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A B S T R A C T

The unit cells connected periodically at a single node with only one degree of freedom is called
a monocoupled system. Dispersion relations for such systems are studied widely; however,
the analytical solution for salient features of the attenuation band, such as the number of
peaks in a band and band merging, have been relatively unexplored. In this paper, a general
theory for obtaining the attenuation characteristics of the general monocoupled system from
the roots and poles of the rational polynomial of the dispersion relation is developed. The
uniqueness of the developed rational polynomial method is that it can predict the attenuation
peaks and the possibility of multiple peaks in an attenuation band due to coupling between
the different band formation mechanisms in addition to standard band boundaries. The most
general monocoupled system has been conceptualized by combining the three mechanisms,
namely inertial amplifier, effective negative mass, and effective negative stiffness. This general
system is named Inertial Amplifier Negative Mass Negative Stiffness (IANMNS). This designed
monocoupled system degenerates into other seven subsystems as special cases, such as the
Inertial Amplifier Negative Stiffness (IANS), the Inertial Amplifier Negative Mass (IANM), the
Negative Mass Negative Stiffness (NMNS), the Inertial Amplifier (IA), the Negative Stiffness
(NS), the Negative Mass (NM) and the Monoatomic system. The closed-form expressions for the
peaks in attenuation level and bounds in terms of nondimensional frequency ratio and other
governing parameters such as the inertial mass ratio, mass ratios of resonators one (embedded
in main chain mass) and two (embedded in inertial mass), frequency ratios of resonators one
and two, and angular parameter are derived for the IANMNS and all the other seven subsystems.
The conditions for obtaining the double peaks and band merging are defined analytically.

. Introduction

A periodic system, in which unit cells are connected with their neighboring units via a single degree of freedom (dof) at a single
oordinate, is called a monocoupled system. A mono-coupled periodic system can be conceptualized as a series of spring–mass
attice systems. Additionally, a monocoupled system has only one coupling dof linked with the adjacent element; therefore, the
xistence of only two distinct opposite directional waves is feasible. Moreover, both of these waves have reciprocal wavenumber
𝜅) corresponding to a particular free wave frequency (𝜔) [1]. The relation between the wavenumber (𝜅) and free wave frequency
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(𝜔) is called dispersion relation, which can be determined with the help of Block–Floquet theorem [2]. Wave propagation through
eriodic monocoupled systems has been a topic of investigation for long; due to its ability to create frequency band gaps [3–7]
onsisting of attenuation band and propagation band. It has wide range of applications such as: noise reduction in helicopter cabin
nduced by vibration of gearbox using periodic struts [8], vibration absorbers in 1D lumped mass model [9], vibration suppression
sing chiral lattice [10], etc. Attenuation band is a range of frequencies of which a wave decays spatially. Free waves in a system,
catters due to the periodic interference, this phenomenon is known as Bragg scattering and is considered to be one of the band
ormation mechanisms of the mono-coupled systems [11–15].

With the discovery of the concept of the local resonance [16,17], the sub-wavelength bandgaps are possible to be achieved
xploiting the hybridization mechanism between dispersion and resonance [18–21]. The characterization of local resonance bandgap
s primarily comprehended by evaluating the effective properties of the unit cell for respective frequency range. For example,
he existence of the negative effective mass in a mass in mass resonator [22–24] or effective negative stiffness in a Helmholtz
esonator [25–27] near attenuation peaks were reported. These extreme properties in a resonating metamaterial results in an
ttenuation band near the natural frequency of the embedded resonator [28,29]. Embedding a resonator inside a unit of metamaterial
ill yield a narrow band near resonating frequency [24,30]. Further, an inertial amplifier mechanism [31–34] has been introduced,
hich amplifies the effective mass of the system by a special mechanism using rigid link [35–37]. Unlike the effective mass of

he mass-in-mass metamaterial, the inertial amplifier alters the effective inertia of the system in a constant amount throughout
he frequency spectrum. This inertial amplifier system yields an attenuation band having peak/s, which increases the attenuation
evel. Moreover, the double peaks in attenuation band due to resonance coupling and band merging have been obtained in the
ecent state of art [38,39]. Often, double peaks in stopband results in a high attenuation level for a wide frequency range [39,40],
hich eradicates the primary shortcoming of mass-in-mass metamaterial that the attenuation level within the band is very low for

ignificant parts of the attenuation band [32].
Motivated by these remarkable features of the monocoupled systems, researchers studied the coupling of various mechanisms

uch as effective negative mass, and stiffness [41–43] and a mass in mass resonator with IA to obtain double peak in attenuation
and [40], for obtaining a wider attenuation band. Expressions of the bounding frequencies were reported in the literature [44–46],
nd the dispersion diagram can be obtained in the frequency domain applying Bloch–Floquet’s theory. However, the condition for
he double peak phenomenon and the close form analytical expression for the exact location of the peaks in the attenuation band
ere still missing from the state of the art.

A generalized monocoupled system consisting of three mechanisms, namely mass in mass resonator, inertial amplifier, and
elmholtz resonator, has been developed to bridge the mentioned research gap. This proposed generalized system can be reduced

o seven monocoupled subsystems by assuming corresponding mass to zero, as depicted in Fig. 2. Further, a general framework
mplementing rational polynomial is developed in this paper from which the closed form expressions for the position of attenuation
eaks and bounding frequencies of propagation band can be identified for any undamped monocoupled system. Damping is an
nherent property of any material; however, its decaying nature is perceivable in time domain response. Wave attenuation is a
henomenon in the spatial domain; therefore, inherent small material damping does not significantly affect the characteristics of the
ands, including band boundaries and attenuation peaks. Although a notable alteration in band characteristics may be observed for
he inclusion of high viscous damping and metadamping could also be noticed in that case [47]. From the roots of the denominator
f the rational polynomial, the position of the peaks in the attenuation band and the possibility of double peaks can be identified.
he novelty of the paper lies in realizing the monocoupled system, which can act as a generalized system for the majority of the
onocouple systems existing in the literature, and the proposition of a rational polynomial based approach to predict the peaks

nd bounds of the attenuation band. Moreover, the effect on attenuation characteristics has been conceptualized by performing a
arametric variation of the governing parameters. It is noteworthy that the developed theory is directly applicable only for the
ndamped monocoupled systems.

. The generalized mono-coupled system: Conceptualization

In this paper, a generalized monocoupled system has been introduced, which is a combination of systems with an inertial
mplifier, negative mass, and negative stiffness. Fig. 2(a) represents a unit metamaterial cell in periodic arrangement of monocoupled
ystem with combined inertial amplifier, negative mass, and negative stiffness.

