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ability analysis. In doing so, polynomial basis functions, which do not involve free parameters, are chosen for the sparse Bayesian regression
to avoid computationally expensive parameter tuning. The convergence of the proposed approach is attained based on the stabilization of
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with five examples. DOI: 10.1061/JENMDT.EMENG-6964. © 2023 American Society of Civil Engineers.
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Introduction

Reliability analysis of a structure is a theoretical framework to address
the effect of uncertainty involved in structural parameters and loads.
The main objective of structural reliability analysis (SRA) is to de-
termine the failure probabilityPf, which is mathematically defined as

Pf ¼
ZZZ
gðXÞ<0

· · ·
Z

fXðXÞdX ð1Þ

where X = an n-dimensional vector of involved random variables;
gðXÞ = the limit state function (LSF); and fXðXÞ = the joint prob-
ability distribution function (PDF). The limit state is defined by
gðXÞ ¼ 0, i.e., the boundary between the safe domain fXjgðXÞ >
0g and the failure domain fXjgðXÞ < 0g. Thus, to obtain the failure
probability, one needs to solve the multidimensional integral as de-
fined by Eq. (1), which is a formidable task for real engineering prob-
lems. Therefore, several analytical approximations (e.g., first- and
second-order reliability methods) and numerical simulation tech-
niques, e.g., Monte Carlo simulation (MCS), importance sampling,
and subset simulation were developed (Ditlevsen and Madsen 2005;
Haldar and Mahadevan 2000). The MCS technique is the most ac-
curate and conceptually straightforward. However, a large number
of simulations is required by the MCS technique to estimate the Pf

value with a sufficiently small variance. The uses of variance reduc-
tion techniques like importance sampling, subset simulation, etc. are
notable in this regard. Such advanced MCS techniques reduce the
required number of simulations as usually necessary in the brute-
force MCS technique. Still, such techniques require several repeti-
tive evaluations of LSF, particularly for small failure probability, and
become computationally demanding for reliability analysis of real
engineering problems involving implicit LSF, which requires the
solution of high-fidelity numerical models. The metamodeling tech-
nique is a powerful means to deal with such situations. Metamodels
are trained by a limited number of training samples known as design
of experiments (DOE) to substitute the actual LSF with an approxi-
mating function. Variousmetamodeling techniques, e.g., polynomial
response surface by least-square method (Faravelli 1989) and mov-
ing least-square method (Kim et al. 2005), artificial neural network
(Hosni Elhewy et al. 2006; Lagaros et al. 2009), radial basis func-
tion (Deng 2006), Kriging metamodel (Kaymaz 2005), polynomial
chaos expansion (Blatman and Sudret 2010), support vector ma-
chine (SVM) (Li et al. 2006) and support vector regression (SVR)
(Ghosh et al. 2018; Roy et al. 2019), relevance vector machine
(RVM) (Changcong et al. 2015; Mathur and Samui 2013; Zhou
et al. 2013), multivariate adaptive regression splines (Metya
et al. 2017), etc. are employed for reliability analysis of problems
involving implicit LSF.

The active learning-based adaptive sampling approaches are quite
notable for improved estimates of reliability. The approach employs
a learning function expressed as a function of the local prediction
and its variance obtained from a metamodel. A fully active learning
method for SRA was first proposed by Bichon et al. (2008). The
method is termed “efficient global reliability analysis,” where the
expected feasibility function (EFF) is utilized as a learning function.
A new training sample is numerically searched by a global optimi-
zation from the truncated simulation domain by maximizing the
EFF learning function. However, performing the global optimiza-
tion in each iteration step of the algorithm is expensive to imple-
ment. In this regard, the adaptive Kriging combined with the MCS
technique (AK-MCS) proposed by Echard et al. (2011) is worth
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noting. In the AK-MCS method, a candidate sample set Ω is intro-
duced to represent the entire simulation domain for a quasi-optimum
search of the new training sample to update the Kriging model. The
sampling concept for active learning in the AK-MCS approach is
further modified for rare events, e.g., brute-force MCS is replaced
by importance sampling (Echard et al. 2013; Zhang et al. 2020) and
by subset simulation (Dubourg et al. 2011; Huang et al. 2016). A
recent adaptation of the AK-MCS method for small failure prob-
ability (termed AK-MSS) is also notable (Xu et al. 2020). Besides
Kriging, other metamodels capable of providing prediction vari-
ance were also combined with active learning methods for SRA.
Instead of pure Kriging, the polynomial-chaos Kriging approach
was coupled with the AK-MCS-based active learning algorithm
for SRA (Schöbi et al. 2017). An active learning algorithm that com-
bines sparse polynomial chaos expansions and bootstrap was devel-
oped for SRA (Marelli and Sudret 2018). Active learning-based
sparse polynomial chaos expansion was also proposed for SRA
(Zhou et al. 2020). Cheng and Lu (2021) developed a Bayesian
SVR model, which can provide a pointwise probabilistic prediction
in active learning algorithms for SRA. Active learning-based adap-
tive RVM within a probabilistic Bayesian learning framework for
SRA was developed by Li et al. (2021).

Similar to the Kriging model, active learning methods can also
be readily applied to sparse Bayesian learning-based metamodels.
For example, adaptive sampling was employed in the RVM model,
a special case of sparse Bayesian learning, for SRA (Changcong
et al. 2015; Mathur and Samui 2013; Zhou et al. 2013). However,
the implementation of an active learning method for the same is
still limited to a recent work by Li et al. (2021). The performances
of such RVM models largely depend on the proper selection of the
prerequisite Gaussian kernel hyperparameter, which involves a
computationally expensive cross-validation method. Thus, sparse
Bayesian regressions with other types of basis functions, particu-
larly those that do not involve free parameters, deserve to explore
further. Keeping this in view, an active-learning-enhanced adaptive
sampling-based sparse Bayesian regression is explored in the pres-
ent study for SRA. The polynomial basis functions that do not in-
volve free parameters are chosen for the sparse Bayesian regression
to avoid computationally expensive hyperparameter tuning. Noting
the slow convergence of the stopping criterion proposed by Echard
et al. (2011), Wang and Shafieezadeh (2019) proposed an efficient
error-based stopping criterion (ESC) for the AK-MCS approach. To
study the effectiveness of the ESC, a mathematical test problem is
investigated and found unsuitable for the proposed approach. In this
regard, the stopping criterion based on the stabilization of 10 con-
secutive failure estimates is found to be effective in adaptive RVM
for SRA (Changcong et al. 2015) and is adopted in the present study.
The effectiveness of the proposed approach is demonstrated numeri-
cally by considering five examples.

