.94 − 4.94 
14 360.14 354.07  357.53  − 1.06 − 0.32  

Table 6 
Effective stiffness QH

12 for the regular composite wall honeycomb core.  

Composite 
wall 

Proposed strain energy based 
(1)
(
Nmm− 2)

Modified Mukherjee and Adhikari [37] 
(2)
(
Nmm− 2)

FEM 
(3)
(
Nmm− 2)

Difference 
(3 − 1)

3
%  

Difference 
(3 − 2)

3
%  

1  319.85  320.56 319.03  − 0.26  − 0.48 
2  584.25  584.32 584.02  − 0.04  − 0.05 
3  478.29  478.32 474.61  − 0.77  − 0.78 
4  393.65  393.85 392.19  − 0.37  − 0.42 
5  395.42  396.12 395.67  0.06  − 0.11 
6  223.19  223.9 223.49  0.14  − 0.18 
7  370.15  375.29 372.85  0.72  − 0.66 
8  1773.1  1773.2 1772.2  − 0.05  − 0.05 
9  1759.8  1759.9 1733  − 1.55  − 1.56 
10  1667.6  1667.7 1653.5  − 0.85  − 0.86 
11  438.8  438.99 438.49  − 0.07  − 0.11 
12  428.81  431.42 430.08  0.3  − 0.31 
13  1767.2  1767.3 1694.9  − 4.26  − 4.27 
14  350.77  351.42 353.38  0.18  − 0.56  

Table 7 
Effective stiffness QH

66 for the regular composite wall honeycomb core.  

Composite 
wall 

Proposed strain energy 
based(1)

(
Nmm− 2)

Modified Mukherjee and Adhikari 

[37](2)
(
Nmm− 2)

FEM 
(3)
(
Nmm− 2)

Wang R, and Wang J. [55] 
(4)
(
Nmm− 2)

Diff 
(3 − 1)

3
%  

Diff 
(3 − 2)

3
%  

Diff 
(3 − 4)

3
%  

1  2.43  1.73  2.47  4.88 1.79  30.21 − 97.03 
2  5.46  5.38  5.37  10.97 − 1.71  − 0.27 − 104.4 
3  2.12  2.09  2.25  4.24 6.06  6.97 − 88.3 
4  4.81  4.61  4.75  9.68 − 1.38  2.86 − 103.9 
5  3.04  2.34  2.93  6.1 − 3.9  19.84 − 108.5 
6  2.4  1.69  2.39  4.83 − 0.41  29.23 − 101.6 
7  7.54  2.4  5.7  15.15 –32.32  57.93 − 166 
8  10.31  10.23  9.63  20.7 − 7  − 6.17 − 114.8 
9  23.65  23.53  20.25  47.62 − 16.82  − 16.21 − 135.2 
10  6.97  6.94  6.72  13.96 − 3.73  − 3.32 − 107.9 
11  4.83  4.64  4.83  9.7 0.08  3.93 − 100.9 
12  5.32  2.71  3.9  9.84 − 36.53  30.46 − 152.4 
13  16.26  16.15  14.47  32.66 − 12.33  − 11.6 − 125.7 
14  2.07  2.07  3.46  8.5 − 35.25  40.12 − 145.28  
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be calculated based on the corresponding modulus [54]. Therefore, the 
stiffness terms kl

55 and kl
44 in Eq. (59) and Eq. (60) should be calculated 

based on the equivalent elastic modulus of the wall for stretching and 
bending, respectively. These can be calculated and are given as follows 
[37]: 

kl
44 =

(
Eaxial

1 A
l

)

=

(
b

l a′
11

)

(67)  

kl
55 =

(
12Ebending

1 I
l3

)

=

(
12b

l3d′
11

)

(68) 

Substituting Eqs. (67) and (68) into Eq. (66), we will get the equation 
for the effective modulus EH

1 of laminated composite wall honeycomb 
core: 

EH
1 =

12sinθ
(

h
l − cosθ

)

cos2θ
(

l3d′
(11),l + 12la′

(11),ltan
2
θ
) (69) 

Similarly, other equations for in-plane effective elastic properties EH
2 ,

vH
12 andGH

12can be derived as [37]: 

EH
2 =

kl
55

(
h
l − cosθ

)

bcos3θ

(

1 + cot2θ kl
55

kl
44
+ 2cosec2θ kl

55
kl

44

) (70)  

