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A B S T R A C T

Inerter-based periodic structures have attracted significant interest among the research community due to their
wide range of applications. However, existing studies on quasiperiodic structures, especially with inerters,
are limited. Therefore, this timely work investigates the dynamics of novel one-dimensional inerter-based
quasiperiodic lattices with and without local resonators. The quasiperiodicity is introduced through the
modulation of both spring and inerter properties resulting in the well-known Hofstadter-like butterfly spectrum
having a fractal structure. Moreover, by considering the appropriate boundary conditions and many mass–
spring-inerter subsystems, the bulk spectrum of the system is investigated demonstrating the existence of
multiple edge states in lower and higher frequency ranges. The deterministic study showed that the effect of
inertia amplification is to reduce the frequencies of the Hofstadter-like butterfly and to widen the low frequency
band gaps. The second contribution of this work involves investigating the effect of parametric uncertainty for
the acoustic-metamaterial-like chain based on Monte Carlo simulations. Moreover, to address the computational
aspect of the problem, grey-box modeling using machine learning was performed. A Gaussian process model
was trained on a limited dataset and was found to capture the stochastic responses of the lattices adequately.
The statistical variation of parameters with different levels of uncertainty demonstrated significant effects on
the Hofstadter-like butterfly, band gaps, corresponding edge states and frequency responses. The sensitivity
of the dynamic behavior in quasiperiodic lattices to variabilities reveal the need to account for system
uncertainties for their targeted performance as future vibration absorbers and energy harvesters. The study
also paves the way to utilize the results as useful prior information for robust design optimization of real
inerter-based quasiperiodic lattice devices.
1. Introduction

The design of periodic structures has been exploited in different
ways to gain unique wave propagation characteristics and topologi-
cal phenomena in metamaterials and metastructures. In recent years,
special attention was devoted to mechanical metamaterials that exhibit
topologically protected edge and interface modes which are robust to
defects/disorder and uncertainties in the periodical arrangement of the
materials [1,2]. This field emerged from condensed matter physics,
where topological insulators [3] have attracted significant attention of
the metamaterials community due to potential applications in wave
localization and transport [4–6]. Consequently, the underlying physics
was widely utilized in classical wave-supporting materials to emulate
the edge states. This includes simple 1D lattices based on the Su–
Schrieffer–Heeger model [7] and 2D lattices with effects analogous to
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quantum Hall phases [8–11], where localized edge states exist at an
interface separating two distinct topological phases [12–14]. Robust
elastic wave topological edge modes were realized and proved to exist
in mechanical metamaterials and phononic lattices, including linear
locally resonant [15,16] and nonlinear lattice systems [17–21].

Some recent studies exploited the Aubry–André model [22] to mod-
ulate 1D quasiperiodic linear [23] and nonlinear [24] lattices that form
Hofstadter-like spectra with similar topological gaps and edge states
to those which occur in 2D electronic lattices as a consequence of
the quantum Hall effect. Moreover, in [23] it was found that every
band gap in the bulk resonant spectrum of a quasiperiodically coupled
discrete mechanical resonator is topological. This was proven by using
the arguments from the 𝐾-theory developed in [25]. Later, the same
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principles were used in [26] for sound waves in quasiperiodic acoustic
waveguides, where in contrast to the previous studies, a continuum
medium treatment of the lattice was employed along with the Chern
number defined on the three-dimensional noncommutative manifold
and used to assess the topological character of the gaps. In [27],
the authors studied the Hofstadter butterfly and the emergence of
topological edge states in reconfigurable quasi-periodic acoustic crys-
tals. Moreover, gaps are uniquely labeled by the value of integrated
density states (IDS) inside the gaps while the Hofstadter butterfly
spectrum was mapped through the acoustic density of states (DOS).
The experimental and theoretical observation of a metastructure that
constitutes a beam with quasiperiodically placed local resonators was
performed in [28]. Investigation of the dynamic behavior and topology
of the proposed metastructure revealed the existence of additional topo-
logically non-trivial band gaps with associated edge-localized modes
that occur due to the quasiperiodical arrangement of resonators. This
means that quasiperiodic metastructures with local resonators can gen-
erate wave localization and attenuation over multiple frequency bands
and potentially be used in energy harvesting and vibration isolation
applications. Moreover, in [29] the authors explored the 1D quasiperi-
odic metastructure having modulated LEGO resonators, i.e. modulation
is performed by sliding the cones along the pillars, thus showing
its potential for simple aperiodic patterning of local resonances and
observation of topological phenomena. The Hofstadter-like resonant
spectrum was mapped and non-trivial spectral gaps identified through
the numerical and experimental investigations. Some authors extended
the wave propagation analysis to two-dimensional elastic quasicrys-
talline metamaterials and composites [30,31] exhibiting 8-, 10- and
14-fold rotational symmetries.

