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A B S T R A C T

In-plane wave propagation in hexagonal and re-entrant lattices is a widely investigated subject in the literature.
Such systems can exhibit many different but limited band structure properties that depend on the topology and
geometry of structural members and the lattice itself. This manuscript proposes a novel class of hexagonal and
re-entrant lattices with unit cells containing combined straight and curved beams with enhanced band-gap
properties. Timoshenko beams are suggested to represent beam members of the lattice and corresponding
governing equations are derived. Bloch theorem is applied to study in-plane wave propagation and get the
unique dispersion properties of the modified lattices. The influence of a new geometric parameter, the curvature
angle of the constituent curved beams is explored for the dispersion characteristics and wave directionality
through iso-frequency contours of dispersion surfaces. Enhanced band-gap properties in the context of the
generation of new band-gaps and widening of the band-gaps for the cellular lattices with curved beams are
promising from the viewpoint of the future design of phononic crystals and metamaterials in their mechanical
setup.
1. Introduction

Lattice structures are widely used in engineering practice due to
their unique mechanical properties, robustness, and economic effi-
ciency. These applications range from structural and civil engineering
to crystallography, biological and material sciences [1]. An important
requirement for some structural components is a lightweight design
typically combined with increased stiffness, which can conflict with
the need for energy-related dissipation of undesired vibrations and
shock. In [2] the authors have shown that both of these require-
ments, load-carrying capabilities, and vibration attenuation, can be
achieved through an embedded lattice with chiral configuration. Many
authors have proposed a variety of lattice designs and investigated
their wave propagation and dispersion properties. Most common one-
dimensional [3] and two-dimensional designs include triangular and
square lattices [4], hexagonal/re-entrant [5] and chiral lattices [6].

A comprehensive analysis of plane wave propagation and direc-
tional behaviour in hexagonal and re-entrant beam-based lattices was
performed in [7]. Different band structures and directional proper-
ties were achieved for varying angles between beam members based
on Bloch theory, dispersion relations, phase, and group velocities.
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Dispersion curves are usually plotted within the irreducible Brillouin
zone, where approximate numerical methods are used to obtain dis-
persion relations based on the corresponding unit cell and constructed
reciprocal lattice. The directional energy flow and stop band identi-
fication was also investigated for different types of lattices in [8] by
proposing a method which produces group velocity maps. In [9] the
author suggested an exact wave-based Bloch method to study wave
propagation in the two-dimensional square, honeycomb, and hexagonal
lattices, where predicted corresponding dispersion curves are compared
and advantages emphasized against those obtained via finite elements.
Despite interesting band structure properties, classical lattice structures
often lack desired band-gap properties and there were many attempts
in the literature to introduce modifications and improvements in lattice
topology [10–14] towards this direction. For example, a novel design
for honeycomb lattices with widen band-gaps was suggested by com-
bining the conventional and auxetic cores [15]. Some authors [16]
introduced the effect of pre-stress on beam elements in the hexagonal
lattice to shift the band-gap to lower frequency. Bang gaps can be also
manipulated by changing the design of individual beam members or
the unit cell geometry either manually or through the utilization of
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topology optimization methods [17–19]. Timoshenko beams of non-
uniform thickness [20] were employed in hexagonal and re-entrant
lattice structures where widening of the existing ones and emerging
of new band-gaps were noticed for certain ranges of material distribu-
tion parameters. Moreover, topological design based on the improved
genetic algorithm was applied to the square lattice structure by filling
the material to manipulate the lower frequency band-gaps [21]. Be-
sides these straightforward methodologies, some authors suggested the
application of fractal-inspired [22,23] or bio-inspired [24] lattice struc-
tures capable of inhibiting the wave propagation at sub-wavelength
frequency ranges.

Another ambitious approach to control the band-gaps at both lower
and higher frequency ranges includes lattices with zigzag and un-
dulated geometry of limbs in the unit cell. Several types of two-
dimensional beam-like zigzag lattice structures were proposed in [25,
26] and their band-gaps and directional wave propagation were in-
vestigated in detail. It was revealed that multiple wide and complete
band-gaps appear in a wide porosity range due to the separation of
the degeneracy when bending arms are introduced. Similarly, wave
propagation analysis was performed for the triangular chiral lattice con-
taining zigzag beams [27] and for the re-entrant and anti-chiral hybrid
auxetic metastructures with mass inclusions [28]. Moreover, undulated
geometry obtained by using the initial curvature to the square lattice
elements was studied in [29]. The authors devoted special attention to
induced anisotropy and break of symmetry to the regular square lattice,
which resulted in band-gaps at specified frequency ranges as well as a
wave motion in specific directions. Utilizing the fact that curved beams
can perform a weaker stiffness and therefore exhibit lower band-gaps,
a recent study [30] performed a wave propagation analysis of rotation-
ally symmetric lattices with curved beams that are transformed from
square lattices. Numerical simulations and experiments were conducted
to demonstrate the existence of lower band-gaps and directional wave
propagation when certain geometrical parameters are manipulated.

Motivated by previous studies [25,31–33], the influence of curved
beam elements are explored for achieving lower and emergence of
new band-gaps modifying the conventional hexagonal lattice. Here,
attention has been paid to hexagonal and re-entrant lattices modified
by curved beams. Flexibility and weaker stiffness properties of such
lattices were demonstrated in a recent study [31]. Therefore, a unit
cell composed of one straight and two curved beams approximated by
many straight Timoshenko beams is proposed. Corresponding govern-
ing equations are derived and the finite element method and Bloch
theorem are applied to obtain the dispersion relations, and investigate
and compare the band structures of different curved beam configura-
tions with the conventional one. Unlike the curved beam-based square
lattice [30], where the unit cell is exhibiting a full rotation symmetry
and has a limited number of emerging and vanishing bang gaps, in our
case of modified hexagonal/re-entrant-like variation of curved beam
geometry leads to the emergence, widening and even shifting of band-
gaps to lower frequencies. The convergence study is performed to see
what number of beams is required to approximate the curved beams
with satisfying accuracy of eigenvalues. Moreover, the dispersion rela-
tions are given in the form of iso-frequency curves to investigate the
amount of anisotropy in the wave propagation characteristic of the
observed lattices. Today’s additive manufacturing technologies allow
us to design lattices with a variety of geometries which makes lattices
with curved elements and desired wave propagation features easy to
make and utilize in different engineering applications. The structures
presented in this study give an insight into potential applications of
curved lattices in the direction of mechanical filters, sound isolations,
tunable acoustics, energy absorption, vibration control, and control
and manipulation of wave propagation. Their main advantage lies in
the emergence of new lower and higher frequency band gaps only by
manipulating the angles of curved beam elements while keeping the
2

main topological features of the lattice.
2. Wave propagation in two-dimensional lattice structures with
curved beams

2.1. Mechanical model and geometry of a unit cell

Let us consider a two-dimensional lattice hexagonal/re-entrant-like
type of lattice modified by curved beams, More precisely, a represen-
tative unit cell is composed of one straight and two curved beams as
given in Fig. 1.