EH
2 =

12
(

h
l − cosθ

)

sin3θ
(

l3d′
(11),l + 12la′

(11),lcot
2
θ + 24ha′

(11),hcosec
2
θ
) (71)  

vH
12 = −

sin2θ

(

1 −
kl

55
kl

44

)

(
h
l − cosθ

)

cosθ

(

1 + tan2θ kl
55

kl
44

) (72)  

vH
12 = −

sin2θ
(

l3d′
(11),l − 12la′

(11),l

)

(
h
l − cosθ

)

cosθ
(

l3d′
(11),l + 12la′

(11),ltan
2
θ
) (73)  

GH
12 =

(
h
l − cosθ

)

bsinθ

⎛

⎜
⎜
⎜
⎝
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(74)  
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)
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(
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(11),h + 156l
(

sinθ −

(
h
l − lcosθ

)

cotθ
)2

a′
(11),l

)

(75)  

Table 8 
Effective stiffness SH

44 for the regular composite wall honeycomb core.  

Composite wall Proposed strain energy based 
(1)
(
Nmm− 2)

Wang R, and Wang J. [55] 
(2)
(
Nmm− 2)

FEM(3)
(
Nmm− 2)

Difference 
(3 − 1)

3
%  Difference 

(3 − 2)
3

%  

1 341.61  341.61  340.57  − 0.31  − 0.31 
2 149.39  149.39  149.44  0.03  0.03 
3 149.39  149.39  149.44  0.03  0.03 
4 231.45  245.5  228.69  − 1.21  − 7.35 
5 231.42  245.5  228.02  − 1.49  − 7.66 
6 384.7  389.67  385.24  0.14  − 1.15 
7 745.01  961.64  735.73  − 1.26  − 30.71 
8 170.32  170.32  169.84  − 0.28  − 0.28 
9 170.32  170.32  170.36  0.02  0.02 
10 170.32  170.32  170.36  0.02  0.02 
11 243  255.97  246.76  1.52  − 3.73 
12 429.05  555.51  371.94  − 15.36  − 49.36 
13 170.32  170.32  170.36  0.02  0.02 
14 581.06  651.62  518.36  − 12.09  − 25.71  

Table 9 
Effective stiffness SH

55 for the regular composite wall honeycomb core.  

Composite wall Proposed strain energy based (1)
(
Nmm− 2) Wang R, and Wang J.[55] (2)

(
Nmm− 2) FEM (3)

(
Nmm− 2)

Difference 
(3 − 1)

3
%  Difference 

(3 − 2)
3

%  

1 341.61  341.61 340.57  0.06  0.06 
2 149.39  149.39 149.44  0.1  0.1 
3 149.39  149.39 149.44  0.1  0.1 
4 231.45  245.5 228.69  − 0.67  − 6.35 
5 231.42  245.5 228.02  − 0.66  − 6.35 
6 384.7  389.67 385.24  0.31  − 0.96 
7 745.01  961.64 756.43  1.51  − 21.34 
8 170.32  170.32 170.41  0.05  0.05 
9 170.32  170.32 170.47  0.09  0.09 
10 170.32  170.32 170.47  0.09  0.09 
11 243  255.97 249.05  2.43  − 2.7 
12 429.05  555.51 398  − 7.8  − 28.35 
13 170.32  170.32 170.47  0.09  0.09 
14 581.06  651.62 543.17  − 6.97  − 16.64  
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4. Analysis of analytical derivations 

To validate the proposed model, the proposed strain-energy-based 
model is used to calculate the effective elastic properties of an equiva-
lent shell for RVEs of honeycomb, square, triangular, and mixed 
rhombus-triangular cellular core shapes (Fig. 6). Results are then 
compared with the equivalent shell properties obtained from FE models 
of the RVEs of different cellular core shapes. In addition, predictions for 
the honeycomb core using the proposed strain energy-based model are 
compared against results from the force-equilibrium based model 
derived based on Mukherjee and Adhikari [37], and the homogenisation 
model proposed by Wang and Wang [55]. 

Elastic properties of different FRP materials used for composite wall 
cellular cores with respect to principal axes of the lamina are given in 
Table 1. For each core shape, different composite wall layups were 
considered. Layer arrangements considered in this study are given in 

Table 2. The core wall lengths are taken as: l1 = l2 = l3= l4=50 mm 
(Fig. 6), while the height of the cores (b) is taken as 150 mm. Each wall 
of the RVE has identical thickness and thickness of the core walls for all 
core shapes was selected to have a relative core density (ρ*)of 0.0722. 
Each ply thickness is assumed to be equal. 

