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A B S T R A C T

This paper introduces the concept of negative stiffness inertial-amplifier-base-isolators to achieve enhanced
broadband vibration control. Three physically different novel isolators, namely inertial amplifier base isolator
(IABI), negative stiffness inertial amplifier base isolator (NSIABI), and negative stiffness base isolator (NSBI),
are achieved only by tuning a single system parameter, namely the mass tuning ratio for novel isolators 𝛾.
The exact closed-form expressions for the optimal system parameters, such as the frequency and damping ratio
of the novel isolators, have been derived analytically using 𝐻2 and 𝐻∞ optimization methods. The response
reduction capacity of each optimized novel isolator has been compared with the optimized traditional base
isolator (TBI). Results showed that the vibration reduction capacity of 𝐻2 optimized NSBI, NSIABI, and IABI is
significantly 73.02%, 75.55%, and 76.48 %, superior to the TBI. While, the vibration reduction capacity of 𝐻∞
optimized NSBI, NSIABI, and IABI is significantly 69.69%, 73.67%, and 77.37% superior to the TBI. Overall all
three novel base isolators have at least 69% more vibration reduction capacity than traditional base isolators,
respectively. These novel isolators are cost-effective and can provide superior vibration reduction capacity than
other existing traditional base isolators, respectively.
1. Introduction

Since Touaillon’s isolation mechanism [1] in 1870, base isolation
devices have become the most widely acclaimed vibration control de-
vice studied and implemented in several fields in mechanical and civil
engineering, from vehicle suspension system [2–8] to liquid storage
tank [9–13], building [14], bridges, aircraft landing gear [15], etc.
Base isolation devices are implemented in structures to decouple the
superstructure [16,17] from the base during any seismic events, target-
ing to minimize the inter-story drift and accelerations by implanting it
between the structure and foundation. The base-isolated structure can
be modeled as a viscously damped two degree of freedom system, and
its generalized solution [18] is served as the baseline for the designing
of isolation systems [19].

To optimize the governing parameters of the base isolator [20–22],
𝐻2 [23,24] and 𝐻∞ [25] optimization schemes are applauded [26].
𝐻∞ optimization technique is first proposed by Den Hartog [27] for
evaluating the optimal system parameters for a dynamic vibration
absorber [28–31] and the method is known as the fixed-point theory.
Besides, 𝐻2 optimization techniques are also exalted for random vibra-
tion [32,33] which was first proposed by Crandall and Mark [34]. The
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𝐻∞ optimization technique can only be implemented when the isolated
structure is subjected to harmonic excitation [35].

Nowadays, the inerters induce inside or parallel to traditional base
isolation (TBI) systems to enhance energy dissipation by amplifying
the massive effective mass through rotational mass with motion trans-
formers [36] inside the system. The inerter was first introduced by
Smith [37] undermining the force to the current analogy for mitigation
of vibration responses of the structures in 2002. Since then, these inert-
ers have widely been implemented in mechanical systems as vibration
control devices, especially for automobiles [38–43]. The inerters were
often used in conjunction with other vibration control devices [44]
to enhance its vibration reduction or energy dissipation performance
[45–51]. For example, seismic performance [52,53] of a base-isolated
building [54–58], water storage tank [59,60], are enhanced after cou-
pling the inerters. Recently, Kuhnert et al. [61] critically reviewed
the advantages and disadvantages of the inerter-based vibration isola-
tion systems. The majority of the inerter based isolation devices are
made of flywheel-gear inerter [54]. Apart from the fly-wheel based
inerter, massive mass amplification can also be obtained by inertial
amplifiers in which a large wide-bandgap can be achieved at low
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frequencies [62–65]. These characteristics of inertial amplifiers [66–
70] allows to apply in structural member for vibration mitigation
application [71–79]. Different types of negative stiffness devices like
quasi-zero stiffness [80–83], high-static-low-dynamic stiffness [84,85],
Euler buckled beams as negative stiffness elements [86–89], pseudo-
negative-stiffness [90,91], negative-stiffness inclusions [92], magnetic
negative stiffness dampers [93,94] are applied for the vibration isola-
tion. In the field of metamaterial or periodic structures one type of
negative stiffness arrangement has been reported which has a seem-
ingly identical configuration with the inertial amplifiers [95–105].
However, the application of inertial amplifiers is minimal for complete
structures, such as buildings [106] and bridges. As per the current
literature review, most studies were based on structural members like
beams and columns. However, they did not study any negative stiffness
inertial amplifier-base-isolators. These could be the research gap of
the study. Therefore, we have introduced the optimum negative stiff-
ness inertial- amplifier-base-isolators for the single degree of freedom
systems, an idealized version of a bridge, water tank, building or
tower which have never been studied before in any existing literature.
Additionally, the closed-form expressions for optimal design parameters
have been introduced in this paper.

The 𝐻2 and 𝐻∞ optimization methods have been employed to
erive these closed-form expressions for optimal design parameters
uch as frequency and viscous damping ratio of the novel isolators
onsidering the random-white and harmonic base excitations, respec-
ively. The optimal dynamic responses of each controlled structure have
een obtained analytically. Using these results, each novel isolator’s
ibration reduction capacity (%) has been determined and compared
o investigate their superior performance, respectively.

. Structural model and equations of motion

The schematic diagram of a structure isolated by the NSIABI system
ubjected to harmonic and white-noise random excitation has been
hown in Fig. 1(a). For the present study, the main structure has
een considered as the single degree of freedom systems (SDOF), an
dealized version of a bridge, water tank, building or tower. The free-
ody diagrams, along with the inertial forces, are shown in Fig. 1(c).
sing these diagrams, the dynamic effective mass of the novel isolators
ave been derived. The other two isolators, namely, NSBI and IABI,
ave been achieved by categorizing the mass tuning ratio of NSIABI
. The schematic diagrams of these isolators have been displayed in
ig. 1(d) and Fig. 1(e). These negative stiffness inertial amplifiers
ill enhance the energy dissipation capacity of the traditional base

solators, providing additional flexibility simultaneously sufficient load-
earing capacity to the controlled system. 𝑚𝑖𝑏, 𝑘𝑖𝑏, and 𝑐𝑖𝑏 are the base

mass, stiffness, viscous damping of the novel isolators without the effect
of negative stiffness devices and inertial amplifiers. After considering
the effect of inertial amplifiers and negative stiffness devices, the
dynamic effective mass, stiffness, and viscous damping of the novel
isolators have been denoted as 𝑚𝑖𝑎, 𝑘𝑖𝑎, and 𝑐𝑖𝑎, respectively. 𝑚𝑎 refers
to the mass of the inertial amplifier. 𝑚1 and 𝑘𝑎 are the mass and stiffness
of the lateral spring–mass system, which has been attached to the top
of the inertial amplifier’s mass 𝑚𝑎. This lateral spring–mass system has
behaved as a negative stiffness device that provides dynamic negative
effective mass and stiffness to the novel isolators. �̈�𝑔 defines the base
excitation. These novel isolators have been installed at the base of the
main structures. The system parameters of the main structures have
been referred as mass 𝑚𝑠, stiffness 𝑘𝑠, and viscous damping 𝑐𝑠. Total
static mass of the mass–spring–mass system at the lateral terminal of
the inertial amplifier has been derived as 𝑚𝑇 = 𝑚𝑎 + 𝑚1. Diving this
equation by 𝑚𝑇 and the individual masses have been expressed as

𝑚𝑎 = 𝛾𝑚𝑇 and 𝑚1 = (1 − 𝛾)𝑚𝑇 (1)

he types of novel isolators that depends upon the value of 𝛾 have been
2

isted below.
Table 1
The values of the mass tuning ratio of novel base isolation systems 𝛾.

Mass tuning ratio NSBI NSIABI IABI

𝛾 0 0.1 < 𝛾 < 0.9 1

Table 1 shows that for IABI, NSIABI, and NSBI systems, the tuning
ratio for NSIABI of inertial amplifier 𝛾 is considered 1, 0 < 𝛾 < 1, 0.
̈𝑔 defines the ground motions. The equations of motion of the lateral
pring–mass systems in Fig. 1(b) are represented as

1�̈�1 + 𝑘𝑎(𝑥1 − 𝑥𝑎) = 0 (2)

n inertial angle 𝜃 between the 𝑦-axis and rigid link is indicated in
he diagrams when the inertial amplifier is undeformed. It is consid-
red that the system moves towards the 𝑦-axis, and small deflections
ccurred in lateral masses 𝑚𝑎 and 𝑚1 in 𝑥 and 𝑦-directions. 𝑥𝑎 and
𝑎 indicate the displacement of lateral masses in 𝑥 and 𝑦-directions,

respectively. The steady state solutions of the displacement responses
under harmonic motions are evaluated as 𝑥𝑎 = 𝑋𝑎𝑒i𝜔𝑡, 𝑥1 = 𝑋1𝑒i𝜔𝑡. After
ubstituting the values in Eq. (2), the values of 𝑥1 are determined as

1 =
(

𝑘𝑎
𝑘𝑎 − 𝜔2𝑚1

)

𝑋𝑎 (3)

Now consider that the controlled system is in an equilibrium state.
After balancing the momentum in 𝑥-direction, the frequency dependant
effective mass has been derived as [102]

𝑚𝑎𝑒�̇�𝑎 = 𝑚1�̇�1 + 𝑚𝑎�̇�𝑎

and 𝑚𝑎𝑒 = (1 − 𝛾)𝑚𝑇

(

𝑘𝑎
𝑘𝑎 − 𝜔2𝑚1

)

+ 𝛾𝑚𝑇

= (1 − 𝛾)𝑚𝑇

⎛

⎜

⎜

⎜

⎝

1

1 − 𝜔2

𝜔2
𝑎

⎞

⎟

⎟

⎟

⎠

+ 𝛾𝑚𝑇

(4)

where 𝑚𝑎𝑒 defines the frequency dependent effective mass of the
novel isolators. The natural frequency of the lateral spring–mass sys-

tem/negative stiffness device has been derived 𝜔𝑎 =
√

𝑘𝑎
𝑚1

, and the

natural frequency of the main structure refers as 𝜔𝑠 =
√

𝑘𝑠
𝑚𝑠

. It
is considered that the total system in Fig. 1(b) moves towards 𝑦-
directions, and the displacement responses in 𝑥 and 𝑦-directions of the
lateral spring–mass systems attached at two terminals are evaluated as

𝑦𝑎 =
𝑦1 + 𝑦2

2
and 𝑥𝑎 = ±

𝑦2 − 𝑦1
2 tan 𝜃

(5)

where 𝑦𝑎 and 𝑥𝑎 define the displacement of frequency dependent lateral
mass in 𝑦 and 𝑥-directions, respectively. The inertial forces developed
through the lateral spring–mass systems are derived as

𝑓𝑖𝑥 = 𝑚𝑎𝑒�̈�𝑎 and 𝑓𝑖𝑦 = 𝑚𝑎𝑒�̈�𝑎 (6)

where 𝑓𝑖𝑥 and 𝑓𝑖𝑦 refer the inertial forces in 𝑥 and 𝑦-direction, respec-
tively. The internal forces through the rigid links are obtained as 𝑓1
and 𝑓2 and presented in Fig. 1(c). The values of 𝑓1 and 𝑓2 have been
derived as

𝑓1 =
1
2

(

𝑓𝑖𝑥
sin 𝜃

−
𝑓𝑖𝑦
cos 𝜃

)

and 𝑓2 =
1
2

(

𝑓𝑖𝑥
sin 𝜃

+
𝑓𝑖𝑦
cos 𝜃

)

(7)

The total reaction forces developed through the links are presented in
Fig. 1(c) and evaluated as

𝐹 = −2𝑓1 cos 𝜃+𝑘𝑖𝑏(𝑦2−𝑦1) = 𝑑1
(

�̈�2 − �̈�1
)

+𝑑2
(

�̈�2 + �̈�1
)