Active Learning Method of Reliability Analysis

The primary task of an active learning method is to optimize a
learning function to find the next best training sample. The basic
two inputs to most of the active learning functions are the posterior
mean and standard deviation (SD) functions. The use of the EFF
proposed by Bichon et al. (2008) and the U function proposed
by Echard et al. (2011) as learning functions can widely be noted.
Between these two, the U function is found to be more suitable for
the active learning-based reliability analysis method (Echard et al.
2011). Hence, the U function is employed as the active learning
function in the present study. It is defined by Echard et al. (2011)

UðxÞ ¼ jμ̂ðxÞj
σ̂ðxÞ ð2Þ

where μ̂ðxÞ and σ̂ðxÞ = the posterior mean and SD functions,
respectively. The best point is obtained to minimize the U function,
i.e., minðUðxÞÞ for x ∈ Ω (Echard et al. 2011).

Apart from the learning function, proposing a suitable stopping
criterion is also an important component of an active learning al-
gorithm for reliability analysis. Noting the limitation of the stop-
ping criteria of the U function and the EFF learning function, the
efficient ESC was proposed by Wang and Shafieezadeh (2019). In
this criterion, an upper bound for the error ε̂max is estimated for a
given confidence level by leveraging the statistical information
available in the Kriging approach, and an error threshold εthr is
prescribed. The ESC is defined as ε̂max ≤ εthr, expecting that the
true error ε should be smaller than ε̂max. The necessary formulae for
estimating ε̂max is briefly presented here for ready reference; the
detailed derivation can be found in Wang and Shafieezadeh (2019).

The true failure and safe domains within Ω are denoted by Ωf

and Ωs, respectively, and the Kriging-based approximated failure
and safe domains are referred to as Ω̂f and Ω̂s, respectively. The
ε̂max is obtained as follows (Wang and Shafieezadeh 2019)

εmax ¼ max

����� N̂f

N̂f − Ŝuf
− 1

����;
���� N̂f

N̂f þ Ŝus

���� − 1

�
ð3Þ

where N̂f = the total number of samples in Ω̂f; Ŝ
u
f and Ŝus = the

upper bounds of the confidence interval of Ŝf and Ŝs, respectively,
for the confidence level α ¼ 0.05; Ŝf = the total number of samples

in Ω̂f that belong to Ωs; and Ŝs = the total number of samples in Ω̂s

that belong to Ωf. The Ŝus and Ŝuf can be expressed as follows
(Wang and Shafieezadeh 2019):

Ŝus ¼ μŜs
þ Φ−1

�
1 − α

2

�
σŜs

; μŜs
¼
XN̂s

i¼1

pwse
i ;

σŜs
¼
XN̂s

i¼1

ð1 − pwse
i Þpwse

i ; x ∈ Ŝs ð4Þ

Ŝuf ¼ Γ−1
Ŝf

�
1 − α

2

�
; μŜf

¼
XN̂f

i¼1

pwse
i ; x ∈ Ŝf ð5Þ

where pwse
i = the probability of wrong sign estimation for xi and is

defined as (Echard et al. 2011), pwse
i ¼ Φð−jμ̂ðxiÞ=σ̂ðxiÞjÞ; Φð·Þ

andΦ−1ð·Þ = the cumulative density function (CDF) and the inverse
CDF of the standard normal distribution, respectively; and Γ−1

Ŝf
ð·Þ =

the inverse CDF of the Poisson distribution with both the mean and
variance equal to μŜf

.

Active Learning-Enhanced Sparse Bayesian
Regression for Reliability Analysis

Sparse Bayesian Regression

A general Bayesian framework is used to obtain sparse solutions to
regression and classification tasks utilizing models linear in param-
eters is introduced by Tipping (2001). The prediction is typically
based on some function yðxÞ defined over the input space. The pro-
cess of inferring this function or its parameters is learning. A flex-
ible and popular set of candidates yðxÞ can be expressed as
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yðx;wÞ ¼
XM
m¼1

ωmϕmðxÞ ð6Þ

where the output is a linearly weighted sum of M basis functions
ϕmðxÞ (generally nonlinear and fixed) with adjustable parameters
or weights, ωm. The Bayesian probabilistic framework for learning
in the general model of the form, as given by Eq. (6), is briefly
presented in the following.

Given a training data set fxi; tigPi¼1, the sparse Bayesian regres-
sion model follows the standard probabilistic formulation and
assumes that the targets t ¼ ft1; t2; : : : ; tPgT are samples from
the model y ¼ fyðx1Þ; yðx2Þ; : : : ; yðxPÞgT with additive noise ε ¼
fε1; ε2; : : : ; εPgT as

t ¼ y þ ε ¼ Φw þ ε ð7Þ

where w ¼ fω1;ω2; : : : ;ωMgT = the parameter vector; and Φ = a
P ×M design matrix whose P rows correspond to P training data,
and each row contains M basis functions. The vector ε consists of
independent samples from some noise process assumed to be zero
mean Gaussian with variance σ2, i.e., pðεÞ ¼QP

i¼i N ðεij0;σ2Þ.
Thus, the error model implies a multivariate Gaussian likelihood of
the data set as

pðtjw;σ2Þ ¼ ð2πσ2Þ−P=2 exp
�
− kt −Φwk2

2σ2

�
ð8Þ

It is to be noted here that, for as many parameters in the model as
training examples, the maximum likelihood estimation of w and σ2

from Eq. (8) would lead to severe overfitting. To circumvent this,
the parameters are constrained by defining an explicit prior prob-
ability distribution over them. A zero-mean Gaussian prior distri-
bution over w, with a vector of M independent hyperparameters,
α ¼ fα1;α2; : : : ;αMgT is formulated as

pðwjαÞ ¼
YM
m¼1

Nðωmj0;α−1
m Þ ¼ ð2πÞ−M=2

YM
m¼1

α1=2
m exp

�
−αmω2

m

2

�

ð9Þ

The presented formulation of the prior distributions in Eq. (9) is
a type of automatic relevance determination prior (Tipping 2001),
which is eventually responsible for the sparsity property of the
model. In the context of the Bayesian interface, the posterior distri-
bution over the weights can be obtained as follows (Tipping 2001)

pðwjt;α;σ2Þ ¼ pðtjw; σ2ÞpðwjαÞ
pðtjα; σ2Þ

¼ ð2πÞ−M=2jΣj−1=2 exp
�
− 1

2
ðw − μÞTΣ−1ðw − μÞ

�
ð10Þ

where the posterior covariance Σ and the mean μ are given as

Σ ¼ ðAþ σ−2ΦTΦÞ−1 and μ ¼ σ−2ΣΦTt ð11Þ

where A is defined as the diagðαÞ. Extending the model to include
Bayesian inference over the hyperparameters, α is theoretically
intractable. Therefore, a most-probable point estimate αMP can be
found by a Type-II maximum likelihood procedure (Tipping and
Faul 2003). Sparse Bayesian learning is formulated as the (local)
maximization of the marginal likelihood or equivalently its loga-
rithm with respect to α as follows:

LðαÞ ¼ logpðtjα;σ2Þ ¼ log
Z ∞
−∞

pðtjw;σ2ÞpðwjαÞdw

¼ − 1

2
½P log 2π þ log jCj þ tTC−1t� ð12Þ

where C ¼ σ2IþΦA−1ΦT. Finally, after convergence of the
hyperparameter estimation procedure, the prediction and its variance
at a point of interest x� are made by evaluating ΣMP and μMP from
Eq. (11) with α ¼ αMP and σ2 ¼ σ2

MP as

y� ¼ ϕðx�ÞμMP ð13Þ

σ2� ¼ σ2
MP þ ϕðx�ÞΣMPϕðx�ÞT ð14Þ

where ϕðx�Þ = a row vector containing M elements corresponding
to the values of M basis functions at x�. The implementation of the
sparse Bayesian regression presented above can be performed in the
MATLAB platform using the SparseBayes 2.0 code available at
http://www.relevancevector.com.

Study on Stopping Criterion of Active Learning
Algorithm with Sparse Bayesian Regression

A mathematical test problem is taken up for a case study to ex-
plore a suitable stopping criterion for the present active learning-
based sparse Bayesian regression algorithm. In doing so, the sparse
Bayesian regression is employed in the active learning algorithm
with the U function as the learning function to study its efficiency
in reliability analysis. Two potential stopping criteria are studied.
The stopping criterion employed for the adaptive RVM for SRA
(Changcong et al. 2015) is considered first where the convergence
is considered to attain if 10 consecutive failure estimates are within
a negligible discrepancy (e.g., <1%) from each other. In addition,
the ESC approach (Wang and Shafieezadeh 2019) is also consid-
ered. To study the performance of these two criteria, no stopping
criterion is applied in the reliability estimation; rather, learning is
allowed up to a large training size (about 350, a moderately high
value). The maximum percentage deviation observed among the
failure estimates of the preceding 10 iterations and the values of es-
timated maximum error ε̂max (a convergence parameter checked in
case of ESC stopping criterion) at each iteration step are calculated.

The test problem is a mathematical function where the number
of variables can be changed to study the performance for different
input dimensions. The LSF is given as

gðXÞ ¼ Yallow −Xn
i¼1

x2i −
 Xn

i¼1

�
1

2

�
ixi

!
2

−
 Xn

i¼1

�
1

2

�
ixi

!
4

;

i ¼ 1; 2 : : : ; n ð15Þ

where Yallow = the allowable maximum value of the mathematical
function, and all n random inputs are assumed to be lognormal with
mean ¼ 10.0 and SD ¼ 1.0. The physical boundary is considered
as the mean� 3 × SD for each random variable. Three different
values of n (3, 30, and 150) are considered, which can be treated
as low, medium, and high dimension problems, respectively. The
value of Yallow is taken as 1.5 × 106, 3.6 × 1013, and 1.12 × 1019 for
n ¼ 3, 30, and 150, respectively.

There is no limit to the total number of basis functions that can
be considered in sparse Bayesian learning. It can find only the rel-
evant basis functions. The number of relevant terms never exceeds
the number of training data used. Basis functions can be broadly
categorized into two types, namely, fixed and data-centered. The
fixed basis can be linear, nonlinear, or higher-order polynomials.

© ASCE 04023024-3 J. Eng. Mech.
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Sparse Bayesian learning with a data-centered basis function can be
referred to as RVM. A Gaussian kernel function (frequently used
in SVM or SVR) can be used as a data-centered basis function.
However, there is no restriction on employing a basis, which is
a concatenation of fixed basis and data-centered basis to imple-
ment sparse Bayesian learning using the SparseBayes 2.0 code
in the MATLAB platform. Concatenation of linear basis terms and
Gaussian kernel functions would be a practical example for such
cases. However, the data-centered basis functions are generally
made of kernel functions, which may involve prerequisite kernel
parameter(s). The proper selection of such parameter(s) has a large
influence on the performance of the metamodel. Thus, the uses of
such basis functions need to apply a cross-validation method to
obtain the involved parameter(s). This results in data wastage and
involves additional computational time (Tipping 2001), whereas a
fixed basis is free from such disadvantages. Two fixed-type basis,
namely, the first- and second-order polynomial functions, are con-
sidered here to demonstrate the active learning-enhanced sparse
Bayesian regression for reliability estimate.

First-Order Polynomial Basis
The first-order polynomial function can be expressed for n number
of variables, ϕðxÞ ¼ ½1; x1; : : : ; xn�. A total ðnþ 1Þ number of
basis functions are present in the linear basis. However, the avail-
able training data could be less than ðnþ 1Þ. However, this is not a
problem in the sparse Bayesian learning approach, as it is capable
of finding the relevant terms and their corresponding weights for
regression. Thus, a sparse solution to linear regression with prob-
abilistic prediction is obtained by the sparse Bayesian regression
approach.

The actual values of Ŝs and Ŝf, Ŝ
u
s and Ŝuf , as defined in the

section “Active Learning Method of Reliability Analysis,” at each
iteration step are plotted in Fig. 1 and labeled as “Actual Ss,” “Ac-
tual Sf,” “UB_Ss,” and “UB_Sf,” respectively. The values of ε̂max
and ε, as defined in the section “Active Learning Method of Reli-
ability Analysis,” and the maximum percentage deviation observed
among the failure estimates of the previous 10 iterations labeled as
“Max error,” “Actual error,” and “Maxdev10,” respectively, are also
shown in Fig. 1. It is observed that the actual values of Ŝs and Ŝf are
drastically reduced after a certain number of iterations, which in-
crease with the dimension of the problem. Up to this certain number
of iterations, it is observed that the actual values of Ŝs and Ŝf ex-

ceed the upper bounds Ŝus and Ŝuf . In such cases, there is a high
chance that the max error estimate (i.e., ε̂max) will be less than the
true error (ε), as ε̂max depends on the values of Ŝus and Ŝuf. This
possibility is witnessed in the right-hand side plots of Fig. 1. It
is observed that the actual error is higher than the max error. This
indicates that the ESC is not a suitable stopping criterion for the
proposed active learning algorithm if applied before a certain num-
ber of iterations. However, this number is not known beforehand,
whereas the actual error is observed to be close to the Maxdev10 in
most of the cases.