This generalized system will be called as the Inertial Amplifier Negative Mass Negative stiffness (IANMNS) system. Here the
ain chain has mass 𝑀 and stiffness 𝐾. The first resonator with mass 𝑚1 and stiffness 𝑘1 is connected directly to main mass 𝑀 .
he mass 𝑀 has another mass 𝑚𝑎 attached with rigid links to act as an inertial amplifier. The vertical barriers shown in Fig. 1(a),
re placed to confine the motion of inertial mass 𝑚𝑎 in only vertical direction. The second resonator with mass 𝑚2 and stiffness 𝑘2 is

connected to mass 𝑚𝑎. So here, four different masses are there in a single representative unit cell. This generalized IANMNS system
can be reduced to seven subsystems, as illustrated in Figs. 2(b–h).

2.1. Equation of motion of each mass

The dynamic stiffness matrix can be constructed using governing equations of motion and compatibility equations of the system.
The degrees of freedom of IANMNS system are shown in Fig. 1(b). The governing equations of motion at nodes 2 and 7 of resonator
mass embedded in base chain can be written as

node 2: 𝑚 𝑢̈ + 𝑘
(

𝑢 − 𝑢
)

= 0 (1)
2

1 2 1 2 1
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Fig. 1. (a) Periodically connected infinitely long chain of IANMNS system, (b) Nodal degrees of freedom of IANMNS system.

Fig. 2. (a) Generalized monocoupled system Inertial Amplifier Negative Mass Negative Stiffness (IANMNS) (b) Inertial Amplifier Negative Stiffness (IANS) system
obtained by considering 𝑚1 = 0, (c) Negative Mass Negative Stiffness (NMNS) system obtained by considering 𝑚𝑎 = 0, (d) Negative Stiffness (NS) system obtained
by considering 𝑚𝑎 = 0 and 𝑚1 = 0, (e) Inertial Amplifier Negative Mass (IANM) system obtained by considering 𝑚2 = 0, (f) Inertial Amplifier (IA) system obtained
by considering 𝑚1 = 0 and 𝑚2 = 0, (g) Negative Mass (NM) system obtained by considering 𝑚𝑎 = 0 and 𝑚2 = 0, (h) basic monoatomic system obtained by
considering 𝑚𝑎 = 0, 𝑚1 = 0 and 𝑚2 = 0.

node 7: 𝑚1𝑢̈7 + 𝑘1
(

𝑢7 − 𝑢8
)

= 0 (2)

Similarly at nodes 4 and 5, the governing equations of motion of resonators embedded in mass (𝑚𝑎) connected with rigid links can
be written as

node 4: 𝑚2𝑣̈4 + 𝑘2
(

𝑣4 − 𝑣3
)

= 0 (3)

node 5: 𝑚2𝑣̈5 + 𝑘2
(

𝑣5 − 𝑣6
)

= 0 (4)

The nodes 1 and 8, as well as nodes 3 and 6 have rigid links attached to them, which can be modeled in terms of force (𝑓𝑛) and
the governing equations of nodes 1, 3, 6 and 8 can be written as

node 1: 𝑀𝑢̈1 +𝐾
(

𝑢1 − 𝑢8
)

+ 𝑘1
(

𝑢1 − 𝑢2
)

= 2𝑓𝑛 cos𝜙 (5)

node 8: 𝑀𝑢̈ +𝐾
(

𝑢 − 𝑢
)

+ 𝑘
(

𝑢 − 𝑢
)

= 2𝑓 cos𝜙 (6)
3

8 8 1 1 8 7 𝑛
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node 3: 𝑚𝑎𝑣̈3 + 𝑘2
(

𝑣3 − 𝑣4
)

= 2𝑓𝑛 sin𝜙 (7)

node 6: 𝑚𝑎𝑣̈6 + 𝑘2
(

𝑣6 − 𝑣5
)

= 2𝑓𝑛 sin𝜙 (8)

Here, ̈(∙) denotes two time derivative so ̈(∙) = −𝜔2 (∙) can be written.

2.2. Compatibility equation

The compatibility equations of nodes 1, 3, 6 and 8 can be determined by kinematics of rigid links as follows

Displacement at node 3: 𝑣3 =
𝑢8 − 𝑢1
2 tan𝜙

(9)

and Displacement at node 6: 𝑣6 =
𝑢1 − 𝑢8
2 tan𝜙

(10)

Using equations of motion of node 3, 4, 5 and 6 (Eq. (7), Eq. (3) and Eq. (4), Eq. (8)); and compatibility equations of displacements
t node 3 and node 6 (Eq. (9) and Eq. (10)), the force in rigid links can be calculated as

𝑓𝑛 =
1

4 tan𝜙 sin𝜙

(

−𝑚𝑎 𝜔
2 + 𝑘2 −

𝑘22

−𝑚2 𝜔2 + 𝑘2

)

(

𝑢8 − 𝑢1
)

(11)

substituting Eq. (11) into the term (2 𝑓𝑛 cos𝜙) present in governing equations of nodes 1 and 8 can be written as

𝑙𝑛 = 2𝑓𝑛 cos𝜙 = 1
2 tan2 𝜙

(

−𝑚𝑎 𝜔
2 + 𝑘2 −

𝑘22

−𝑚2 𝜔2 + 𝑘2

)

(

𝑢8 − 𝑢1
)

(12)

2.3. Construction of Dynamic Stiffness Matrix

The Dynamic Stiffness matrix (𝐷𝑦) can be obtained as

𝐃𝑦 = −𝜔2 𝐌 +𝐊 + 𝐋 (13)

Where, the stiffness matrix (𝐊) and mass matrix (𝐌) can be formulated using equations of motion at node 1, 2, 7 and 8 (Eq. (5),
Eq. (1), Eq. (2) and Eq. (6)). Moreover, the corresponding response vector 𝐮 is vector of displacements at nodes 1, 2, 7 and 8

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐾 + 𝑘1 −𝑘1 0 −𝐾
−𝑘1 𝑘1 0 0
0 0 𝑘1 −𝑘1

−𝐾 0 −𝑘1 𝐾 + 𝑘1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐌 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑀 0 0 0
0 𝑚1 0 0
0 0 𝑚1 0
0 0 0 𝑀

⎤

⎥

⎥

⎥

⎥

⎦

(14)

𝐮 =
(

𝑢1 𝑢2 𝑢7 𝑢8
)′ (15)