RVEs of regular honeycomb, triangular, square, and mixed rhombus- 
triangular cellular cores (Fig. 8) were modelled using commercial soft-
ware ABAQUS [59]. The S4 shell element was used with a mesh size of 
10 mm selected based on a mesh convergence study. The composite shell 
option available in ABAQUS was used for modelling composite walls, 
with the material properties of each layer assigned based on properties 
given in Table 1, and the local material direction of each layer was 
assigned based on configurations given in Table 2. Prescribed 
displacement boundary conditions similar to [50,51] were applied ac-
cording to Table 3 to get the effective properties for equivalent shell 
analysis. Effective properties were calculated based on the total strain 

Fig. 9. Influence of vertical wall to inclined wall thickness ratio (t1/t2) on (a) QH
11 (b) QH

22 (c) QH
12 (d) QH

66 (e) SH
44 and (f) SH

55 of the honeycomb core.  
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energy extracted from the analysis of the RVE under applied boundary 
conditions. 

5. Results and discussions 

5.1. Hexagonal honeycomb core 

Comparison of the effective in-plane properties QH
11 and QH

22 for the 
hexagonal honeycomb core RVEs predicted from the proposed strain 
energy-based and force-equilibrium approach (called modified 
Mukherjee and Adhikari [37] model hereafter) has been implemented in 
FE and its results are given in Tables 4 and 5. Comparison of the effective 
QH

66 predicted from the proposed modified Mukherjee and Adhikari’s 
and Wang and Wang’s [55] models with the FE implementation are 
given in Table 6. In addition, effective transverse shear stiffness SH

44 and 
SH

55 predicted from the proposed Wang and Wang [55] model, and the FE 
models are also given in Tables 7 and 8. 

The proposed strain-energy-based model showed an excellent 

agreement with the FE results, except for predictions of QH
66 for several 

composite wall material configurations. The maximum error in pre-
dictions using the proposed model for QH

11, QH
22, QH

12 and QH
66 are − 4.93 

%, − 4.94 %, − 4.26 % and − 36.53 % respectively (Tables 4–7). For all 
the properties except for QH

66, modified Mukherjee and Adhikari’s model 
also gave good agreements with the FE results. However, predictions for 
QH

66 from modified Mukherjee and Adhikari’s model also showed a sig-
nificant difference to FE results for several composite wall configura-
tions. Wang and Wang model also showed significant differences with 
the FE predictions. Even for QH

66 proposed strain-energy based model 
provided better predictions than the modified Mukherjee and Adhikari’s 
and Wang and Wang’s models. Additional comparisons for equivalent 
properties of the composite honeycomb core were also made with the 
predictions from Sather and Krishnamurthy [57] analytical models and 
the results are given in Sriharan [60]. The proposed model was found to 
provide significantly better predictions. 

In predicting the transverse shear stiffness, the proposed strain 
energy-based model and FE results are in very good agreement for all the 

Fig. 10. Influence of vertical wall to inclined wall length ratio (h/l) on (a) QH
11 (b) QH

22 (c) QH
12 (d) QH

66 (e) SH
44 and (f) SH

55 of the honeycomb core.  
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different material configurations of the core wall considered (Tables 8 
and 9). Maximum errors in predicting SH

44 and SH
55 out of all the combi-

nations considered are − 7.8 % and − 15.36 %, respectively. Wang and 
Wang’s model predicts larger errors than the proposed model, with 
maximum errors of 49.36 % and − 28.35 % for SH

44 and SH
55 respectively. 

From the different material configurations considered, the prediction 
for the core consisting of symmetrically laminated walls shows excellent 
agreement with the FE results. The prediction accuracy reduces when 
the laminates are unsymmetrical and/or not orthotropic (Tables 4–9). 
When the laminate is not symmetrical, the membrane-bending coupling 
may exist. While for most cases, the condition given in Eq. (12) for 
considering the reference plane will eliminate this effect, for some un-
symmetrical laminates, a reference plane which is also the neutral plane, 
may not exist within the wall thickness. In addition, when the laminate 
is non-orthotropic and non-isotropic, the bending-twisting coupling may 
also exist. As these components are not considered in the analytical 
models, results may deviate from the exacts when bend-twist coupling 

becomes stronger. However, the proposed model was shown to provide 
reasonable accuracy while significantly reducing the time and effort 
required compared to FE models in predicting effective properties for 
the honeycomb cores. 