Four different combinations of lattices considering straight and
curved beams, where curvatures are varied from one or another side
of the straight configuration, are considered as illustrated in Fig. 1.
However, it should be noted that in further analysis curved beams
are approximated with a satisfying number of straight beams based on
previously performed convergence analysis. Details about the geometry
of the unit cell with its characteristic dimensions and base vectors are
also given in Fig. 2. One can observe two characteristic angles of the
unit cell elements, where 𝜃 is a cell angle which defines the angle
between the inclined beam members and the axis normal to the straight
beam element while 𝜓 is the curvature angle (see Fig. 2). This means
that taking the cell angle 𝜃 as a positive or negative value characterizes
the lattice as hexagonal or re-entrant, respectively. Change of curvature
angle 𝜓 defines the amount of modification of a lattice from the
hexagonal/re-entrant configuration. It is worth mentioning that lattice
points of modified latices are the same as in the conventional case
and the basis vectors for the periodic unit cell are denoted as 𝐞1 and
𝐞2. The entire lattice can be formed by tessellating the periodic unit
cell in the direction of the lattice vectors. Thus, the wave propagation
characteristics can be obtained by analysing a single unit cell by apply-
ing the Bloch theorem and periodic boundary conditions. The details
about the lattice vectors and Bloch theorem are elaborated/explained
in Appendix A and Appendix B, respectively.

2.2. Timoshenko’s beam equations

The constituent beam members are modelled as the assembly of
straight Timoshenko’s beam. We consider the following material char-
acteristics of the Timoshenko beam: 𝜌 is the density, ℎ is the beam
width, 𝐸 is the modulus of elasticity, 𝐺 = 𝐸∕(2(1 + 𝜈)) is the shear
modulus while Poisson ratio is denoted as 𝜈. We also adopted the shear
correction factor as 𝑘𝑠 = 10(1 + 𝜈)∕(12 + 11𝜈). The governing equations
for the Timoshenko beam are well known in the literature. However,
for the sake of simplicity, we will repeat the derivation procedure based
on Hamilton’s principle. Therefore, the variations of the kinetic 𝛿𝐾 and
potential 𝛿𝑈 energy are defined as

𝛿𝐾 = ∫

𝐿

0

[

𝜌𝐴�̇�𝛿�̇� + 𝜌𝐼�̇�𝛿�̇� + 𝜌𝐴�̇�𝛿�̇�
]

𝑑𝑥, (1)

𝛿𝑈 = ∫

𝐿

0

[

𝐸𝐴 𝜕𝑢
𝜕𝑥
𝛿 𝜕𝑢
𝜕𝑥

+ 𝐸𝐼
𝜕𝜁
𝜕𝑥
𝛿
𝜕𝜁
𝜕𝑥

+ 𝐺𝐴𝑘𝑠
(

𝜁 − 𝜕𝑤
𝜕𝑥

)

𝛿
(

𝜁 − 𝜕𝑤
𝜕𝑥

)

]

𝑑𝑥,

(2)

where 𝛿 denotes the variation operator.
Using Eqs. (1) and (2) and Hamilton’s principle gives

∫

𝑡2

𝑡1
(𝛿𝐾 − 𝛿𝑈 )𝑑𝑡 = 0, (3)

Finally, after performing the standard procedure one can get govern-
ing equations for the longitudinal and transverse vibrations of the
Timoshenko beam as

𝜌𝐴�̈� − 𝐸𝐴 𝜕
2𝑢
𝜕𝑥2

= 𝑝(𝑥, 𝑡) (4)

𝜌𝐴�̈� + 𝐺𝐴𝑘𝑠

(

𝜕𝜁
𝜕𝜁

− 𝜕2𝑤
𝜕𝑥2

)

= 𝑞(𝑥, 𝑡) (5)

𝐸𝐼
𝜕2𝜁

− 𝐺𝐴𝑘
(

𝜁 − 𝜕𝑤)

− 𝜌𝐼𝜁 = 0 (6)

𝜕𝑥2 𝑠 𝜕𝑥
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Fig. 1. Curved lattices and their corresponding unit cells along with the direct lattice vectors denoted as 𝐞1 and 𝐞2. (a) curved hexagonal lattice, (b) curved hexagonal lattice with
everse curvature, (c) re-entrant curved lattice, (d) re-entrant curved lattice with reverse curvature.
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here 𝑤(𝑥, 𝑡) denotes the transverse displacement, 𝑢(𝑥, 𝑡) is the axial
isplacement, and 𝜁 is rotation of the cross section. We adopted that
⋅̇) ≡ 𝜕(⋅)∕𝜕𝑡. In this work we neglect the influence of the external axial
(𝑥, 𝑡) and transverse 𝑞(𝑥, 𝑡) loads.

.3. The finite element formulation of the unit cell

Here, the finite element method is employed to discretize the gov-
rning equations of a unit cell with applied Bloch boundary conditions.
s mentioned previously, a unit cell is given as an assembly of one
igidly connected straight beam with two inclined curved beams. Each
eam is discretized by straight Timoshenko beam elements. The con-
ergence analysis to obtain a minimum number of straight beams that
an approximate the curved beam is given in Section 3.1.

Finite element models for Timoshenko beam are adopted in the
ame manner as in [34] with approximations of displacements 𝑢(𝑥, 𝑡)

and 𝑤(𝑥, 𝑡) and rotation 𝜁 (𝑥, 𝑡) given as follows

𝑢(𝑥, 𝑡) =
6
∑

𝑗=1
𝑁𝑢
𝑗 (𝑥)𝑞𝑗 (𝑡), 𝑤(𝑥, 𝑡) =

6
∑

𝑗=1
𝑁𝑤
𝑗 (𝑥)𝑞𝑗 (𝑡),

𝜁 (𝑥, 𝑡) =
6
∑

𝑗=1
𝑁𝜁
𝑗 (𝑥)𝑞𝑗 (𝑡),

(7)

where 𝑁𝑢
𝑗 (𝑥), 𝑁

𝑤
𝑗 (𝑥) and 𝑁𝜁

𝑗 (𝑥), (𝑗 = 1, 2,… , 6) represents the shape
3

functions for six nodal degrees of freedom of the Timoshenko beam
element. The nodal vector is 𝐪(𝑡) = [𝑢1, 𝑤1, 𝜁1, 𝑢2, 𝑤2, 𝜁2]𝑇 . The shape
functions used in this work are given in Appendix C. If we consider
the governing equations for Timoshenko beam Eqs. (4)–(6), energy
variation Eqs. (1)–(3) and approximation of displacements and rotation
Eq. (7) we get

𝐌𝑒�̈�𝑒 +𝐊𝑒𝐪𝑒 = 𝐟𝑒, (8)

where 𝐌𝑒 is the finite and 𝐊𝑒 are mass and stiffness matrices of
the beam element while 𝐪𝑒 and 𝐟𝑒 are the corresponding element
displacement and force vector, respectively.

By considering a typical unit cell of a hexagonal and re-entrant
lattice, the model represents a frame structure where mass and stiffness
matrices (𝐌𝑒,𝐊𝑒) of the beam element are obtained in local coordinates
ut should be transformed into the global ones. In the following, the
elation between the global and local mass and stiffness matrices is
iven
𝑒
𝑔 = 𝐓𝑇𝐌𝑒𝐓, 𝐊𝑒

𝑔 = 𝐓𝑇𝐊𝑒𝐓, (9)

where the transformation matrix 𝐓 is given as

𝐓 =
(

𝐓0 𝟎
𝟎 𝐓0

)

, (10)

and the rotation matrix 𝐓0 as

𝐓0 =
⎛

⎜

⎜

cos𝜑(𝜓, 𝑛, 𝜃) sin𝜑(𝜓, 𝑛, 𝜃) 0
− sin𝜑(𝜓, 𝑛, 𝜃) cos𝜑(𝜓, 𝑛, 𝜃) 0

⎞

⎟

⎟

, (11)