Further, incorporating Eq. (12), the forces at nodes 1 and 8 due to rigid links can be written in matrix form as

𝐋 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑙𝑛 0 0 −𝑙𝑛
0 0 0 0
0 0 0 0
−𝑙𝑛 0 0 𝑙𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(16)

The dynamic stiffness matrix is obtained as

𝐃𝑦 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝜔2𝑀 +𝐾 + 𝑘1 + 𝑙𝑛 −𝑘1 0 −𝐾 − 𝑙𝑛
−𝑘1 −𝜔2𝑚1 + 𝑘1 0 0
0 0 −𝜔2𝑚1 + 𝑘1 −𝑘1

−𝐾 − 𝑙𝑛 0 −𝑘1 −𝜔2𝑀 +𝐾 + 𝑘1 + 𝑙𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(17)

By necessary matrix manipulations the condensed Dynamic Stiffness matrix (𝐷𝑦𝑐) for responses at node 1 and node 8 is obtained as

𝐃𝑦𝑐 =
⎡

⎢

⎢

⎣

−𝜔2𝑀 +𝐾 + 𝑘1 +
𝑘12

𝜔2𝑚1−𝑘1
+ 𝑙𝑛 −𝐾 − 𝑙𝑛

−𝐾 − 𝑙𝑛 −𝜔2𝑀 +𝐾 + 𝑘1 +
𝑘12

𝜔2𝑚1−𝑘1
+ 𝑙𝑛

⎤

⎥

⎥

⎦

(18)

eceptance matrix of the IANMNS system can be calculated by taking inverse of the condensed dynamic stiffness matrix 𝐷𝑦𝑐

𝜶𝑅 = 𝐃−1
𝑦𝑐 =

[

𝛼𝐿𝐿 𝛼𝐿𝑅
]

(19)
4

𝛼𝑅𝐿 𝛼𝑅𝑅
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Where

𝛼𝐿𝐿 = 1
|𝐃𝑦𝑐 |

(

−𝜔2𝑀 +𝐾 + 𝑘1 +
𝑘12

𝜔2𝑚1 − 𝑘1
+ 𝑙𝑛

)

(20)

and 𝛼𝐿𝑅 = 1
|𝐃𝐲𝐜|

(

𝐾 + 𝑙𝑛
)

(21)

and |𝐃𝑦𝑐 | =

(

−𝜔2𝑀 +𝐾 + 𝑘1 +
𝑘12

𝜔2𝑚1 − 𝑘1
+ 𝑙𝑛

)2

−
(

𝐾 + 𝑙𝑛
)2 (22)

Moreover, because of symmetric representative unit cell, the receptance matrix will have [48]

𝛼𝑅𝑅 = 𝛼𝐿𝐿 (23)

nd due to symmetric dynamic stiffness matrix the receptance matrix will also be the symmetric matrix so

𝛼𝑅𝐿 = 𝛼𝐿𝑅 (24)

ollowing this method, the receptance matrix can be formulated for all the seven subsystems by assigning zero to the suitable masses
s per given in Figs. 2(b–h).

. A general theory of attenuation characteristics in monocoupled system

For the unit cell of any monocoupled system, the force displacement relationship can be demonstrated by a receptance matrix
s follows [48]

{

𝑑𝐿
𝑑𝑅

}

=
[

𝛼𝐿𝐿 𝛼𝐿𝑅
𝛼𝑅𝐿 𝛼𝑅𝑅

] {

𝑓𝐿
𝑓𝑅

}

(25)

urther, As per Bloch theorem [2], the relation between left and right displacement as well as force can be written as

𝑑𝑅 = 𝑒𝑖 𝜅 𝑑𝐿

𝑓𝑅 = −𝑒𝑖 𝜅 𝑓𝐿 (26)

here, 𝜅 is a propagation constant. solving Eqs. (25) and (26), the dispersion relation can be explained as

cos(𝜅) =
𝛼𝐿𝐿 + 𝛼𝑅𝑅

2 𝛼𝐿𝑅
(27)

Further, using Eqs. (23), (24) and (27), the dispersion relation for the symmetric system can be written as

cos(𝜅) =
𝛼𝐿𝐿
𝛼𝐿𝑅

(28)

As the components of receptance matrix are functions of square of frequency, the general statement for any monocoupled system
can be written as

cos(𝜅) = 𝑔(𝜔2) = 𝑥 (29)

Now,

𝑒𝑖 𝜅 + 𝑒−𝑖 𝜅 = 2 𝑥

𝑒2 𝑖 𝜅 + 1 = 2 𝑥 𝑒𝑖 𝜅

𝑒2 𝑖 𝜅 − 2 𝑥 𝑒𝑖 𝜅 + 1 = 0 (30)

Let 𝐴 = 𝑒𝑖 𝜅 , from Eq. (30)

𝐴 = 𝑥 ±
√

𝑥2 − 1 (31)

Let, solution 𝜅 = 𝛼 + 𝑖 𝛽, So ln𝐴 = −𝛽 + 𝑖 𝛼. It is useful to note here that the value of 𝛽 defines the level of attenuation and 𝛼 defines
the phase of propagating wave. When, 𝑥2 > 1, 𝐴 is real, So when

𝐴 < 0 → ln𝐴 = ln |𝐴| + 𝑖𝜋 → 𝛼 = 𝜋 & 𝛽 = − ln𝐴 → 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛

𝐴 > 0 → ln𝐴 = ln |𝐴| + 𝑖0 → 𝛼 = 0 & 𝛽 = − ln𝐴 → 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 (32)

ut when 𝑥2 < 1, 𝐴 is complex. Now, let 𝑥 = cos(𝛿) so the following can be derived from Eq. (31)

𝐴 = 𝑒𝑖 𝜅 = 𝑒𝑖 (𝛼+𝑖 𝛽) = cos(𝛿) + 𝑖 sin(𝛿) → 𝛼 = 𝛿 = cos−1(𝑥) & 𝛽 = 0 → 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 (33)

From Eqs. (32) and (33), it can be concluded that in case of monocoupled systems, the wave will be purely propagating (Fig. 3(a)) or
5

attenuating (Fig. 3(b)) because the wave number cannot have simultaneous non zero imaginary and real values. The simultaneous
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Fig. 3. Displacement patterns for different types of responses (a) pure propagation (b) pure attenuation (c) fluctuating attenuation.