5.2. Parametric study 

The comparisons of effective properties of the composite honeycomb 
core in Tables 4–9 validate the effectiveness of proposed strain energy- 
based model. In this section, the proposed model is used to study the 
influence of different variables on the effective properties of the com-
posite honeycomb core and comparisons are shown in Figs. 9–11. In this 
study, core relative density (ρ*) remains constant (0.0722) for all the 
cases and only material configuration 1–6 in Table 2 are considered. 

Fig. 9 shows the influence of vertical wall’s thickness to inclined 
wall’s thickness ratio on the effective properties of the honeycomb core. 
Thickness ratio is varied keeping the length of each wall is equal to 50 

Fig. 11. Influence of angle between the vertical wall and inclined wall (θ) on (a) QH
11 (b) QH

22 (c) QH
12 (d) QH

66 (e) SH
44 and (f) SH

55 of the honeycomb core.  
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mm and angle between the walls is 1200. It can be seen from Fig. 9(a)–(f) 
that all the effective properties decrease when the thickness ratio in-
creases. This implies that in the regular honeycomb core, larger pro-
portion of the loads are carried by the inclined walls and when the 
inclined walls get weaker, the effective stiffness of the core is reduced 
due to increased deformation of the inclined walls. Also, QH

11 is equal to 
QH

22 and SH
44 is equal to SH

55 means that homogenised continuum core 
always behaves as transversely isotropic material at the effective level 
regardless of the thickness ratio. Fig. 10 shows the influence of the 
vertical wall’s length to inclined wall’s length ratio on the effective 
properties. The length ratio between the walls is varied keeping an 
identical thickness (3.125 mm) for all the walls and angle between the 
walls is 1200. In this case QH

11, QH
66 and SH

44 reduce and QH
22 and SH

55 in-
crease when the length ratio increases. QH

12 shows highest value when 
the ratio is 1, however it reduces continuously for further increase of 
length ratio (Fig. 10(a)–(f)). The reason for increase in the QH

11 and SH
44 

and reduction in QH
22 and SH

55 can be explained by the change in average 
strain of the RVE caused by the change in the length ratio. The increase 
in the length ratio positively influences QH

11 and SH
44 because character-

istics length of RVE is decreased in direction-1 which eventually results 
lower average strain of core compared to direction-2. Fig. 11 shows the 
influence of the angle between vertical and inclined walls on the effec-
tive properties. In this case QH

11, and SH
44 reduce and QH

22 and SH
55 increase 

with the increase of angle between the walls. QH
12 shows highest value 

when the angle is 1200 whereas QH
66 reaches the highest value when the 

angle is around 1300. Variation of different parameters positively and 
negatively influences the effective properties. The effect of the variation 

of parameters in Figs. 9–11 mainly depends on the overall geometry 
change of the RVE as well as the change in proportion of the loads 
carried by each wall due to change in geometry of individual wall. 

5.3. Cellular cores with different shapes 

Figs. 12–17 compares the effective properties of different cellular 
core shapes under the same core density, and different material con-
figurations of the composite wall predicted using the proposed strain 
energy-based model and the FE analysis. The material configurations 
1–14 listed in Table 2 were considered. Predicted values are plotted in 
Figs. 12–17. 

For most of the core shapes, predictions from the proposed model 
agreed well with the FE results. However, predictions for QH

12 and QH
66 

from the proposed model showed differences with the FE results for 
square core shape (Figs. 14 and 15). However, it was also observed that 
actual values of the QH

12 and QH
66 for square cores are relatively small. 

Therefore, the overall error caused by this mismatch can be expected to 
be small. When stiffness values are relatively large, the proposed model 
predictions agreed well with the FE results. 

It can be seen from Figs. 12–17 that, although the core density is the 
same, the effective properties are different for different core shapes and 
material configurations. Out of all the different cellular core shapes, the 
square core shows the highest in-plane normal stiffness QH

11 and QH
11 

while having the lowest in-plane shear modulus QH
66for all different 

material configuration considered. Moreover, it gives a very small 
negative Poisons’ ratio resulting in the negative stiffness value for QH