Inerters as separate elements in mechanical systems have been
widely investigated in recent years [32]. Practical inerter devices have
been realized in different manners [33] including fluid-based inert-
ers [34] and mechanical flywheel inerters based on gear or ball-screw
mechanisms [35]. Their application often includes, but it is not limited
to, passive vibration absorption. Recently, an acoustic metamaterial
with a unique sound pressure amplification mechanism that is anal-
ogous to a mechanical inerter was used for ultra-low frequency sound
attenuation [36]. Other studies analyzed the effect of inerters on wave
propagation in acoustic [37], seismic [38] and locally resonant meta-
materials [39,40]. In [41], the authors suggested an architecture of
inertial metamaterials to design mechanical lattices with novel topolog-
ical and dispersion properties, where stable negative inertial coupling is
used as the key mechanism to achieve certain topological classes. In this
work, we use, for the first time, quasiperiodically modulated inerters
within the broader setup of 1D quasiperiodic lattices and investigate
its bulk spectra and edge states.

Although significant work has been done in the field of periodic
mechanical metamaterials and metastructures with inerter elements,
little has been done on the quasiperiodic analog of such systems,
especially with inerters. Moreover, defects and anomalies in periodicity
are common in manufacturing of engineering metamaterials, posing
problems for the targeted control of acoustic and elastic waves and lead
to deviations of the predicted dispersion properties based on simple
theoretical models [42]. The problem of one-dimensional [43] and two-
dimensional [44] elastic metamaterials with geometric and material
uncertainties was addressed to quantify their effect on the dispersion
characteristics of the system.

In the present work, we consider one-dimensional quasiperiodic
mass–spring-inerter chains and investigate their dynamical behavior
in the presence of system uncertainties. To the best of the authors’
knowledge, the deterministic and stochastic analysis of quasiperiodic
arrangements of mass–spring-inerter lattices has not been considered
in the literature. Moreover, since quasiperiodic lattices have a chain-
like configuration connecting multiple elements, this can easily lead
to large-sized system matrices upon assembly. Therefore, the compu-
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tational aspect of the framework was also investigated by posing the
problem as supervised learning and constructing a grey-box model
using a machine learning technique, namely a Gaussian process. In
particular, the emphasis here is placed on the investigation of the
effect of parametric uncertainty on the Hofstadter-like butterfly and
the frequency response function. To better understand the impact of
inerters and uncertainty on quasiperiodic discrete lattices, two different
cases with and without local resonances are considered. Moreover, the
presence of edge-localized modes within the nontrivial band gaps is
studied based on the finite-lattice spectrum for the deterministic case.

2. The inerter-based quasiperiodic lattices

The band structure properties of classical mechanical metamateri-
als and periodic lattices are well-known and widely investigated in
the literature. The expected behavior of such systems includes the
appearance of stop (band gaps) and pass bands that enable them to
work as filters and isolators for propagating waves at certain frequency
ranges. The recent introduction of inerters into periodic lattices [45]
demonstrated their remarkable tuning properties and impact on band
structure, where the frequency of bands, corresponding gaps, and even
topological interface modes was shifted to lower values. A similar
influence of inerters is expected in 1D quasiperiodic lattices as well,
with the main difference that quasiperiodicity will result in interesting
Hofstadter butterfly and edge mode spectra. Therefore, in this section,
we present a short introduction to mechanical inerter devices and
their possible physical realizations. This will be followed by theoretical
foundations of inerter-based quasiperiodic lattices and formation of the
eigenvalue problem.

2.1. Preliminaries to inerters

Smith [46] suggested a mechanical analog of the equivalent elec-
trical network and proposed several different configurations of the
mechanical inerters. Since this seminal work, various types of inerters
have been developed (e.g. see Fig. 1(a)) and widely accepted as tunable
vibration isolation devices [47]. A similar analogy was used in [36] to
realize an acoustic inerter, where a unique sound pressure amplification
mechanism was used for ultra-low frequency noise control. A different
mechanism was used in [48] with an inertial force generated by moving
fluid mass.

In general, inerter is considered as a two-terminal mechanical de-
vice whose force is proportional to the relative acceleration between
the two terminals with the force given as

𝐹 = 𝑏
(

�̈�2 − �̈�1
)

(1)

where 𝑏 is the inertance parameter, �̈�1 and �̈�2 are the accelerations of
the terminals and 𝐹 is the force acting on the inerter. More complex
relations for the inerter’s force have been obtained and confirmed
experimentally [35] for fluid-based inerters.

A metamaterial beam with periodically distributed inerter-based
local resonators given in the form of mechanical networks was studied
in [49]. Thus, ideal inerters can be used in different combinations with
springs and viscous dampers to form mechanical networks (e.g. see
Fig. 1(b)). Although the behavior of real mechanical inerters cannot be
described by a simple relation, such as that of the ideal inerter, it can
give us insight into the effects of inertia amplification in both simple
mechanical systems as well as in periodic systems. In recent work by
Van Damme et al. [50], an inertial amplification factor of 𝛼 = 1∕ sin2 𝜃0
was obtained under the assumption of small strains for one degree of
freedom system with mechanical inerter similar to that in Fig. 1(a) but
having a non-linear damping term. It should be noted that in our work,
by using the assumption of small strain, we have employed the ideal
inerter elements with modulated properties within a broader setup of
quasiperiodic chains. The aim of the following analysis is to reveal the
effect of inertia amplification on the Hofstadter butterfly spectra and

edge states.
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Fig. 1. Illustration of different physical realization of inerter devices available in the literature (e.g. see [36,48]) and discrete models of mechanical networks [49].
2.2. Problem formulation