on zero imaginary and real values will cause fluctuating attenuation (Fig. 3(c)), which is impossible in the case of monocoupled
ystems. Any monocoupled system can be generalized in terms of effective mass (𝑀𝑒𝑓𝑓 ) and effective stiffness (𝐾𝑒𝑓𝑓 ), by comparing
t to the mono-atomic chain given in Fig. 2(h). So, the generalized dispersion equation can be obtained as [7]

cos(𝜅) = 1 −
𝜔2 𝑀𝑒𝑓𝑓

𝐾𝑒𝑓𝑓
(34)

Here, the effective mass and stiffness are also the functions of 𝜔2. The rational polynomial equation for dispersion relation of any
monocoupled system can be obtained as

𝑔(𝜔2) = 1 +
𝑅(𝜔2)
𝑄(𝜔2)

(35)

From the roots and poles of rational polynomial Eq. (35), the salient features of band structure like peak in attenuation and bounding
frequencies can be obtained. First, the peaks in the attenuation band occur when 𝑔(𝜔2) → ∞, which exists at the poles of Eq. (35),
which are the roots of

𝑄(𝜔2) = 0 (36)

Further, the propagation boundaries occur when 𝑔(𝜔2) = ± 1 (at roots of Eq. (35)), which results in two equations such as

1 +
𝑅(𝜔2)
𝑄(𝜔2)

= 1 → 𝑅(𝜔2) = 0 (37)

1 +
𝑅(𝜔2)
𝑄(𝜔2)

= −1 → 𝑅(𝜔2) + 2𝑄(𝜔2) = 0 (38)

As this monocoupled system is semi definite, the propagation zone will start from zero frequency. So Eq. (37) or Eq. (38) will have
zero as its one root, and other roots will define bounds of propagation or attenuation bands.

4. Non-dimensional form and various mono coupled systems

The non-dimensional form of the dispersion relation of the IANMNS system is dependent on the following governing nondimen-
sional parameters:

• 𝜂 = 𝜔
√

𝐾∕𝑀
. Free wave frequency ratio (𝜂) expressed as ratio of free wave frequency (𝜔) and natural frequency of main chain

√

𝐾∕𝑀 .
• 𝜃 = 𝑚𝑎

𝑀 . Inertial mass ratio (𝜃) defined as the ratio of the inertial mass 𝑚𝑎 with the mass at the main chain 𝑀 .
• 𝜃𝑟1 =

𝑚1
𝑀 . Mass ratio (𝜃𝑟1) is defined as the ratio of the mass of resonator embedded in main chain and main mass.

• 𝜂𝑟1 =
√

𝑘1∕𝑚1
√

𝐾∕𝑀
. Frequency ratio of the resonator one attached to the main chain is defined as ratio of the natural frequency of

the first resonator with the natural frequency of the main chain (
√

𝐾∕𝑀).
• 𝜃𝑟2 =

𝑚2
𝑀 . Mass ratio (𝜃𝑟2) is defined as the ratio of the mass of resonator two (𝑚2) and main mass 𝑀 .

• 𝜂𝑟2 =
√

𝑘2∕𝑚2
√

𝐾∕𝑀
. Frequency ratio of the resonator two is defined as ratio of the natural frequency of the second resonator with

the natural frequency of the main chain (
√

𝐾∕𝑀).
• 𝛾 = tan2 𝜙. angular parameter 𝛾 is the square of a tangent of the angle made by rigid links with 𝑥-axis in the anticlockwise

direction.
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n
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B
t
s
o

4.1. Peak in attenuation level and bounds of propagation band

For the IANMNS system, the equation of dispersion relation in the form of Eq. (35) is obtained from Eq. (20) and Eq. (28) in
ondimensional parameters, where 𝑄(𝜂2) and 𝑅(𝜂2) are

𝑅(𝜂2) = 𝑅3𝜂
6 + 𝑅2𝜂

4 + 𝑅1𝜂
2 + 𝑅0

and 𝑄(𝜂2) = 𝑄3𝜂
6 +𝑄2𝜂

4 +𝑄1𝜂
2 +𝑄0 (39)

where, the coefficients of equation 𝑅 = 0 are

𝑅3 = −2 𝛾

𝑅2 = 2 𝛾 𝜂𝑟22 + 2 𝛾
(

𝜂𝑟1
2𝜃𝑟1 + 𝜂𝑟1

2)

𝑅1 = −2 𝛾
(

𝜂𝑟1
2𝜃𝑟1 + 𝜂𝑟1

2) 𝜂𝑟2
2

and 𝑅0 = 0 (40)

The coefficients of equation 𝑄 = 0 are

𝑄3 = −𝜃

𝑄2 = 𝜂𝑟1
2𝜃 + 𝜂𝑟2

2𝜃 + 𝜂𝑟2
2 𝜃𝑟2 + 2 𝛾

𝑄1 =
(

−𝜂𝑟22𝜃 − 𝜂𝑟2
2 𝜃𝑟2 − 2 𝛾

)

𝜂𝑟1
2 − 2 𝛾 𝜂𝑟22

and 𝑄0 = 2 𝛾 𝜂𝑟12𝜂𝑟22 (41)

To study the possible number of peaks present in a single attenuation band, roots of any one boundary equation (that is 𝑅 = 0 or
𝑅 + 2𝑄 = 0) and attenuation peak equation (that is 𝑄 = 0) is necessary. Analytically roots of all three equations can be obtained,
however here we have given solution for only two equations i.e. 𝑄 = 0 and 𝑅 = 0, as closed form solution of 𝑅 + 2𝑄 = 0 is
omplicated to write for IANMNS system.

The roots of 𝑄 = 0 are

𝑞1 = 𝜂𝑟1

𝑞2, 𝑞3 =

√

1
2 𝜃

(

𝜂𝑟22
(

𝜃 + 𝜃𝑟2
)

+ 2 𝛾 ±
√

(

𝜂𝑟22
(

𝜃 + 𝜃𝑟2
)

+ 2 𝛾
)2 − 8 𝜂𝑟22𝛾 𝜃

)

(42)

It can be concluded from the roots of equation 𝑄 = 0 that, the root 𝑞1 is obtained from natural frequency of mass in mass resonator
and 𝑞2 and 𝑞3 are result of combined effects of inertial amplifier and negative stiffness resonator. As 𝑅0 = 0, its first root is 𝜂 = 0,
which shows the starting of propagation zone. Roots of 𝑅 = 0 are

𝑟1 = 0

𝑟2 = 𝜂𝑟2

𝑟3 =
√

𝜂𝑟12𝜃𝑟1 + 𝜂𝑟12 = 𝜂𝑟1
√

(1 + 𝜃𝑟1) (43)

The roots 𝑟2 and 𝑟3 are boundaries of dispersion diagram. The positions of these roots are such that all three peaks of attenuation
can never be in a single attenuation band (proved in Appendix).