⎝ 0 0 1⎠
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Fig. 2. Figure showing (a) finite element discretization of a unit cell and three constituent beam members numbered as 1 (vertical beam), 2 (right beam) and 3 (left beam),
respectively. Each beam is discretized with some finite elements and then assembled to obtain the global matrices. 𝑞0, 𝑞1 and 𝑞2 denote the boundary degrees of freedom and
𝑞𝑖 denotes the internal degrees of freedom and (b) discretization procedure of a single curved beam (right beam) and the geometric details required for doing finite element
assembling. The curved beam is approximated by considering a number of straight Timoshenko beams. 𝜃, 𝜓𝑟, 𝑅, 𝛼 and 𝜙𝑖 are the cell angle, curvature angle of the right beam,
radius, curvature angle for a single finite element, and angle between the global and local co-ordinate system for the finite elements, respectively.
where the angle between the local and global axial directions of the
beam 𝜑 depends on the number of finite elements considered to dis-
cretize the beam. In Fig. 2 the 𝜑 corresponding to each finite elements
are shown (𝜑𝑖, 𝑖 = 1, 2,… , 𝑛). Angle 𝜑𝑖 can be expressed as the function
of the curvature angle 𝜓 of the whole beam, number of finite elements
to discretize the curved constituent beam (𝑛) and cell angle 𝜃. The
connection angle for the three straight beam unit cell model of a
hexagonal lattice is more simple and it is given in [34]. The beam
model of some unit cell with one straight and two curved beams
approximated by many small Timoshenko beams and connected under
different angles according to the local coordinate system are assembled
by taking into account matrices from Eq. (9) in the following manner

𝐊 =
𝑛𝑒𝑙𝑒
∑

𝑒=1
𝐊𝑒
𝑔 , 𝐌 =

𝑛𝑒𝑙𝑒
∑

𝑒=1
𝐌𝑒
𝑔 , (12)

where 𝐌 and 𝐊 are the global mass and stiffness matrices of the unit
cell and 𝑛𝑒𝑙𝑒 = 3×𝑛 (the same number of finite elements are considered
for each constituent beam member) is the number of elements in the
unit cell. The final equation for the unit cell finite element model is of
the form

𝐌�̈� +𝐊𝐪 = 𝐟 . (13)

2.4. Dispersion relations for the periodic unit cell

By using the previously described concept, a corresponding eigen-
value problem can be established whose solution gives dispersion
curves i.e. frequencies in terms of wavenumbers.

To get the dispersion relations and investigate the band structure of
the unit cell we need to utilize the previous finite element model and
corresponding periodic boundary condition. Let us first introduce the
harmonic solution 𝐪(𝑥, 𝑡) = 𝐪(𝑥)𝑒𝑖𝜔𝑡 into the Eq. (13), which yields

(𝐊 − 𝜔2𝐌)𝐪 = 𝟎, (14)

where 𝜔 is the frequency of the free wave propagation. Here, the
force vector 𝐟 is neglected and the vector 𝐪 of nodal displacements are
considered as

𝐪 = {𝐪0 𝐪1 𝐪2 𝐪𝑖}𝑇 , (15)

with 𝐪0,𝐪1, and 𝐪2 denoting the vectors of nodal displacements at unit
cell nodes while 𝐪𝑖 are degrees of freedom of internal nodes (see Fig. 2
(a)). By employing Bloch’s theorem and periodic boundary conditions
at the nodes of a unit cell is defined as follows

𝐪 = 𝑒𝑘1𝐪 , 𝐪 = 𝑒𝑘2𝐪 . (16)
4

1 0 2 0
where 𝑘1 and 𝑘2 are the wavenumbers as mentioned in Appendix B. By
utilizing the Eq. (16) we can apply transformation matrix to the global
vector of nodal displacements in the following manner

𝐪 = 𝐓𝑏𝐪𝑟, (17)

yielding the global vector of nodal displacements in the reduced form
𝐪𝑟 = {𝐪0 𝐪𝑖}𝑇 while matrix 𝐓𝑏 is given as

𝐓𝑏 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐈 𝟎
𝐈𝑒𝑘1 𝟎
𝐈𝑒𝑘2 𝟎
𝟎 𝐈

⎤

⎥

⎥

⎥

⎥

⎦

. (18)

By considering the Eq. (17) into Eq. (14) and pre-multiplying the results
with the Hermitian (complex conjugate) transpose matrix 𝐓𝐻𝑏 results in

(𝐊𝑟(𝑘1, 𝑘2) − 𝜔2𝐌𝑟(𝑘1, 𝑘2))𝐪𝑟 = 𝟎, (19)

where the reduced mass and stiffness matrices are of the form

𝐌𝑟(𝑘1, 𝑘2) = 𝐓𝐻𝑏 𝐌𝐓𝑏, (20)

𝐊𝑟(𝑘1, 𝑘2) = 𝐓𝐻𝑏 𝐊𝐓𝑏.
The eigenvalue problem Eq. (19) can be solved by considering a

set of values for 𝑘1 and 𝑘2 in the first Brillouin zone to obtain the
dispersion surfaces 𝜔 = 𝜔(𝑘1, 𝑘2). The dimension of the eigenvalue
problem determines the number of dispersion surfaces. The geometry
of the reciprocal lattice depends on the cell angle (𝜃) of the lattice and
the reciprocal lattice vectors (𝐞∗1 , 𝐞

∗
2) can be obtained by following the

standard procedure mentioned in Appendix A. The author refers [35]
for more details on the symmetry and Brillouin zone. The symmetry of
the unit cell dictates the symmetry of the Brillouin zone. Considering
the symmetry property of the first Brillouin zone the irreducible Bril-
louin zone (IBZ) can be obtained. Eventually, the computational effort
can be substantially reduced by considering the values of wavenumbers
varying along the contours of the IBZ. The same IBZ in the reciprocal
lattice and its contours for the hexagonal and re-entrant lattices as
given in [20,34] are used and shown Table 1.

3. Numerical study and discussion

The dispersion characteristics of the new set of curved hexagonal
lattices (see Fig. 1) are investigated considering Timoshenko beam-
based modelling for the constituent beam members. In this study,
hexagonal and re-entrant lattices along with their variant where the
curvature of the constituent curved beams are reversed are considered.
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Table 1
The boundary points of the irreducible Brillouin zone of hexagonal and re-entrant lattice
structures.
Type of periodic
structure

Hexagonal structure Re-entrant structure

0◦ ≤ 𝜃 < 90◦ −30◦ < 𝜃 ≤ 0◦

O (0, 0) (0, 0)
A 2𝜋(1∕(4 sin2 𝜙),−1∕(4 sin2 𝜙)) 2𝜋(1∕2,−1∕2)
B 2𝜋(1 − 1∕(4 sin2 𝜙), 1∕(4 sin2 𝜙)) 2𝜋(1 − 1∕(4 cos2 𝜙),−1∕(4 cos2 𝜙))
C 2𝜋(1∕2, 1∕2) 2𝜋(1∕(4 cos2 𝜙), 1∕(4 cos2 𝜙))
a
t
i

𝑈

w
p
F
r
a
r
b
a
p
f
t
t
c

These geometries are variants of the conventional hexagonal lattice
formed by curved beams. Thus, unlike the conventional case with
the cell angle, 𝜃 another geometric parameter, curvature angle 𝜓 is
ppeared in our investigation. The main motivation of this work is to
xploit 𝜓 to enhance the band-gap characteristics without including
ocal resonators. A study on the band-gap analysis considering the pre-
tressed beam with embedded masses shows additional band-gaps for
he hexagonal lattice [34] mostly in the mid or high-frequency region.
he present work demonstrates the exploitation of the curved beams
o obtain both low and high-frequency band-gaps along with their
idening. All the codes for the numerical calculation are developed in
ATLAB. The band-gaps with very thin widths are neglected for all the

igures.
The dispersion analysis is performed considering the wave vector

𝐤) varying along the contour 𝑂 − 𝐴 − 𝐵 − 𝐶 − 𝑂 (see Fig. A.1).
he material and geometric parameters considered for the analysis are
aken from [34] for the sake of validation and they are used for the
resent analysis as well. The properties are as follows: elastic modulus
= 210 × 109 Pa, mass density 𝜌 = 25 × 103 kg∕m3, Poisson’s ratio
= 0.25, slenderness ratio 𝛽 = 𝑡∕𝐿 = 1∕15, length of the beam
= 0.125 m (see Fig. 2). Frequencies (𝜔) obtained from the eigenvalue

nalysis to get the dispersion diagrams are normalized with the first
lexural natural frequency of the simply-supported beam to maintain
onsistency with the previous literature. The first flexural natural fre-
uency can be expressed as 𝜔0 = 𝜋2∕𝐿2

√

𝐸𝐼∕𝜌𝐴 and the expression for
the normalized frequency becomes 𝛺 = 𝜔∕𝜔0. The second moment of
inertia is denoted as 𝐼 = 𝑏𝑡3∕12 and the area 𝐴 = 𝑏𝑡 (𝑏 and 𝑡 are the
widths and the thickness of the beam, respectively). The coupled effect
of cell angle and curvature angle is discussed in the following sections.