Second-Order Polynomial Basis
As with the linear basis, a sparse solution to the second-order poly-
nomial regression with probabilistic prediction can also be obtained
by sparse Bayesian regression. The second-order polynomial basis
can be expressed for n number of variables, ϕðxÞ ¼ ½1; x1; : : : ;
xn; x21; x1x2; : : : ; xn−1xn; x2n�. In Fig. 2, the values of Actual Ss, Ac-
tual Sf, UB_Ss, and UB_Sf at each iteration step are shown on the
left-hand side of the plot. The values of max error, actual error, and
Maxdev10 at each iteration step are shown on the right-hand side
for three different dimensions of the test problem. It is observed that

the values of Actual Ss or Actual Sf are higher than those of UB_Ss
or UB_Sf at the first few iterations for the three-dimensional case
but up to a large number of iterations for 30-dimensional and 150-
dimensional cases. Accordingly, the actual error values are also ob-
served to be higher than the max error values for all such iterations.
Though this observation is similar to the previous case (linear basis);
the number of such iterations in the present case is higher than those
of the previous for all three dimensions of the problem. Thus, the
ESC is found unsuitable for active learning enhanced sparse Bayesian
regression using both the first- and second-order polynomial basis
functions. On the other hand, the values of Maxdev10 are observed
to be close to the actual error (mostly conservative) at each iteration
step for all three different dimensions of the problem. This observa-
tion is true for both types of polynomial basis functions. Hence, the
learning is stopped in the proposed active learning-enhanced sparse
Bayesian regression when 10 consecutive failure estimates are within
a negligible discrepancy (e.g., <1%) from each other.

Outline of the Proposed Active Learning-Enhanced
Sparse Bayesian Regression Algorithm

Based on the observations in the existing literature on the studies of
active learning-based reliability analysis approaches and the case
study of the mathematical test problem presented in the previous
section, an active learning method is proposed for adaptive sparse
Bayesian regression-based reliability analysis. The adaptive sam-
pling strategy of the active learning part remains similar to the AK-
MCS method (Echard et al. 2011), as it makes the optimization of
the learning function simple yet effective. The posterior mean and
SD functions in Eq. (2) are obtained by the sparse Bayesian regres-
sion approach instead of the Kriging approach. The proposed ac-
tive learning-enhanced sparse Bayesian regression is referred to as
ASBR-MCS.

In detail, a Monte Carlo population (Ω) within the input space is
generated first to start the proposed ASBR-MCS algorithm. Then,
12 samples are randomly selected from this population to build an
initial DOE. The iterative enrichment of the DOE with adaptive
sampling to improve the failure estimate is performed based on ac-
tive learning. As mentioned, the U function is taken as the learning
function in the present study. However, to obtain the value of the U
function at all the points in Ω, the posterior mean and SD are ob-
tained by the sparse Bayesian regression. The point corresponding
to the maximum value of the U function is added to the DOE.
Specifically, based on the observations of the case study in the pre-
vious section, the stopping criterion is adopted judiciously. The
philosophy is to know if the accuracy of a learner has reached a
plateau, and acquiring more data is likely a waste of resources. The
learning of the proposed algorithm is stopped when 10 consecutive
iterations provide the failure estimates within a negligible discrep-
ancy from each other. In the proposed algorithm, the negligible
discrepancy is considered as 1%. Thus, the considered stopping
criterion for learning restricts unnecessary wastage of data. Now,
after stopping the learning, the proposed ASBR-MCS algorithm
is terminated if the coefficient of variation (COV) of Pf is less
than 5%. Otherwise, the population Ω is updated, and the Pf value
is estimated again to check the stopping condition. The learning is
continued until the stopping condition is satisfied. The steps of the
proposed ASBR-MCS approach are summarized in the following
(a flowchart is presented in Fig. 3).
1. Generate a Monte Carlo population Ω of size NMC by random

sampling in the design space;
2. Select an initial DOE (12 points are randomly selected from Ω);
3. Compute the model parameters for the sparse Bayesian regres-

sion according to the DOE;

© ASCE 04023024-4 J. Eng. Mech.
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4. Compute the LSF prediction and its variance at all the points in
the Ω by the sparse Bayesian regression model;

5. Estimate the Pf value and its COV;
6. Check the stopping condition on learning after the first 10 iter-

ations (the maximum deviation among the Pf values of the last
10 iterations should be within 1%); if satisfied, go to Step 9;

7. Calculate the U function at all the points in Ω for identification
of the next best point;

8. Update the DOE with the next best point and go to Step 3; and
9. Update the population if the coefficient of variation is higher

than 5% and go to Step 4 else stop.

Numerical Study

The effectiveness of the proposed ASBR-MCS approach for reli-
ability analysis is elucidated by considering five example problems.
In doing so, the first- and second-order polynomial basis functions
are considered. The two ASBR-MCS approaches are referred to as
ASBR-P1-MCS and ASBR-P2-MCS for the first- and second-order
polynomial basis functions, respectively. The reference results are
obtained by the brute-force MCS technique using the actual LSF.
The results are also compared with the ESC-enhanced AK-MCS
method (Wang and Shafieezadeh 2019). The AK-MCS method uses

Fig. 1. Active learning-enhanced sparse Bayesian regression with first-order polynomial basis.
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the ordinary Kriging method (the regression part contains only a
constant). The AK-MCS approach is referred to as AK-P0-MCS.

Example 1: 10-Bar Truss Problem

A 10-bar truss, as shown in Fig. 4, is taken as the first example to
demonstrate the effectiveness of the proposed algorithm. Six differ-
ent structural parameters are considered random. The distribution
of each random variable is truncated by the corresponding physical
bound, which is taken as mean� 3 × SD of the respective variable.