Further, by placing zero value to the non required mass into the dynamic stiffness matrix of IANMNS system as per given in
Fig. 2; the 𝑄 and 𝑅 equations and their roots corresponding to all obtained systems are obtained in Table 1. Following are the
variables name given to the roots according to their reason of existence

𝜉1 =

√

1
2 𝜃

(

𝜂𝑟22
(

𝜃 + 𝜃𝑟2
)

+ 2 𝛾 −
√

(

𝜂𝑟22
(

𝜃 + 𝜃𝑟2
)

+ 2 𝛾
)2 − 8 𝜂𝑟22𝛾 𝜃

)

(44)

𝜉2 =

√

1
2 𝜃

(

𝜂𝑟22
(

𝜃 + 𝜃𝑟2
)

+ 2 𝛾 +
√

(

𝜂𝑟22
(

𝜃 + 𝜃𝑟2
)

+ 2 𝛾
)2 − 8 𝜂𝑟22𝛾 𝜃

)

(45)

𝜉𝑁𝑆 =

√

2 𝛾 𝜂𝑟22

𝜂𝑟22𝜃𝑟2 + 2 𝛾
(46)

𝜉𝑁𝑀 = 𝜂𝑟1 (47)

and 𝜉𝐼𝐴 =
√

2 𝛾
𝜃

(48)

y observing the equations of 𝜉1 and 𝜉2, it can be concluded that they are independent of the first resonator and the mechanism of
he embedded resonator in the attached inertial amplifier gives rise to two peaks (𝜉1 and 𝜉2) in attenuation band. The root of the
ystem when the second resonator is directly connected with the rigid link is given by the equation of 𝜉𝑁𝑆 , which is only dependant
n the angle of the rigid link and second resonator. Similarly, when the first resonator is attached to main mass 𝑀 , the peak in
7
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Table 1
Closed form solution of the roots of the governing polynomials. The labels in first column
corresponds to the systems given in Fig. 2(a–h).

System Roots of 𝑄 = 0 Roots of 𝑅 = 0

𝑞1 𝑞2 𝑞3 𝑟1 𝑟2 𝑟3
a IANMNS 𝜉1 𝜉2 𝜉𝑁𝑀 0 𝜁𝑟1 𝜁𝑟2
𝑎𝑠 IANMNS special 𝜉1 𝜉2 – 0 𝜁𝑟1 –
b IANS 𝜉1 𝜉2 – 0 𝜁𝑟2 –
c NMNS 𝜉𝑁𝑆 𝜉𝑁𝑀 – 0 𝜁𝑟1 𝜁𝑟2
d NS 𝜉𝑁𝑆 – – 0 𝜁𝑟2 –
e IANM 𝜉𝑁𝑀 𝜉𝐼𝐴 – 0 𝜁𝑟1 –
f IA 𝜉𝐼𝐴 – – 0 – –
g NM 𝜉𝑁𝑀 – – 0 𝜁𝑟1 –
h Monoatomic – – – 0 – –

Table 2
Input data for validation.

Subsystems 𝑀 𝑚𝑎 𝑚1 𝑚2 𝐾 𝑘1 𝑘2 tan𝜙

NMNS [41,49] 1 1.5 1 – 1 0.1 1 0.6
IANM [40] 1 4 2 – 1 8 – 1
NM [23,30] 0.1011 – 0.4647 – 117 74 – –

attenuation band can be observed at 𝜉𝑁𝑀 , and in the case of the only inertial amplifier, the attenuation peak is developed at 𝜉𝐼𝐴.
It is noteworthy that the roots of the IANS system are different from the roots of the IA and NS systems, as the IANS system is the
coupling of the IA and NS systems. However, when the NM system is associated with any IANS, IA, or NS system, the roots remain
independent of each other as they are not coupled.

The roots of equation 𝑅 are defined as following

𝜁𝑟1 = 𝜂𝑟1
√

(1 + 𝜃𝑟1) (49)

and 𝜁𝑟2 = 𝜂𝑟2 (50)

The root 𝜁𝑟1 is due to first resonator and 𝜁𝑟2 is due to the second resonator.

5. Validation

The dispersion relation of few subsystems of IANMNS has been obtained in literature using different methods. The band
boundaries and attenuation peaks are key features of this dispersion diagrams. In this section, the roots of equation 𝑄 = 0 to
locate the attenuation peaks and roots of the equations 𝑅 = 0 and 𝑅+ 2𝑄 = 0 to locate band boundaries has been obtained for few
subsystems and validated with corresponding literature.

First, the dispersion characteristics of subsystem consists of effective negative mass negative stiffness mechanism (NMNS) has
been obtained. The input parameters as per [41,49] has been chosen and given in dimensional form in Table 2. The locations of
band boundaries are clearly mentioned in [41] and locations of attenuation peaks are shown in [49], which are tabulated in Table 3.
The results obtained by proposed method are converted into nondimensional frequency as per the literature, and are tabulated in
Table 3.

Further, the dispersion characteristics of subsystem consists of inertial amplifier with effective negative mass mechanism (IANM)
has been obtained. The particular set of system parameters has been chosen (Table 2 as an example for the purpose of validation
from [40]. The dispersion plot has been given in literature, from that the approximate values of dimensionless frequency has been
written in Table 3. The exact analytical values has been obtained in Table 3 using the proposed method and they are written in
dimensionless frequency as per literature.

Additionally, the dispersion characteristics of subsystem consists of effective negative mass mechanism (NM) has been obtained.
The experimental study of a monocoupled system with negative mass mechanism has been done by [23] and that has been used for
validation in [30]. The same example (Table 2) has been used here for validation. The band characteristics obtained in literature
are as per Table 3. The results obtain by proposed method (Table 3) are in good agreement with the band characteristics obtain in
literature.

The dispersion plot for all three subsystems has been obtained and demonstrated in Table 3.

6. Results and discussions

In this section, contour plots of attenuation levels are plotted for the generalized IANMNS system and all the other systems
derived from it. The silver, blue, and green dashed lines in all the contour plots depict the roots of the equation Eq. (36), Eq. (37)
and Eq. (38) respectively, which corresponds to the position of peaks in attenuation band and boundaries of dispersion diagram.
8
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Table 3
Attenuation characteristics as per literature (lit*) and proposed (pro*) method. (For interpretation of the references to color in this table, the
reader is referred to the web version of this article.)