3.1. Converge study and validation of band structures

Here we perform a convergence study to adopt the number of
necessary finite elements required in curved beam discretization to
achieve satisfying accuracy. For this, a free vibration analysis of the
unit cell considering both pinned–pinned and clamped–clamped bound-
ary conditions is performed. Both boundary conditions are applied to
all boundary nodes of the unit cell given in Fig. 2(a). The natural
frequencies for the first few modes are obtained by increasing the
overall number of elements in a unit cell for 𝜃 = 30◦ and 𝜓 = 50◦.
Table 2 shows that 30 finite elements per beam in a unit cell (90 in the
whole unit cell) gives satisfying accuracy that is used in the rest of our
analysis.

Here, the band structure and the corresponding dispersion surfaces
obtained for two cases, 1. curved hexagonal lattice with 𝜃 = 30◦ and
𝜓 = 30◦, and 2 are shown. Curved hexagonal lattice with 𝜃 = 30◦ and
everse 𝜓 = 30◦. Fig. 3(a) and Fig. 3(b) verify that the band structure
f the curved hexagonal lattice and corresponding band-gaps in the
rreducible Brillouin zone are matching with the 3D dispersion surface
lots for the whole Brillouin zone. Fig. 3(c) and Fig. 3(d) are showing
he same thing for the re-entrant hexagonal lattice.

The main observation for both cases is that the band structures
isplay the emergence of new band-gaps in different frequency regions
ompare to the hexagonal/re-entrant lattices with straight beam ele-
ents. The details of the influence of curvature angle and also the
5

oupled effect of 𝜃 and 𝜓 are discussed in the next sections. g
Table 2
Convergence study for the number of finite elements used to discretize the constituent
beam members in the unit cell. The natural frequencies are normalized by 𝜔0 =
𝜋2∕𝐿2

√

𝐸𝐼∕𝜌𝐴.

Natural Pinned–pinned Clamped–clamped
frequencies Number of elements Number of elements

10 20 30 10 20 30

𝜔1 0.4408 0.4539 0.4585 0.8547 0.8705 0.8761
𝜔2 1.3340 1.3331 1.3328 1.9149 1.9154 1.9154
𝜔3 2.8290 2.8224 2.8226 3.5826 3.5760 3.5757
𝜔4 3.1224 3.1210 3.1223 3.8779 3.8774 3.8788
𝜔5 4.4554 4.4580 4.4583 5.5123 5.5156 5.5160
𝜔6 5.7033 5.7472 5.7667 6.0355 6.0856 6.0969
𝜔7 6.5544 6.3622 6.2988 6.6288 6.4559 6.4088
𝜔8 6.7244 6.6902 6.6874 7.6393 7.6283 7.6307
𝜔9 8.8636 8.8690 8.8693 9.6770 9.6541 9.6474
𝜔10 9.4202 9.4725 9.4928 10.4968 10.4798 10.4825

3.2. Finite element validation of band-gap charecteristics with finite lattice

In this section, finite element verification of the band structure is
performed considering a finite lattice. The lattice has 20 cells in the
𝑥-direction and 9 cells in the 𝑦-direction. The unit cell of the lattice
structure has the same geometric and material properties as mentioned
before with 𝜃 = 30◦ and 𝜓𝑙 = 𝜓𝑟 = 30◦. The left boundary of
the lattice is fixed and the excitation is applied on the other side
as shown in Fig. 4. We consider three different locations to measure
the responses. The geometry and the meshing are performed in Gmsh
and the finite element analysis with the postprocessing performed in
MATLAB. Each beam of the corresponding unit cell is discretized with
10 finite elements which result in 5850 elements in total for the whole
structure.

The transmittance for the finite lattice is obtained to verify the
results obtained from the periodic analysis of the unit cell. The steady-
state frequency responses are obtained followed by the transmittance at
various measuring points. The excitation is applied on the 𝑥-direction
nd only the transmittance plot for the measuring point 3 is shown for
he sake of brevity in the Fig. 5(a). The expression for the transmittance
s as follows:

𝑡 = 20𝑙𝑜𝑔
𝑈𝑚
𝑈𝑒

(21)

here 𝑈𝑚 and 𝑈𝑒 are the displacements of the measuring and excitation
oints, respectively. The band-gap characteristics is also shown in
ig. 5(b) for comparison. It is observed from the analysis that the
eduction in transmittance is more for the measuring points which
re located far from the excitation point. We can see that there is a
eduction in the transmittance in frequency ranges corresponding to the
and gap frequencies. The frequency ranges for the first three band gaps
re matching quite well with the frequency ranges of the transmittance
eaks. However, the band gap position near frequency 8 is deviating
rom the frequency range of the transmittance peak. The reason behind
his is due to the finite number of unit cells in the lattice and also
he discretization of the finite element model might not be enough to
apture the high frequency region. This investigation verifies the band
ap analysis considering the unit cell.



Composite Structures 306 (2023) 116591S. Mukherjee et al.
Fig. 3. Frequency band structures for (a) the curved hexagonal lattice with 𝜃 = 30◦ and 𝜓𝑙 = 𝜓𝑟 = 30◦, (b) dispersion surface of curved hexagonal lattice with 𝜃 = 30◦ and
𝜓𝑙 = 𝜓𝑟 = 30◦, (c) the re-entrant curved hexagonal lattice with 𝜃 = −10◦ and 𝜓𝑙 = 𝜓𝑟 = 30◦ for constitutive curved beam, (d) dispersion surface of re-entrant curved hexagonal
lattice with 𝜃 = −10◦ and 𝜓𝑙 = 𝜓𝑟 = 30◦ constitutive curved beam. 𝜃, and 𝜓 are cell angle and curvature angle, respectively.
Fig. 4. The geometry of finite lattice with boundary condition along with the excitation and measuring points.
Next, the time response for the excitation and measuring points are
also obtained. The lattice was subjected to loading at the excitation
point with a modulated pulse with two different frequency content
shown in Fig. 6. Fig. 6(a) shows the tone burst signal with frequency
content around 140 Hz (𝛺 = 0.2; long wavelength region) and Fig. 6(b)
shows the same with frequency content 2100 Hz (𝛺 = 3; lies inside the
6

band gap). The time history of the different measuring points along
with the excitation point are shown in Figs. 7 and 8 for two different
modulated pulse loadings mentioned in Fig. 6. It is observed in Fig. 7
the amplitudes of the responses are of the same order. The amplitude
of responses for the measuring points does not follow any trend; i.e
the amplitude of the response of measuring point 3 is higher than
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Fig. 5. Figure showing (a) transmittance and the (b) frequency band structures of the corresponding unit cell with 𝜃 = 30◦, and 𝜓𝑙 = 𝜓𝑟 = 30◦.
Fig. 6. Figure showing tone burst signals with a frequency content of around (a) 140 Hz (normalized 𝛺 = 0.2) and (b) 2100 Hz (normalized 𝛺 = 3.0).
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easuring point 2. Whereas, for Fig. 8 the amplitude reduces gradually
s one goes far from the excitation point. This is because the frequency
ontent lies within the band gap region, unlike in the previous case.