The cross-section areas of the horizontal (A1), vertical (A2), and
diagonal (A3) members are assumed to be normal random with
mean values of 7.5 × 10−3 m2, 1.5 × 10−3 m2, and 5.0 × 10−3 m2,
respectively. Young’s modulus (E) of the truss members is also as-
sumed to be normal with a mean value of 70 GPa. The length (L)
and load (P) follow a lognormal and a Gumbel max distribution,
respectively. The mean values of L and P are considered as 9.0 m
and 350.0 kN, respectively. The COVof the cross-section areas and
load P are taken as 0.1 and that of E and L are taken as 0.05. The
LSF for reliability analysis is considered as follows:

Fig. 2. Active learning-enhanced sparse Bayesian regression with second-order polynomial basis.
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g ¼ dallow − d ð16Þ

where d and dallow are the actual displacement under the considered
load and the allowable displacement of Node 2. The displace-
ment of Node 2 is obtained using the following explicit relation as
provided in Choi et al. (2007)

d¼ PL
A1A3EDT

�
4
ffiffiffi
2

p
A3
1ð24A2

2þA2
3ÞþA3

3ð7A2
1þ 26A2

2Þþ 4A1A2A3

×

�
ð20A2

1þ 76A1A2þ 10A2
3Þþ

ffiffiffi
2

p
A3ð25A1þ 29A2Þ

�	
ð17Þ

where DT ¼ 4A2
2ð8A2

1 þ A2
3Þ þ 4

ffiffiffi
2

p
A1A2A3ð3A1 þ 4A2Þ þ A1A2

3

ðA1 þ 6A2Þ. However, for illustration of the present algorithm, the
displacement d is approximated by the metamodels.

The failure probabilities for different dallow values are obtained
by the ASBR-P1-MCS and ASBR-P2-MCS approaches. A popu-
lation of 105 samples are taken for the brute-force MCS, and the
reference results are obtained using the actual LSF defined by
Eq. (17). For smaller failure probability cases (i.e., dallow ¼ 0.12 m
and 0.125 m), the MCS sample size is increased to 4 × 105. The Pf

values are also obtained by the ESC-based AK-P0-MCS method
with two different error thresholds, εthr, i.e., 5% and 1%. The refer-
ence results and the errors in the estimated Pf values by different
active learning methods, as well as the number of actual function
evaluations, are presented in Table 1. The absolute error in estimat-
ing the Pf value is calculated as j1 − P̂f=Pfj × 100%, where Pf

and P̂f are the probability of failure obtained by the brute-force
MCS technique and the considered metamodel. The confidence in-
terval of the failure probability corresponds to a 95% confidence
level, which is estimated from the posterior distribution of the cor-
responding metamodel using Eqs. (4) and (5). The lower and upper
bounds of the confidence interval are defined as ðN̂f − ŜufÞ=NMC

and ðN̂f þ Ŝus Þ=NMC, respectively. The absolute error, the number
of training data required, and the lower and upper bounds of the
confidence interval are also shown in Table 1. It is observed that
the proposed ASBR-P1-MCS approach takes more training data
(seen in the case study also) and is less accurate than the ASBR-
P2-MCS approach. This is attributed to the presence of nonlinear
terms in the second-order polynomial. This gives an advantage to
the ASBR-P2-MCS approach for better approximation of LSF over
the ASBR-P1-MCS approach, where only linear terms are used as
basis functions. The proposed ASBR-P2-MCS approach estimates
the Pf values quite accurately (less than 1% error) for all the values
of dallow considered. The errors in estimating the Pf values by the
ESC-based AK-P0-MCS method with εthr ¼ 5% and 1% are ob-
served to be below 5% and 1%, respectively. The accuracy of
the proposed ASBR-P2-MCS approach and the ESC-based AK-
P0-MCS approach for εthr ¼ 1% are comparable (errors are less
than 1% in both cases). However, the present approach takes fewer
iterations and training data. Hence, the proposed ASBR-P2-MCS
approach is found to be more efficient than the ESC-based AK-
P0-MCS method. The Pf values at each iteration for various active
learning methods are shown in Fig. 5. The performances of various
approaches at each iteration step with identical learning functions
can be readily observed from the figure. It is seen that the active
learning function improves the estimate of all three approaches
(AK-P0-MCS, ASBR-P1-MCS, and ASBR-P2-MCS). However, the
level of improvement is different from one approach to another.

Example 2: Space-Dome Truss Problem

The second problem deals with the reliability analysis of a space-
dome truss (as shown in Fig. 6). The LSF is considered with re-
spect to the maximum vertical displacement of the node where the
load P1 is acting. The implicit LSF can be expressed as (Keshtegar
2017)

g ¼ Δallow − jΔz
P1
j ð18Þ

Fig. 3. Flowchart of the proposed ASBR-MCS method.

Fig. 4. The planar 10-bar truss. (Reprinted with permission from
Springer Nature: Springer, Reliability-based Structural Design, “Meth-
ods of Structural Reliability,” S.-K. Choi, R. V. Grandhi, and R. A.
Canfield, © 2007.)
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whereΔz
P1

= the maximum vertical displacement of the node under
the load P1, andΔallow is its maximum allowable value. The maxi-
mum displacement Δz

P1
is obtained by using the finite element

(FE) analysis software ANSYS. A total of six independent random
variables are considered. The distribution of each random variable
is truncated by the corresponding physical bound. The bound
is taken as mean� 30% of the mean value of the corresponding
random variable. Young’s modulus (E) of all members and cross-
section areas of top radial bars (A1 for bar numbers 1–6), periph-
eral bars (A2 for bar numbers 7–12), and bottom inclined bars
(A3 for bar numbers 13–24) are assumed as normal random varia-
bles. The COVs of A1, A2, and A3 are taken as 0.1 and that of E is
0.05. The point loads P1 and P2 (as shown in Fig. 6) follow Gumbel
max distributions with mean values of 20 and 10 kN, respectively.
The COVs of P1 and P2 are taken as 0.15 and 0.12, respectively.

The Pf values for four different values ofΔallow are estimated by
the proposed ASBR-P1-MCS and ASBR-P2-MCS approaches. In
this problem, 105 Monte Carlo samples are considered. The results
are also obtained by the ESC-based AK-P0-MCS approach for
εthr ¼ 5% and 1%. The reference results and the errors in the esti-
mated Pf values by different active learning approaches are pre-
sented in Table 2. The number of training data required and the
lower and upper bounds of the failure probabilities estimated by
the active learning methods are also shown in the same table. Sim-
ilar to the previous example, it is observed that the ASBR-P1-MCS
approach takes more training data than the ASBR-P2-MCS ap-
proach. For all four different values ofΔallow, errors for the ASBR-
P2-MCS approach are either close to 1% or less than 1%. However,
the errors for the ASBR-P1-MCS approach are observed to be
higher than 3% in two cases. In most of the cases of the ESC-based
AK-P0-MCS method, the true errors are observed to be less than
5% and 1% for εthr ¼ 5% and 1%, respectively. Similar to the pre-
vious example, the accuracy of the proposed ASBR-P2-MCS ap-
proach is noted to be quite high and comparable with that achieved
by the ESC-based AK-MCS method for εthr ¼ 1%. However, the
proposed ASBR-P2-MCS approach achieves this accuracy with a
fewer number of training samples compared with the ESC-based
AK-MCSmethod for this example as well. To observe the improve-
ment in failure estimate through active learning, the Pf values at

each iteration step for various active learning methods are shown in
Fig. 7. As with the previous example, it is observed that the nature
of improvement of estimated Pf values by all three approaches
(AK-P0-MCS, ASBR-P1-MCS, and ASBR-P2-MCS) are different.