Subsystems NMNS IANM NM

Lit* Pro* Lit* Pro* Lit* Pro*

Attenuation peaks 𝑝1 1 1 0.7 0.7071 6.3 6.351
𝑝2 1.1 1.066 2 2 – –

Band boundaries

𝑏1 0 0 0 0 0 0
𝑏2 0.9 0.986 0.5 0.529 5.8 5.749
𝑏3 1.6 1.581 2.4 2.392 7.6 7.673
𝑏4 2.5 2.449 3.5 3.464 – –
𝑏5 3.9 3.873 – – – –

Dispersion plot

Table 4
Systems and the values of their governing nondimensional parameters with possibility of double peak phenomenon. The
labels in first column corresponds to the systems given in Fig. 2(a–h).

System Nondimensional parameters Attenuation characteristics

𝜃 𝜃𝑟1 𝜃𝑟2 𝜂𝑟1 𝜂𝑟2 𝛾 Peaks Double peak

a IANMNS 1 3 0.25 0–5 2 1 3 Y
𝑎𝑠 IANMNS special 1 3 0.25 0–5 0–5 1 2 Y
b IANS 1 – 0.25 – 0–5 1 2 N
c NMNS – 3 0.25 0–5 2 1 2 Y
d NS – – 0.25 – 0–5 1 1 N
e IANM 1 3 – 0–5 – 1 2 Y
f IA 0–5 – – – – 1 1 N
g NM – 3 – 0–5 – – 1 N
h Monoatomic – – – – – – 0 N

The values of the governing parameters used for the analysis of each derived system are given in table Table 4. Additionally, the
number of attenuation peaks in the dispersion diagram as well as the possibilities of the double peak in a single attenuation band
is incorporated in Table 4.

6.1. Inertial amplifier negative mass negative stiffness (IANMNS)

Fig. 4(e) illustrates the contour of attenuation level with respect to natural frequency of mass in mass resonator (𝜂𝑟1) and Figs. 4(a–
d) illustrates the dispersion relations for particular values of 𝜂𝑟1 (as shown with pink dash–dot line in Fig. 4(e)) for enhanced
comprehension about the bandgap and level of attenuation within the attenuation band. In Fig. 4(a) at 𝜂𝑟1 = 0.5, the roots of
equations 𝑅(𝜂2) = 0 and 𝑄(𝜂2) = 0 are occurring alternatively (0 < 𝜉𝑁𝑀 < 𝜁𝑟1 < 𝜉1 < 𝜁𝑟2 < 𝜉2), so the peaks in attenuation band are
in separate attenuation zones. As the natural frequency of mass in mass resonator increases and crosses the value 𝜉1, the positions of
roots changes and the double peak phenomenon can be obtained in the first attenuation band (Fig. 4(b)). Further upon increasing
𝜂𝑟1 to the value of 𝜂𝑟2 the second propagation band merges and two separate peaks of attenuation band falls in a single attenuation
band resulting wide band gap (Fig. 4(c)). This concludes that by having same roots of 𝑄 = 0 and 𝑅 = 0 (𝜉𝑁𝑀 = 𝜁𝑟2), they will
be canceled out and band merging will take place further. When 𝜂𝑟1 > 𝜂𝑟2 the double peak will shift to the next attenuation band
(Fig. 4(d)).

6.2. Inertial amplifier negative mass negative stiffness (IANMNS) special case

As it has been observed in Fig. 4(c), that by keeping both the resonators of the IANMNS system at the same frequency, the band
merging will give a wide band. This phenomenon is observed in detail by varying the natural frequency of resonators from 0 to
5. The contour of attenuation level is plotted for this special case in Fig. 5(e). Figs. 5(a–d) illustrates the dispersion relation for
IANMNS special case for resonators with different frequencies 𝜂𝑟1 = 0.5, 1.5, 2 𝑎𝑛𝑑 3.5 respectively. In Fig. 5(a) the roots position is
0 < 𝜉1 < 𝜁𝑟1 < 𝜉2, so attenuation peaks will occur in separate attenuation bands. By increasing resonators’ frequency 𝜂𝑟1, as 𝜁𝑟1 > 𝜉2
the root position will shift to 0 < 𝜉1 < 𝜉2 < 𝜁𝑟1 which results in double peak in first attenuation band. From Fig. 5(b, c, and d), it
can be observed that by increasing the frequency of the resonator, the first attenuation band gets wider, and due to the double peak
phenomenon, the higher attenuation level is observed for broad frequency range.
9
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Fig. 4. The figure corresponds to IANMNS system (given in Fig. 2(a)), with values of governing parameters 𝜃 = 1; 𝜃𝑟1 = 3, 𝜃𝑟2 = 0.25, 𝜂𝑟2 = 2, 𝛾 = 1 and varying
𝜂𝑟1 from 0 to 5. The contour plot for frequency ratio 𝜂 varying from 0 to 5 versus 𝜂𝑟1 is shown in (e). In this figure (e) the silver, blue and green dashed lines
depicts the roots of equations 𝑄(𝜂2) = 0, 𝑅(𝜂2) = 0, and 𝑅(𝜂2) + 2𝑄(𝜂2) = 0 respectively. The (a), (b), (c) and (d) figures demonstrates the dispersion relation for
the IANMNS system at sections drawn by pink lines at 𝜂𝑟1 = 0.5, 1.5, 2 𝑎𝑛𝑑 3.5 respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. IANMNS special case (with both the resonators with same frequencies (𝜂𝑟1 = 𝜂𝑟2)). system (given in Fig. 2(a)), with values of governing parameters
𝜃 = 1; 𝜃𝑟1 = 3, 𝜃𝑟2 = 0.25, 𝛾 = 1 and varying 𝜂𝑟1 = 𝜂𝑟2 from 0 to 5. The contour plot for frequency ratio 𝜂 varying from 0 to 5 versus 𝜂𝑟1 is shown in (e). In this
figure (e) the silver, blue and green dashed lines depicts the roots of equations 𝑄(𝜂2) = 0, 𝑅(𝜂2) = 0, and 𝑅(𝜂2) + 2𝑄(𝜂2) = 0 respectively. The (a), (b), (c) and
(d) figures demonstrates the dispersion relation for the IANMNS special case system at sections drawn by pink lines at 𝜂𝑟1 = 0.5, 1.5, 2 𝑎𝑛𝑑 3.5 respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6.3. Negative mass negative stiffness (NMNS)