.3. Curved hexagonal lattice

The effect of the curvature angle on the dispersion characteristics
f the hexagonal and re-entrant lattices with constituent curved beams
s investigated through the Bloch wave analysis. Incorporation of the
urved beam as the constituent beam originates new band-gaps and
lso induces band-gap widening.

The influence of the curvature angle can be observed in Fig. 9. In
his plot the hexagonal straight (see Fig. 9(a)) and curved hexagonal
attices (Fig. 9(b) – Fig. 9(d)) is considered. The cell angle 𝜃 is kept
onstant at 30◦ and the 𝜓 is varied.

Comparing Fig. 9(a) and Fig. 9(b) one can observe that unlike the
onventional hexagonal lattice with straight constituent beam there is
new band-gap opening near 𝛺 = 3 and the width of the former bad-

ap for 4 ≤ 𝛺 ≤ 6 is slightly reduced. New band-gaps are continuously
merging as soon as the 𝜓 is increasing. Fig. 9(c) shows four band-gaps
or the case of 𝜓𝑙,𝑟 = 30◦ located in both lower and higher frequency
egions. To have a more clear picture of the influence of curvature angle
n the evolution of band-gaps Fig. 9(d) is obtained by varying 𝜓 and
eeping 𝜃 = 30◦. For low values of curvature angle, there is only one
ap that is equivalent to the case of hexagonal lattice when 𝜃 = 30◦. At

◦

7

certain value of 𝜓 close to 5 the second band-gap appears. A further a
hange of the curvature angle yields more band-gaps and five of them
n total exists for 𝜓 = 50◦. The width of band-gaps also varies with
ome of them slightly shifting towards lower frequency regions.

One interesting feature that can be observed in band structures
f hexagonal lattices with straight constituent beams is the veering
nd locking of frequency bands. These phenomena that appear when
orresponding dispersion branches mutually interact are well known
n weakly coupled mechanical systems [36,37]. Veering and/or locking
ere observed by different authors for a variety of planar lattice topolo-
ies such as hexagonal, trigonal and square honeycomb lattices [38],
ierarchical lattices [27] or frame grid lattices with resonators [39].
eering can be viewed as a localized zone in the dispersion diagram

hat appears between the pairs of eigenmodes, where eigenvalues do
ot cross but veer away. In the case of locking, the merging of two
on-zero eigenfrequencies occurs to form a complex-conjugate pair
e.g. see [37]). Observing Fig. 9(a) for the conventional hexagonal
attice one can notice three characteristic veering and locking points
hat appear between the third and the fourth as well as eight and
enth dispersion branches. As earlier described in [39], two closely
paced modes are having identical mode shapes which means that a
mall change in energy can shift the system from one mode to another
n the veering zone. However, introducing the curved beam-based
onfiguration of hexagonal lattices yields much different behaviour of
and structure with fewer veering points. An increase of curvature
ngle causes some new band-gaps to open at the frequency of veering
nd/or locking points along with the obvious detachment of dispersion
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Fig. 7. Time response of three measuring points on the curved hexagonal finite lattice with 𝜃 = 30◦ and 𝜓𝑙 = 𝜓𝑟 = 30◦ subjected to harmonic excitation of around 140 Hz
(normalized 𝛺 = 0.2) applied on the global 𝑥 direction at the excitation point (shown in Fig. 4) (a) response at measuring point 1, (b) response at measuring point 2, (c) response
at the measuring point 3, and (d) response of all points.
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branches. Therefore, the energy levels of such separated modes are
much higher and jump-up or jump-down phenomena are difficult to
occur in such systems. Similar behaviour can be noticed in different
curvature beam configurations and both modified hexagonal and re-
entrant lattices. According to [37], effects analogous to locking are
common in stability analysis where for example some instabilities can
be predicted in certain hydrodynamic systems. Having in mind that
many veering and locking points vanish in modified hexagonal and re-
entrant lattices, it can be also concluded that wave modes become more
stable after introducing the curved beam-based configuration. It is also
evident from the Fig. 9 that the group velocities which is the slope of
the dispersion curves (𝑐𝑔 = 𝜕𝛺∕𝜕𝐤) for the longitudinal waves at long
wavelength limits reduce with increase in 𝜓 .

Another interesting curved lattice configuration, when one of the
curvature angles 𝜓 is reversed (see Fig. 1(b)) is also studied. The
reversed curvature configuration is depicted as positive and negative 𝜓
values for the two constitutive beam elements. The curvature angles for
the left and right curved beams are denoted as 𝜓𝑙 and 𝜓𝑟, respectively.
The band structure of these two cases is much different compared
to the case with both positive curvatures. Fig. 10 is showing the
band structures of the curved hexagonal lattice for beam members
with reverse curvature. In this plot, Fig. 10(a) shows the dispersion
diagram with very small 𝜓 values for both curved beam members which
shows a very good match with the conventional hexagonal lattice. In
the following figures (Fig. 10(b) – Fig. 10(c)) the curvature angle is
increased and it shows occurrence and disappearance of band-gaps.
The nature of the dispersion diagrams is different from the previous
case where both curvature angles were positive. Overall, the number of
band-gaps is less in this case as well as the widening of the band-gaps.
Comparing Figs. 9(d) and 10(d) it is observed that even for 𝜓 = 50◦ the
8

number of band-gaps are less for lattice considering curved beam with
reverse curvature. The band-gap which appeared near 𝛺 = 5 eventually
gets narrower and again widens at 𝜓 close to 42◦. Also, the width of the
band-gap which occurs near𝛺 = 3, increases with 𝜓 like in the previous
case but decreases with increasing 𝜓 after 𝜓 around 25◦. Although the
ature of the band-gap shifting towards the lower frequency range is
imilar to the previous case.

.4. Curved re-entrant lattice

The same analysis is also performed for the re-entrant case with a
ositive curvature angle for both of the constituent beam members and
ith reverse curvature. The influence of the curvature angle is observed

n Fig. 11.
In this analysis, the cell angle for the re-entrant lattice is considered

s 10◦. The dispersion diagram for the re-entrant lattice with the
traight beams is shown in Fig. 11(a). The value of the curvature
ngles is then increased eventually to investigate the effect of the
urvature angle on the dispersion relationship for the re-entrant lattice.
lots Fig. 11(b) – Fig. 11(d) show the details of the study. Comparing
ig. 11(a) and Fig. 11(b) it is observed that unlike the conventional
e-entrant lattice with straight constituent beam there are two a new
and-gap opening near 𝛺 = 8 and 3. As the value of 𝜓𝑙,𝑟 is increased

