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A B S T R A C T   

All structures exhibit some form of damping, but the characterization of damping is not well- 
understood, and there is no universal damping model for the dynamic systems. Recently, 
model updating methods have been used to update or identify the damping matrix in dynamic 
systems. Most of the finite element updating methods assume viscous and proportional damping 
models for updating or identifying of damping matrix. In this paper, a new finite element model 
updating method is proposed in which the damping model is assumed as non-viscous and non- 
proportional. A parametric exponential non-viscous damping model has been used to model 
the damping in the dynamic system. The proposed method is the frequency response function 
(FRF)-based updating model, which updates the non-viscous and non-proportional damping 
matrix in the dynamic system. The effectiveness of the proposed damped finite element updating 
method is demonstrated by a numerical example and actual laboratory experiments. First, a 
numerical study is performed on a cantilever beam structure with non-viscous and non- 
proportional damping. The numerical study is followed by cases involving actual measured 
data. Joints and boundary conditions are assumed as a major source of damping, therefore joints 
and boundary conditions are modelled using relaxation functions and damping coefficients. The 
updated results have shown that the proposed damped element model updating method can be 
used to derive accurate models for the non-viscous and non-proportional damped systems. This is 
illustrated by matching complex FRFs obtained from the updated model with from the experi-
mental data.   

1. Introduction 

All structures exhibit damping, but despite a large body of literature on this subject, damping remains one of the least well- 
understood aspects of general vibration analysis. The major reason for this is the absence of a universal mathematical model to 
represent damping forces. The proportional viscous damping model proposed by Rayleigh [1] is commonly used for representing 
damping in a vibrating system. The Rayleigh damping model assumes that instantaneous generalized velocities are the only variables. 
The Taylor expansion then leads to a model which encapsulates damping behavior in a dissipation matrix, directly analogous to the 
mass and stiffness matrices. However, it is important to avoid the misconception that, the Rayleigh damping model is the only model of 
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vibration damping. Any model, which guarantees that the energy dissipation rate is non-negative, can be a potential candidate to 
represent the damping of a given structure. Damping models in which the dissipative mechanism depends on any variable other than 
the instantaneous velocities are called non-viscous damping models. In broad terms, non-viscous damping mechanisms can be divided 
into two classes:  

1 Energy dissipated throughout the bulk material making up the structure which is also called material damping.  
2 Dissipation of energy associated with junctions or interfaces between parts of the structure, generally called boundary damping. 

Material damping can arise from variety of micro-structural mechanisms (Bert, [2]) but for small strains, it is often adequate to 
represent damping through an equivalent linear, viscoelastic continuum model of the material. Damping can then be considered via 
the viscoelastic correspondence principle, which leads to the concept of complex moduli. Boundary damping is less easy to model than 
material or viscous damping, but it is of crucial importance in most of the engineering structures. When damping is measured on a built 
structure, it is commonly found to be higher in magnitude than the intrinsic material damping of the main components of the structure. 
This difference is attributed to effects such as frictional micro-slipping at joints. In such a system, the energy loss mechanism is 
significantly non-linear if examined in detail but can be considered linear (Heckl [3]). When a structure exhibits a damped dynamic 
behavior that does not conform to the classical and well-known viscous or hysteric damping models, such problems may be addressed 
by using fractional derivatives leading to a model in terms of general damping parameters. Agrawal and Yuan [4] modeled the 
damping forces proportional to the fractional derivative of displacements and the fractional differential equations governing the 
dynamics of a system. Adhikari and Woodhouse [5] proposed a non-viscous damping model in which the dissipation forces depend on 
the time history of motion, which are represented by convolution integrals between velocities and exponential decay of kernel 
function. 

Damping identification has important applications in many engineering fields such as modal analysis, structural health monitoring, 
and structural dynamic modifications. Several methods have been developed to identify the damping in the vibrating systems (Lan-
caster [6]; Minas and Inman [7]). Su et al. [8] experimentally identified exponential damping. Most of the damping identification 
methods use complex eigendata and are based on the viscous damping model. Moreover, the complex eigendata is very sensitive to 
experimental errors and errors arising from fitting algorithms. The assumption of viscous damping may not be valid for all real systems 
and some efforts have been made to identify the non-viscous damping model. Adhikari and Woodhouse [5] identified a non-viscous 
damping model using complex eigendata. Mondal and Chakraborty [9] also used complex modes arising from a non-proportional 
dissipative matrix to identify non-viscous damping. Lee and Kim [10] proposed an algorithm for the identification of the damping 
matrices which identifies the viscous and structural damping matrices of the equation of motion of a dynamic system using the fre-
quency response matrix. Brumat et al. [11] identified both viscous and structural damping matrices using the frequency response 
functions. The approach requires a full frequency response matrix to identify the damping matrices, but this approach is very expensive 
both in terms of numerical and experimental effort. 