+𝑘𝑖𝑎(𝑦2−𝑦1) (8)

here 𝑑1 =
(

0.5𝑚𝑎𝑒∕ tan2 𝜃
)

and 𝑑2 = 0.5𝑚𝑎𝑒 are the constants produced
hrough the balancing of the inertial forces generated in the inertial
mplifier which is presented in Fig. 1(a). In the lateral masses, the total
nertial forces are proportional to the mean of accelerations

(

𝑦2+𝑦1
)

2
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generated through the two terminals of the inertial amplifier and the
inertial constant 𝑑2 is produced through that. 𝑑1 constant produced by
the inertial forces generated in the geometry of the inertial amplifier
and the lateral masses of the entire system. It is observed that the
inertial forces of the entire system is directly proportional to the
relative acceleration

(

𝑦2−𝑦1
2

)

between two terminals. After considering
nertial constants, 𝑑1 and 𝑑2, the total dynamic effective masses of the
ovel isolators have been derived as

𝑖𝑎 = 𝑚𝑖𝑏 + 0.5𝑚𝑎𝑒

(

1 + 1
tan2 𝜃

)

=𝑚𝑖𝑏 + 𝛩

(

(1 − 𝛾)𝑚𝑇

(

𝜔2
𝑎

𝜔2
𝑎 − 𝜔2

)

+ 𝛾𝑚𝑇

) (9)

here 𝛩 = 0.5
(

1 + 1
tan2 𝜃

)

. Simultaneously, using Eq. (9), the total
ynamic effective stiffness of the novel isolators have been derived and
xpressed as

𝑖𝑎 = 𝑚𝑖𝑎𝜔
2
𝑖𝑏 =

𝜔2
𝑖𝑏𝜔𝑎

2𝑚𝜗 − 𝜔2
𝑖𝑏𝜔

2𝑚𝛷

𝜔𝑎
2 − 𝜔2

(10)

where 𝑚𝛷 = (𝛩𝑚𝑇 𝛾 + 𝑚𝑖𝑏) and 𝑚𝜗 = (𝛩𝑚𝑇 + 𝑚𝑖𝑏). In Eq. (10), 𝑘𝑖𝑏
contains the dynamic negative stiffness and presented as (−𝜔2

𝑖𝑏𝜔
2𝑚𝛷).

he generalized equations of motion of the structures isolated by the
ovel isolators have been derived as

𝑖𝑎�̈�𝑖𝑏 + 𝑐𝑖𝑎�̇�𝑖𝑏 + 𝑘𝑖𝑎𝑦𝑖𝑏 − 𝑘𝑠𝑦𝑠 − 𝑐𝑠�̇�𝑠 = −𝑚𝑖𝑎�̈�𝑔
𝑚𝑠�̈�𝑠 + 𝑐𝑠�̇�𝑠 + 𝑘𝑠𝑦𝑠 = −𝑚𝑠(�̈�𝑔 + �̈�𝑖𝑏)

(11)

he ratio of the excitation frequency to the natural frequency of the
ain structure has been defined as 𝜂 = 𝜔

𝜔𝑠
, the ratio of the total effective

ass of the novel isolators to the main structure refer as 𝜇𝑖𝑎 =
𝑚𝑖𝑎
𝑚𝑠

, the
requency ratio of the novel isolators to the main structure denote as
𝑖𝑏 = 𝜔𝑖𝑏

𝜔𝑠
, the viscous damping ratio of the novel isolators denote as

𝜁𝑖𝑏 = 𝑐𝑖𝑎
2𝑚𝑖𝑎𝜔𝑖𝑏

, and the damping ratio of the main structure is define
as 𝜁𝑠 = 𝑐𝑠

2𝑚𝑠𝜔𝑠
, the natural frequency of the novel isolators denote as

𝜔𝑖𝑏 =
√

𝑘𝑖𝑎
𝑚𝑖𝑎

. The total static mass of the novel isolators has been
derived as 𝑚𝑖𝑏 + 2𝑚𝑇 . From Eq. (11), inertial amplifications need to be
etermined and are evaluated as

=
𝑚𝑇

𝑚𝑖𝑏 + 2𝑚𝑇
and 𝑚𝑇 =

( 𝛼
1 − 2𝛼

)

𝑚𝑖𝑏 (12)

n Eq. (12), 𝛼 defines the ratio of total lateral mass to total static mass
f the novel isolators.

=
𝑚𝑖𝑏

𝑚𝑖𝑏 + 2𝑚𝑇
= (1 − 2𝛼) (13)

In Eq. (13), 𝛽 defines the ratio of base mass to total static mass of the
novel isolators.

𝑚𝑓 =
𝑚𝑖𝑏

𝑚𝑖𝑏 + 2𝑚𝑇
+

𝑚𝑇
𝑚𝑖𝑏 + 2𝑚𝑇

𝛩

(

(1 − 𝛾)

(

𝜔2
𝑎

𝜔2
𝑎 − 𝜔2

)

+ 𝛾

)

= (1 − 2𝛼) + 𝛼𝛩

⎛

⎜

⎜

⎜

⎝

(1 − 𝛾)

⎛

⎜

⎜

⎜

⎝

1

1 − 𝜂2

𝜂2𝑎

⎞

⎟

⎟

⎟

⎠

+ 𝛾

⎞

⎟

⎟

⎟

⎠

(14)

or static condition, it is considered that the value of 𝜂∕𝜂𝑎 = 0. Now,
he closed-form expression for the static effective mass 𝑚𝑓𝑠 has been
erived as

𝑓𝑠 = (1 − 2𝛼) + 𝛼𝛩 (15)

here 𝛩 = 0.5
(

1 + 1
tan2 𝜃

)

. In Eq. (14), 𝑚𝑓 refers the dynamic effective
ass ratio of the total frequency dependent effective mass 𝑚𝑖𝑎 to total

tatic mass of the novel isolators (𝑚𝑖𝑏 + 2𝑚𝑇 ). Where 𝜂 = 𝜔∕𝜔𝑠 which
efines the ratio of the excitation frequency to the natural frequency
f the main structure and 𝜂𝑎 = 𝜔𝑎∕𝜔𝑠 which defines the ratio of
he frequency of lateral spring–mass system to the main structure,
3

espectively. The effect of negative stiffness and inertial amplifier on o
he static mass of the novel isolators need to be investigated. To
erform that contour plot of Eq. (14) and Eq. (15) have been displayed
n Fig. 2. Precisely, Fig. 2(a) shows the contour of the static effective
ass ratio (mfs) as a function of the ratio of total lateral mass to the

otal static mass and inertial angle of novel isolators. It shows that the
ffective mass amplification occurred at 𝜃 ≤ 30◦, which have been
ecognized as the critical angles for the novel isolators, respectively.
esides, the significant amount of mass amplification occurred at 𝜃 ≤
2◦. Therefore, 𝜃 ≤ 12◦ have been applied throughout the paper
or determining the results, respectively. Interestingly, the presence
f negative effective mass has not been observed in Fig. 2(a), but
t has been observed in Fig. 2(b) where 𝜂∕𝜂𝑎 ≠ 0. Fig. 2(b) shows
he contour of the dynamic effective mass ratio (mf ) as a function

of mass tuning ratio and frequency ratio of inertial amplifier. Most
of the dynamic negative effective mass has been observed at 1.01 ≤
𝜂∕𝜂𝑎 ≤ 1.84 and 𝛾 = 0 (NSBI), which indicates that the installed
ateral spring–mass system at two terminals of the inertial amplifier has
ehaved as a negative stiffness device. Another observation is that the
resence of effective negative mass decreases when the mass tuning
atio increases. The frequency region of dynamic negative effective
ass also decreases when the mass tuning ratio increases. For 0.1 ≤ 𝛾 ≤
.5 (NSIABI), the region of negative effective mass is the most, whereas
he negative effective mass region shortened at 0.6 ≤ 𝛾 ≤ 0.9 (NSIABI).
recisely, the negative effective mass has become zero when 𝛾 = 1
IABI) where the mass of the negative stiffness device 𝑚1 is zero and
imultaneously, the corresponding value of the stiffness becomes zero.
he dynamic effective mass of the novel isolators has been amplified
t 𝜂 > 1.84, and a significant amount of mass amplification occurs
t 𝛾 = 1 (IABI). Overall, NSBI (𝛾 = 0) and NSIABI (0.1 ≤ 𝛾 ≤ 0.5)
roduce a significant amount of negative effective mass amplification.
n contrast, a significant amount of positive effective mass amplification
as been observed in IABI (𝛾 = 1) and other NSIABI systems having
he values of 0.6 ≤ 𝛾 ≤ 0.9. Therefore, the dynamic effective mass
ecomes negative for frequencies near the inertial amplifier’s resonance
requency, respectively. This negative effective mass has been effected
he dynamic stiffness of the isolators.

Now, the change of dynamic effective stiffness concerning the total
tatic stiffness has been investigated. To perform that, the dynamic
ffective stiffness ratio 𝑘𝑓 has been introduced, which is defined as the
atio of total dynamic effective stiffness to the static stiffness of the
ovel isolators, respectively. Therefore, the mathematical expression of
he 𝑘𝑓 has been derived as

𝑓 =
𝑘𝑖𝑎
𝑘𝑖𝑏

=
𝜔2
𝑖𝑏𝜔𝑎

2𝑚𝜗 − 𝜔2
𝑖𝑏𝜔

2𝑚𝛷
(

𝑚𝑖𝑏𝜔2
𝑖𝑏
) (

𝜔𝑎
2 − 𝜔2

) =
𝜔𝑎

2𝑚𝜗 − 𝜔2𝑚𝛷

𝑚𝑖𝑏
(

𝜔𝑎
2 − 𝜔2

) (16)

Now, the numerator and denominator of Eq. (16) has been divided
by 𝑚𝑠𝜔2

𝑠 to transform it into non-dimensional form. Therefore, the
non-dimensional form of Eq. (16) has been derived as

𝑘𝑓 =
𝜂2𝑖𝑏𝜂𝑎

2𝜇𝜗 − 𝜂2𝑖𝑏𝜂
2𝜇𝛷

(

𝜇𝑖𝑏𝜂2𝑖𝑏
) (

𝜂𝑎2 − 𝜂2
) =

𝛩
(

𝜇𝑇
𝜇𝑖𝑏

)

+ 1 −
(

𝜂2

𝜂2𝑎

)

𝛩
(

𝜇𝑇
𝜇𝑖𝑏

)

𝛾 −
(

𝜂2

𝜂2𝑎

)

(

1 −
(

𝜂2

𝜂2𝑎

)) (17)

where 𝜇𝛷 = 𝑚𝛷∕𝑚𝑠 = (𝛩𝜇𝑇 𝛾 + 𝜇𝑖𝑏), 𝜇𝜗 = 𝑚𝜗∕𝑚𝑠 = (𝛩𝜇𝑇 + 𝜇𝑖𝑏), and
𝜇𝑇 = 𝑚𝑇 ∕𝑚𝑠. The governing parameters are 𝜇𝑖𝑏, 𝛾, 𝜃, and 𝜇𝑇 . For static
effective stiffness condition, at 𝜂∕𝜂𝑎 = 0, the closed-form expression for
he static effective stiffness 𝑘𝑓𝑠 has been derived as

𝑓𝑠 = 0.5
(

1 + 1
tan2 𝜃

)(

𝜇𝑇
𝜇𝑖𝑏

)

+ 1 (18)