to 30◦ the width of the band-gap near 𝛺 = 3 increases and two new
band-gaps appear near 𝛺 = 5 and 2. To have a more clear picture of
he influence of curvature angle, the evolution of band-gaps with 𝜓
s obtained and shown in Fig. 11(d) while keeping 𝜃 = 30◦. One can
bserve that the width of the band-gap which appeared near 𝛺 = 3
eeps increasing up to curvature angle 22◦ and then remains almost
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Fig. 8. Time response of three measuring points on the curved hexagonal finite lattice with 𝜃 = 30◦ and 𝜓𝑙 = 𝜓𝑟 = 30◦ subjected to harmonic excitation of around 2100 Hz
(normalized 𝛺 = 3.0) applied on the global 𝑥 direction at the excitation point (shown in Fig. 4) (a) response at measuring point 1, (b) response at measuring point 2, (c) response
at the measuring point 3, and (d) response of all points.
unaltered for the rest. Thought the band-gap shifts towards the lower
frequency ranges. The shifting of band-gaps to the lower frequency
range is true for other band-gaps as well. With increasing 𝜓 the band-
gap which appeared near 𝛺 = 3 disappears around 𝜓 = 35◦ and
regenerates again after a while. The width of these band-gaps then
keeps increasing with 𝜓 . Another band-gap appears near 𝜓𝑙,𝑟 = 25◦
and its width keeps increasing towards the lower frequency region.
It is noticed that at 𝜓𝑙,𝑟 = 50◦ there are 5 band-gaps present. A
similar investigation is performed for re-entrant lattice with configu-
ration considering both positive and negative 𝜓 for the curved beam
in the unit cell (see Fig. 1(b)). This configuration is named a unit cell
with a reverse angle. The band structure with reverse curvatures is
much different compared to the case with both positive curvatures.
Fig. 12 is showing the band structures of the curved re-entrant lattice
reverse configuration. Fig. 12(a) shows the dispersion diagram with
very small 𝜓 values for both curved beam members which shows a
very good match with the conventional hexagonal re-entrant lattice. In
the following figures (Fig. 12(b) and Fig. 12(c)) the curvature angle
is increased. It show occurrence of new band-gaps in lower as well
as higher frequency regions in the lower as well as higher frequency
regions for 𝜓𝑙 = 30◦, 𝜓𝑟 = −30◦ (Fig. 12(c)) case.

The nature of the dispersion diagrams is different from the re-
entrant case with both positive curvatures. Overall the number of
band-gaps is less in this case as well as the widening of the band-gaps.
Comparing Figs. 11(d) and 12(d) it is observed that even for 𝜓 = 50◦
the number of band-gaps are less for lattice considering curved beam
with reverse curvature. From Fig. 12(d) one can notice that the width
of the band-gap which appeared near 𝛺 = 3 near 𝜓 = 15◦ increases
up to around 𝜓 = 21◦ and continues for higher values of 𝜓 and the
width decreases eventually. The small band-gap which appears near
9

𝛺 = 5 increase its width up to 𝜓 = 26◦ and then decreases until
𝜓 = 35◦. Again the band-gap starts to grow and continues while shifting
towards the lower frequency region. The overall nature of the band-gap
is shifting towards the lower frequency region with increasing 𝜓 . Unlike
the previous case with both positive curvature angles, the number of
band-gaps and widths are less for the case with reverse curvature.

3.5. Effect of cell angle on the band-gaps

The effect of the cell angle on the band-gap characteristics is sum-
marized in the Fig. 13. To obtain the effect of 𝜃 the 𝜓 value is fixed to
50◦ for all the cases. The effect of 𝜃 on the curved hexagonal lattice is
shown in Fig. 13(a). It is observed that for the two lower band-gaps the
width remains the same while for the third one the band-gap increase
with the 𝜃. For the band-gap in the higher frequency, the width of the
band-gap is highest for lower 𝜃 values and decreases with increasing
𝜃. There are two band-gaps below 𝛺 = 6 and 7 whose widths increase
with 𝜃. Fig. 13(b) shows the effect of 𝜃 on the hexagonal lattice with
a reverse curvature angle for the constituent beam. It can be observed
that the effect of the 𝜃 on the width of the band-gap is almost minimal.
There is a new band-gap opening in the high-frequency region near
𝜃 = 25◦. The influence of 𝜃 on the curved re-entrant lattice is shown in
Fig. 13(c). The width of the band-gaps in the lower frequency region
remains unaltered while the width of the mid-frequency one increase
with 𝜃. There are some small openings of band-gaps at higher 𝜃 values.
The width of the band-gap in the higher frequency region decreases
with increasing 𝜃. Unlike the previous case with reverse curvature
(see Fig. 13(b)) for the re-entrant case with reverse curvature the
influence of 𝜃 is negligible except the opening of very small band-gaps
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Fig. 9. Figure showing frequency band structures of the (a) hexagonal lattice with straight beam members with 𝜃 = 30◦, and curved hexagonal lattice with 𝜃 = 30◦ and (b)
𝜓𝑙 = 𝜓𝑟 = 10◦, (c) 𝜓𝑙 = 𝜓𝑟 = 30◦, and (d) evolution of the frequency band-gaps with curvature angle 𝜓 considering cell angle 𝜃 = 30◦. 𝜃 and 𝜓 are the cell angle and curvature
angle, respectively.
for different 𝜃 values. It is clear from the plots that the effect of 𝜃 for
the lattice with the reversely curved beam is very less compared to the
other case.

3.6. The iso-frequency contours

Important conclusions regarding the existence of stop bands in lat-
tices are drawn from the band structure analysis. However, we can get
a complete picture of the wave propagation in modified lattices only by
investigating their directional behaviour. Figs. 14 and 15 are showing
contours of dispersion surfaces corresponding to the first four wave
modes of six different lattice types whose main geometrical parameters
are given in the beginning of this section. These contours, known in the
literature as iso-frequency contours, are revealing the direction of the
group velocity which is perpendicular to them. This enables one to dis-
close the directionality of wave propagation in lattices only by knowing
their dispersion characteristics. A well known property of homogeneous
materials is that wave propagates equally in all directions resulting
in circular iso-frequency curves while in anisotropic mediums such
as lattices of different topology these contours can have a variety of
shapes. Let us superimpose the first Brillouin zone to the iso-frequency
contour plots for each of the given wave modes. The first four panels in
Fig. 14 are showing the iso-frequency contours of the hexagonal lattice
with straight beams. The next four panels are referring to the modified
lattice when both curved beams are defined by the positive angle 𝜓𝑙
and 𝜓𝑟 while the last four panels are referring to the positive 𝜓𝑙 and
negative 𝜓 .
10

𝑟

In the first mode of the convectional hexagonal lattice, one can
identify six-lobed contour curves that are displaying anisotropic be-
haviour at certain frequency values. Moreover, a moderate number of
iso-frequency contours can be observed in this mode for both lower and
higher frequency values, which means that there are no abrupt changes
in the corresponding dispersion surface. The second and third modes
are displaying different behaviour, where a high number of contours
can be seen for low values of frequency and wavenumber while their
density is becoming low towards the edges of the Brillouin zone that
is attributed to almost flat dispersion surfaces at higher frequencies.
In the last wave mode, there are no contours at the boundaries of the
Brillouin zone and dispersion surfaces are flat in that region. Elliptical
or nearly circular shapes of iso-frequency curves in the last three modes
are implying the quasi-isotropic behaviour which suggests an identical
speed of wave propagation in all directions mostly associated with the
low frequency.