Some research efforts have been made to identify or update the damping matrices using finite element model updating. Finite 
element model updating techniques have been widely used to reduce the inaccuracies in the finite element models by using the 
measured data. It is well known that finite element predictions are not accurate because of difficulties in the accurate modeling of 
boundary conditions, incorrect modeling of joints, and difficulties in modeling of damping, etc. Most of the finite element model 
updating methods [12–15] neglect damping, so these methods can be used to predict accurately the natural frequencies and real modes 
in the measured region. But these methods cannot be used for predicting complex frequency response functions (FRFs), amplitudes of 
vibration, and complex modes. Most of the finite element methods for updating or damping identification are two-step procedure. In 
the first step, mass and stiffness matrices are updated and in the second step, updated mass and stiffness matrices are used for 
identification or updating the damping matrix. Yong and Zhenguo [16] proposed a two-step model updating procedure for lightly 
damped structures using neural networks. In the first step, the mass and stiffness are updated using natural and antiresonance fre-
quencies. In the second step, damping ratios are updated. Pilkey [17] identified the viscous damping matrix using accurate mass and 
stiffness matrices. Some work has been carried out to update the damping matrices along with mass and stiffness matrices in a single 
step. Imregun et al. [18] extended the undamped response function method model updating method [18] to update a proportional 
damping matrix. Arora et al. [19] proposed a damped FE model updating procedure in which both structural and viscous damping 
matrices are updated along with the mass and stiffness matrices of the dynamic system. Arora et al. [20] proposed a complex 
parameter-based model updating method in which the finite element model is updated by considering the updating parameters as 
complex. The imaginary part of the updating parameter is used to develop a structural damping matrix. 

All the above-stated damping identification methods work under the assumption that the initial damping model is either viscous or 
structural damping. Hence, there is a need to develop a method, which can identify the general (non-proportional and non-viscous) 
damping in dynamic systems. Moreover, most of the damping identification methods do not take the effect of local damping sour-
ces for example the presence of joints is the major source of damping in the dynamic system. In this paper, a new FRF-based model 
updating method is proposed that identifies the non-viscous and non-proportional damping in the dynamic system from the experi-
mental data. The proposed method updates the non-viscous damping matrix along with the mass and stiffness matrices to overcome the 
problem of complex experimental data. The proposed method can identify the local source of damping in a structure, for example, 
damping due to the presence of joints, change in material, or damping induced due to the presence of fluid surrounding the structure. 
To demonstrate the effectiveness of the proposed non-viscous and non-proportional model updating method, numerical and experi-
mental studies are performed. The results show that the proposed finite element model updating method can be used to derive an 
accurate model of the system. This is illustrated by matching the complex FRFs obtained from the updated model with that from the 
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experimental data. 

2. Theory 

In this section, the equations for the non-viscous damping model are developed by convolution integrals of the generalized co-
ordinates over appropriate kernel functions. The developed non-viscous damping model is subsequently used in the finite element 
model updating methodology to develop a new method for non-viscous finite element model updating. The proposed model updating 
is based on frequency response data. The advantage of the proposed FRF- based model updating method is that it uses measured FRF 
data directly without requiring any modal extraction. The damping force vectorfdof a vibrating system is expressed as [5]: 

fd(t) =
∫t

− ∞

G(t − τ)ẋ(τ)dτ (1)  

where G is an N × N matrix of kernel functions and x is the N-dimensional vector of displacements. The one-dimensional integral 
appearing in the above equation is over the time variable τ and is independent of the number of degrees of freedom N. In terms of 
exponential damping, the kernel function is described by: 

G(t) =
∑kmax

k=1
Ckμke− μk t, for t ≥ 0, k = 1, 2,…, kmax (2)  

where C is the viscous damping matrix, μis the relaxation function and subscript kdenotes the number of different exponential models 
employed to describe the damping behavior of the dynamic system. μkis used to incorporate local damping mechanism in the dynamic 
system. The local non-proportional and non-viscous damping is due to the presence of joints, fluid-induced damping, and change in 
material. The viscously damped system can be expressed as a special case of non-viscous damping, whenμk → ∞ [21] for the analysis of 
dynamic systems with general non-viscous damping. The equation of motion reduces to that of a viscously damped system with an 
equivalent viscous damping. 

C =
∑ne

i=1
(αv)i(Kelem)i + (βv)i(Melem)i (3)  

αvand βvrepresent elemental Rayleigh damping coefficients. Kelem and Melem are elemental stiffness and mass matrices respectively. 
nerepresents the number of finite elements or groups of elements. Non-proportional damping is obtained by multiplying different 
damping coefficient values to elemental stiffness and mass matrices. It is easily verified that non-Rayleigh style damping ensues with 
the simple equation: 

CM− 1K ∕= KM− 1C (4) 

Thus, non-viscous damping is a further generalization of classical viscous damping. The kernel function,G(ω) in Eq. (2) can be 
written in the frequency domain as: 