In the previous discussion, we mentioned how mechanical inerters
can be used in periodic metamaterial lattices to achieve inertia ampli-
fication and obtain unique dispersion properties. Al Ba’ba’a et al. [41]
proposed a physical model of a monoatomic chain based on mechanical
inerters and discovered interesting dispersion and topological proper-
ties of such artificially architectured lattices. The authors employed an
ideal inerter model with the simplified linearized relationship for the
equivalent inertial coupling, where the effect of positive and negative
angles of the inerter’s slider on stability was also addressed. Here,
we also suggest a possible configuration for the physical realization
of the locally resonant quasiperiodic acoustic-metamaterial-like chain
with mechanical inerters (see Fig. 2 a). Having in mind that inerters
are tunable devices [51], the quasiperiodicity can be achieved by mod-
ulating both stiffness and inertia properties. However, for the purpose
of this theoretical investigation, we will assume an idealized discrete
mass–spring-inerter chain model as given in Fig. 2 (b) and (c). Here,
we will observe only a large super-cell of the chain but not in the
sense of Bloch analysis, which is sometimes difficult to perform on large
unit cells, but rather by imposing the periodic boundary conditions
such that it geometrically resembles a ring [28]. Two different lat-
tice configurations will be studied including the phononic-crystal-like
(PCL) chain (Fig. 2 b) and the locally resonant acoustic-metamaterial-
like (AML) chain (Fig. 2 c). Therefore, the super-cell is constituted
of many smaller mass–spring-inerter-based unit cells (subsystems) in
the case of PCL chain or mass-in-mass subsystems connected through
spring-inerter elements in the case of AML chain.

The general form of governing equations of the mass–spring-inerter
lattice system (the case with local resonators) with modulated stiffness
and inerter properties can be expressed as

𝑀𝑟�̈�
𝑛
𝑟 + 𝑘𝑟−1(𝑢𝑛𝑟 − 𝑢𝑛𝑟−1) + 𝑘𝑟(𝑢𝑛𝑟 − 𝑢𝑛𝑟+1) + 𝑘𝑔𝑟𝑢

𝑛
𝑟 + 𝑘𝑅𝑟(𝑢𝑛𝑟 − 𝑣𝑛𝑟 )+ (2)

𝐵𝑟−1(�̈�𝑛𝑟 − �̈�𝑛𝑟−1) + 𝐵𝑟(�̈�𝑛𝑟 − �̈�𝑛𝑟+1) + 𝐵𝑔𝑟�̈�
𝑛
𝑟 = 0,

𝑚𝑟�̈�
𝑛
𝑟 + 𝑘𝑅𝑟(𝑣𝑛𝑟 − 𝑢𝑛𝑟 ) = 0, (3)

where 𝑟 = 1,… , 𝑅, 𝑅 is the number of masses in the super-cell with a
sufficiently large number of subsystems while superscript 𝑛 represents
the number of a super-cell in the chain and can be neglected in the
further analysis since only a single super-cell will be considered. The
governing equations for the case without local resonators can be easily
recovered by setting the stiffness 𝑘𝑅𝑟 of the local resonator in Eq. (2)
equal to zero (Eq. (3) is neglected).

The quasiperiodicity is introduced through modulated stiffness and
inerter coefficients according to the following law

𝑘 = 𝑘 (1 + 𝛽 𝛤 ) = 𝑘 𝐶 , (4)
3

𝑟 0 𝑚 𝑟 0 𝑟
𝑘𝑔𝑟 = 𝑘0𝛾𝑔(1 + 𝛽𝑔𝑚𝛤𝑟) = 𝑘0𝛾𝑔𝐷𝑟,

𝑘𝑅𝑟 = 𝑘0𝜉𝑅(1 + 𝜃𝑚𝛤𝑟) = 𝑘0𝜉𝑅𝐺𝑟,

𝐵𝑟 = 𝑠𝑀(1 + 𝜌𝑚𝛤𝑟) = 𝑠𝑀𝑉𝑟, 𝐵𝑔𝑟 = 𝜖𝑔𝑀(1 + 𝜌𝑔𝑚𝛤𝑟) = 𝜖𝑔𝑀𝑊𝑟, (5)

𝑀𝑟 = 𝑀(1 + 𝛿𝛤𝑟) = 𝑀𝐻𝑟, 𝑚𝑟 = 𝑏𝑀(1 + 𝑔𝛤𝑟) = 𝑏𝑀𝐽𝑟, (6)

where 𝛤𝑟 = 𝑐𝑜𝑠(𝑟𝜃 + 𝜙), 𝑟 = 1, 2,… , 𝑅. The parameter 𝜃 is the one
that controls the periodicity of the modulation (it can have rational
or irrational values related to periodic and quasiperiodic domains,
respectively) while the phase 𝜙 does not affect the periodicity but
it is important for the existence of edge states at the boundaries
(e.g. see [29]). The relation between the masses of the outer and inner
elements in the unit cell is given as, 𝑏 = 𝑚∕𝑀 .