By comparing the iso-frequency surface plots between the conven-
tional and modified curved lattice it is noticed that the same topology of
iso-frequency curves is kept in the first mode while there is a significant
difference in higher frequency wave modes. For the second wave mode,
this change reflects in a slower change of dispersion surfaces for low
frequency values due to less density of iso-frequency curves associated
with quasi-isotropic behaviour. Towards the boundaries of the Brillouin
zone, a lesser number of lobed contours appears due to the flattened
dispersion surfaces. The iso-frequency contours drastically change in
the third and fourth modes compared to the conventional lattice, where
anisotropic behaviour becomes more apparent. This drastic change is
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Fig. 10. Figure showing frequency band structures of the curved hexagonal lattice with 𝜃 = 30◦ and reverse curvature angle for the curved beams (a) 𝜓𝑙 = 0.001◦, 𝜓𝑟 = −0.001◦,
(b) 𝜓𝑙 = 10◦, 𝜓𝑟 = −10◦, (c) 𝜓𝑙 = 30◦, 𝜓𝑟 = −30◦, and (d) evolution of the frequency band-gaps with reverse curvature angle 𝜓 considering cell angle 𝜃 = 30◦. 𝜃 and 𝜓 are the cell
angle and curvature angle, respectively.
attributed to the fact that in between these bands a new band-gap
opens. That causes shifting of the bands to either lower or higher
frequencies and their flattening at the edges of band-gaps as well as the
reverse appearance of contours associated with the lowest and highest
frequency. Similar behaviour can be observed for the lattice with re-
verse curvatures where in the first mode only smoothed lobed contours
can be noticed and slight shifting of the frequency to lower values. The
lesser density of contours is present for the lower frequency values indi-
cating the slower change of dispersion surfaces. Again third and fourth
modes are displaying much different iso-frequency contours. The direc-
tional behaviour of the third mode is more emphasized than the one of
the conventional lattice with equally distributed contours indicating the
slower change of the dispersion surface within the first Brillouin zone.
The fourth band is associated with the band-gap between the fourth and
fifth (not given here) band and only fewer contours can be seen due to
the flat nature of the corresponding dispersion surface. An interesting
wave propagation nature of re-entrant hexagonal lattices was revealed
in many previous works. Here, modified re-entrant hexagonal lattices
with curved beams are observed and the directional wave propagation
behaviour based on iso-frequency contours of the dispersion surfaces
of four wave modes is studied. Similar to the previous case, in Fig. 14
the first four panels are referring to the conventional re-entrant lattice,
the next four are representing the configuration with both positive
curvature angles and the last four are referring to the case with one
positive and one negative curvature. Highly directional behaviour of
all propagating wave modes can be observed in the conventional re-
entrant hexagonal lattice. However, this feature is changed at a certain
11
amount in the modified lattices. This change is not that pronounced
in the first mode like in the other three higher wave modes. More-
over, the high density of low frequency contours in the second and
third modes of the conventional lattice is lost in the modified lattice
configuration indicating the slower change of dispersion surfaces. In
these cases, the contours are evolving from nearly circular to oval
shapes thus changing their nature from isotropic to anisotropic one.
However, this change is much more smooth in the case of curved beam
lattices compared to the conventional one. The main characteristic
of the fourth mode iso-frequency contours of the modified lattices
is the change from highly directional (conventional case) to almost
quasi-isotropic nature of the propagating waves. These wave modes
are associated with the emerging band-gap, which causes flattening
of dispersion surface at its edges and lower density of iso-frequency
contours. As given in [39], square lattice can exhibit sensational wave
propagation and anisotropic characteristics due to the negative refrac-
tion in lattices having the concave nature of iso-frequency curves. As
mentioned previously, circular iso-frequency contours are related to
the isotropic nature of propagating waves. However, exotic phenomena
such as self-collimation and lensing can be identified from the corre-
sponding concave shapes of iso-frequency contours. More precisely, the
self-collimation phenomenon (wave beaming) is associated with the
straight edges of the iso-frequency contours with waves propagating
in the perpendicular direction to the contours. In the case of lensing,
if the iso-frequency contours are converging normal to the contour
then the waves having a wavelength within the concave contour are
converging and focusing. The concave shapes of iso-frequency curves
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Fig. 11. Figure showing frequency band structures of the (a) re-entrant lattice with straight beam members with 𝜃 = −10◦, and curved re-entrant lattice with 𝜃 = −10◦ and (b)
𝜓𝑙 = 𝜓𝑟 = 10◦, (c) 𝜓𝑙 = 𝜓𝑟 = 30◦, and (d) evolution of the frequency band-gaps with curvature angle 𝜓 considering cell angle 𝜃 = −10◦. 𝜃, and 𝜓 are the cell angle and curvature
angle, respectively.
can be observed in both modified hexagonal and re-entrant lattices
with curved beam unit cells. These characteristic concave shapes of iso-
frequency contour edges can be observed from the last three modes in
Fig. 14 as well as in the first and fourth modes in Fig. 15. Moreover,
the frequency-dependent directional behaviour of these types of lattices
can be also visualized through a polar plot [5], however, this type of
analysis is out of the scope of this study.

4. Summary and conclusions

This work focuses on the investigation of the wave propagation
characteristics of a class of 2D hexagonal lattice material considering
curved beams as constituent beam members. The effect of the geometric
parameters of the unit cell is explored for the dispersion properties of
those particular lattice materials. Below are the key findings from this
present study are as follows.

• The curvature angle of the curved beam plays an important
role in the generation of new band-gaps, especially in the lower
frequency region. The number of the new band-gaps increases
with increasing curvature angle for the lattice with both positive
curvature angles. Also, the width of the bad-gaps increases for
most of the gaps. This is true for the re-entrant case also.

• The position of the veering and locking in the conventional
hexagonal lattice indicates the opening zones of the band-gaps for
the lattice with curved beams. The number of veering and locking
zones gets lesser with the increase in the curvature angle values
and the modes become separate from each other.
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• Curvature angle has an influence on group velocities for the
longitudinal wave mode. With the increase in curvature angle,
the values attain lower values as the slope of the dispersion curves
gets reduced.

• Unlike the lattice with a positive curvature angle for both beams,
the lattice with reverse curvature has not had very promising
dispersion characteristics regarding the occurrence of band-gaps.
Though there are some band-gaps in the lower frequency.

• The findings from the present investigations show that this class
of lattice can be utilized for low-frequency vibration suppression
depending on the design requirements.

• Iso-frequency contours revealed a slower change of dispersion
surfaces in curved lattices, which is reflected in lesser density of
contours and flattening of dispersion curves towards the edges
of the first Brillouin zone. At certain frequencies in 𝑘-space the
contours are displaying both quasi-isotropic and anisotropic be-
haviour of propagating waves. Moreover, the near circle shapes
are indicating quasi-isotropic behaviour while concave shapes
and straight edges are referring to the occurrence of phenomena
such as lensing and wave beaming.

These promising results could be useful for future guidelines of
the hexagonal metamaterials and also serve as benchmark results for
further investigation in this domain. Future investigation will focus
on the wave propagation characteristics of curved hexagonal lattices
coupled with multi-physics along with experimental validation.
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Fig. 12. Figure showing frequency band structures of the curved re-entrant lattice with 𝜃 = −10◦ and reverse curvature angle for the curved beams (a) 𝜓𝑙 = 0.001◦, 𝜓𝑟 = −0.001◦,
(b) 𝜓𝑙 = 10◦, 𝜓𝑟 = −10◦, (c) 𝜓𝑙 = 30◦, 𝜓𝑟 = −30◦, and (d) evolution of the frequency band-gaps with reverse curvature angle 𝜓 considering cell angle 𝜃 = −10◦. 𝜃 and 𝜓 are the cell
angle and curvature angle, respectively.
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Appendix A. Reciprocal lattice vectors

In the case of the unit cell of a hexagonal lattice structure having
the positive internal angle 𝜃 the basis vectors (𝐞1, 𝐞2) are defined in local
Cartesian coordinates with unit vectors (𝐢1, 𝐢2) as

𝐞1 = (𝐿 cos 𝜃, 𝐿(1 + sin 𝜃))𝑇 , (A.1)

𝐞2 = (−𝐿 cos 𝜃, 𝐿(1 + sin 𝜃))𝑇 .