G(ω) =
∑kmax

k=1

μk

μk + jωCk (5)  

where j =
̅̅̅̅̅̅̅
− 1

√
.Thus, the equation of motion with non-viscous damping in the frequency domain can be written as: 

(
K − ω2M+ jωG

)
x(ω) = f(ω) (6)  

whereMand Kare system mass and stiffness N × N matrices. The receptance frequency response function (FRF) matrix Rof a non- 
viscous dynamic system can be written as: 

R =
(
K − ω2M + jωG

)− 1 (7) 

These non-viscous FRFs are used subsequently for the identification of the non-viscous damping matrix by updating the relaxation 
function values, μ and viscous damping coefficient values (αv andβv). The following identities relating dynamic stiffness matrix, Zand 
receptance FRF matrix, Rfor the analytical model and the actual structure, can be written as: 

ZFERFE = I (8)  

ZEXREX = I (9)  

where the subscripts FE and EX denote the FE model and the experimental model respectively. Expressing ZEX in Eq. (9) as ZEX +ΔZ 
and then subtracting Eq. (8), the following matrix equation is obtained: 

ΔZREX = ZFE(RFE − REX) (10) 
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Pre-multiplying the above equation by RFEand then using Eq. (7) gives: 

RFEΔZREX = RFE − REX (11) 

If only one column of the measured FRF matrix REXdenoted by the vector REXv , is available then the above equation is reduced to: 

RFEΔZREXv = RFEv − REXv (12) 

Eq. (12) is the basic equation for the FRF-based model updating method. Linearizing ΔZ with respect to p, p = {p1,p2,⋯,pnu},where 
nu is the number of updating parameters, being the vector of updating variables associated with an individual or group of finite el-
ements, gives: 

ΔZ =
∑nu

i=1

(
∂Z
∂pi

⋅ Δpi

)

(13) 

Dividing and multiplying the above equation by pi and then writing ui in place of Δpi/pi, the equation becomes: 

ΔZ =
∑nu

i=1

(
∂Z
∂pi

⋅ pi

)

⋅ ui (14) 

In the proposed method, ΔZis classified into two categories, that is, physical and damping updating parameters can be written as: 

ΔZ = ΔZpp + ΔZdp (15)  

where subscripts pp and dp represent physical and damping updating parameters respectively. The physical parameters are used to 
update the mass and stiffness matrices of the system, whereas, the damping parameters are used to update the non-proportional and 
non-viscous damping matrix. The damping parameters are further classified as relaxation updating parameters and damping co-
efficients updating parameters. In the case of relaxation updating parametersμ. ΔZμ can be written as: 

ΔZμ = jω
∑r

n=1

((
C

μn + jω −
Cμn

(μn + jω)2

)

μn

)

× un (16)  

where subscripts r represents the total number of updating relaxation parameters. The number of relaxation parameters used in Eq. 
(16) depends upon the number of different local damping mechanisms considered in the dynamical system. Variation in damping due 
to change of material, presence of joints and fluid-induced additional local damping. Case studies for these local non-proportional and 
non-viscous damping have been presented in this paper. Similarly for the case of damping coefficients (αvandβv)and subscript n 
represents the number of updating parameters. ΔZαv and ΔZβv can be expressed as: 

ΔZαv = jω
∑d1

n=1

((
Cn

μn + jω K
)

(αv)n

)

⋅ un (17)  

ΔZβv = jω
∑d2

n=1

((
Cn

μn + jω M
)

(βv)n

)

⋅ un (18) 

Eq. (12), after making the substitution for ΔZ, can be written at various frequency points chosen from the frequency range 
considered. The left side of Eq. (12) represents the sensitivity matrix S given by: 

S = RFEΔZREX (19) 

The selection of frequency points for FRF-based model updating is based on the criteria that the selected frequency points for 
updating should lie away from the resonance and anti-resonance frequencies [22]. The frequency points are selected manually. A total 
number of updating parameters (nu) is the sum of physical parameters, relaxation(r) and damping coefficients parameters (d1 and d2). 
The updating parameter vector u, which consists of the correction factor of physical parameters and damping parameters, is used to 
update relaxation variables and damping coefficients. The sensitivity matrix is given by: 

S =

S(ω = 1, p = 1)N×N S(ω = 1, p = 2)N×N S(ω = 1, p = 3)N×N ... ... S(ω = 1, p = nu)N×N

S(ω = 2, p = 1)N×N S(ω = 2, p = 2)N×N S(ω = 2, p = 3)N×N ... ... S(ω = 2, p = nu)N×N

S(ω = 3, p = 1)N×N S(ω = 3, p = 2)N×N S(ω = 3, p = 3)N×N ... ... S(ω = 3, p = nu)N×N

⋮

⋮

⋮

⋮

⋮

⋮

...

...

...

...