Example 3: Transient Heat Conduction Problem

A transient heat conduction problem previously studied by Roy and
Chakraborty (2020) is chosen to demonstrate the effectiveness of
the present metamodeling approach. The task here is to obtain the
function uðt; x;ωÞ satisfying the partial differential equation as
defined below

∂
∂t ðuðt; x;ωÞÞ ¼

∂
∂x
�
αðx;ωÞ ∂

∂x ðuðt; x;ωÞÞ
�
þ 1;

x ∈ ½−1; 1�; t ∈ ½0;T�;ω ∈ Ω

boundary conditions∶ uðt;−1;ωÞ ¼ uðt; 1;ωÞ ¼ 0 and

initial condition∶ uð0; x;ωÞ ¼ 0 ð19Þ
where x = the spatial dimension; ω = the dependence on the random
conductivity parameter; αðx;ωÞ = the spatially varying random field
representing the conductivity parameter; and Ω = the sample space
of ω. The random field α is characterized by its mean value ᾱ ¼ 10
and covariance function Cαðx1; x2Þ ¼ expð−jx1 − x2jÞ, x1; x2 ∈
½−1; 1�. Using a truncated Karhunen–Loeve expansion considering
up to N number of terms, α can be represented as follows:

αðx;ωÞ ¼ ᾱþ
XN
k¼1

ffiffiffiffiffi
λk

p
ξkϕk ð20Þ

where λk and ϕk = the kth eigenvalue and corresponding eigenvec-
tor of the covariance matrix, respectively; and ξk = the kth uncor-
related random variable. The eigenpairs (λk and ϕk) need to be
obtained approximately. In the present study, ξ≡ ðξ1; ξ2; : : : ; ξNÞT
is assumed to be independent uniform random over the interval
[−1, 1]. Further details of the problem with MATLAB scripts to
solve this heat equation problem are available at https://web
.stanford.edu/∼paulcon/projects/SGS_primer. A vector of u values
at each spatial grid point at time T can be extracted as the output for

Table 1. Results of different reliability methods for the 10-bar truss

Reliability
method Stopping criteria

Pf for dallow =

0.1 m 0.105 m 0.11 m 0.115 m 0.12 m 0.125 m

MCS — 6.469 × 10−2 3.195 × 10−2 1.493 × 10−2 6.51 × 10−3 2.498 × 10−3 8.96 × 10−4

Pf , absolute error, number of data [lower and upper bounds of confidence interval]
AK-P0-MCS ESC, εthr ¼ 5% 6.263 × 10−2,

3.18%, 12þ 9

[5.993 × 10−2,
6.578 × 10−2]

3.174 × 10−2,
0.66%, 12þ 12

[3.053 × 10−2,
3.293 × 10−2]

1.465 × 10−2,
1.88%, 12þ 15

[14.01 × 10−2,
1.533 × 10−2]

6.67 × 10−3,
2.46%, 12þ 18

[6.4 × 10−3,
6.947 × 10−3]

2.52 × 10−3,
0.88%, 12þ 18

[2.42 × 10−3,
2.624 × 10−3]

9.12 × 10−4,
1.79%, 12þ 18

[8.72 × 10−4,
9.44 × 10−4]

ESC, εthr ¼ 1% 6.487 × 10−2,
0.28%, 12þ 30

[6.43 × 10−2,
6.545 × 10−2]

3.2 × 10−2,
0.16%, 12þ 28

[3.169 × 10−2,
3.226 × 10−2]

1.49 × 10−2,
0.20%, 12þ 39

[1.476 × 10−2,
1.502 × 10−2]

6.51 × 10−3,
0.00%, 12þ 38

[6.45 × 10−3,
6.561 × 10−3]

2.504 × 10−3,
0.24%, 12þ 44

[2.482 × 10−3,
2.528 × 10−3]

8.98 × 10−4,
0.22%, 12þ 34

[8.9 × 10−4,
9.06 × 10−4]

ASBR-P1-MCS Maxdev10 < 1% 6.362 × 10−2,
1.65%, 12þ 43

[5.918 × 10−2,
6.884 × 10−2]

3.067 × 10−2,
4.01%, 12þ 43

[3.077 × 10−2,
3.339 × 10−2]

1.439 × 10−2,
3.62%, 12þ 47

[1.277 × 10−2,
1.660 × 10−2]

5.65 × 10−3,
13.21%, 12þ 27

[4.86 × 10−3,
6.80 × 10−3]

2.312 × 10−3,
7.45%, 12þ 48

[1.99 × 10−3,
2.772 × 10−3]

8.52 × 10−4,
4.91%, 12þ 41

[6.96 × 10−4,
11.23 × 10−4]

ASBR-P2-MCS Maxdev10 < 1% 6.481 × 10−2,
0.19%, 12þ 24

[6.422 × 10−2,
6.504 × 10−2]

3.181 × 10−2,
0.44%, 12þ 25

[3.155 × 10−2,
3.207 × 10−2]

1.492 × 10−2,
0.07%, 12þ 31

[1.471 × 10−2,
1.520 × 10−2]

6.46 × 10−3,
0.77%, 12þ 27

[6.37 × 10−3,
6.51 × 10−3]

2.498 × 10−3,
0.00%, 12þ 42

[2.456 × 10−3,
2.543 × 10−3]

8.86 × 10−4,
1.12%, 12þ 32

[8.78 × 10−4,
9.00 × 10−4]
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a certain input value of ξ. Thus, the maximum value of u
(i.e., umax) is a function of ξ only. The LSF for reliability estimate
is considered as follows:

g ¼ u0 − umax ð21Þ
where u0 is taken as the threshold for umax.