The effect of negative stiffness devices and inertial amplifiers on
he static effective stiffness of the novel isolators also needs to be
nvestigated. To perform that contour plot of Eq. (18) as a function
f the ratio of total lateral mass ratio to base mass ratio and inertial
ngle has been displayed in Fig. 3(a), respectively. The presence of
egative effective mass has not been observed in these figures. Instead
f that, the effective stiffness of the novel isolators amplifies. At higher
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Fig. 1. (a) The generalized theoretical model of a dynamic system isolated by negative stiffness inertial amplifier base isolator, (b) negative stiffness based inertial amplifier base
isolator, (c) free-body diagrams of NSIABI, (d) negative stiffness based isolator, and (e) inertial amplifier base isolator.
Fig. 2. (a) The contour plot of the static effective mass ratio (mfs) as a function of the ratio of total lateral mass to the total static mass of isolator 𝛼 and inertial angle 𝜃 has
been drawn, where the value of frequency ratio of the inertial amplifier 𝜂∕𝜂𝑎 is considered as 0. From this plot, 𝛼 = 0.11 and 𝜃 = 10◦ have been taken to draw the graph for the
dynamic effective mass ratio (mf ). These points have been indicated by red dash-dotted vertical and horizontal lines. (b) Using these values, the contour plot of dynamic effective
mass ratio (mf ) as a function of mass tuning ratio 𝛾 and frequency ratio of the inertial amplifier 𝜂∕𝜂𝑎 has been drawn. The dynamic effective mass becomes negative for frequencies
near the inertial amplifier’s resonance frequency.
inertial angle (i.e., 12◦ < 𝜃 ≤ 30◦), the inertial force decreases while the
inertial forces increases at lower angle (i.e., 𝜃 ≤ 12◦). Therefore, the
negative effective stiffness is a dynamic characteristic of these novel
isolators, which can only be achieved when the excitation frequency
ratio (𝜂) is present. The effect of negative stiffness devices and inertial
amplifiers on the dynamic effective stiffness of the novel isolators has
been investigated. To perform that, the contour plot of Eq. (17) as
a function of mass tuning ratio, the frequency ratio of the inertial
amplifier has been displayed in Fig. 3(b). The values of the dynamic
effective stiffness of the novel isolators increases the mass tuning ratio
4

decreases for frequency region 0.65 ≤ 𝜂∕𝜂𝑎 ≤ 1.0 and the significant
amount of drop has occurred at 1.01 ≤ 𝜂∕𝜂𝑎 ≤ 1.84 where most
of the contour region is full of negative effective stiffness. Another
observation is that the presence of effective negative stiffness decreases
when the mass tuning ratio increases. Simultaneously, the frequency
region of dynamic negative effective stiffness also decreases when the
mass tuning ratio increases. For 0.1 ≤ 𝛾 ≤ 0.5 (NSIABI), the region of
negative effective stiffness is the most, whereas the negative effective
stiffness region shortened at 0.6 ≤ 𝛾 ≤ 0.9 (NSIABI). Precisely, the
negative effective stiffness has become zero when 𝛾 = 1 (IABI) where
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Fig. 3. (a) The contour plot of the static effective stiffness ratio (kfs) as a function of the ratio of total lateral mass ratio to base mass ratio 𝜇𝑇 ∕𝜇𝑖𝑏 and inertial angle 𝜃 has been
drawn, where the value of frequency ratio of the inertial amplifier 𝜂∕𝜂𝑎 is considered as 0. From this plot, 𝜇𝑇 ∕𝜇𝑖𝑏 = 0.14 and 𝜃 = 10◦ have been taken to plot the graphs for
dynamic effective stiffness ratio (kf ). These points have been indicated by red dash-dotted vertical and horizontal lines. (b) Using these values, the contour plot of the dynamic
effective stiffness ratio (kf ) as a function of mass tuning ratio 𝛾 and frequency ratio of the inertial amplifier 𝜂∕𝜂𝑎 has been drawn. The dynamic effective stiffness becomes negative
for frequencies near the inertial amplifier’s resonance frequency.
the mass of the negative stiffness device 𝑚1 is zero and simultaneously,
the corresponding value of the stiffness becomes zero. The dynamic
effective stiffness of the novel isolators has been amplified at 𝜂 > 1.84,
and most of the stiffness amplification occurs at 𝛾 = 1 (IABI). Overall,
NSBI (𝛾 = 0) and NSIABI (0.1 ≤ 𝛾 ≤ 0.5) produce a significant amount of
dynamic negative effective stiffness amplification, providing additional
flexibility extends the time period of the isolators, respectively. Hence,
The base displacement of the isolator will be more in that particular
region, which helps to increase the vibration reduction capacity of
NSBI and NSIABI, respectively. In contrast, a significant amount of
positive dynamic effective stiffness amplification has been observed in
IABI (𝛾 = 1) and other NSIABI systems having the values of 0.6 ≤
𝛾 ≤ 0.9. Additionally, the dynamic effective stiffness amplifications at
0.65 ≤ 𝜂∕𝜂𝑎 ≤ 1.0 and 2 ≤ 𝜂∕𝜂𝑎 ≤ 3.0 provides sufficient load-bearing
capacity to the controlled structures during vibration simultaneously.
These unique dynamic properties of the novel isolators provide more
resistance than the traditional base isolator to the controlled structures
against vibrations. Finally, it has been summarized that these negative
stiffness inertial amplifiers based isolators have enhanced the energy
dissipation capacity of the traditional base isolators, providing addi-
tional flexibility simultaneously sufficient load-bearing capacity to the
controlled structures, respectively.

In Eq. (11), the relative displacement of main structure and novel
isolators has been derived as 𝑦𝑠 = (𝑢𝑠 − 𝑢𝑖𝑏) and 𝑦𝑖𝑏 = (𝑢𝑖𝑏 − 𝑢𝑔).
Now considers that this isolated structure is subjected to harmonic
ground motions, respectively. Therefore, the steady state solutions are
considered as 𝑦𝑠 = 𝑌𝑠𝑒i𝜔𝑡, 𝑦𝑖𝑏 = 𝑌𝑖𝑏𝑒i𝜔𝑡, and �̈�𝑔 = 𝑈𝑔𝑒i𝜔𝑡. Here, ̇(∙) defines
the derivative with respect to time. By substituting these steady state
solutions in Eq. (11), a transfer matrix has been formed. Using this
matrix, the displacement responses of the main structure and NSIABI
system have been derived analytically. Therefore, the matrix has been
derived as
⎡

⎢

⎢

⎣

2 𝑞𝜁𝑠𝜔𝑠 + 𝑞2 + 𝜔𝑠
2 𝑞2

−2 𝑞𝜁𝑠𝜔𝑠 − 𝜔𝑠
2

(

2 𝑞𝜁𝑖𝑏𝜔𝑖𝑏+𝑞2+𝜔𝑖𝑏
2)(𝑞2𝜇𝛷+𝜔𝑎

2𝜇𝜗
)

𝑞2+𝜔𝑎2

⎤

⎥

⎥

⎦

{

𝑌𝑠
𝑌𝑖𝑏

}

= −

[

1
]

𝑈𝑔

(19)
5

𝜇𝑖𝑎
where 𝑞 = i𝜔, 𝜇𝑖𝑎 = 𝜇𝑖𝑏 + 𝛩𝜇𝑇
(

𝛾 𝑞2+𝜔𝑎
2)

𝑞2+𝜔𝑎2
or 𝜇𝑖𝑎 = 𝑞2𝜇𝛷+𝜔𝑎

2𝜇𝜗
𝑞2+𝜔𝑎2

, and

𝛩 = 0.5
(

1 + 1
tan2 𝜃

)

. 𝜇𝑖𝑏 defines the ratio of base mass to the structural
mass of the isolated structures (i.e., 𝜇𝑖𝑏 = 𝑚𝑖𝑏∕𝑚𝑠). Transfer matrix
is a matrix approach to derive the responses of the dynamic systems
in the frequency domain. Using Eq. (19), the transfer functions of
displacement responses of main structure 𝐻𝑠 and NSIABI system 𝐻𝑖𝑏
have been obtained analytically. Therefore, the displacement response
of the main structure has been derived as

𝐻𝑠(i𝜔) =
𝑌𝑠
𝑈𝑔

=
−
(

𝑞2𝜇𝛷 + 𝜔𝑎
2𝜇𝜗

)

𝜔𝑖𝑏
(

2 𝑞𝜁𝑖𝑏 + 𝜔𝑖𝑏
)

𝛥𝑛
(20)

The displacement response of the novel isolators have been derived as

𝐻𝑖𝑏(i𝜔) =
𝑌𝑖𝑏
𝑈𝑔

=

⎛

⎜

⎜

⎜

⎝

−2 𝜁𝑠𝜇𝛷𝜔𝑠𝑞3 − 2 𝜁𝑠𝜇𝜗𝜔𝑎
2𝜔𝑠𝑞 − 𝜇𝛷𝑞4 − 2 𝑞3𝜁𝑠𝜔𝑠

−𝑞2𝜇𝛷𝜔𝑠
2 − 𝑞2𝜇𝜗𝜔𝑎

2 − 2 𝑞𝜁𝑠𝜔𝑎
2𝜔𝑠

−𝜇𝜗𝜔𝑎
2𝜔𝑠

2 − 𝑞2𝜔𝑠
2 − 𝜔𝑎

2𝜔𝑠
2

⎞

⎟

⎟

⎟

⎠

𝛥𝑛

(21)

where the closed-form expression for 𝛥𝑛 has been derived as

𝛥𝑛(i𝜔) =

𝑞6𝜇𝛷 +
(

2𝜇𝛷𝜔𝑖𝑏𝜁𝑖𝑏 + 2 𝜁𝑠𝜇𝛷𝜔𝑠 + 2 𝜁𝑠𝜔𝑠
)

𝑞5

+
(

4 𝜁𝑠𝜇𝛷𝜁𝑖𝑏𝜔𝑠𝜔𝑖𝑏 + 𝜇𝛷𝜔𝑖𝑏
2 + 𝜇𝛷𝜔𝑠

2 + 𝜇𝜗𝜔𝑎
2 + 𝜔𝑠

2) 𝑞4

+
(

2𝜇𝛷𝜔𝑖𝑏𝜁𝑖𝑏𝜔𝑠
2 + 2 𝜁𝑖𝑏𝜔𝑎

2𝜔𝑖𝑏𝜇𝜗
+2 𝜁𝑠𝜇𝛷𝜔𝑖𝑏

2𝜔𝑠 + 2 𝜁𝑠𝜇𝜗𝜔𝑎
2𝜔𝑠 + 2 𝜁𝑠𝜔𝑎

2𝜔𝑠

)

𝑞3

+

(

4 𝜁𝑠𝜁𝑖𝑏𝜔𝑎
2𝜔𝑠𝜔𝑖𝑏𝜇𝜗 + 𝜇𝛷𝜔𝑖𝑏

2𝜔𝑠
2

+𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2 + 𝜇𝜗𝜔𝑎
2𝜔𝑠

2 + 𝜔𝑎
2𝜔𝑠

2

)

𝑞2

+
(

2 𝜁𝑖𝑏𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏𝜔𝑠

2 + 2 𝜁𝑠𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2𝜔𝑠
)

𝑞
+𝜇𝜗𝜔𝑎

2𝜔𝑖𝑏
2𝜔𝑠

2

(22)

The shear force of the isolated structure has been derived as

𝐻𝑠𝑓 (i𝜔) =
𝑞𝜁𝑠𝑌𝑠 + 𝜔2

𝑠𝑌𝑠
𝑈𝑔

=

(

−
(

𝑞2𝜇𝛷 + 𝜔𝑎
2𝜇𝜗

)

𝜔𝑖𝑏
(

2 𝑞𝜁𝑖𝑏 + 𝜔𝑖𝑏
)

)

(

𝑞𝜁𝑠 + 𝜔𝑠
2)

𝛥𝑛

(23)

Before obtaining the dynamic responses of isolated structures, the
optimal values of design parameters need to be determined. Therefore,
𝐻2 and 𝐻∞ optimization methods have been employed to obtain these
optimal design parameters, respectively. The basic principle of 𝐻
∞
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optimization method is to minimize the maximum amplitude of the
frequency response based on the fixed-point theory, [27] and this
optimization method is only applicable when the controlled structures
are subjected to harmonic excitations, respectively. Where the 𝐻2
ptimization method targets to minimize the mean squared displace-
ent of the main structure under random excitation, respectively. The

valuation procedures of both are entirely different, and the detailed
rocess has been illustrated below.