⋮

⋮

S(ω = nf , p = 1)N×N S(ω = nf , p = 2)N×N S(ω = nf , p = 3)N×N ... ... S(ω = nf , p = nu)N×N

(20)  

where nf is the number of selected frequency points. The sensitivity Smatrix is used to update both physical and damping parameters, 
which consist of relaxation and damping coefficients. 
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S(ω)((N×nf )×nu)u(nu×1) = ΔR(ω)((N×nf )×1) (21) 

The choice of damping relaxation updating parametersμ is based on engineering judgment about the possible locations of damping 
in a structure to ensure that only physical meaningful corrections are incorporated. For damped dynamic structures, the presence of 
joints, change of material, and the presence of fluid are expected to be the dominant source of non-proportional and non-viscous 
damping. The proposed method gives non-viscous and non-proportional local damping of the dynamic system. The performance is 
judged based on the accuracy with which the FRFs predicted by the updated FE model match the experimental FRFs. Practically, the 
FRFs are available only at a few degrees of freedom which means FRF data is incomplete. In this paper, the coordinate incompleteness 
has been dealt by using analytically generated FRFs. This has been done by replacing the responses of unmeasured coordinates by 
analytical counterparts. The process is repeated iteratively until convergence is obtained. 

3. Case study of a two-material cantilever beam system 

A simulated study on a cantilever beam made of 2 different materials is conducted to evaluate the effectiveness of the proposed 
method. The dimensions of the beam are 900 × 50 × 5 mm. Half of the beam is made of material 1 and the other half is made of 
material 2, as shown in Fig. 1. The beam is modeled using thirty (two-noded) beam elements. The displacements in the y-direction and 
the rotation about the z-axis are taken as the two degrees of freedom at each node. The material properties of materials 1 and 2 are: 
Material 1: Young’s modulus (E1): 2 × 1011 N/m2 and density (ρ1): 7800 kg/m3 Material 2: Young’s modulus (E2): 0.69 × 1011 N/m2 

and density (ρ2): 2700 kg/m3. Similarly, different relaxation variables are calculated for the different materials as μX1 = 0.5(2πωn1), 
μX2 = 1.1(2πωn2) and also the different values for viscous damping matrices for different materials are calculated using CX1= (αv)X1×

K1+ (βv)X1× M1 N-s/m, CX2= (αv)X2× K2+ (βv)X2× M2 N-s/m respectively. The values of the simulated experimental damping co-
efficients are (αv)X1 = 0.00001, (βv)X1 = 0.1, (αv)X2 = 0.00003and (βv)X2 = 0.2. The above data is considered simulated experimental 
data. Error is induced in the analytical model by assuming that the relaxation variable values are:μA1 = 0.3μX1, μA2 = 0.5μX2 whereas 
the viscous damping coefficients of each material are assumed to be: (αv)A

= 0.4(αv)X 
and (βv)A

= 0.6(βv)X
. The analytical FRFs are 

obtained with known discrepancies in the relaxation variables and damping coefficients. The overlay of the analytical and simulated 

Fig. 1. Cantilever beam made of 2 different materials.  

Fig. 2. Overlay of simulated experimental FRF and analytical FRF of cantilever beam.  
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FRFs is shown in Fig. 2. It can be observed from Fig. 2 that the analytical and experimental FRFs don’t match at the resonance and anti- 
resonance frequencies because of the error in the analytical value of the non-viscous damping. The proposed updating method is 
subsequently applied to update the values of the relaxation function and damping coefficients. The updated and simulated experi-
mental FRFs are plotted in Fig. 3. It can be observed from Fig. 3 that updated and simulated experimental FRFs match completely with 
each other. The experimental, initial, and updated values of relaxation and damping coefficients variables are given in Table 1. It can 
be observed from the Table 1 that updated values of the relaxation and damping coefficients variables are same as the simulated 
experimental values. Similarly, a case study has been carried out by considering high damping in the system. For this case study, values 
of damping coefficients are changed, (αv)X1

= 0.00005and (αv)X2
= 0.0001. Analytical and simulated experimental FRFs and phase 

angle are plotted in Fig. 4. It can be observed from Fig. 4 that experimental FRF and phase angle plots do not match with each other. 
After updating, the overlay of the experimental and updated FRFs and phase angle are plotted in Fig. 5 and it can be observed from 
Fig. 5 that after updating experimental FRF and phase angle matches with the updated FRF and phase angle. It can also be observed 
that there is a very small error at higher frequencies. To demonstrate the robustness of the proposed method, a case study with 6% 
noise in the experimental data is also presented. Fig. 6 shows the overlay of the noisy simulated experimental FRF and updated FRF 
using the proposed method. It can be observed from Fig. 6 that the proposed method can predict experimental FRF accurately and 
simulated experimental FRF and updated FRF matches completely. 

The proposed method can correctly identify the relaxation variables as well as damping coefficients at various levels of noisy data. 
The success of these cases has proven the feasibility and robustness of the proposed method. 