The Pf values for u0 ¼ 0.056 and N ¼ 75 are estimated by
the proposed ASBR-MCS method and the ESC-based AK-MCS
method. A Monte Carlo population of 105 samples is considered.
The reference result and errors in the converged Pf estimates

obtained by different active learning methods are shown in Table 3.
The numbers of training data required for different approaches are
also provided in Table 3. Unlike in the previous examples, the
ASBR-P1-MCS approach takes fewer iterations than the ASBR-
P2-MCS approach. However, the accuracy of the ASBR-P2-MCS
approach (the error is less than 1%) is better than that of the ASBR-
P1-MCS approach (the error is greater than 5%). On the other hand,
the convergence of the AK-MCS method is attained for εthr ¼ 5%

after a large number of iterations (12þ 596 training data). Though
the error threshold is taken at 5%, the true error is found to be less

Fig. 5. Comparison of results obtained by different active learning reliability methods for the 10-bar truss.

© ASCE 04023024-9 J. Eng. Mech.
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than 1%. It is realized that considering the 1% error threshold only
increases the number of iterations without significantly improving
the estimates of the Pf values. Therefore, the ESC-based AK-MCS
method is not performed for εthr ¼ 1%. The error of the proposed

ASBR-P2-MCS approach to estimate the Pf value is less than 1%
with 211 iterations, i.e., requires a total of 222 (12þ 210) numbers
of training data. Hence, the efficiency of the proposed ASBR-P2-
MCS approach is also superior for this high-dimensional problem.
To study the performance of the present algorithm for the estima-
tion of smaller probabilities, the Pf values are further obtained by
relaxing the value of u0 to 0.0568. The reliability results obtained by
different approaches are shown in Table 3. A similar observation is
also noted for this smaller failure probability case.

The convergences of the Pf values at each iteration by different
active learning methods are shown in Fig. 8. Unlike the previous
problems, the Pf values estimated by the AK-MCS algorithm reach
the proximity of the actual value slower than the proposed ASBR-
MCS approaches. This indicates the advantage of applying sparse
Bayesian regression instead of the Kriging metamodel for a high-
dimensional problem.

Further, the performances of different approaches are studied
for varying dimensions of the problem. The values of Pf for u0 ¼
0.0056 are obtained by the brute-force MCS technique as 0.01379,
0.01385, 0.0139, and 0.01397 for N ¼ 45, 50, 55, and 60, respec-
tively. The numbers of training data required and absolute errors in
estimating the Pf values by the proposed approaches (ASBR-P1-
MCS and ASBR-P2-MCS) and AK-P0-MCS method for εthr ¼
5% are compared in Fig. 9. In all cases, AK-P0-MCS for εthr ¼ 5%
takes a larger number of samples. The accuracy of ASBR-P2-MCS
and AK-P0-MCS for εthr ¼ 5% are comparable (less than 1%,
i.e., practically negligible). This shows the effectiveness of the
proposed ASBR-P2-MCS approach for varying dimensions.

Example 4: High-Dimensional Benchmark Problem

Another benchmark problem (a flexible dimension problem) origi-
nally proposed by Rackwitz (2001) is studied for further numerical
elucidation. This example was also studied by Echard et al. (2011)
and others (Huang et al. 2016; Wang and Shafieezadeh 2019) for
active learning-based reliability analysis. The LSF is defined as

g ¼ nþ 3
ffiffiffi
σ

p −XN
i¼1

xi ð22Þ

Fig. 6. Schematic diagram of the space-dome truss. (Reprinted from
Applied Mathematical Modelling, Vol. 45, B. Keshtegar, “A hybrid
conjugate finite-step length method for robust and efficient reliability
analysis,” pp. 226–237, © 2017, with permission from Elsevier.)

Table 2. Results of different reliability methods for the space-dome truss

Reliability
method

Stopping criteria
for learning

Pf for Δallow =

0.01 m 0.0105 m 0.011 m 0.0115 m

MCS — 3.353 × 10−2 1.915 × 10−2 1.044 × 10−2 5.75 × 10−3

Pf , absolute error, number of data [lower and upper bounds of confidence interval]
AK-P0-MCS ESC, εthr ¼ 5% 3.446 × 10−2,

2.77%, 12þ 7

[3.3 × 10−2,
3.599 × 10−2]

1.961 × 10−2,
2.40%, 12þ 8

[1.87 × 10−2,
2.064 × 10−2]

1.043 × 10−2,
0.10%, 12þ 12

[0.997 × 10−2,
1.091 × 10−2]

5.62 × 10−3,
2.26%, 12þ 17

[5.39 × 10−3,
5.869 × 10−3]

ESC, εthr ¼ 1% 3.355 × 10−2,
0.06%, 12þ 33

[3.327 × 10−2,
3.387 × 10−2]

1.937 × 10−2,
1.15%, 12þ 37

[1.918 × 10−2,
1.955 × 10−2]

1.04 × 10−2,
0.38%, 12þ 37

[1.031 × 10−2,
1.049 × 10−2]

5.78 × 10−3,
0.52%, 12þ 43

[5.73 × 10−3,
5.825 × 10−3]

ASBR-P1-MCS Maxdev10 < 1% 3.238 × 10−2,
3.43%, 12þ 47

[2.941 × 10−2,
3.609 × 10−2]

1.918 × 10−2,
0.16%, 12þ 31

[1.703 × 10−2,
2.198 × 10−2]

1.047 × 10−2,
0.29%, 12þ 39

[0.891 × 10−2,
1.260 × 10−2]

5.57 × 10−3,
3.13%, 12þ 58

[4.74 × 10−3,
6.68 × 10−3]

ASBR-P2-MCS Maxdev10 < 1% 3.352 × 10−2,
0.03%, 12þ 31

[3.289 × 10−2,
3.415 × 10−2]

1.923 × 10−2,
0.42%, 12þ 24

[1.9 × 10−2,
1.938 × 10−2]

1.034 × 10−2,
0.96%, 12þ 30

[1.018 × 10−2,
1.047 × 10−2]

5.83 × 10−3,
1.39%, 12þ 28

[5.71 × 10−3,
5.92 × 10−3]

© ASCE 04023024-10 J. Eng. Mech.
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Table 3. Results of different reliability methods for the heat conduction problem considering 75 dimensions

Reliability
method

Stopping criteria
for learning

Pf for u0 =

0.0056 0.00568

MCS — 1.424 × 10−2 5.08 × 10−3

Pf , absolute error, number of data [lower and upper bounds of confidence interval]
AK-P0-MCS ESC, εthr ¼ 5% 1.422 × 10−2, 0.14%, 12þ 596

[1.374 × 10−2, 1.497 × 10−2]
5.09 × 10−3, 0.20%, 12þ 515

[4.98 × 10−3, 5.354 × 10−3]

ASBR-P1-MCS Maxdev10 < 1% 1.342 × 10−2, 5.76%, 12þ 63

[1.244 × 10−2, 1.467 × 10−2]
5 × 10−3, 1.57%, 12þ 108

[4.45 × 10−3, 5.701 × 10−3]

ASBR-P2-MCS Maxdev10 < 1% 1.431 × 10−2, 0.49%, 12þ 210

[1.426 × 10−2, 1.436 × 10−2]
5.1 × 10−3, 0.39%, 12þ 264

[5.07 × 10−3, 5.13 × 10−3]

Fig. 7. Comparison of the results obtained by different active learning reliability methods for the space-dome truss.