Our aim is to compute eigenfrequencies that represent the spectrum
of the bulk and corresponding infinite domains. Now, the system of
Eqs. (2) and Eq. (3) can be given in matrix form for the super-cell with
many mass–spring-inerter subsystems (and local resonators) as
1
𝜔2
0

𝐌�̈�𝑛 +𝐊𝐮𝑛 +
1
𝜔2
0

𝐌(𝑙)�̈�𝑛−1 +𝐊(𝑙)𝐮𝑛−1 +
1
𝜔2
0

𝐌(𝑟)�̈�𝑛+1 +𝐊(𝑟)𝐮𝑛+1 = 𝟎, (7)

where 𝐌 and 𝐊 are the corresponding mass and stiffness matrices,
respectively, while 𝐮𝑛 is the vector of displacements (the natural fre-
quency of a single oscillator is given as 𝜔2

0 = 𝑘0∕𝑀). Further, we
employ periodic boundary conditions on both ends of the chain so that
it geometrically represents the ring. In that respect, the left and right
interactions of the mass and stiffness matrices are expressed as 𝐌(𝑙),
𝐊(𝑙), and 𝐌(𝑟), 𝐊(𝑟).

As given in [52], the modes of the ring-like chain coincide with the
Bloch modes. Therefore, the procedure similar to those applied in [52]
can be used to form the eigenvalue problem in our case, which gives

(�̃� −𝛺2�̃�)𝐚 = 𝟎, (8)

where 𝐚 is the eigenvector and 𝐊(𝜇) and 𝐌(𝜇) are wavenumber depen-
dent stiffness and mass matrices, respectively, given as

�̃�(𝜇) = 𝐌 +𝐌(𝑙)𝑒𝑖𝜇 +𝐌(𝑟)𝑒−𝑖𝜇 , (9)

�̃�(𝜇) = 𝐊 +𝐊(𝑙)𝑒𝑖𝜇 +𝐊(𝑟)𝑒−𝑖𝜇 .

3. Hofstadter butterfly and edge states: Deterministic case

In physics, the Hofstadter butterfly effect refers to a complex fractal
pattern of energy states of electrons i.e., energy spectrum that describes
the behavior of electrons in a magnetic field. Recently, a Hofstadter-like
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Fig. 2. The inerter-based 1D quasiperiodic lattices consisting of mass–spring-inerter subsystems: (a) possible physical realization of the lattice, and idealized mechanical models of
(b) phononic-crystal-like chain (c) locally resonant acoustic-metamaterial-like chain.
butterfly pattern and interesting edge states were noticed in classi-
cal wave dynamics systems given as quasiperiodic locally resonant
metastructures [28]. Such analysis can give us an insight into how the
quasiperiodicity affects the existing band gaps and associated edge-
localized states only through the variation of mechanical parameters
of the system. An additional challenge is to investigate the effect of
inerters, as pure mechanical devices, on such generated gaps and edge
states. Therefore, in this section, we perform deterministic analysis
to examine the influence of inertia amplification parameter on the
Hofstadter-like butterfly and edge states spectrum of 1D quasiperiodic
lattices. To observe this in our case, we adopt a sufficiently large
number of mass–spring-inerter sub-unit cells in the case of the 1D
phononic-crystal-like (PCL) quasiperiodic chain and the corresponding
number of local resonators in the case of the acoustic-metamaterial-like
(AML) quasiperiodic chain. For this purpose, we adopt 𝑅 = 200 masses
with the same number of degrees of freedom in the unit cell of the PCL
chain, whereas that number is doubled in the case of the AML chain due
to the local resonators. Moreover, we observe the bulk spectra in terms
of phase 𝜙 to show the edge states crossing the gaps and demonstrate
their localization at boundaries. However, it is to be noted that the aim
of this study is not to prove the non-trivial topological nature of the
band gaps (by investigating topological invariants) but to investigate
the effect of parametric uncertainty on the Hofstadter butterfly and
bulk spectra of the mass–spring-inerter systems. This section is also
expected to help in visually distinguishing the subtle differences of the
resulting Hofstadter butterfly spectrum behavior without and in the
presence of system uncertainties.