4. Case study of fluid-induced non-viscous damping in monopile structure 

In this section, a case study of fluid-induced non-viscous damping in monopile is presented. In the case of the monopile, the water 
surrounding the structure is the major source of damping. The damping in this case is non-proportional and non-viscous damping. The 
presence of fluid surrounding a vibrating structure induces additional inertia and damping effect on the structure. The additional 
inertia induced due to the pressure force of the fluid is called the added mass. The additional damping due to the propagating free 

Fig. 3. Overlay of simulated experimental FRF and non-viscous and non-proportional damped updated FRF of cantilever beam structure.  

Table 1 
Experimental, initial and updated values of relaxation and damping coefficients variable for cantilever beam structure.  

Variables Simulated experimental values Initial values Updated values 

μ1 631.12 189.33 631.12 
μ2 38,274 19,137 38,274 
αv1 0.00001 0.000004 0.00001 
αv2 0.00003 0.000012 0.00003 
βv1 0.1 0.06 0.1 
βv2 0.2 0.12 0.2  
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surface wave, which dissipate the energy is called the radiation or fluid-induced damping [23,24]. One of the earliest to implement this 
effect were Cummins [25] and Ogilvie [26]. Cummins [25] expressed the fluid-structure interaction in the form of an 
integro-differential equation. The damping term of the Cummins equation incorporates the memory effect, which is expressed as a 
convolution integral of the retardation function. The additional contribution in the system dynamics due to the fluid is expressed in 
terms of potential functions and retardation function in both the mass and damping terms as: 

(M+Ma)ẍ(t) +
∫∞

t

G(t − τ)ẋ(τ)dτ+Kx = pw(t) (22)  

where Mais the added mass, which depends on the immersed part of the structure and τo is a time delay. G is the kernel function, which 
depends on the forward speed and the geometry of the structure, x is the displacement and pw is the bounded excitation. 

In the current study, the fluid force acting on the structure is expressed in terms of the Morison equation [27]. The force acting on 
monopile, which is partially submerged in water according to Morison’s equation is given by: 

Fig. 4. Overlay of simulated experimental FRF and analytical FRF for the case of highly damped cantilever beam structure.  
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F(t) = FD + FI + FFK =
1
2

ρCdragDL|U − ẋ|(U − ẋ) + ρmiAL(U̇ − ẍ) + ρALU̇ (23)  

where FD is the drag force, FI is the inertia force, FFKis the Froude-Krylov force, U is the water particle velocity, A is the cross-sectional 
area of the monopile, L is the length of the immersed section of the monopile and dρ is the density of water, mi is the added mass 
coefficient, the value of which is 1 for cylinder [25]. Since the modal updating is carried out without external forces from the fluid flow 
acting on the structure, the water particle velocity terms are neglected. Therefore, the only additional inertia term due to added mass 
effect is given by: 

Ma = ρmiAL (24)  

where Ma is a lumped-mass diagonal matrix. Similarly, the non-linear drag force,FD reduces to: 

Fig. 5. Overlay of simulated experimental FRF and updated FRF for the case of highly damped cantilever beam structure.  
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FD =
1
2

ρCdragDLẋ|ẋ| (25) 

The drag force can be linearized using equivalent linearization [28,29] under the assumption of Gaussian excitation, which results 
in viscous non-proportional damping. The resulted damping incorporates the fluid-induced damping effects. Therefore, the effective 
mass Meff and damping Ceff matrices in the fluid-induced damped system are given as: 

Meff = M + Ma (26)  

Cef f = C + Cdrag (27) 

For the case of fluid-induced damping, the kernel function G(ω) given in Eq. (5) is modified as: 

G(ω) =
∑kmax

k=1

μk

μk + jωCeffk (28) 

Fig. 6. Overlay of noisy simulated experimental FRF with 6% noise and updated FRF for the case of highly damped cantilever beam structure.  

Fig. 7. Monopile structure exposed to wave.  
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Table 2 
Dimensions of the monopile considered.  

Material Property Value 

Density (ρ) kg m − 3 8000 
Modulus of Elasticity (E) N m − 2 2 × 1011 

Length of monopile m 90 
Outer diameter of monopile m 4.5 
Inner diameter m 4.4 
Depth of immersion m 10.8 
Scale ratio 10  

Fig. 8. Overlay of simulated experimental FRF and analytical FRF for the case of monopile structure.  

Fig. 9. Overlay of simulated experimental FRF and updated FRF for the case of monopile structure.  

Fig. 10. Cantilever beam structure.  
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The above-developed methodology is adopted on a scaled model of a monopile structure which could be the tower of an offshore 
Wind turbine [30] as shown in Fig. 7. The dimensions of the Monopile structure are given in Table 2. The monopile is modeled as a 
Euler Bernoulli cantilever beam of cylindrical cross section. Added mass terms are included in the mass matrix up to the depth of 
submergence. The added mass coefficient of cylinder is taken as 1. The finite element model of the monopile is developed using 25 
beam elements in which it is assumed that 3 elements are submerged in the water. Since the radiation damping and the memory effect 
is contributed from the submerged part of the monopile most of the energy dissipates in this region. Therefore, the value of relaxation 
variable changes from zero for above water to non-viscous for submerged portion given by,μX = 0.05(2πωn1). The damping coefficients 
for submerged part are assumed constant withαv = 0.00001 andβv = 0.001.The analytical damping model is assumed to be viscous by 
assigning very high value to the relaxation variable that isμA = 2× 104μX. A comparison between the analytical and simulated 

Fig. 11. Instrumentation set-up for modal test using impact excitation.  