Fig. 6(e) illustrates the contour of attenuation level of NMNS system (given in Fig. 2(c)) with varying frequency of mass in mass
resonator (𝜂𝑟1) from 0 to 5. Figs. 6(a–d) illustrates the dispersion relations at natural frequencies of mass in mass resonator (𝜂𝑟1) at
0.5, 1, 2 and 2.75 respectively. Fig. 6(a) depicts that till root 𝜁𝑟1 < 𝜉𝑁𝑆 , the attenuation band will have single peaks. By increasing
𝜂 further (Fig. 6(b)), the double peak in first attenuation band occurs as root 𝜁 > 𝜉 . Moreover as the roots 𝜁 = 𝜁 , the merging
10

𝑟1 𝑟1 𝑁𝑆 𝑟1 𝑟2



Journal of Sound and Vibration 541 (2022) 117318A. Bhatt et al.
Fig. 6. NMNS system (given in Fig. 2(c)), with values of governing parameters 𝜃𝑟1 = 3, 𝜃𝑟2 = 0.25, 𝜂𝑟2 = 2, 𝛾 = 1 and varying 𝜂𝑟1 from 0 to 5. The contour plot
for frequency ratio 𝜂 varying from 0 to 5 versus 𝜂𝑟1 is shown in (e). In this figure (e) the silver, blue and green dashed lines depicts the roots of equations
𝑄(𝜂2) = 0, 𝑅(𝜂2) = 0, and 𝑅(𝜂2) + 2𝑄(𝜂2) = 0 respectively. The (a), (b), (c) and (d) figures demonstrates the dispersion relation for the NMNS system at sections
drawn by pink lines at 𝜂𝑟1 = 0.5, 1.5, 2 𝑎𝑛𝑑 3.5 respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

of propagation band can be observed. In Fig. 6(c), the root 𝜁𝑟2 = 𝜉𝑁𝑀 results in wider attenuation band with single peak. Fig. 6(d)
demonstrates that root position 𝜉𝑁𝑆 < 𝜁𝑟2 < 𝜉𝑁𝑀 results in single peaks in attenuation bands.

6.4. Inertial amplifier negative mass (IANM)

The contour of attenuation level of IANM system (given in Fig. 2(e)) with varying frequency of mass in mass resonator (𝜂𝑟1) from
0 to 5 is shown in Fig. 7(e). The dispersion relations at natural frequencies of mass in mass resonator (𝜂𝑟1) at 0.5, 1, 2 and 2.75
respectively are demonstrated in Figs. 7(a–d). Fig. 7(a) depicts that till roots position is 𝜉𝑁𝑀 < 𝜁𝑟1 < 𝜉𝐼𝐴, the attenuation band will
have single peaks. By increasing 𝜂𝑟1 further (Fig. 7(b)), the double peak in first attenuation band occurs as roots 𝜉𝑁𝑀 < 𝜉𝐼𝐴 < 𝜁𝑟1.
In Figs. 7(c) and (d), the root positions 𝜉𝐼𝐴 < 𝜉𝑁𝑀 < 𝜁𝑟1 showing double peak can be observed and also the attenuation band gets
wider as increase in natural frequency of mass in mass resonator.

The attenuation level contours of systems IANS (Fig. 2(b)), NS (Fig. 2(d)), IA (Fig. 2(f)), NM (Fig. 2(g)) are demonstrated in
Figs 8(a), (b), (c) and (d) respectively. In IANS system, the two attenuation peaks are present but due to the coupling of IA and NS,
the natural frequency of resonator always falls in between the two roots of 𝑄 = 0 which separates the attenuation bands Fig. 8(a).
In case of NS system, the positions of attenuation peak (𝜉𝑁𝑆 ) and bound of propagation band (𝜁𝑟2) is shown by silver and blue line
in Fig. 8(b). Similarly the peak (𝜉𝐼𝐴) in attenuation band for IA is shown with silver line in Figs. 8(c) and (d) illustrates the peak
(𝜉𝑁𝑀 ) in attenuation band and bound (𝜁𝑟1) of propagation for NM system.

7. Summary

The main observations of the results are summarized as follows:

1. In the IANMNS system, a maximum three number of attenuation peaks are possible. Among them, two peaks occur due to
the inertial amplifier negative stiffness (IANS) system and the third one due to the negative mass (NM) system. However,
these three peaks can never be in a single attenuation band, but double peaks in a single attenuation band are possible for
several cases.

2. A special IANMNS system, having both resonators with the same natural frequencies, results in a wide bandgap with double
attenuation peaks due to the band merging phenomenon.

3. The IANM system also results in a wider band of high attenuation level due to double peak in the attenuation band.
4. The expressions of attenuation peaks are mainly due to the four basic mechanisms: IANS, NM, NS, and inertial amplifier (IA).

The IANS system does not possess direct roots from IA and NS as they are coupled. Nevertheless, the positions of peaks in
the IANM system can be directly derived from NM and IA systems as they are independent.
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Fig. 7. IANM system (given in Fig. 2(e)), with values of governing parameters 𝜃 = 1, 𝜃𝑟1 = 3, 𝛾 = 1 and varying 𝜂𝑟1 from 0 to 5. The contour plot for frequency
ratio 𝜂 varying from 0 to 5 versus 𝜂𝑟1 is shown in (e). In this figure (e) the silver, blue and green dashed lines depicts the roots of equations 𝑄(𝜂2) = 0, 𝑅(𝜂2) = 0,
and 𝑅(𝜂2) + 2𝑄(𝜂2) = 0 respectively. The (a), (b), (c) and (d) figures demonstrates the dispersion relation for the IANM system at sections drawn by pink lines at
𝜂𝑟1 = 0.5, 1.5, 2 𝑎𝑛𝑑 2.75 respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. While the natural frequencies of both the resonators are same
(

𝜂𝑟1 = 𝜂𝑟2
)

, then the attenuation bands merge. On the other
hand, the propagation band merges if the equation of bounds has two roots with the same values.

6. The proper tuning of the parameters of the IANMNS, negative mass negative stiffness (NMNS), and IANM systems may make
them capable of obtaining double peaks in a single attenuation band. This phenomenon is desired in obtaining an attenuation
bandgap with a significant attenuation level.

The overall criteria for separate attenuation peaks, double peaks phenomenon, and band merging have been illustrated for IANMNS
and its seven subsystems.

8. Conclusion

In this paper, a generalized monocoupled system inertial amplifier negative mass negative stiffness (IANMNS) has been developed
by coupling several different mechanisms of systems, such as an inertial amplifier, effective negative mass, and stiffness. Different
types of unit cells of monocoupled systems analyzed in the literature can be obtained by assigning zero values to the specific masses.