. 𝑯𝟐 Optimization for white-noise random excitation

𝐻2 optimization has been performed to minimize the total energy
f these dynamic systems above all frequencies. Thus, when these
ontrolled systems are subjected to white-noise random excitations in-
tead of harmonic excitations, the 𝐻2 norm is more effective than 𝐻∞.
herefore, the closed-form expressions for optimal design parameters of
he novel isolators have been derived using this optimization method.
o perform this study, Eq. (11) has been written in a generalized form
hich is expressed as

�̈�(𝑡) + 𝐂�̇�(𝑡) +𝐊𝐲(𝑡) = −𝐌𝐫�̈�𝑔(𝑡) (24)

here 𝑟 = [1, 1]𝑇 and �̈�𝑔(𝑡) defines as the forcing vector. Each force
cts to the corresponding degree of freedom. The general form of the
orcing function is represented as

̈ 𝑔(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̈�𝑔1(𝑡)
�̈�𝑔2(𝑡)
⋯

�̈�𝑔𝑛(𝑡)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(25)

ach component of force �̈�𝑔𝑗 (𝑡) is randomly correlated, where 𝑗 =
, 2, 3⋯ 𝑛. The power spectral density matrix is formed as

𝑈𝑔𝑈𝑔
(𝜔) =𝐸[𝐔𝑔(𝜔)∗𝐔𝑔(𝜔)]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑆𝑈𝑔1𝑈𝑔1
(𝜔) 𝑆𝑈𝑔1𝑈𝑔2

(𝜔) ⋯ 𝑆𝑈𝑔1𝑈𝑔𝑛
(𝜔)

𝑆𝑈𝑔2𝑈𝑔1
(𝜔) 𝑆𝑈𝑔2𝑈𝑔2

(𝜔) ⋯ 𝑆𝑈𝑔2𝑈𝑔𝑛
(𝜔)

⋯ ⋯ ⋯ ⋯

𝑆𝑈𝑔𝑛𝑈𝑔1
(𝜔) 𝑆𝑈𝑔𝑛𝑈𝑔2

(𝜔) ⋯ 𝑆𝑈𝑔𝑛𝑈𝑔𝑛
(𝜔)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(26)

(∙)∗ denotes complex conjugate. In Eq. (26), the off-diagonal values are
indicated as cross power spectral density functions and the diagonal
values are indicated as auto power spectral density functions. The
steady solutions are expressed as �̈�𝑔(𝑡) = 𝐔𝑔(𝜔)𝑒i𝜔𝑡 and 𝐲(𝑡) = 𝐘(𝜔)𝑒i𝜔𝑡.
Now, substituting these values in Eq. (24) to obtain frequency-domain
expressions. Therefore, the frequency-domain expressions are expressed
as
(𝑞2𝐌 + 𝑞𝐂 +𝐊)𝐘(𝜔) = −𝐌𝐫𝐔𝑔(𝜔),

𝐔(𝜔)𝐘(𝜔) = −𝐌𝐫𝐔𝑔(𝜔) and 𝐘(𝜔) = 𝐇(𝜔)𝐔𝑔(𝜔)
(27)

where 𝑞 = i𝜔. Now, the power spectral density matrix of displacement
responses which contains 𝐲(𝑡) has been formed and expressed as

𝐒𝑌 𝑌 (𝜔) = 𝐸[𝐘(𝜔)𝐘∗(𝜔)] = 𝐇(𝜔)𝐒𝑈𝑔𝑈𝑔
(𝜔)𝐇∗(𝜔) (28)

where (∙)∗ refers the complex conjugate transpose. Hence, the standard
deviation of the displacement of the main structure has been derived
using Eq. (28) and solved by the formula below.

𝜎2𝑦𝑠 = 𝐸[𝑦2𝑠 (𝑡)] = ∫

∞

−∞
|𝐻𝑠(𝜔)|

2𝑆𝑈𝑔𝑈𝑔
(𝜔) d𝜔 (29)

Now, the velocity of the main structure has been determined as

�̇�𝑠(𝜔) = (i𝜔)𝑌𝑠(𝜔) = (i𝜔)𝐻𝑠(𝜔)𝑈𝑔(𝜔) (30)

Considering the above equation, the standard deviation for the velocity
of the main structure is obtained as

𝜎2 = 𝐸[�̇�2(𝑡)] =
∞
𝜔2

|𝐻 (𝜔)|2𝑆 (𝜔)d𝜔 (31)
6

�̇�𝑠 𝑠 ∫−∞
𝑠 𝑈𝑔𝑈𝑔 E
The calculation of the integral on the right-hand side of equations
Eq. (29) and Eq. (31) in general requires the calculation of integrals
involving the ratio of polynomials of the following form.

𝐼𝑛 = ∫

∞

−∞

𝛯𝑛(𝜔) d𝜔
𝛬𝑛(i𝜔)𝛬∗

𝑛(i𝜔)
(32)

ere the polynomials are expressed as

𝛯𝑛(𝜔) = 𝑏𝑛−1𝜔
2𝑛−2 + 𝑏𝑛−2𝜔

2𝑛−4 +⋯ + 𝑏0 (33)

𝛬𝑛(i𝜔) = 𝑎𝑛(i𝜔)𝑛 + 𝑎𝑛−1(i𝜔)𝑛−1 +⋯ + 𝑎0 (34)

Following Roberts and Spanos, [107] this integral is expressed as

𝐼𝑛 =
𝜋
𝑎𝑛

det [𝐍𝑛]
det [𝐃𝑛]

(35)

ere the 𝑛 × 𝑛 matrices are defined as

𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏𝑛−1 𝑏𝑛−2 ⋯ 𝑏0
−𝑎𝑛 𝑎𝑛−2 −𝑎𝑛−4 𝑎𝑛−6 ⋯ 0 ⋯

0 −𝑎𝑛−1 𝑎𝑛−3 −𝑎𝑛−5 ⋯ 0 ⋯

0 𝑎𝑛 −𝑎𝑛−2 𝑎𝑛−4 ⋯ 0 ⋯

0 ⋯ ⋯ 0 ⋯

0 0 ⋯ −𝑎2 𝑎0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(36)

and

𝐃𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎𝑛−1 −𝑎𝑛−3 𝑎𝑛−5 −𝑎𝑛−7
−𝑎𝑛 𝑎𝑛−2 −𝑎𝑛−4 𝑎𝑛−6 ⋯ 0 ⋯

0 −𝑎𝑛−1 𝑎𝑛−3 −𝑎𝑛−5 ⋯ 0 ⋯

0 𝑎𝑛 −𝑎𝑛−2 𝑎𝑛−4 ⋯ 0 ⋯

0 ⋯ ⋯ 0 ⋯

0 0 ⋯ −𝑎2 𝑎0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(37)

As the random excitation is considered Gaussian white noise with zero
mean and standard deviation two, its spectral density is constant for
all frequencies. But different spectral densities can also easily be used
within the scope of this formulation. Hence, we have considered that
the forcing function has constant spectral density. So, we assume that

𝑆𝑈𝑔𝑈𝑔
(𝜔) = 𝑆0 (38)

As mentioned before that the input spectrum is considered as white-
noise random excitation. Thus 𝑆0 refers to constant for all frequen-
cies. Therefore, using Eq. (29), the standard deviation of displacement
response of main structure 𝑦𝑠(𝑡) has been obtained as

𝜎2𝑦𝑠 = ∫

∞

−∞
|𝐻𝑠(𝜔)|

2𝑆0 d𝜔 = 𝑆0 ∫

∞

−∞

𝛯𝑛(𝜔)
𝛥𝑛(i𝜔)𝛥∗

𝑛(i𝜔)
d𝜔 (39)

ow, using Eq. (31), The standard deviation of the velocity of the main
tructure has been derived as

2
�̇�𝑠

= ∫

∞

−∞
𝜔2

|𝐻𝑠(𝜔)|
2𝑆0 d𝜔 = 𝑆0 ∫

∞

−∞

𝜔2𝛯𝑛(𝜔)
𝛥𝑛(i𝜔)𝛥∗

𝑛(i𝜔)
d𝜔 (40)

inally, The standard deviation of shear force of these isolated struc-
ures have been derived as

2
𝑠𝑓 = ∫

∞

−∞
|𝐻𝑠𝑓 (𝜔)|

2𝑆0 d𝜔 (41)

t is considered that the proposed negative stiffness inertial-amplifier-
ase-isolators are subjected to Gaussian White Noise, and the root
eans square responses of the main systems are evaluated from
q. (11). The determinant of the solution is obtained from the matrix
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I
d
t
E

∫

T
A
s

𝜎

E
t

(

T
A
o

(

f
d
s

form of Eq. (19) as

𝛥𝑛(i𝜔) =

𝑞6𝜇𝛷 +
(

2𝜇𝛷𝜔𝑖𝑏𝜁𝑖𝑏 + 2 𝜁𝑠𝜇𝛷𝜔𝑠 + 2 𝜁𝑠𝜔𝑠
)

𝑞5

+
(

4 𝜁𝑠𝜇𝛷𝜁𝑖𝑏𝜔𝑠𝜔𝑖𝑏 + 𝜇𝛷𝜔𝑖𝑏
2 + 𝜇𝛷𝜔𝑠

2 + 𝜇𝜗𝜔𝑎
2 + 𝜔𝑠

2) 𝑞4

+

(

2𝜇𝛷𝜔𝑖𝑏𝜁𝑖𝑏𝜔𝑠
2 + 2 𝜁𝑖𝑏𝜔𝑎

2𝜔𝑖𝑏𝜇𝜗
+2 𝜁𝑠𝜇𝛷𝜔𝑖𝑏

2𝜔𝑠 + 2 𝜁𝑠𝜇𝜗𝜔𝑎
2𝜔𝑠 + 2 𝜁𝑠𝜔𝑎

2𝜔𝑠

)

𝑞3

+

(

4 𝜁𝑠𝜁𝑖𝑏𝜔𝑎
2𝜔𝑠𝜔𝑖𝑏𝜇𝜗 + 𝜇𝛷𝜔𝑖𝑏

2𝜔𝑠
2

+𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2 + 𝜇𝜗𝜔𝑎
2𝜔𝑠

2 + 𝜔𝑎
2𝜔𝑠

2

)

𝑞2

+
(

2 𝜁𝑖𝑏𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏𝜔𝑠

2 + 2 𝜁𝑠𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2𝜔𝑠
)

𝑞
+𝜇𝜗𝜔𝑎

2𝜔𝑖𝑏
2𝜔𝑠

2

(42)

t is observed that Eq. (42) is a 6th order polynomial equation. The stan-
ard deviation values for the displacement, velocity, and shear force of
he structure isolated by the novel isolators have been determined using
q. (32), the integral form has been derived as

∞

−∞

𝛯𝑛(𝜔)
𝛥𝑛(i𝜔)𝛥∗

𝑛(i𝜔)
d𝜔 = 𝜋

𝑎6

det

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0
−𝑎6 𝑎4 −𝑎2 𝑎0 0 0
0 −𝑎5 𝑎3 −𝑎1 0 0
0 𝑎6 −𝑎4 𝑎2 −𝑎0 0
0 0 𝑎5 −𝑎3 𝑎1 0
0 0 −𝑎6 𝑎4 −𝑎2 𝑎0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

det

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎5 −𝑎3 𝑎1 0 0 0
−𝑎6 𝑎4 −𝑎2 𝑎0 0 0
0 −𝑎5 𝑎3 −𝑎1 0 0
0 𝑎6 −𝑎4 𝑎2 −𝑎0 0
0 0 𝑎5 −𝑎3 𝑎1 0
0 0 −𝑎6 𝑎4 −𝑎2 𝑎0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(43)

The values of 𝑎𝑛 and 𝑏𝑛 have been listed in Appendix A, where 𝑛 =
1, 2,… , 6. After considering 𝜁𝑠 = 0, the determinant is represented as

𝛥𝑛(i𝜔) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑞6𝜇𝛷 + 2 𝑞5𝜁𝑖𝑏𝜇𝛷𝜔𝑖𝑏
+
(

𝜇𝛷𝜔𝑖𝑏
2 + 𝜇𝛷𝜔𝑠

2 + 𝜔𝑎
2𝜇𝜗 + 𝜔𝑠

2 )

𝑞4

+2 𝜁𝑖𝑏𝜔𝑖𝑏
(

𝜇𝛷𝜔𝑠
2 + 𝜔𝑎

2𝜇𝜗
)