Table 3 
Correlation of measured and FE-model based modal data of beam before updating.  

Mode No. Measured Frequency Hz. FE-Model Predictions 
Frequency Hz. % Error MAC-Value 

1 41.0 46.6 − 12.02 0.945 
2 258.1 292.6 − 11.79 0.972 
3 718.4 821.8 − 12.58 0.956  

Fig. 12. Overlay of the measured direct FRF and the corresponding finite element model FRF before model updating.  
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experimental FRFs are plotted in Fig. 8 indicates mismatch in the FRF amplitudes. After updating the relaxation parameter, the overlay 
of the experimental and updated FRFs are providing better fit as shown in Fig. 9. It can be concluded from this case study that the 
proposed method can successfully be applied in the cases, where fluid is the major source of damping in the system. In this case 
damping dominantly is non-proportional and non-viscous. 

5. Case study of cantilever beam structure using experimental data 

An experimental study on an aluminum cantilever beam is also conducted to evaluate the effectiveness of the proposed method. 
The dimensions of the beam are 600 × 50 × 20 mm as shown in Fig. 10. The beam is modeled using five, beam elements (one 
translational degree of freedom in y direction and one rotational degree of freedom) and the fixed end is modeled by taking coincident 
nodes. Thus, two nodes that are geometrically coincident are taken as fixed end instead of one node. A horizontal, a vertical and a 
rotational spring couples two nodes at each of such coincident pair of nodes and the stiffness of these springs is Kx, Ky and Kr 
respectively. Initially, the value of relaxation variable (μ) is considered the same for all the finite elements including spring elements. 
The value of μis calculated using the first analytical natural frequency asμX1 = 0.2(2πωn1). Whereas very low damping coefficients 
values are used for modeling the damping matrix as βv = 0.0001 and αv = 0.00005. The instrumentation set-up used to perform the 
modal test on the cantilever beam structure using impact excitation is shown in Fig. 11. The responses are measured at one location by 
accelerometer while the structure is excited with an impact hammer at five locations, thus 5 FRFs are acquired. From the acquired 
FRFs, the modeshapes are calculated in the frequency range of 0–1000 Hz. The correlation between the finite element (FE) and the 
experimental modal data is given in Table 3. An overlay of the measured FRF and the corresponding FE model FRF at the cross and 
direct locations are shown in Figs. 12 and 13. It can be observed from Table 3 and Figs. 12 and 13 that the FE model is in error. For 
better correlation between the experimental and FE model, the damping matrix and stiffnesses at the fixed end of the cantilever beam 
are updated using the proposed non-viscous damping method. The choice of updating parameters is based on engineering judgment 
about the possible locations of modeling errors in a structure is one of the strategies to ensure that only physical meaningful corrections 

Fig. 13. Overlay of the measured cross FRF and the corresponding finite element model FRF before model updating.  

Table 4 
Values of each spring stiffness and relaxation variables at the fixed end of cantilever beam before 
and after updating.  

Updating variable Initial Value Updated values 

Kx 3.28× 106 1.41× 105 

Ky 3.28× 106 1.53× 105 

Kr 3.28× 106 1.89× 105 

μx 57.8 715.1 
μy 57.8 710.2 
μr 57.8 982.5  
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Fig. 14. Overlay of the measured dry FRF and the corresponding finite element model FRF after model updating using proposed method.  

Fig. 15. Overlay of the measured cross FRF and the corresponding finite element model FRF after model updating using proposed method.  

Table 5 
Correlation of measured and FE-model based modal data of cantilever beam after updating using proposed method.  

Mode No. Measured Frequency Hz. After updating 
Frequency Hz. % Error MAC-Value 

1 41.0 41.0 0 0.954 
2 258.1 258.1 0 0.966 
3 718.4 718.0 .06 0.973  
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are made. In the case of cantilever beam structure, modeling of damping and stiffness at the fixed end are expected to be the dominant 
source of inaccuracy in the FE model. The 3 spring stiffnesses, 6 damping coefficients and 3 relaxation variables at the fixed end are 
chosen as updating variables. The initial and final values of 3 springs and 3 relaxation variables at the fixed end are given in Table 4. It 
is observed that the values of stiffness of all the springs at the fixed end are reduced and values of the three springs are not very different 
from each other whereas the values of relaxation variables increase after updating. Figs. 14 and 15 show the overlay of measured and 
non-viscous damped updated FRFs. It can be observed from Fig. 14 and 15 that the shape of the updated FRFs is same as that of 
measured FRFs. The correlation between the updated model and measured modal data is presented in Table 5. It can be observed from 
Table 5 that the updated model using the proposed method is able to predict the measure modal data accurately. 