Here, 𝐿 denotes the length of the individual constituent beam and 𝜃
is the cell angle. It is well known that in the periodic structure, lattice
points with the corresponding base vectors (𝐞1, 𝐞2) defines the direct
lattice space. Here, for the modified hexagonal lattice with curved beam
the lattice points are same as for the conventional one. Therefore, the
reciprocal lattice space can be defined in the same manner as in [34]
and based on the following relation

𝐞𝑖 ⋅ 𝐞∗𝑗 = 2𝜋𝛿𝑖𝑗 , (A.2)

with 𝐞∗𝑗 representing the basis vector of the reciprocal lattice and 𝛿𝑖𝑗
denoting the Kronecker delta. In that case, the reciprocal lattice vectors
of the hexagonal lattice are given as

𝐞∗1 = ( 1
2𝐿 cos 𝜃

, 1
2𝐿(1 + sin 𝜃)

)𝑇 , (A.3)

𝐞∗2 = (− 1
2𝐿 cos 𝜃

, 1
2𝐿(1 + sin 𝜃)

)𝑇 .
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Fig. 13. Evolution of band-gaps with cell angle 𝜃 considering 𝜓 = 50◦ for (a) curved hexagonal lattice, (b) curved hexagonal lattice with reverse curvature, (c) re-entrant curved
lattice, and (d) re-entrant curved lattice with reverse curvature. 𝜃, and 𝜓 are the cell angle and curvature, respectively.
Appendix B. Bloch’s theorem

The wave propagation characteristics of the curved hexagonal pe-
riodic lattice can be obtained by employing the Bloch theorem [34].
Now, if the displacement vector of a point inside the chosen reference
unit cell (Fig. 1) corresponding to a wave of frequency 𝜔 is 𝐰(𝐫𝑃 ). Then,
it can be expressed in the form

𝐰(𝐫𝑃 ) = 𝐰𝑃0𝑒
𝑖𝜔𝑡−𝐤⋅𝐫𝑃 (B.1)

where 𝐰𝑃0 and 𝐤 are the wave amplitude and wave vector, respectively.
The position of the point 𝑃 in the unit cell is denoted by 𝐫𝑃 in the
reference cell with respect to (0,0). The position of any point 𝑃 ′ in
the lattice can be obtained as 𝐫𝑃 ′ = 𝐫𝑃 + 𝑛𝐞1 + 𝑚𝐞2 where 𝑛 and 𝑚 are
the integers placed along the direction of the basis vectors 𝐞1 and 𝐞2.
According to the Bloch theorem the displacement of the arbitrary point
𝑃 at (𝑛, 𝑚) cell can be expressed as

𝐰(𝐫𝑃 ′ ) = 𝐰(𝐫𝑃 )𝑒𝐤⋅(𝐫𝑃 ′−𝐫𝑃 ) = 𝐰(𝐫𝑃 )𝑒𝐤⋅(𝑛𝐞1+𝑚𝐞2) = 𝐰(𝐫𝑃 )𝑒𝑛𝑘1+𝑚𝑘2 (B.2)

where 𝑘𝑖 = 𝐤 ⋅ 𝐞𝑖 are the wavenumbers (𝑖 = 1, 2).

Appendix C. The shape function and matrix coefficients

We adopt the same shape functions for the Timoshenko beam
element as in [34]:

𝑁𝑢
1 (𝑥) = 1 − 𝜉, 𝑁𝑢

2 (𝑥) = 0, 𝑁𝑢
3 (𝑥) = 0, (C.1)

𝑁𝑢(𝑥) = 𝜉, 𝑁𝑢(𝑥) = 0, 𝑁𝑢(𝑥) = 0,
14

4 5 6
𝑁𝑤
1 (𝑥) = 0, 𝑁𝑤

2 (𝑥) =
1 − 3𝜉2 + 2𝜉3 + (1 − 𝜉)𝛷

1 +𝛷
,

𝑁𝑤
3 (𝑥) =

ℎ𝑒(𝜉 − 2𝜉2 + 𝜉3 + 1
2 (𝜉 − 𝜉

2)𝛷)

1 +𝛷
,

(C.2)

𝑁𝑤
4 (𝑥) = 0, 𝑁𝑤

5 (𝑥) =
3𝜉2 − 2𝜉3 + 𝜉𝛷

1 +𝛷
,

𝑁𝑤
6 (𝑥) =

ℎ𝑒(−𝜉2 + 𝜉3 −
1
2 (𝜉 − 𝜉

2)𝛷)

1 +𝛷
,

𝑁𝜁
1 (𝑥) = 0, 𝑁𝜁

2 (𝑥) =
6(−𝜉 + 𝜉2)
ℎ𝑒(1 +𝛷)

, 𝑁𝜁
3 (𝑥) =

1 − 4𝜉 + 3𝜉2 + (1 − 𝜉)𝛷
1 +𝛷

,

(C.3)

𝑁𝜁
4 (𝑥) = 0, 𝑁𝜁

5 (𝑥) =
6(𝜉 − 𝜉2)
ℎ𝑒(1 +𝛷)

, 𝑁𝜁
6 (𝑥) =

−2𝜉 + 3𝜉2 + 𝜉𝛷
1 +𝛷

,

where 𝜉 = 𝑥∕ℎ𝑒 denotes the dimensionless axial coordinate and 𝛷 =
12𝐸𝐼
𝐺𝐴𝑘𝑠ℎ2𝑒

is the shear deformation parameter.
After adopting these functions, the elements of the stiffness and

mass matrix of FE beam model can be written as:

𝐾𝑒
𝑖𝑗 = ∫

ℎ𝑒

0

⎡

⎢

⎢

⎣

𝐸𝐴
𝜕𝑁𝑢

𝑖
𝜕𝑥

𝜕𝑁𝑢
𝑗

𝜕𝑥
+ 𝐸𝐼

𝜕𝑁𝜁
𝑖

𝜕𝑥

𝜕𝑁𝜁
𝑗

𝜕𝑥

+𝐺𝐴𝑘𝑠

(

𝑁𝜁
𝑖 −

𝜕𝑁𝑤
𝑖

𝜕𝑥

)

(

𝑁𝜁
𝑗 −

𝜕𝑁𝑤
𝑗

𝜕𝑥

)]

𝑑𝑥, (C.4)

𝑀𝑒 =
ℎ𝑒 (

𝜌𝐴𝑁𝑢𝑁𝑢 + 𝜌𝐼𝑁𝜁𝑁𝜁 + 𝜌𝐴𝑁𝑤𝑁𝑤
)

𝑑𝑥, (C.5)
𝑖𝑗 ∫0 𝑖 𝑗 𝑖 𝑗 𝑖 𝑗
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Fig. 14. Iso-frequency contour plots for the first four modes of the conventional and modified hexagonal lattice. The first row shows the contours for hexagonal lattice with
straight constituent beam with 𝜃 = 30◦. The second row shows the contour for the curved hexagonal lattice with 𝜃 = 30◦ and 𝜓𝑙,𝑟 = 50◦. The third row shows the contour for the
curved hexagonal lattice with 𝜃 = 30◦ and 𝜓𝑙 = 50◦, and 𝜓𝑟 = −50◦.

Fig. 15. Iso-frequency contour plots for the first four modes of the conventional and modified re-entrant lattice. The first row shows the contours for re-entrant lattice with straight
constituent beam with 𝜃 = −10◦. The second row shows the contour for the curved re-entrant lattice with 𝜃 = −10◦ and 𝜓𝑙,𝑟 = 50◦. The third row shows the contour for the curved
re-entrant lattice with 𝜃 = −10◦ and 𝜓𝑙 = 50◦, and 𝜓𝑟 = −50◦.
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Fig. A.1. Figure showing the (a) unit cell with direct lattice vector and Brillouin zone for (b) hexagonal and (c) re-entrant lattice along with the reciprocal lattice vectors.
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