𝑞3

+
(

𝜇𝛷𝜔𝑖𝑏
2𝜔𝑠

2 + 𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2 + 𝜇𝜗𝜔𝑎
2𝜔𝑠

2 + 𝜔𝑎
2𝜔𝑠

2) 𝑞2

+2𝜔𝑠
2𝜁𝑖𝑏𝜇𝜗𝜔𝑎

2𝜔𝑖𝑏𝑞 + 𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2𝜔𝑠
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(44)

Using Eq. (39), the closed-form expression for 𝛯𝑛(𝜔) has been derived
as [107]

𝛯6(𝜔) = 4𝜔6𝜁𝑖𝑏
2𝜇𝛷

2𝜔𝑖𝑏
2 +

(

−8 𝜁𝑖𝑏2𝜇𝛷𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2 + 𝜇𝛷
2𝜔𝑖𝑏

4)𝜔4

+
(

4 𝜁𝑖𝑏2𝜇𝜗2𝜔𝑎
4𝜔𝑖𝑏

2 − 2𝜇𝛷𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

4)𝜔2 + 𝜇𝜗
2𝜔𝑎

4𝜔𝑖𝑏
4 (45)

The standard deviation of the displacement response of the main system
has been derived as

𝜎2
𝑦𝑠

=

𝑆0𝜋 𝜔𝑖𝑏

(
(

4 𝜁𝑖𝑏2𝜇𝜗𝜔𝑠
2 + 𝜇𝜗𝜔𝑖𝑏

2 + 𝜔𝑠
2)𝜔𝑎

2

−4 𝜁𝑖𝑏2𝜇𝛷𝜔𝑠
4 − 𝜇𝛷𝜔𝑖𝑏

2𝜔𝑠
2 − 𝜔𝑠

4

)

2𝜁𝑖𝑏
(

𝜔𝑎
2 − 𝜔𝑠

2
)

𝜔𝑠
6

(46)

The extended form of the Eq. (46) has been written in Appendix A. After
that, the standard deviation of velocity response of the main system has
been derived as

𝜎2�̇�𝑠 =

𝑆0𝜋𝜔𝑖𝑏

(
(

4 𝜁𝑖𝑏2𝜇𝜗𝜔𝑠
2 + 4 𝜁𝑖𝑏2𝜔𝑠

2 + 𝜇𝜗𝜔𝑖𝑏
2)𝜔𝑎

2

−4 𝜁𝑖𝑏2𝜇𝛷𝜔𝑠
4 − 4 𝜁𝑖𝑏2𝜔𝑠

4 − 𝜇𝛷𝜔𝑖𝑏
2𝜔𝑠

2

)

2𝜔𝑠
2𝜁𝑖𝑏

(

𝜔𝑎
2 − 𝜔𝑠

2
)

(47)

he extended form of the Eq. (47) has been written in Appendix A.
fter that, the standard deviation of shear force of the whole isolated
ystem has been derived as

2
𝑠𝑓 =

𝑆0𝜋 𝜔𝑖𝑏

(
(

4 𝜁𝑖𝑏2𝜇𝜗𝜔𝑠
2 + 𝜇𝜗𝜔𝑖𝑏

2 + 𝜔𝑠
2)𝜔𝑎

2

−4 𝜁𝑖𝑏2𝜇𝛷𝜔𝑠
4 − 𝜇𝛷𝜔𝑖𝑏

2𝜔𝑠
2 − 𝜔𝑠

4

)

( )

(48)
7

2𝜁𝑖𝑏 𝜔𝑎
2 − 𝜔𝑠

2 𝜔𝑠
2

The extended form of the Eq. (48) has been written in Appendix A.
Eq. (46) has been partially differentiated with respect to the damp-
ing ratio 𝜁𝑖𝑏 and frequency 𝜔𝑖𝑏 of the novel isolators to obtain the
exact closed-form expression for the optimal design parameters, respec-
tively. Therefore, these optimal design parameters have been derived
minimizing 𝜎2𝑦𝑠 which leads to

𝜕𝜎2𝑦𝑠
𝜕𝜁𝑖𝑏

= 0 and
𝜕𝜎2𝑦𝑠
𝜕𝜔𝑖𝑏

= 0 (49)

q. (46) has been inserted into the first equation of Eq. (49). Therefore,
he optimal damping ratio of the novel isolators has been derived as

𝜁𝑖𝑏)𝑜𝑝𝑡 =

√

𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2 − 𝜇𝛷𝜔𝑖𝑏
2𝜔𝑠

2 + 𝜔𝑎
2𝜔𝑠

2 − 𝜔𝑠
4

4𝜇𝜗𝜔𝑎
2𝜔𝑠

2 − 4𝜇𝛷𝜔𝑠
4

(50)

Eq. (50) defines the optimal damping ratio of the novel isolators.
However, this closed-form expression contains the frequency of the
novel isolators 𝜔𝑖𝑏, which needs to be separated. To perform that,
Eq. (50) has been substituted in Eq. (46). Now the modified value of
𝜎2𝑦𝑠 is expressed as

𝜎2𝑦𝑠 =
2𝜔𝑖𝑏𝜋 𝑆0

(

𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2 − 𝜇𝛷𝜔𝑖𝑏
2𝜔𝑠

2 + 𝜔𝑎
2𝜔𝑠

2 − 𝜔𝑠
4)

(

𝜔𝑎
2 − 𝜔𝑠

2
)

𝜔𝑠
6
√

𝜇𝛷𝜔𝑖𝑏2𝜔𝑠2−𝜇𝜗𝜔𝑎2𝜔𝑖𝑏2−𝜔𝑎2𝜔𝑠2+𝜔𝑠4

𝜔𝑠2(𝜇𝛷𝜔𝑠2−𝜇𝜗𝜔𝑎2)
(51)

Eq. (51) has been inserted into second constrains of Eq. (49) to obtain
the optimal value of frequency of novel isolators 𝜔𝑖𝑏. Therefore, the
optimal frequency of the novel isolators has been derived as

(𝜔𝑖𝑏)𝑜𝑝𝑡 =

√

2
√

(𝜇𝜗𝜔𝑎
2 − 𝜇𝛷𝜔𝑠

2)
(

𝜔𝑎
2 − 𝜔𝑠

2
)

𝜔𝑠

2(𝜇𝜗𝜔𝑎
2 − 𝜇𝛷𝜔𝑠

2)
(52)

The non-dimensional form of Eq. (52) has been listed in Appendix A.
Eq. (52) has been substituted in Eq. (50). Therefore, the optimal
damping ratio of the novel isolators has been derived as

(𝜁𝑖𝑏)𝑜𝑝𝑡 = 1∕4

√

6𝜔𝑎
2 − 6𝜔𝑠

2

𝜇𝜗𝜔𝑎
2 − 𝜇𝛷𝜔𝑠

2
(53)

he non-dimensional form of Eq. (53) has been listed in Appendix A.
fter substituting the values of (𝜔𝑖𝑏)𝑜𝑝𝑡 from Eq. (52) into Eq. (51), the
ptimal value of 𝜎2𝑦𝑠 has been obtained as

𝜎2𝑦𝑠 )𝑜𝑝𝑡 =
3
√

2𝑆0𝜋
√

𝜇𝜗𝜔𝑎
4 − 𝜔𝑠

2
(

𝜇𝛷 + 𝜇𝜗
)

𝜔𝑎
2 + 𝜇𝛷𝜔𝑠

4

𝜔𝑠
3
(

𝜇𝜗𝜔𝑎
2 − 𝜇𝛷𝜔𝑠

2
)

√

6𝜔𝑎2−6𝜔𝑠2

𝜇𝜗𝜔𝑎2−𝜇𝛷𝜔𝑠2

(54)

3.1. Sensitivity analysis of optimal design parameters

After deriving the closed-form expressions for the optimal frequency
ratio 𝜂𝑖𝑏 and optimal damping ratio 𝜁𝑖𝑏 of novel isolators using 𝐻2 opti-
mization method, the sensitivity analysis of these parameters has been
conducted to investigate the effectiveness of other system parameters
on these optimal parameters, respectively. Fig. 4 shows the variation of
optimal frequency ratio versus mass tuning ratio of the novel isolator.
Precisely, Fig. 4(a) shows the variation of optimal frequency ratio
versus mass tuning ratio of the novel isolators for different values
of base mass ratio 𝜇𝑖𝑏 and Fig. 4(b) shows the variation of optimal
requency ratio versus mass tuning ratio of the novel isolators for
ifferent values of inertial angle 𝜃, respectively. Fig. 2(a) has already
hown that the effective mass amplification occurred at 𝜃 ≤ 30◦ and the

significant amplification occurred at 𝜃 ≤ 12◦. Therefore, these values
of inertial angles have been considered as the critical inertial angle.
For this particular reason, 𝜃 = 10◦ has been considered for most of the
plots in this paper. Other system parameters have been considered as
𝜇𝑇 = 0.10 and 𝜂𝑎 = 2. The optimal frequency ratio increases gradually
when the mass tuning ratio increases, indicating that the NSBI system
(i.e., 𝛾 = 0) has a longer time period than the other two novel isolators.



International Journal of Mechanical Sciences 218 (2022) 107044S. Chowdhury et al.
Fig. 4. (a) The variations of optimal frequency ratio 𝜂𝑖𝑏 versus mass tuning ratio 𝛾 of the novel isolators have been drawn for the different values of base mass ratio 𝜇𝑖𝑏. The blue
(𝜇𝑖𝑏 = 0.20), magenta (𝜇𝑖𝑏 = 0.40), black (𝜇𝑖𝑏 = 0.60) and red (𝜇𝑖𝑏 = 0.70) lines with markers have been employed to indicate these plots. (b) The variations of optimal frequency
ratio 𝜂𝑖𝑏 versus mass tuning ratio 𝛾 of the novel isolators have been plotted for the different values of inertial angle 𝜃. The red (𝜃 = 10◦), black (𝜃 = 15◦), magenta (𝜃 = 20◦), and
blue (𝜃 = 30◦) lines with markers have been employed to indicate these plots. For both graphs, other system parameters are considered as 𝜇𝑇 = 0.10 and 𝜃 = 10◦.
This scenario is expected as the NSBI system contains only negative
stiffness. The NSIABI systems (i.e., 0.10 < 𝛾 < 0.90) have also contained
lower frequency ratio than IABI system (i.e., 𝛾 = 1.0), respectively.
This scenario happens because NSIABI systems preserve the combined
effect of negative stiffness and inertial amplifier while IABI contains
only inertial amplifiers. Overall, the lower mass tuning ratio provides
a longer time period than the higher mass tuning ratio for isolated
structures, respectively. Now, the optimal damping ratio trends for
particular values of mass tuning ratio needs to be investigated. To
perform that, the variation of optimal damping ratio versus mass tuning
ratio of the novel isolator has been displayed in Fig. 5. The tendency
of optimal damping ratio plots is the same as Fig. 4. The optimal
damping ratio of the novel isolators gradually increases when the mass
tuning ratio rises. It has already been proven that damping of the
structure decreases its natural frequency from its absolute value. The
NSBI system (i.e., 𝛾 = 0) provides an extended time period to isolated
structures, decreasing the isolator’s natural frequency. Hence, the lower
natural frequency ratio of the isolator reduces the optimal damping of
the NSBI system, whereas IABI has no effect of negative stiffness within
it. Therefore, the natural frequency of the IABI did not distress while
the damping is increasing due to the effect of amplification of effective
mass. The damping of the NSIABI is also lower than IABI but higher
than NSBI due to the combined effect of negative stiffness and inertial
amplifier. Therefore, higher effective mass increases energy dissipation
capacity than the extended time period. Due to that particular reason,
the vibration reduction capacity of IABI is more than the NSBI and
NSIABI, respectively.