An experimental case study of a cantilever beam structure has been carried out to show the effectiveness of the proposed non- 
viscous and non-proportional model updating method. In this case, it is assumed that the fixed end of the cantilever beam structure 
is the major source of error in the finite element model and a major source of damping in the structure. Stiffnesses, relaxation variables 
and damping coefficients at the fixed end are updated. The success of the proposed method is demonstrated by matching the updated 
FRFs with experimental FRFs. The proposed method is working well for the case of experimental data of cantilever beam structure. 

6. Case study of F-shape structure using experimental FRF data 

An experimental study on an F-shape structure resembling a drilling machine is also conducted to evaluate the effectiveness of the 
proposed method. The F-shape structure has been constructed by bolting the two beam members horizontally to a vertical beam 
member, which in turn, has been welded to the base plate at the bottom. All the beam members have a square cross-section with 37.7 
mm side as shown in Fig. 16. A finite element model of the F-structure is built, as shown in Fig. 17, using 48 two-dimensional frame 
elements (Two translational degrees of freedom in x and y direction and one rotational degree of freedom, per node) to model in-plane 
dynamics. In the F- shaped structure, there are three joints, which are modeled by taking coincident nodes at each of them. Thus, two 
nodes that are geometrically coincident are taken as joint instead of one node. A horizontal, a vertical, and a rotational spring couple 
the two nodes at each of such a coincident pair. The stiffnesses of these springs are Kx, Ky and Kr respectively. The modal test is 
performed by exciting the structure with an impact hammer at 16 locations and the response is measured at one location using an 
accelerometer. A comparison of the corresponding experimental and analytical natural frequencies, the percentage difference between 
them, and the corresponding Modal assurance criteria (MAC) value for the first five modes are given in Table 6. An overlay of the 
measured FRFs and the corresponding FE model FRFs are shown in Fig. 18. It is observed that the shape of the FE model FRF curve is 
similar to the measured curve. It, therefore, infers that though the FE model is in error it is, in principle, of updatable quality. 

Fig. 16. F-shaped structure.  
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In the case of F-structure, modeling joint stiffnesses are expected to be a dominant source of inaccuracy in the FE model assuming 
that the values of material and the geometric parameters are correctly known. Analytical sensitivity analysis of the joint springs shows 
that the rotational stiffness is the most important variable affecting the FRFs. Rotational springs of stiffness Kr1, Kr2 and Kr3 coupling the 
rotational degrees of freedom of the coincident nodes at the three joints are taken as physical updating parameters. The other two 
degrees of freedom of the coincident nodes are taken as rigidly coupled. The joints are the major source of energy dissipation (Bert [2]). 
Therefore, it is also assumed that these joints are the major source of energy dissipation or damping in the structure. The joints’ 
damping coefficients and relaxation functions related to all the rotational stiffnesses of each joint are considered damping updating 
parameters. The frequency points are selected for model updating manually by avoiding both resonance and anti-resonance fre-
quencies. The frequency points selected for updating of F-shape structure are 27, 31, 99, 101, 131, 311,442, 515, and 825 Hz for each 
of the FRFs. The initial and final values of the rotational spring stiffness of each joint are given in Table 7. It can be observed from 
Table 7 that the values of stiffness of the rotational springs corresponding to three joints are reduced and values of the three springs are 
not very different from each other while the damping coefficients and relaxation variables values of each rotational spring stiffness 
represent damping in the system. A comparison of the correlation between the measured and the updated model natural frequencies is 
given in Table 6. It can be observed from Table 6 that the proposed method can predict accurately natural frequencies and MAC-values. 
The major reason for the deterioration of the MAC value concerning mode five is that there are close modes. Table 8 shows the initial 
and updated values of the damping parameters, and it can be observed from the Table 8 that updated relaxation variable values 
represent non-viscous damping in the structure. Fig. 19 shows the overlay of measured and updated FRF obtained using the proposed 
method and FRF obtained using the viscous damping identification method [31]. It can be observed from Fig. 19 that the proposed 
non-proportional and non-viscous damping updating method can predict the experimental FRFs more accurately than the viscous 
damping identification method. 

Fig. 17. Initial FE model.  

Table 6 
Correlation of measured and FE-model based modal data of F-shaped structure before updating.  