Fig. 8. Comparison of the results obtained by different active learning reliability methods for the heat conduction problem considering 75 dimensions.
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where N = the number of input dimensions, and all the input var-
iables follow a lognormal distribution with unit mean and SD,
σ ¼ 0.2. In the present study, the Pf values are obtained by two
active learning approaches (ASBR-P2-MCS and AK-P0-MCS for
εthr ¼ 5%) for N ¼ 5, 10, 25, and 30. The reference results based
on the brute-force MCS technique using 3 × 105 samples are
3.3 × 10−3, 2.603 × 10−3, 2.257 × 10−3, and 2.077 × 10−3 for
N ¼ 5, 10, 25, and 30, respectively. The number of training sam-
ples required and the absolute percentage error for the two active
learning approaches are compared in Fig. 10. Both approaches es-
timate the Pf values with good accuracy (errors less than 1%). It
may be noted that, although the ASBR-P2-MCS takes a larger num-
ber of samples than AK-P0-MCS for N ¼ 5 and 10, fewer samples
are required by ASBR-P2-MCS than AK-P0-MCS for higher
dimensions, i.e., N ¼ 25 and 30.

Example 5: Multistoried Building Frame under
Earthquake Loading

The last example is a more realistic four-story building frame sub-
jected to earthquake loading. The same building frame was studied
earlier by Ghosh et al. (2018) for seismic reliability analysis. The
building frame is 13.5 m high, having beams of 0.3 m width and
0.4 m depth, reinforced with three 16 mm diameter bars provided

longitudinally at the top and bottom. The stirrups of 8 mm diameter
are provided at a spacing of 0.2 m. The square columns of 0.4 m ×
0.4 m cross-sections are reinforced with 12 16 mm diameter bars
equally placed longitudinally, and lateral ties of 8 mm diameter are
provided at a spacing of 0.2 m. The nonlinear time history analysis
of the frame is performed in the OpenSees software. The building
plan, details of the selected frame, and the FE modeling of the frame
with associated fiber discretization of the beams and columns can be
found in Ghosh et al. (2018). The applied ground motion is taken
from the elcentro_NS.dat file available at http://www.vibrationdata
.com/elcentro.htm. The characteristic strength of concrete (fck),
yield strength of reinforcing steel (fy), and structural damping ra-
tio (ξ) are considered random variables. The random variables are
assumed to be correlated truncated normal with mean values of
25 MPa, 250 MPa, and 5%; the truncation limits are [20,30] MPa,
[200,300] MPa, and [3,7] % for fck, fy, and ξ, respectively. The
COVs of fck and fy are 0.2 and that of ξ is 0.4. The coefficient
of correlation between fck and ξ is taken as 0.2 and that between
fy and ξ is taken as 0.1.

The reliability is obtained for the maximum lateral displacement
of the frame not exceeding a threshold value. The threshold of maxi-
mum lateral displacement is taken as 0.28 m. The reference result is
obtained by the brute-force MCS technique using 105 samples. The
Pf values, absolute errors, numbers of training data required, and

Fig. 9. Comparison of efficiency and accuracy of different active learning reliability methods for the heat conduction problem with varying
dimensions.

Fig. 10. Comparison of efficiency and accuracy of different active learning reliability methods for the high-dimensional benchmark problem with
varying dimensions.
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the lower and upper bounds of the Pf values obtained by the AK-
P0-MCS (for εthr ¼ 5%), the proposed ASBR-P1-MCS and ASBR-
P2-MCS approaches are shown in Table 4. The ASBR-P2-MCS is
found to be the most accurate, requiring the least number of samples
(12þ 54), which indicates the effectiveness of the proposed ASBR-
P2-MCS. On the other hand, the AK-P0-MCSmethod for εthr ¼ 5%
takes a large number of samples (i.e., 12þ 1,202). Thus, the AK-
P0-MCS method for εthr ¼ 1% is not attempted apprehending that it
will take much more samples for convergence. The convergences for
the estimation of the Pf values at each iteration by different active
learning methods are compared in Fig. 11. As with Example 3, the
Pf value estimated by the AK-MCS method reaches the proximity
of the actual value much slower than the proposed ASBR-MCS
approaches. This also shows the advantage of reliability estimate by
the sparse Bayesian regression over the Kriging metamodel for this
realistic problem.

Summary and Conclusion

Active learning-enhanced adaptive sampling-based sparse Bayesian
regression with first- and second-order polynomial basis functions
is studied for reliability analysis. The polynomial basis functions
employed here do not involve free parameters. Thus, the approach
avoids expensive parameter tuning. The performance of the pro-
posed ASBR-MCS approach is compared with the ESC-based AK-
MCS method for five numerical problems over a wide range of
parameters. The overall performance of the ASBR-P2-MCS ap-
proach is observed to be better than the ASBR-P1-MCS approach.
Thereby, the ASBR-P2-MCS approach is more appropriate for reli-
ability estimation problems involving implicit LSF. The accuracy
level of the proposed ASBR-P2-MCS approach is comparable with

the ESC-based AK-MCS method. Also, the training data required
by these two approaches are found to be similar for the first two
examples. However, the proposed ASBR-P2-MCS approach re-
quires much less training data than the ESC-based AK-MCSmethod
for high dimensional cases, as noted in the third and fourth exam-
ples. The present ASBR-P2-MCS approach is observed to be more
efficient than the ESC-based AK-MCS method in terms of sample
requirement and accuracy for the more realistic multistoried build-
ing frame reliability analysis problem involving nonlinear dynamic
analysis. The proposed adaptive sparse Bayesian regression algo-
rithm is generic in nature and can be integrated further with ad-
vanced MCS techniques for estimating small failure probability.
The performance of the proposed ASBR-MCS approach for reli-
ability analysis involving multiple LSFs requires further study.

Data Availability Statement

All data, models, or code that support the findings of this study are
available from the corresponding author upon reasonable request.
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