For NSIABI systems, the variation of optimal design parameters
versus base mass ratio needs to be investigated. To perform that,
Fig. 6 has been drawn where Fig. 6(a) shows the variation of optimal
frequency ratio versus base mass ratio for different values of 𝜃. The
optimal frequency ratio of the isolator decreases when the base mass
ratio of the NSIABI increases. Therefore, the higher base mass ratio
has extended the time period of the isolated structures more than the
lower base mass ratio. Interestingly, a lower inertial angle (i.e. 𝜃 = 10◦)
provides a feasible frequency ratio for the isolator. In contrast, the
higher inertial angles (i.e. 𝜃 ≥ 20◦) reduce the flexibility of the isolated
structure compared to the lower one. The time period of the isolated
8

structure decreases due to that particular reason. Additionally, the
lower base mass ratio with a higher angle provides a higher frequency
ratio, and the time period of the isolator has been over condensed. It
has over reduced the flexibility to the base of the NSIABI, which may
damage its base. The ductile property of the isolator has been shrunken.
Finally, 𝜃 ≤ 10◦ has been considered optimal inertial angle, which
provides optimal flexibility as well as sufficient load-bearing capacity
to the isolated structure, respectively. Fig. 6(b) shows the variation of
optimal damping ratio versus base mass ratio for different values of 𝜃.
The optimal damping ratio of the isolator decreases when the base mass
ratio of the NSIABI increases. Hence, the higher base mass ratio pro-
vides optimal lower damping for the novel isolators, which is feasible
and can also be implemented for practical design purposes. The lower
base mass ratio of NSIABI provides higher damping, which is not cost-
effective. Apart from that, a lower base mass ratio with higher damping
provides extended damping, making the isolated structure overdamped.
Therefore, a higher base mass ratio has been recommended for the
optimal design of the NSIABI system. Now considering the optimal
inertial angle (i.e., 𝜃 = 10◦, the same type of plots have been configured
for NSBI and IABI systems, respectively. Fig. 7(a) shows the variation
of optimal frequency ratio versus the base mass ratio of the novel
isolators. This figure depicts that the optimal frequency ratio decreases
when the base mass ratio increases. Overall the optimal frequency
ratios of the NSBI system is much lesser than the other NSIABI and IABI
system due to the effect of negative stiffness. As expected, structures
isolated by NSBI have a more extended time period than the other two
isolated systems. The same effect has been observed in Fig. 7(b), where
the variation of optimal damping ratio versus the base mass ratio of
the novel isolators have been displayed. The optimal damping ratio
of each isolator decreases while the base mass ratio increases. In the
previous plots, it has already been observed that a higher base mass
ratio provides a robust design for all three novel isolators. The damping
ratios of IABI is more than the other two isolators, while NSBI is the
lowest one. The mass amplification effect of inertial amplifiers plays
the primary role in amplifying the dissipation energy of the isolated
structures. However, the static mass does not affect that. Only the
effective mass plays a crucial part, whereas, in the NSBI system, the
mass amplification is near to zero. These optimal damping ratios can
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Fig. 5. (a) The variations of optimal damping ratio 𝜁𝑖𝑏 versus mass tuning ratio 𝛾 of the novel isolators have been plotted for the different values of base mass ratio 𝜇𝑖𝑏. The blue
(𝜇𝑖𝑏 = 0.20), magenta (𝜇𝑖𝑏 = 0.40), black (𝜇𝑖𝑏 = 0.60) and red (𝜇𝑖𝑏 = 0.70) lines with markers have been employed to indicate these plots. (b) The variations of optimal damping
ratio 𝜁𝑖𝑏 versus mass tuning ratio 𝛾 of the novel isolators have been plotted for the different values of inertial angle 𝜃. The red (𝜃 = 10◦), black (𝜃 = 15◦), magenta (𝜃 = 20◦), and
blue (𝜃 = 30◦) lines with markers have been employed to indicate these plots. For both graphs, other system parameters are considered as 𝜇𝑇 = 0.10 and 𝜃 = 10◦.
Fig. 6. (a) The variations of optimal frequency ratio 𝜂𝑖𝑏 versus base mass ratio 𝜇𝑖𝑏 of the NSIABI system have been plotted for different values of inertial angle 𝜃. (b) The variations
of optimal damping ratio 𝜁𝑖𝑏 versus base mass ratio 𝜇𝑖𝑏 of the NSIABI system have been plotted for different values of inertial angle 𝜃. For both graphs, the red (𝜃 = 10◦), black
𝜃 = 15◦), magenta (𝜃 = 20◦), and blue (𝜃 = 30◦) lines with markers have been employed to indicate each plot. Other system parameters are considered as 𝜇𝑇 = 0.10 and 𝛾 = 0.50.
s
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lso be located at Fig. 8 where the variation of the standard deviation of
isplacement of main structure versus damping ratio of novel isolators
as been shown. Eq. (46) have been applied to plot these graphs, and
rom this equation, the closed-form expressions for optimal frequency
nd damping ratio novel isolators have been derived, respectively. The
ig. 8 has been added to maintain the work’s transparency and cross-
heck the accuracy of the results presented before. Fig. 8(a) displays the
ariation of the standard deviation of displacement of the main struc-
ure isolated by NSBI. For each base mass ratio, optimal frequency ratio
as been obtained using Eq. (A.6). The optimal standard deviation plots
ave been achieved using these optimal values. As the input values are
ptimum, the damping ratios located from the plot are optimum. The
9

ame type of plots for structures isolated by NSIABI and IABI has been
hown in Fig. 8(b) and Fig. 8(c). The values of optimal damping ratios
ocated from Fig. 8 are exactly matched with the optimal damping
alues derived from Eq. (A.7). Hence, the newly introduced closed-
orm expressions are 100% accurate and can be used for practical
esign purposes, respectively. Using these optimal design parameters,
he robustness of the novel isolators have been shown Fig. 9. The
ariation of displacement of the main structure isolated by each novel
solator has been displayed in Fig. 9. The displacement of the main
tructure is unrestrained at 𝜁𝑖𝑏 = 0. The displacement of the structure
as been mitigated at resonating frequency when the damping ratio of
he novel isolators increases. The resonating, minimum/minima [108],
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Fig. 7. (a) The variations of optimal frequency ratio 𝜂𝑖𝑏 versus base mass ratio 𝜇𝑖𝑏 of the novel isolators have been plotted for different values of mass tuning ratio 𝛾. (b) The
variations of optimal damping ratio 𝜁𝑖𝑏 versus base mass ratio 𝜇𝑖𝑏 of the novel isolators have been plotted for different values of mass tuning ratio 𝛾. For both graphs, the black
(𝛾 = 0), red (𝛾 = 0.5), and blue (𝛾 = 1.0) lines with markers have been employed to indicate these plots for each isolator (i.e., NSBI, NSIABI, IABI). Other system parameters are
considered as 𝜇𝑇 = 0.10 and 𝜃 = 10◦.
Fig. 8. The variations of the standard deviation (SD) of displacement for structures isolated by (a) NSBI (𝛾 = 0), (b) NSIABI (𝛾 = 0.50), and (c) IABI (𝛾 = 1.0) versus damping ratio
f the novel isolators have been plotted for different values of base mass ratio 𝜇𝑖𝑏. For all graphs, the blue dotted (𝜇𝑖𝑏 = 0.20), magenta dash-dotted (𝜇𝑖𝑏 = 0.40), black dash–dash
𝜇𝑖𝑏 = 0.60) and red (𝜇𝑖𝑏 = 0.70) lines have been employed to indicate each plot. Eq. (A.6) is employed for inducing the optimal frequency ratio for each plot.
4

m
t
h
𝐻
t
i
t
d

nd anti-resonating regions can be located from this plot. In Fig. 9(a)
nd (b), the frequency region of all three peaks refers to each resonating
requency, and the smallest point between two consecutive resonances
efers as minimum/minima. The maximum response drop has been
ocated at the anti-resonance frequency region. The maximum values
f structural displacements have been derived and displayed in each
raph. All the peaks merged into one when the damping of the isolators
ends to infinity (i.e., 𝜁𝑖𝑏 = ∞). Therefore, the plots of the main
tructure and novel isolator bind together. Due to that, each controlled
tructure is shortened to a single degree of freedom system (SDOF).
or Fig. 9(c), in the IABI system, only one minimum/minima and two
esonance frequencies can be observed because the effective properties
mass and stiffness) are not frequency-dependent. On the other hand,
n NSIABI and NSBI, one anti-resonance, one minimum/minima and
hree resonance peaks can be noticed as the effective properties (mass
nd stiffness) are frequency-dependent.
10
. 𝑯∞ Optimization for harmonic excitation

The 𝐻∞ optimization has been performed to minimize the maxi-
um amplitude of the frequency responses based on the fixed-point

heory [109]. Thus, when these controlled systems are subjected to
armonic excitations instead of white-noise random excitations, the
∞ optimization method is more effective than 𝐻2 norm. Therefore,

he closed-form expressions for optimal design parameters of the novel
solators have been derived using this optimization method. To perform
he 𝐻∞ optimization method, Eq. (19) has been converted in to non-
imensional form. Hence, the modified Eq. (19) has been expressed as

⎡

⎢

⎢

⎣

2 𝑖𝜂 𝜁𝑠 − 𝜂2 + 1 −𝜂2

−2 𝑖𝜂 𝜁𝑠 − 1
(

2 𝑖𝜂 𝜁𝑖𝑏𝜂𝑖𝑏−𝜂2+𝜂𝑖𝑏2
)(

𝜂2𝜇𝛷−𝜂𝑎2𝜇𝜗
)

𝜂2−𝜂𝑎2

⎤

⎥

⎥

⎦

{

𝑌𝑠
𝑌𝑖𝑏

}

= −

[

1
]

𝑈𝑔
2

(55)
𝜇𝑖𝑎 𝜔𝑠
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Fig. 9. The variations of the displacement of the main structure 𝐻𝑠(𝜂) isolated by (a) NSBI (𝛾 = 0), (b) NSIABI (𝛾 = 0.50), and (c) IABI (𝛾 = 1.0) versus frequency ratio have been
lotted for different values of damping ratio of novel isolators. The black dash, blue dotted, and red lines have been implemented to address the displacement plots for damping
atio of 0, ∞, and (𝜁𝑖𝑏)𝑜𝑝𝑡. Eqs. (A.6) and (A.7) have been applied to obtain the optimal frequency and damping ratio of the novel isolators, which have been applied to plot these
raphs. Other system parameters are considered as 𝜇𝑖𝑏 = 0.70 and 𝜃 = 10◦. For all graphs, P, Q, and R are indicating three fixed points, and the corresponding frequency ratios are
enoted as 𝜂1, 𝜂2, and 𝜂3.
T
d
T

t

N

𝜂

C

here 𝜇𝑖𝑎 = (𝜂2𝜇𝛷 − 𝜂𝑎2𝜇𝜗)∕(𝜂2 − 𝜂𝑎2), defines as the ratio of total
effective mass to the mass of the main structure. The displacement
response of the main structure has been derived as

𝐻𝑠(𝜂) =
𝑌𝑠
𝑈𝑔

𝜔2
𝑠 =

(

𝜂2𝜇𝛷 − 𝜂𝑎2𝜇𝜗
) (

𝜂𝑖𝑏2 + 2i𝜂 𝜁𝑖𝑏𝜂𝑖𝑏
)

𝛥𝑛
(56)

he displacement response of the novel isolators has been derived as

𝑖𝑏(𝜂) =
𝑌𝑖𝑏
𝑈𝑔

𝜔2
𝑠 =

(

−𝜂4𝜇𝛷 + 𝜂2𝜂𝑎2𝜇𝜗 + 𝜂2𝜇𝛷 − 𝜂𝑎2𝜇𝜗 + 𝜂2

−𝜂𝑎2 + 2i𝜁𝑠𝜂
(

𝜂2
(

𝜇𝛷 + 1
)

− 𝜂𝑎2
(

𝜇𝜗 + 1
))

)

𝛥𝑛
(57)

he closed-form expression for 𝛥𝑛 has been derived as

𝑛 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜂6𝜇𝛷 +
(

2i𝜇𝛷𝜂𝑖𝑏𝜁𝑖𝑏 + 2i𝜁𝑠𝜇𝛷 + 2i𝜁𝑠
)