Mode No. Measured Frequency in Hz. FE-Model Predictions Updated model Predictions 
Frequency in Hz. % Error MAC-Value Frequency in Hz. % Error MAC- Value 

1 34.95 43.05 23.17 0.9231 34.25 − 2.0 0.9923 
2 104.02 123.67 18.89 0.9016 100.27 − 3.60 0.9693 
3 133.96 185.21 38.26 0.9281 134.42 0.34 0.9675 
4 317.52 385.17 21.30 0.9141 313.73 − 1.19 0.9423 
5 980.16 1020.06 4.07 0.7108 973.44 − 0.68 0.4370  
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7. Conclusions 

A new finite element model updating method in which damping is considered non-viscous and non-proportional is proposed. An 
exponential non-viscous and non-proportional damping model has been used to model the damping in the dynamic system. The 
proposed FE model updating method is a frequency response function (FRF)-based updating model which updates the non-viscous and 
non-proportional damping matrix in the dynamic system by parametric approach. The novel aspects of this paper include:  

• The proposed method is a single-step method in which the damping matrix is updated along with non-damping (mass and stiffness) 
matrices, whereas most other FE model updating methods for the damped system are two-step methods. In the first step, mass and 
stiffness matrices are updated and in the second step, updated mass and stiffness matrices are used to identify the damping matrix.  

• In the proposed method, identified damping matrix is non-proportional and non-viscous by using relaxation functions and damping 
coefficients as updating damping parameters. 

Fig. 18. Overlay of the measured FRF and the corresponding FE model FRF of F-shaped structure before updating.  

Table 7 
Values of physical updating parametersof the F-shaped structure before and after updating.  

Updating Variable Initial Value (N m rad− 1) Updated values using extended damped RFM (N m rad− 1) 

Kr1 3.28E+06 2.61E+05 
Kr2 3.28E+06 2.69E+05 
Kr3 3.28E+06 3.15E+05  

Table 8 
Values of damping updating parametersof the F-shaped structure before and after updating.  

Updating variable Initial Value Updated values 

αvr1 1× 10− 4 2.31× 10− 2 

αvr2 1× 10− 4 1.87× 10− 2 

αvr3 1× 10− 4 2.05× 10− 2 

μr1 100 22.56 
μr2 100 25.22 
μr3 100 38.43  
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• The proposed method can be used for identifying the local damping in a structure by parametric modeling of the joints and 
boundary conditions using relaxation functions and damping coefficients.  

• The proposed method addresses the difficulties of updating a non-viscous and non-proportional damping matrix using complex FRF 
data. 

The proposed method is working successfully for the cases of simulated numerical data as well as experimental data. To check the 
robustness of the proposed method, various levels of noise are introduced in the simulated data. The proposed method can identify the 
damping accurately in presence of noisy data. The proposed method is applied to the experimental data of a cantilever beam and F- 
shape structures in which the joint stiffnesses, relaxation variables and damping coefficients are updated. The success of these cases has 
proven the feasibility of the proposed method. 

Credit authorship contribution 

Vikas Arora: Writing and editing draft, Software, Investigation, Formal analysis, Experimentation, Data analysis. 
Sondipon Adhikari: Conceptualization, Software, Investigation, Methodology, Formal analysis, Writing-review editing draft 
Kiran Vijayan: Conceptualization, Software, Investigation, Methodology, Formal analysis, Writing-review & editing draft 

Declaration of Competing Interest 

None. 

Data availability 

No data was used for the research described in the article. 

References 

[1] Lord Rayleigh, Theory of Sound (two volumes), Dover Publications, 1897. 
[2] C.W. Bert, Material damping: an introduction review of mathematical models, measures and experimental techniques, J. Sound Vib. 29 (1973) 129–153. 
[3] M. Heckl, Measurements of absorption coefficients of plates, J. Sound Acoust. So. America. 34 (1962) 803–808. 
[4] O.P. Agrawal, L. Yuan, A numerical scheme for dynamic systems containing fractional derivatives, J. Vib. Acoust. 124 (2002) 321–324. 
[5] S. Adhikari, J. Woodhouse, Identification of damping part 2, non-viscous damping, J. Sound Vib. 243 (2000) 63–88. 
[6] P. Lancaster, Expression for damping matrices in linear vibration, J. Aero. Sc. 28 (1961), 256-256. 
[7] C. Minas, D.J. Inman, Identification of viscous damping in structure from modal information, J. Vib. Acoust. 113 (1991) 219–224. 
[8] L. Su, S.Q. Mei, Y.H. Pan, Y.F. Wang, Experimental identification of exponential damping for reinforced concrete cantilever beams, Eng. Struct. 186 (2019) 

161–169. 
[9] S. Mondal, S. Chakraborty, Identification of non-proportional viscous damping matrix of beams by finite element model updating, J. Vib. Cont. 24 (2018) 

2134–2148. 

Fig. 19. Overlay of the measured FRF and the corresponding FRF using proposed non-proportional and non-viscous method and viscous 
method [34]. 

V. Arora et al.                                                                                                                                                                                                          

http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0001
http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0002
http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0003
http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0004
http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0005
http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0006
http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0007
http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0008
http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0008
http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0009
http://refhub.elsevier.com/S0022-460X(23)00088-3/sbref0009


Journal of Sound and Vibration 552 (2023) 117639

18

[10] J.H. Lee, J. Kim, Development and validation of a new experimental method to identify damping matrices of a dynamic system, J. Sound Vib. 246 (2001) 
505–524. 
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