12 

Fig. 12. Component 11 of the effective stiffness matrix (i.e., QH
11) for the composite wall cellular cores with different shapes and percentage error of predictions 

compare to FE analysis. 
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Fig. 13. Component 22 of the effective stiffness matrix (i.e., QH
22) for the composite wall cellular cores with different shapes and percentage error of predictions 

compare to FE analysis. 
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Fig. 14. Component 12 of the effective stiffness matrix (i.e., QH
12) for the composite wall cellular cores with different shapes and percentage error of predictions 

compare to FE analysis. 
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(Fig. 14). While the hexagonal honeycomb core shows the lowest in- 
plane normal stiffness, it shows the highest in-plane normal coupling 
stiffness QH

12 for all the cases (Fig. 14) due to effective in-plane Poisson’s 
ratio. The triangular core shows the highest in-plane shear stiffness out 
of all the core shapes considered (Fig. 15). Except for the mixed 
rhombus-triangular core, all the other cores behave as transversely 
isotropic material at the effective level, whereas mixed rhombus- 
triangular shows orthotropic material behaviour. 

In the case of out-of-plane shear stiffness (Figs. 16 and 17), trian-
gular, square, and honeycomb cores results in almost the same values for 
all the different material configurations. However, mixed rhombus- 
triangular core results in slightly higher values for SH

44 and lower 
values for SH

55 than the other core shapes. Regardless of the shapes of the 
cellular cores, the highest value for transverse shear stiffness was 
observed when the fibre layer arrangement is (45/-45), and stiffness was 
found to reduce when the fibre layer arrangement is (0/90) (Figs. 16 and 
17). 

While above-developed equations were shown to be accurate in 
determining the equivalent effective stiffness properties of the com-
posite wall cellular cores, calculations are tedious and thus may not be 
attractive for design purposes. Therefore, simplified design plots are 
produced in Figs. 18–21 for calculating the effective properties of the 
cellular cores of different shapes. The following example demonstrated 
the use of design plots for obtaining the effective stiffness properties for 
a honeycomb core: 

Example: Consider the composite wall configuration 1 and 7 in 
Table 2 for the hexagonal honeycomb core. For configuration 1 in 

Table 2, the value of the ratio A′
12

2
/(A′

11A′
22) is 0.17, while value of the 

ratio D′
11/(A

′
11l2) is 2.62 × 10-4. Using the above two values in Fig. 18 

(a)–(c), values of the ratios (QH
11l)/A′

11, (QH
12l)/A′

11, and (QH
66l)/A′

11 can be 

obtained as approximately 0.2405, 0.2377, and 0.0018 respectively. 

Since value of the A′
11 is 6.7281 × 104 Nmm− 1, the effective properties 

QH
11, QH

12, and QH
66 can be calculated as 323.6 Nmm− 2, 319.9 Nmm− 2, and 

2.42 Nmm− 2 respectively. 

For configuration 7 in Table 2, the value of the ratio A′
12

2
/(A′

11A′
22) is 

0.457, while value of the ratio D′
11/(A

′
11l2) is 4.35*10-4. Using the above 

two values in Fig. 18(a) - (c), values of the ratios (QH
11l)/A′

11, (QH
12l)/A′

11, 

and (QH
66l)/A′

11 can be obtained as approximately 0.159, 0.152, and 

0.003 respectively. Since value of the A′
11 is 1.2521 × 105 Nmm− 1, 

effective properties QH
11, QH

12, and QH
66 can be calculated as 398 Nmm− 2, 

380 Nmm− 2, and 7.5 Nmm− 2 respectively. 
Similarly, Plots 19, 20, and 21 can be used for calculating the 

effective properties of square, triangular, and mixed rhombus honey-
comb core shapes, respectively. 

6. Conclusions 

This paper presented a methodology to determine the equivalent 
stiffness properties for a continuum-based homogenised composite 
cellular core, therefore providing a pathway for the designers to make 
better decisions on key design parameters such as cellular core shape, 
cell geometry, and cell wall materials and layer sequences when 
designing cellular core sandwich panels to meet a desired performance. 
Equivalent stiffness properties were determined by equating the strain 
energy of a representative volume element of the cellular core to the 
strain energy of an equivalent homogenised shell under the same 
resulting deformation for a given force. 

The proposed methodology provides a significant advancement in 
the design of cellular core sandwich panel technologies by allowing 

Fig. 15. Component 66 of the effective stiffness matrix (i.e., QH
66) for the composite wall cellular cores with different shapes and percentage error of predictions 

compare to FE analysis. 
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Fig. 16. Component 44 of the effective stiffness matrix (i.e., SH
44) for the composite wall cellular cores with different shapes and percentage error of predictions 

compare to FE analysis. 