𝜂5

+
(

4 𝜁𝑖𝑏𝜁𝑠𝜂𝑖𝑏𝜇𝛷 + 𝜂𝑎2𝜇𝜗 + 𝜂𝑖𝑏2𝜇𝛷 + 𝜇𝛷 + 1
)

𝜂4

−2i
((

𝜂𝑖𝑏2𝜇𝛷 + 𝜂𝑎2
(

𝜇𝜗 + 1
))

𝜁𝑠 + 𝜂𝑖𝑏𝜁𝑖𝑏
(

𝜂𝑎2𝜇𝜗 + 𝜇𝛷
))

𝜂3

−
(

4 𝜂𝑎2𝜁𝑠𝜂𝑖𝑏𝜁𝑖𝑏𝜇𝜗 + 𝜂𝑎2𝜂𝑖𝑏2𝜇𝜗 + 𝜂𝑎2𝜇𝜗 + 𝜂𝑖𝑏2𝜇𝛷 + 𝜂𝑎2
)

𝜂2

+2i𝜂𝑎2𝜇𝜗𝜂𝑖𝑏
(

𝜁𝑠𝜂𝑖𝑏 + 𝜁𝑖𝑏
)

𝜂 + 𝜂𝑎2𝜂𝑖𝑏2𝜇𝜗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(58)

To apply the fixed-point theory considers 𝜁𝑠 = 0 and the closed-form
expression of the 𝐻𝑠(𝜂) has been modified as

𝐻𝑠(𝜂)𝜁𝑠=0 =
𝑌𝑠
𝑈𝑔

𝜔2
𝑠 =

(

𝜂2𝜇𝛷 − 𝜂𝑎2𝜇𝜗
) (

𝜂𝑖𝑏2 + 2i𝜂 𝜁𝑖𝑏𝜂𝑖𝑏
)

𝛥𝑛|𝜁𝑠=0
(59)

imultaneously, the closed-form expression of the 𝛥𝑛 has been modified
s

𝑛|𝜁𝑠=0 =

⎛

⎜

⎜

⎜

⎝

−𝜂6𝜇𝛷 +
(

𝜂𝑎2𝜇𝜗 + 𝜂𝑖𝑏2𝜇𝛷 + 𝜇𝛷 + 1
)

𝜂4

+
(

−𝜂𝑎2𝜂𝑖𝑏2𝜇𝜗 − 𝜂𝑎2𝜇𝜗 − 𝜂𝑖𝑏2𝜇𝛷 − 𝜂𝑎2
)

𝜂2

+𝜂𝑎2𝜂𝑖𝑏2𝜇𝜗 + 2i
(

𝜂2𝜇𝛷 − 𝜂𝑎2𝜇𝜗
)

𝜂 (𝜂 + 1) (𝜂 − 1) 𝜁𝑖𝑏𝜂𝑖𝑏

⎞

⎟

⎟

⎟

⎠

(60)

To minimize the maximum amplitude of the displacement response
of the main structure, the modulus of 𝐻𝑠(𝜂) has been derived and
expressed as

|𝐻𝑠(𝜂)| =

√

√

√

√

𝑅2
𝑠 + 𝜁2𝑖𝑏𝐼

2
𝑠

𝑃 2
𝑟 + 𝜁2𝑖𝑏𝑄

2
𝑖

=
|

|

|

|

|

𝐼𝑠
𝑄𝑖

|

|

|

|

|

√

√

√

√

√

√

√

(

𝑅𝑠
𝐼𝑠

)2
+ 𝜁2𝑖𝑏

(

𝑃𝑟
𝑄𝑖

)2
+ 𝜁2𝑖𝑏

(61)

here

𝑠 = 𝜂𝑖𝑏
2 (𝜂2𝜇𝛷 − 𝜇𝜗𝜂𝑎

2) , 𝐼𝑠 = 2 𝜂 𝜂𝑖𝑏
(

𝜂2𝜇𝛷 − 𝜇𝜗𝜂𝑎
2)

𝑃𝑟 =

(

−𝜂6𝜇𝛷 +
(

𝜇𝜗𝜂𝑎2 + 𝜂𝑖𝑏2𝜇𝛷 + 𝜇𝛷 + 1
)

𝜂4

+
((

−𝜂𝑖𝑏2𝜇𝜗 − 𝜇𝜗 − 1
)

𝜂𝑎2 − 𝜂𝑖𝑏2𝜇𝛷
)

𝜂2 + 𝜂𝑎2𝜂𝑖𝑏2𝜇𝜗

)

( 2 2)

(62)
11

𝑄𝑖 = 2 𝜂 𝜂𝑖𝑏 (𝜂 − 1) (𝜂 + 1) 𝜂 𝜇𝛷 − 𝜇𝜗𝜂𝑎 𝑤
wo constraints have been applied to derive the optimal frequency and
amping ratio of the novel isolators using the fixed point theory [27].
hese constraints are listed below.
(

𝑅𝑠
𝐼𝑠

)2
|

|

|

|

|

𝜂𝑗 =
(

𝑃𝑟
𝑄𝑖

)2
|

|

|

|

|

𝜂𝑗 and
(

𝐼𝑠
𝑄𝑖

)2
|

|

|

|

|

𝜂1 =
(

𝐼𝑠
𝑄𝑖

)2
|

|

|

|

|

𝜂2 (63)

Now applying the first constraint, the values of 𝜂1,2,3 have been obtained
as [109]

𝜂6𝜇𝛷 +
(

−𝜇𝜗𝜂𝑎2 − 2 𝜂𝑖𝑏2𝜇𝛷 − 𝜇𝛷 − 1
)

𝜂4

+
((

2 𝜂𝑖𝑏2𝜇𝜗 + 𝜇𝜗 + 1
)

𝜂𝑎2 + 2 𝜂𝑖𝑏2𝜇𝛷
)

𝜂2 − 2 𝜂𝑎2𝜂𝑖𝑏2𝜇𝜗
= 0 (64)

It can also be noted that 𝜂3 > 𝜂2 > 𝜂1 and the values are obtained
as [110]:

𝜂21 + 𝜂22 + 𝜂23 =
𝜇𝜗𝜂𝑎2

𝜇𝛷
+ 2 𝜂𝑖𝑏2 + 1 + 1

𝜇𝛷
(65)

𝜂21𝜂
2
2𝜂

2
3 =

2𝜂𝑎2𝜂𝑖𝑏2𝜇𝜗
𝜇𝛷

(66)

𝜂21𝜂
2
2 + 𝜂21𝜂

2
3 + 𝜂22𝜂

2
3 =

(

2 𝜂𝑖𝑏2𝜇𝜗 + 𝜇𝜗 + 1
)

𝜂𝑎2 + 2 𝜂𝑖𝑏2𝜇𝛷
𝜇𝛷

(67)

To get the values of 𝜂1 and 𝜂2, the second constraints in Eq. (63) need
o be implemented as 𝜁𝑖𝑏 = ∞. Using second constraint in Eq. (63),

𝜂1
2 + 𝜂2

2 = 2 (68)

ow, substitute Eq. (68) into first equation of Eq. (65) which leads to

2
3 =

𝜇𝜗𝜂𝑎2

𝜇𝛷
+ 2 𝜂𝑖𝑏2 +

1
𝜇𝛷

− 1 (69)

In order to find the optimal frequency ratio of the novel isolators,
Eq. (69) have been substituted in Eq. (66) and Eq. (67). A equation
have been generated using the second constraints of Eq. (63), and
Eq. (66), Eq. (67) which contains the closed-form expression of opti-
mal frequency ratio of the novel isolators, respectively. Therefore, the
equation have been derived as
(

−4 𝜂𝑎2𝜇𝛷𝜇𝜗 + 4𝜇𝛷2) 𝜂𝑖𝑏
4

+
(

−2 𝜂𝑎4𝜇𝜗2 + 8 𝜂𝑎2𝜇𝛷𝜇𝜗 − 2 𝜂𝑎2𝜇𝛷 − 2 𝜂𝑎2𝜇𝜗 − 6𝜇𝛷2 + 6𝜇𝛷
)

𝜂𝑖𝑏
2

+ 𝜂𝑎
4𝜇𝜗

2 − 𝜂𝑎
4𝜇𝜗 − 3 𝜂𝑎2𝜇𝛷𝜇𝜗 + 𝜂𝑎

2𝜇𝛷 + 3 𝜂𝑎2𝜇𝜗 − 𝜂𝑎
2

+ 2𝜇𝛷2 − 4𝜇𝛷 + 2 = 0

(70)

onsiders 𝑥 = 𝜂2𝑖𝑏 and Eq. (70) has been written as

𝑥2 +𝑤 𝑥 +𝑤 = 0 (71)
2 1 0
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T
h

(

The values of 𝑤2, 𝑤1, and 𝑤0 have been listed in Appendix B. Eq. (71)
is a quadratic equation which has been solved as

𝑥 =
−𝑤1 ±

√

𝑤2
1 − 4𝑤2𝑤0

2𝑤2
(72)

herefore, using Eq. (72), the closed-form expression for optimum 𝜂𝑖𝑏
as been derived as

𝜂𝑖𝑏)2𝑜𝑝𝑡 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜂𝑎4𝜇𝜗2 + 4 𝜂𝑎2𝜇𝛷𝜇𝜗 − 𝜂𝑎2𝜇𝛷 − 𝜂𝑎2𝜇𝜗 − 3𝜇𝛷2 + 3𝜇𝛷

+

√

√

√

√

√

√

√

√

√

√

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜂𝑎8𝜇𝜗4 − 4 𝜂𝑎6
(

𝜇𝛷 − 1∕2
)

𝜇𝜗3

−2
(

𝜂𝑎2𝜇𝛷 − 3𝜇𝛷2 + 𝜇𝛷 − 1∕2
)

𝜂𝑎4𝜇𝜗2

−2 𝜂𝑎2𝜇𝛷
(

𝜂𝑎2 + 2𝜇𝛷2 − 𝜇𝛷 − 1
)

𝜇𝜗
+𝜇𝛷2 (𝜂𝑎2 + 𝜇𝛷 − 1

)2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

4𝜇𝛷
(

𝜂𝑎2𝜇𝜗 − 𝜇𝛷
)

(73)

Now, in order to derive the closed-form expression for optimal damping
ratio of the novel isolators, the value of 𝜂21 and 𝜂22 needs to be obtained.
Hence, using Eq. (65), Eq. (66), Eq. (67), and Eq. (69), the value of 𝜂21
and 𝜂22 has been derived as

𝜂21,2 = 1 ±

√

−2 𝜂𝑖𝑏2𝜂𝑎2𝜇𝜗 + 2 𝜂𝑖𝑏2𝜇𝛷 + 𝜂𝑎2𝜇𝜗 − 𝜇𝛷 + 1
2 𝜂𝑖𝑏2𝜇𝛷 + 𝜂𝑎2𝜇𝜗 − 𝜇𝛷 + 1

(74)

To obtain the optimal value of 𝜂21,2, Eq. (73) has been substituted in
Eq. (74). Now, Eq. (73) has been substituted in Eq. (61) and squared
this expression to derive the optimal damping ratio of the novel iso-
lators. Therefore, the closed-form expression for optimal 𝜁𝑖𝑏 has been
obtained by solving the following equations

𝜕|𝐻𝑠(𝜂)|2

𝜕𝜂2
|𝜂21,2

= 0 and (𝜁𝑖𝑏)𝑜𝑝𝑡 =

√

𝜁2𝑖𝑏1 + 𝜁2𝑖𝑏2
2

(75)

Using Eq. (75), the viscous damping ratios of the novel isolators 𝜁2𝑖𝑏1,
𝜁2𝑖𝑏2 for the corresponding values of 𝜂21 , 𝜂22 have been derived as

𝜁2𝑖𝑏1,𝑖𝑏2 =

−3 𝜂101,2𝜇𝛷
2

+
(

5 𝜂𝑖𝑏2𝜇𝛷
2 + 5 𝜂𝑎2𝜇𝛷𝜇𝜗 + 5𝜇𝛷

2 + 5𝜇𝛷
)