First, we map the Hofstadter butterfly spectrum for the case of the
following deterministic system parameters of the AML chain, if not
given otherwise: 𝛽𝑚 = 0.15, 𝛾𝑔 = 1, 𝑏 = 0.1, 𝛽𝑔𝑚 = 1, 𝜉𝑅 = 0.08, 𝜃𝑚 = 0.5,
𝑔 = 0.2, 𝑠 = 0.1, 𝜌𝑚 = 0.1, 𝜌𝑔𝑚 = 0.13, 𝜖𝑔 = 0.2, 𝜖𝑔 = 0.2 and 𝛿 = 0.1. The
same values of parameters are used for the PCL chain where only the
stiffness of the local resonator is neglected. In both cases, the periodic
boundary conditions (to form the ring-like structure) are used at the
ends of the super-cell of the chain.
4

Fig. 3 shows how the frequencies of the AML and PCL quasiperiodic
chains vary in terms of the quasiperiodic parameter 𝜃 resulting in
the fractal structure similar to the Hofstadter butterfly. The resonant
frequencies of the system discretize the bulk spectrum whose density
directly depends on the number of considered masses. One can ob-
serve a large zero-frequency gap, whose existence is attributed to the
ground springs, and a number of additional gaps inside the butterfly-
like spectrum. Moreover, the differences in the Hofstadter butterfly
for configurations with and without inerter elements can be viewed
from Fig. 3(a) and Fig. 3(b) for the quasiperiodic AML chain and
Fig. 3(c) and Fig. 3(d) for the PCL chain. The introduction of inerter
elements into the chain significantly shifts the Hofstadter butterfly
spectrum to lower frequencies but at the same time keeps almost the
same fractal structure in the quasiperiodic PCL chain. The frequency
shifting is much more pronounced in the higher frequency range than
in the lower one. However, the major difference can be noticed in the
quasiperiodic inerter-based AML chain, where the lower frequency gaps
associated with the local resonances are notably larger than those in
the configuration without inerters. The significance of this feature of
inerter-based quasiperiodic chains will be additionally discussed in the
following part of this section. To predict the existence of edge states and
the non-trivial nature of gaps emerging within the Hofstadter butterfly
spectrum, some authors [28] suggested estimation of the integral den-
sity of states (IDS). The variation of IDS with 𝜃 can give us important
information such as the number of band gaps and topological boundary
modes spanning those gaps between two subsequent commensurate
values of 𝜃. However, as we stated previously, this analysis is out of
the scope of this study and the main focus will be on the investigation
of the effect of parametric uncertainty on the dynamics of PCL and AML
chains with quasiperiodic patterns.

For the purpose of identifying the edge states we calculate the bulk
and edge state spectra for finite lattices as a function of the phase 𝜙
and for the fixed value of 𝜃 = 0.2 ⋅ (2𝜋). In this case, free-free boundary
conditions are used to achieve and demonstrate the existence of edge-
localized states. Fig. 4 shows the bulk spectra of the AML and PCL
chains with edge states crossing both higher and lower frequency gaps.
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Fig. 3. The Hofstadter butterfly of quasiperiodic AML and PCL chains with and without inerter elements and nominal (deterministic) system parameters. The case with ground
and intermass inerters is given for 𝜖𝑔 = 0.2 and 𝑠 = 0.1.
The number of crossings that are related to left or right-end localization
in the chain is different for each of the gaps and can be one or two.
This number is directly dependent on the topological features of the
gap which can be found by determining the Chern numbers (that can
be computationally expensive for large cells) or estimation of IDS.
However, that analysis is not performed in this study due to the reasons
mentioned previously. The spectrum of the AML chain demonstrates the
existence of multiple small gaps crossed with edge states and located
in the lower frequency region owing to the local resonance nature.
Those low-frequency gaps are missing in the PCL chain, where the
first large gap (apart from the existing zero-frequency gap) appears
around the unit frequency crossed with two edge states. Similar large
gaps appear in the higher frequency ranges of the AML chain. The
mode localization shown for the edge states from these large gaps in
Fig. 4(b) and Fig. 4(d) demonstrates localization at both ends of the
chains. However, the chosen eigenstates from the spectrum show no
localization in both the AML or PCL chains.

To reveal the effect of inerters on the bulk spectra and edge states, a
comparison of the case without and with inerters for the quasiperiodic
AML and PCL chains is presented in Fig. 5. It is expected that the
frequencies will reduce due to the mass amplification effect. There-
fore, Fig. 5(a) shows the spectrum of the AML chain that is shifting
along with the band gaps and corresponding edge states towards lower
5

frequency values when ground and inter-mass inerters are introduced.
Similar behavior can be noticed in the PCL chain with inerters. It
should be emphasized that this shifting of band gaps along with the
edge states is much more pronounced at higher frequency ranges,
which is consistent with the effect of inerters noticed in some previous
works [45]. One important property of quasiperiodic AML chains is
the generation of multiple lower-frequency band gaps (crossed with
corresponding edge states) that are associated with local resonances.
However, a significant flattening and widening of the low-frequency
band gaps in their narrowest part can be observed in the configuration
with inerter elements, which is also followed by the separation of
edge states from the bulk. However, the shape of these low-frequency
gaps strongly depends on the phase 𝜙 in both configurations with
and without inerters. Similar behavior of inerters was noticed earlier
in the literature [40,53], where widening of low-frequency gaps was
noticed even for small mass fractions in inertia amplifiers [53], which
would require much larger resonant masses in the pure locally resonant
periodic structures.