A general theory has been developed to locate the positions and numbers of attenuation peaks as well as bounding frequencies of
the propagation band of any monocoupled system using the rational polynomial equation of its dispersion relation. Exact closed-form
analytical expressions for the attenuation peaks and boundaries of the dispersion diagram for the IANMNS system and seven other
subsystems are obtained. Key contributions of the paper include:

• Wave propagation and dispersion equations are analyzed in several papers adopting an effective medium approach, transfer
matrix approach, etc. These existing methods primarily yield the boundaries of the band, but they are unable to locate the
attenuation peaks or the existence of the peak or coupling of the peaks within the attenuation band. Recently, this coupling of
the attenuation peaks received very significant attention as it ensures a certain level of attenuation throughout the attenuation
band. To overcome the above mentioned problem, the proposed rational polynomial approach is developed in this paper,
which can locate the attenuation peaks and band boundaries. Moreover, it provides a mathematical basis for the coupling of
band gaps obtained from the different band formation mechanisms.

• Perceiving a generalized inertial amplifier negative mass negative stiffness (IANMNS) monocoupled system from which seven
monocoupled subsystems emerge as special cases.

• The general theory for obtaining the closed-form expressions employing the concept of roots and poles of a rational polynomial
of dispersion relation has been communicated.

• The attenuation characteristics, such as bounds of the band gaps, location of the peaks in the attenuation band of the seven
monocoupled subsystems, and the source, IANMNS, are compared.

Based on these findings, future monocoupled systems can be designed and specifically tuned for the required bandwidth and
attenuation level by combining different mechanisms elicited in the paper.
12
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Fig. 8. (a): System—IANS (given in Fig. 2(b)), (b): System—NS (given in Fig. 2(d)), (c): System—IA (given in Fig. 2(f)), (d): System—NM (given in Fig. 2(g)),
Here silver, blue and green dashed lines are roots of equations 𝑄(𝜂2) = 0, 𝑅(𝜂2) = 0, and 𝑅(𝜂2) + 2𝑄(𝜂2) = 0 respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

CRediT authorship contribution statement

Abhigna Bhatt: Conceptualization, Methodology, Software, Writing, Visualization, Investigation, Data curation. Arnab Baner-
jee: Conceptualization, Methodology, Review and editing, Supervision. Sondipon Adhikari: Conceptualization, Review and editing,
Discussion, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

Abhigna Bhatt and Arnab Banerjee acknowledge Inspire faculty award, Department of Science and Technology of India, grant
number: DST/INSPIRE/04/2018/000052, for partial supporting the research.
13



Journal of Sound and Vibration 541 (2022) 117318A. Bhatt et al.

F
r

Appendix. Roots positions of IANMNS system

The equations of roots of IANMNS system are given in Eq. (42) and Eq. (43). from roots 𝑞1 and 𝑟3, it can be seen that when

𝜃𝑟1 ≥ 0 → 𝜂𝑟1
√

(𝜃𝑟1 + 1) ≥ 𝜂𝑟1 → 𝑟3 ≥ 𝑞1 (A.1)

To see the positions of roots 𝑞2 and 𝑞3 with respect to 𝑟2, 𝑟22 is subtracted from roots 𝑞22 and 𝑞23

𝑞22 − 𝑟22 =
1
2 𝜃

(

−𝜂𝑟22 𝜃 + 𝜂𝑟2
2𝜃𝑟2 + 2 𝛾 −

√

(

−𝜂𝑟22𝜃 + 𝜂𝑟22 𝜃𝑟2 + 2 𝛾
)2 + 4 𝜂𝑟24𝜃2𝜃𝑟2

)

𝑞23 − 𝑟22 =
1
2 𝜃

(

−𝜂𝑟22 𝜃 + 𝜂𝑟2
2𝜃𝑟2 + 2 𝛾 +

√

(

−𝜂𝑟22𝜃 + 𝜂𝑟22 𝜃𝑟2 + 2 𝛾
)2 + 4 𝜂𝑟24𝜃2𝜃𝑟2

)

(A.2)

Now

4 𝜂𝑟24𝜃2𝜃𝑟2 ≥ 0 (A.3)
(

−𝜂𝑟22 𝜃 + 𝜂𝑟2
2𝜃𝑟2 + 2 𝛾

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜒2

+4 𝜂𝑟24𝜃2𝜃𝑟2 ≥
(

−𝜂𝑟22 𝜃 + 𝜂𝑟2
2𝜃𝑟2 + 2 𝛾

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜒2

(A.4)

𝜒2 ≤ 𝜒2 + 4 𝜂𝑟24𝜃2𝜃𝑟2 (A.5)

Further it can be simplified as

−
√

𝜒2 + 4 𝜂4𝑟2𝜃
2𝜃𝑟2 ≤ −𝜒 ≤

√

𝜒2 + 4 𝜂4𝑟2𝜃
2𝜃𝑟2 (A.6)

𝜒 −
√

𝜒2 + 4 𝜂4𝑟2𝜃
2𝜃𝑟2 ≤ 0 ≤ 𝜒 +

√

𝜒2 + 4 𝜂4𝑟2𝜃
2𝜃𝑟2 (A.7)

𝑞22 − 𝑟22 < 0 < 𝑞23 − 𝑟22
𝑞22 < 𝑟22 < 𝑞23
𝑞2 < 𝑟2 < 𝑞3 (A.8)

rom Eq. (A.8), it can be concluded that one boundary of the attenuation band lies between two attenuation peaks, which is the
eason that in a single attenuation band, three attenuation peaks cannot occur.

If 𝑟2 < 𝑟3 i.e. 𝜂𝑟2 < 𝜂𝑟1
√

𝜃𝑟1 + 1, then root 𝑞2 will always lie between 𝑟1 to 𝑟2 and root 𝑞3 will always lie between 𝑟2 to 𝑟3, and as
𝑞1 < 𝑟3, this condition leads the system to have two peaks in its first attenuation band if 𝑞1 < 𝑟2 or in its second attenuation band if
𝑞1 > 𝑟2. If 𝑟3 < 𝑟2 i.e. 𝜂𝑟1

√

𝜃𝑟1 + 1 < 𝜂𝑟2, then first 𝑞1 will be the peak in attenuation band, but for 𝑞2 there are two possibilities

• 𝑟1 < 𝑞2 < 𝑟3 double peak can be seen in first attenuation band
• 𝑟3 < 𝑞2 < 𝑟2 double peak is not possible as 𝑟2 < 𝑞3.
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