Fig. 17. Component 55 of the effective stiffness matrix (i.e., SH
55) for the composite wall cellular cores with different shapes and percentage error of predictions 

compare to FE analysis. 
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designers to consider key design parameters such as core shape, geom-
etry, materials, and composite layer sequences and their interactions in 
determining optimal designs for the required performance. The pro-
posed methodology, breakaway the limitations in existing methodolo-
gies in terms of core shapes, materials and cell wall composite layer 
sequences and provide a unified approach to consider all the above in a 
single modelling approach. 

To compare with existing methodologies for determining equivalent 
properties of honeycomb core, an existing model developed based on a 
force-equilibrium approach for the honeycomb core with isotropic ma-
terials was also extended to determine equivalent properties for com-
posite honeycomb core (called modified-existing model). Predictions 
from the proposed model, a modified-existing model, and an existing 
model were compared with finite element (FE) results of honeycomb 
core with different cell wall composite layer sequences. Predictions from 
the proposed model were also compared with FE results for different 
cellular core shapes and cell wall composite layer sequences. 

Comparisons showed that the proposed model provides accurate 
predictions for the equivalent properties of composite honeycomb core 
for different composite wall layer sequences. Modified-existing model 
also gave good predictions for the honeycomb core. Both models per-
formed better than the other existing models. The proposed model also 

provided accurate predictions for different cellular core shapes. The 
proposed model, therefore, is superior to any other existing model in 
terms of its general applicability. 

Simplified design plots were produced using the proposed model to 
calculate the effective properties of the cellular cores of different shapes. 
These plots are valuable in assisting the designers in determining the 
effective properties without having to go through a rigorous calculation 
process. 

The proposed methodology is an important step towards the optimal 
design of sandwich panels. Such optimal designs will have a significant 
impact in many industries, such as aerospace, automobile, and civil 
infrastructure, in terms of efficient designs capable of reducing weight, 
cost, and embodied energy while meeting the intended performance 
requirements. To get the best benefits of this methodology, further work 
is required to (a) extend this methodology also to consider the skins of 
the sandwich panel, (b) extend this methodology to consider potential 
failure modes, and (c) develop optimization methods to determine the 
optimal sandwich panel designs. 
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Fig. 19. Influence of wall stiffness parameters on (a) QH
11orQH

22 (b) QH
12 and (c) QH

66 of square core.  
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Appendix

Equations for solving nodal displacements 

Applying the periodic boundary conditions to the RVE, we will have the followings; 

φ(i) = φ(i+ 1), i = 1, 3,⋯..,m 

Fig. 20. Influence of wall stiffness parameters on (a) QH
11orQH

22 (b) QH
12 and (c) QH

66 of triangular core.  
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u(m)l − u(i)l = u(m+1)l − u(i+1)l, i = 1, 3,⋯..,m, l = 1, 2, 3  

φ(j) = φ(j+ 1), j = (m+ 2), (m+ 4),⋯.., n  

u(2)l − u(j)l = u(m+1)l − u(j+1)l, j = (m+ 2), (m+ 4),⋯.., n, l = 1, 2, 3  

φ(1) = φ(m). (A.1) 

RVE does not undergo any rigid body motions, then we will have the followings; 

u(1)1 = 0, u(1)2 = 0, u(1)3 = 0, and u(m)2 = 0. (A.2) 

Resultant forces at all internal nodes and at all pairs of corresponding nodes i and i+1 should be zero, which gives the followings; 

F(1)l +F(2)l +F(m)l +F(m+1)l = 0, l = 1, 2, 3  

M(1) +M(2) +M(m) +M(m+1) = 0,

F(i)l +F(i+1)l = 0, i = 3, 5,⋯.., (m − 2)and  

M(i) +M(i+1) = 0, i = (m+ 2), (m+ 4),⋯, n, l = 1, 2, 3  

Fig. 21. Influence of wall stiffness parameters on (a) QH
11 (b) QH

22 (c)QH
12 and (d) QH

66 of mixed rhombus-triangular core.  
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F(k)l = 0, k = (n+ 2), (n+ 3),⋯, s, l = 1, 2, 3 M(k)l = 0. (A.3) 

Equations in (A.1), (A.2) and (A.3) together with the Eqs. (54)-(59) will provide (4s+3) equations to solve for the nodal displacements of RVE. 
Equations in (A.3) will provide three redundant equations which should be eliminated to solve for the nodal displacements. 
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