4. Hofstadter butterfly and edge states: Stochastic case

In this section, a numerical study has been conducted to quantify
the variation of the dynamic behavior of inerter-based quasi-periodic
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Fig. 4. The bulk spectra and edge states in quasiperiodic AML (a) and PCL (c) chains for varying phase 𝜙 and 𝜃 = 0.2 ⋅ (2𝜋). The 𝑅 = 200 masses is considered in PCL chain and
the same number of resonators in AML chain. The particular values from the bulk and edge mode spectra of AML chain are chosen from panel (a) and from panel (c) for PCL
chain and their localization given in panels (b) and (d), respectively.
lattices considering multiple sources of uncertainties. Although in-
sightful and interesting results were obtained for the PCL lattice in
the deterministic case study, for the stochastic analysis, we restrict
ourselves to the more complex case of the AML lattice. Uncertainties in
material, geometry, and loading are inevitable in engineering practice.
Thus, carrying out stochastic analysis in the pre-design stage could be a
key step to ensure the desired performance of quasiperiodic lattices and
detect any significant deviation which may prove to be detrimental.

In recent years, Gaussian process (GP) models have received con-
siderable attention in the scientific and engineering community. The
history of GP in geostatistics traces back to the last century but their
capability to solve complex engineering problems has immensely con-
tributed to their success trajectory. More theoretical details on GP
can be found in Appendix and the references within. Here, we first
determine the optimal number of sample points to train the GP model
to approximate the dispersion behavior and frequency responses, where
error convergence studies have been performed as shown in Fig. 10 in
Appendix. The same values of parameters that are used in the previous
deterministic study are also employed here as nominal values for the
following stochastic analysis.

The statistical variation in the dispersion behavior due to 10%
uncertainty in the mass, stiffness and inerter parameters has been
6

presented in Fig. 6. The performance of GP to capture the varia-
tion in the dispersion behavior has been compared with Monte Carlo
simulation (MCS). The maximum, mean and minimum responses are
presented to illustrate the response variation. As expected, the mean
response is close to the response of the nominal (deterministic) case,
where a similar fractal structure of the Hofstadter butterfly spectrum
and corresponding band gaps can be observed. Further, the maximum
response displays shifting of butterfly to larger frequencies having
wider gaps (especially in the lower frequency region), which can be
attributed to increased stiffness, local resonance masses and inertia
effects. On the other side, the minimum response shifts the butterfly
to lower frequency values displaying much narrower gaps in the lower
frequency region that might be attributed to lower values of stiffness,
local resonance masses and inertia amplification.

It can be observed from the results in Fig. 6 that the GP model
trained with 50 samples has approximated the dispersion statistics
accurately. This is worth noting considering the fact that the disper-
sion behavior exhibits nonlinear fluctuations and sudden opening and
closure of stop bands. However, it should be noted that the GP model
fails to predict some of the lower frequency states as compared to MCS,
which can be improved by increasing the number of training samples.
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Fig. 5. The bulk spectra and edge states of quasiperiodic AML and PCL chains for varying phase 𝜙 and 𝜃 = 0.2 ⋅ (2𝜋) given in the configurations with and without inerter elements
when 𝑠 = 0.1 and 𝜖𝑔 = 0.2.
As negligible changes were observed in the mean dispersion re-
sponse due to varying levels of uncertainties, only the extreme (max-
imum and minimum) values were plotted in Fig. 7 to illustrate the
significant changes in the dispersion trends with varying levels of
uncertainties. Therefore, the effect of varying levels of uncertainties
(10%–20%) in the mass, stiffness, and inerter parameters has been
studied. By comparing the maximum butterfly spectrum responses for
10% and 15% uncertainty shows a slight shifting of the spectrum
to higher frequency values but no significant changes in the fractal
structure of the spectrum can be noticed. A similar observation can be
viewed in the case of 20% uncertainty where the additional shifting
of the Hofstadter butterfly spectrum to higher frequencies is present.
Slightly different conclusions can be drawn for the minimum responses
where the major change occurs in the low-frequency region where
the fractal structure of some of the gaps is changed and the lowest
modes are strongly affected by the increased level of uncertainty.
Although the investigation is not presented here, the parameter that
contributes the most to the migration of low-frequency modes to zero is
the parameter that modulates the ground inerter properties. Moreover,
a slight shifting of the whole spectrum to lower frequency values can
also be observed.

The stochastic bulk spectra and edge states of the AML chain
due to 10% uncertainty in the mass, stiffness, and inerter parameters
7

have been presented in Fig. 8. This analysis is performed to show
the effect of parametric uncertainty on edge states of the AML chain
since this property cannot be investigated from the Hofstadter butterfly.
The mean, minimum and maximum of the bulk spectra stochastic
responses are given as a function of the phase 𝜙 and for a fixed value
of 𝜃 = 0.2 ⋅ (2𝜋). The mean response is the one that resembles the
deterministic case as discussed in the previous section. On the other
side, the maximum response demonstrates a significant shifting of the
bulk spectra to higher frequencies with a slight widening of the band
gaps crossed with the same number of edge states as for the mean case.
However, a significant change in the bulk spectra properties can be
observed in the minimum response. These changes are notable in the
low-frequency band gaps that are related to local resonances, where
a significant narrowing and widening of gaps occur for certain values
of phase followed by the migration of edge states towards the bulk.
Moreover, the narrowing of the higher frequency gaps can be observed
in the minimum response.

The frequency response function (FRF) statistics due to 10%, 15%
and 20% uncertainty in the mass, stiffness, and inerter parameters
are presented in Fig. 9. The performance of the GP trained with
100 samples for 10% uncertainty has also been compared with that
of MCS demonstrating accurate capturing of the FRF statistics. The
FRFs are evaluated assuming 0.5% damping. The comparison of the
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Fig. 6. Comparison of the performance of GP (right) with that of MCS (left) in capturing the statistics of the Hofstadter butterfly spectrum behavior in the presence of 10%
uncertainty. 50 samples have been employed to train the GP model.
ensemble mean and deterministic case shows significant matching in
the response. The difference in the peak responses can be attributed to
the higher effect of damping in the MCS model. Further observation
of the maximum/minimum envelope shows that these responses are
8

following the path of the mean and deterministic responses. Further,
the confidence interval of the response in 10% of uncertainty is not
very wide but deviations from the deterministic response are notable.
However, the deviations of maximum/minimum envelope and width
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Fig. 7. Maximum and minimum of Hofstadter butterfly spectrum obtained by MCS in the presence of 10%, 15% and 20% uncertainty in the mass, stiffness and inerter parameters.
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Fig. 8. Statistics of the stochastic bulk spectra and edge states of quasiperiodic AML chain for varying phase 𝜙 in the presence of 10% uncertainties in the mass, stiffness and
inerter parameters. The results have been obtained with the help of 1000 MCS.
of the confidence interval significantly grows for higher percentages
of uncertainty. For example, this change is large and visible in the
transmission region for 10% uncertainty, however large shifting of the
maximum envelope to lower frequency values and amplitude increase
can be observed in the vicinity of the zero-frequency gap and for 15%
and 20% of uncertainty.

5. Conclusion

This study provides a comprehensive analysis of the Hofstadter
butterfly spectrum and edge states in 1D quasiperiodic lattices with in-
erter elements. The two types of lattice configurations were considered,
namely the phononic-crystal-like (PCL) and the acoustic-metamaterial-
like (AML) chains with local resonators. The main novelty and contribu-
tion of this work lies in the fact that the effect of parametric uncertainty
and inerter elements in their quasiperiodic setup is investigated for the
first time and important conclusions for future design of inerter-based
quasiperiodic lattices can be drawn.

The deterministic analysis of Hofstadter butterfly spectrum and edge
states in PCL chains with inerters showed shifting of the spectrum
to lower frequency values while retaining the main properties of the
fractal structure of the butterfly and edge states. However, the same
10
analysis for the AML chains besides shifting of higher eigenstates to
lower frequency values demonstrated a widening of the lower fre-
quency gaps (whose existence is attributed to local resonances) and
corresponding edge state frequencies due to the introduction of inertia
amplification effect. A similar effect of inerter devices on periodic
structures was noticed in the literature.

Finally, parametric uncertainty studies based on Monte Carlo simu-
lations (MCS) and Gaussian process (GP) models illustrated how the
statistical variation of parameters affects the butterfly spectrum and
edge states in the AML quasiperiodic lattices. It was revealed that GP
was capable of effectively capturing the response, compared to that
from MCS, with a nominal amount of information (less data). It has
been observed that the higher level of uncertainty significantly affects
the Hofstadter butterfly and frequency function response, especially the
structure of lower frequency gaps.

The study highlights the importance of considering potential uncer-
tainties in analyzing inerter-based quasiperiodic lattices and designing
robust wave filters for vibration isolation and energy harvesting appli-
cations. This work provides the framework to solve robust design opti-
mization of advanced future application-driven quasiperiodic structural
devices.
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Fig. 9. Comparison of the performance of Gaussian process (GP) and Monte Carlo simulations (MCS) in capturing the statistics of direct frequency response function H(1,1) for
10% uncertainty (see panels (a) and (b)). 100 samples have been employed to train the GP model. Direct frequency response function H(1,1) bands obtained by MCS in the
presence of 15% and 20% uncertainty are given in panels (c) and (d). The FRFs are evaluated assuming 0.5% damping.
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Appendix. Gaussian process

The Gaussian process (GP) is a stochastic process which stipulates
probability distributions over functions. Originally GP was developed as
a spatial interpolation technique in the field of geostatistics [54] and
later applied in the dynamics of structures [55]. GP is also known as
Kriging. Considering an independent variable 𝐱 ∈ R𝑑 and function 𝑔(𝐱)
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Fig. 10. Convergence study to determine the number of samples required for the GP model to adequately capture (a) the dispersion behavior and (b) frequency responses of
quasi-periodic lattices. On the basis of the error convergence plots, 50 and 100 training points have been selected for approximating the dispersion behavior and frequency
responses, respectively. More points are required for the frequency responses to capture the nonlinear fluctuations owing to low damping (0.5%). For the convergence study, all
of the parameters related to mass, stiffness, and inerter properties have been considered to be random with 10% variation.
such that 𝑔 ∶ R𝑑 → R, a GP over 𝑔(𝐱) with mean 𝜇(𝐱) and covariance
function 𝜅(𝐱, 𝐱′;𝛩) can be defined as

𝑔(𝐱) ∼ 𝐺𝑃 (𝜇(𝐱), 𝜅(𝐱, 𝐱′;𝛩)),

𝜇(𝐱) = E[𝑔(𝐱)]
𝜅(𝐱, 𝐱′;𝛩) = E[(𝑔(𝐱) − 𝜇(𝐱))(𝑔(𝐱′) − 𝜇(𝐱′))]

(10)

where 𝛩 denotes the hyperparameters of the covariance function 𝜅.
The choice of the covariance function 𝜅 allows to incorporate any prior
knowledge about 𝑔(𝐱) (for instance, periodicity, linearity, smoothness)
and can cope with the approximation of arbitrary complex functions.
The covariance function brings in interdependencies between the func-
tion value corresponding to different inputs. For instance, the following
squared exponential (Gaussian) covariance function is used in this
study.

𝜅(𝐱, 𝐱′) = 𝜎2𝑔 exp

[

−
𝑑
∑

𝑖=1

(𝑥(𝑖) − 𝑥′(𝑖))2

2𝑟2𝑖

]

(11)

where {𝜎𝑔 , 𝑟1,… , 𝑟𝑑} = 𝛩 are the hyperparameters of the covariance
function.

One perspective of viewing GP is the function-space mapping de-
scribing the input–output relationship [56]. As opposed to conventional
modeling techniques which employ fitting a parameterized mathemat-
ical form to map the input–output functional space, a GP does not
assume any explicit form, and instead holds a prior belief (in the form of
the mean and covariance function) onto the space of model (response)
functions. Thus, GPs can be classified as a ’non-parametric’ model as
the number of parameters in the model is governed by the number of
available data points.

The most general form of GP, called Universal Kriging, is used in
this study [57]. This can be represented by second-order polynomial
trend functions and can be expressed as

𝐲(𝐱) =
𝑝
∑

𝑗=1
𝛽𝑗 𝐟𝑗 (𝐱) + 𝐳(𝐱) (12)

where 𝜷 = {𝛽𝑗 , 𝑗 = 1,… , 𝑝} is the vector of unknown coefficients and
𝐅 = {𝐟𝑗 , 𝑗 = 1,… , 𝑝} is the matrix of polynomial basis functions. 𝐳(𝐱) is
the GP with zero mean and autovariance cov[𝐳(𝐱), 𝐳(𝐱′)] = 𝜎2𝐑(𝐱, 𝐱′),
where 𝜎2 is the process variance and 𝐑(𝐱, 𝐱′) is the autocorrelation
function.
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The parameters 𝜷 and 𝜎2 can be estimated by the maximum like-
lihood estimate (MLE) defined by the following optimization problem
under the assumption that the noise 𝐳 = 𝐲−𝐅𝜷 is a correlated Gaussian
vector

(�̂�, 𝜎2) = arg max
𝜷,𝜎2

𝐋(𝜷, 𝜎2|𝐲)

= 1
((2𝜋𝜎2)𝑛det𝐑)2

exp
[

− 1
2𝜎2

(𝐲 − 𝐅𝜷)𝑇𝐑−1(𝐲 − 𝐅𝜷)
]

(13)

Upon solving Eq. (13), the estimates (�̂�, 𝜎2) can be obtained as

�̂� = (𝐅𝑇𝐑−1𝐅)−1𝐅𝑇𝐑−1𝐲 (14)

𝜎2 = 1
𝑛
(𝐲 − 𝐅𝜷)𝑇𝐑−1(𝐲 − 𝐅𝜷) (15)

where 𝐲 represents the model response such that 𝐲 = {𝑦1,… , 𝑦𝑛}𝑇 .
The prediction response for a test point requires three conditions

to be satisfied, which are linearity in terms of the observed data,
unbiasedness and minimal variance. The prediction mean and variance
by GP can be obtained as

𝜇𝑌 (𝐱) = 𝐅𝑇 �̂� + 𝐫𝑇𝐑−1(𝐲 − 𝐅�̂�) (16)

𝜎2
𝑌
(𝐱) = 𝜎2[1 − 𝐫𝑇𝐑−1𝐫 + 𝐮𝑇 (𝐅𝑇𝐑−1𝐅)−1𝐮] (17)

where 𝐮 = 𝐅𝑇𝐑−1𝐫 − 𝐑 and 𝐫 is the autocorrelation between the
unknown point 𝐱 and each point of the observed data set.

Some unique features of the above formulation are: (i) The pre-
diction is exact at the training points and the associated variance is
zero. (ii) It is asymptotically zero which means that as the size of
the observed data set increases, the overall variance of the process
decreases. (iii) The prediction at a given point is considered as a
realization of a Gaussian random variable. Thus, it is possible to derive
confidence bounds on the prediction. The variance information is often
used as an error measure of the epistemic uncertainty of the meta-
model due to sparsity of data. This feature has led to the development
of adaptive error based sampling schemes for improving the accuracy
of the meta-model [58,59].
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