𝜂81,2

+

⎛

⎜

⎜

⎜

⎜

⎝

−𝜂𝑖𝑏4𝜇𝛷
2 − 8 𝜂𝑖𝑏2𝜂𝑎2𝜇𝛷𝜇𝜗 − 2 𝜂𝑎4𝜇𝜗

2

−8 𝜂𝑖𝑏2𝜇𝛷
2 − 8 𝜂𝑎2𝜇𝛷𝜇𝜗 − 4 𝜂𝑖𝑏2𝜇𝛷

−4 𝜂𝑎2𝜇𝛷 − 4 𝜂𝑎2𝜇𝜗 − 2𝜇𝛷
2

−4𝜇𝛷 − 2

⎞

⎟

⎟

⎟

⎟

⎠

𝜂61,2

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 𝜂𝑖𝑏4𝜂𝑎2𝜇𝛷𝜇𝜗 + 3 𝜂𝑖𝑏2𝜂𝑎4𝜇𝜗
2 + 𝜂𝑖𝑏4𝜇𝛷

2

+12 𝜂𝑖𝑏2𝜂𝑎2𝜇𝛷𝜇𝜗 + 3 𝜂𝑎4𝜇𝜗
2 + 3 𝜂𝑖𝑏2𝜂𝑎2𝜇𝛷

+3 𝜂𝑖𝑏2𝜂𝑎2𝜇𝜗 + 3 𝜂𝑎4𝜇𝜗 + 3 𝜂𝑖𝑏2𝜇𝛷
2

+3 𝜂𝑎2𝜇𝛷𝜇𝜗 + 3 𝜂𝑖𝑏2𝜇𝛷 + 3 𝜂𝑎2𝜇𝛷

+3 𝜂𝑎2𝜇𝜗 + 3 𝜂𝑎2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜂41,2

+

⎛

⎜

⎜

⎜

⎜

⎝

−𝜂𝑖𝑏4𝜂𝑎4𝜇𝜗
2 − 2 𝜂𝑖𝑏4𝜂𝑎2𝜇𝛷𝜇𝜗 − 4 𝜂𝑖𝑏2𝜂𝑎4𝜇𝜗

2

−2 𝜂𝑖𝑏2𝜂𝑎4𝜇𝜗 − 4 𝜂𝑖𝑏2𝜂𝑎2𝜇𝛷𝜇𝜗 − 𝜂𝑎4𝜇𝜗
2

−2 𝜂𝑖𝑏2𝜂𝑎2𝜇𝛷 − 2 𝜂𝑖𝑏2𝜂𝑎2𝜇𝜗

−2 𝜂𝑎4𝜇𝜗 − 𝜂𝑎4

⎞

⎟

⎟

⎟

⎟

⎠

𝜂21,2

+𝜂𝑖𝑏4𝜂𝑎4𝜇𝜗
2 + 𝜂𝑖𝑏2𝜂𝑎4𝜇𝜗

2 + 𝜂𝑖𝑏2𝜂𝑎4𝜇𝜗

4 𝜂21,2𝜂𝑖𝑏
2

(

𝜂21,2𝜂𝑎
4𝜇𝜗

2 − 2 𝜂41,2𝜂𝑎
2𝜇𝛷𝜇𝜗 − 𝜂𝑎4𝜇𝜗

2

+𝜂61,2𝜇𝛷
2 + 2 𝜂21,2𝜂𝑎

2𝜇𝛷𝜇𝜗 − 𝜂41,2𝜇𝛷
2

)

(76)

Now, Eq. (76) has been substituted into the second expression of
Eq. (75). Therefore, the optimal damping ratio of the novel isolators
has been derived using the second expression of Eq. (75). Fig. 10 shows
the variation of displacement of main structure versus frequency ratio
for different values of 𝜁𝑖𝑏. To plot Fig. 10, the system parameters are
considered as 𝜁𝑠 = 0, 𝜇𝑖𝑏 = 0.7, 𝛾 = 0.5, 𝜃 = 10◦, 𝜂𝑎 = 2, and
𝜇𝑇 = 0.10 and the optimal frequency ratio 𝜂𝑖𝑏 and damping ratio 𝜁𝑖𝑏
have been obtained as 0.5822 and 0.4 using Eq. (73), Eq. (76), and
Eq. (75). Same plots for structures controlled by NSBI and IABI systems
have been displayed in Appendix C to provide a clear visualization.
Two fixed points can easily be located from Fig. 10 as the optimal
12
frequency ratio has been employed. The displacement of the main
structure is unrestrained at 𝜁𝑖𝑏 = 0. The displacement amplitude of
the transfer function of the main structure and NSIABI are unbounded
at its eigen frequencies (i.e., 𝜂 = 0.4702, 1.208, 2.546), respectively.
The responses throughout the system resonances have been attenuated
when the damping ratio of the NSIABI system increases. The resonating,
minimum/minima [108], and anti-resonating regions can be located
from this plot. In Fig. 10, the frequency region of all three peaks
refers to each resonating frequency (i.e., 𝜂 = 0.4664, 1.176, 2.546), and
the smallest point between two consecutive resonances refers to min-
imum/minima [108]. The maximum response drop has been located
at the anti-resonance frequency region. The receptance of 𝐻𝑠(𝜂) has
become zero at anti-resonance frequency (i.e., 𝜂 = 2.484). Whereas,
the receptance of 𝐻𝑠(𝜂) is not zero between two consecutive resonating
frequencies (i.e., 𝜂 = 0.4664, 1.176). That frequency region is indicated
as minimum frequency (i.e., 𝜂 = 0.8444). The log plot has only been
implemented to address the resonating, minimum, and anti-resonating
frequency. The maximum values of structural displacements have been
derived and displayed in Fig. 10. Therefore, at optimal damping ratio
𝜁𝑖𝑏 = 0.4, the maximum displacement amplitude is determined as
2.7994. All the peaks merged into one when the damping of the
isolators tended to infinity (i.e., 𝜁𝑖𝑏 = ∞). Therefore, the plots of the
main structure and novel isolator bind together. Due to that, each
controlled structure is shortened to a single degree of freedom system
(SDOF). Therefore, a single peak has been observed from Fig. 10. For
Fig. C.17(b), in the IABI system, only one minimum/minima and two
resonance frequencies can be observed because the effective properties
(mass and stiffness) are not frequency-dependent. On the other hand,
in NSIABI and NSBI, one anti-resonance, one minimum/minima and
three resonance peaks can be noticed as the effective properties (mass
and stiffness) are frequency-dependent. In fact, it is also observed that
for damping ratios less than 40%, the peak displacement amplitude
decreases, and it becomes pretty stable and approximately constant for
higher damping values. In addition, the plots of 𝐻𝑠(𝜂) at optimal 𝜂𝑖𝑏
coincide with each other when the damping of the isolator 𝜁𝑖𝑏 reached
the value of 0.40. Therefore, 𝜁𝑖𝑏 = 0.40 is considered as the optimal
damping for proposed NSIABI systems, and this value is feasible for
practical design purposes.

Fig. 11(a) shows the variation of optimal frequency ratio versus
the base mass ratio of the novel isolators. This figure depicts that the
optimal frequency ratio slightly increases when the base mass ratio
increases. However, the variation of optimal frequency ratio from lower
to higher bass mass ratio is minor. Overall the optimal frequency ratios
of the IABI system is lesser than the other NSBI and NSIABI system due
to the effect of effective mass amplification. However, the difference
between optimal frequency ratios of IABI and NSBI was obtained as
12.13%. In contrast, the difference between IABI and NSIABI was
obtained as 7.83%, which is low. Here, the effective mass amplifica-
tion effect of the inertial amplifier plays a crucial role. The opposite
effect has been observed in Fig. 11(b), where the variation of optimal
damping ratio versus the base mass ratio of the novel isolators have
been displayed. The optimal damping ratio of each isolator decreases
while the base mass ratio increases. The previous section has already
been observed that a higher base mass ratio provides a robust design
for all three novel isolators. Overall the optimal damping ratio of the
NSBI system is lesser than the other NSIABI and IABI system due to
the effect of negative stiffness and more extended time period than
other systems, respectively. The mass amplification effect of inertial
amplifiers plays the primary role in amplifying the dissipation energy
of the isolated structures. However, the static mass does not affect
that. Only the effective mass plays a crucial part, whereas, in the
NSBI system, the mass amplification is near to zero. NSIABI system
provides a feasible design as the isolated structure is neither over-
damped nor underdamped. Finally, all proposed isolators are robust,

and a higher base mass ratio has been recommended for the robust
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Fig. 10. The variations of displacement of the main structure 𝐻𝑠(𝜂) isolated by the
SIABI (𝛾 = 0.50) versus frequency ratio 𝜂(𝜔∕𝜔𝑠) have been plotted for different values

of damping ratio of the NSIABI system. The black dash, blue dotted, and red lines
have been implemented to address the displacement plots for damping ratio of 0, ∞,
nd (𝜁𝑖𝑏)𝑜𝑝𝑡. Eqs. (73), (75) and (76) have been applied to obtain the optimal frequency
nd damping ratio of the NSIABI system, which have been applied to plot this graph.
ther system parameters are considered as 𝜇𝑖𝑏 = 0.70 and 𝜃 = 10◦. For all graphs, P,
, and R are indicating three fixed points, and the corresponding frequency ratios are
enoted as 𝜂1, 𝜂2, and 𝜂3.

esign of these isolators. For NSIABI systems, the variation of optimal
esign parameters versus base mass ratio needs to be investigated.
o perform that, Fig. 12 has been drawn where Fig. 12(a) shows
he variation of optimal frequency ratio versus base mass ratio for
ifferent values of 𝜃. The optimal frequency ratio of the isolator slightly
ncreases when the base mass ratio of the NSIABI increases. However,
he difference between optimal frequency ratio for lower to higher base
ass ratio is minor. Therefore, all base mass ratio has extended the time
eriod of the isolated structures. Interestingly, a lower inertial angle
i.e., 𝜃 = 10◦) provides a feasible frequency ratio for the isolator. In
ontrast, the higher inertial angles (i.e., 𝜃 ≥ 15◦) overextended the
lexibility of the isolated structure compared to the lower one. The
ime period of the isolated structure enlarged due to that particular
eason. This scenario may damage the base floor of the isolator for
ver movement during vibration. Additionally, the lower base mass
atio with a higher angle provides a significantly lower frequency ratio,
nd the time period of the isolator has been over enlarged. It has
ver increased the flexibility to the base of the NSIABI, which may
amage its base as well. Finally, 𝜃 ≤ 10◦ has been considered optimal
nertial angle, which provides optimal flexibility as well as sufficient
oad-bearing capacity to the isolated structure, respectively. Fig. 12(b)
hows the variation of optimal damping ratio versus base mass ratio
or different values of 𝜃. The optimal damping ratio of the isolator
ecreases when the base mass ratio of the NSIABI increases. Hence,
he higher base mass ratio provides optimal lower damping for the
ovel isolators, which is feasible and can be implemented for practical
esign purposes. Interestingly, a lower inertial angle (i.e., 𝜃 = 10◦)
rovides a feasible damping ratio for the isolator. In contrast, the
igher inertial angles (i.e., 𝜃 ≥ 15◦) overdamped the isolated structure
ompared to the lower one. The ductility of the isolator may reduce
nd damage the base as well. This application of higher damping
s practically complicated and over cost compared to the lower one.
nstead of response reduction, it may enlarge the deflection of the
13
tructure. The lower base mass ratio of NSIABI also provides higher
amping, which is also not cost-effective. Apart from that, a lower base
ass ratio with higher damping provides extended damping, making

he isolated structure over-damped. Therefore, a higher base mass ratio
ith a lower angle (i.e., 𝜃 = 10◦) has been recommended for the optimal
esign of the NSIABI systems, respectively.

. Comparison of optimal parameters obtained from 𝑯𝟐 and 𝑯∞
ptimization

Using the newly derived closed-form expressions for optimal design
arameters through 𝐻2 and 𝐻∞ optimization method, the variation
f optimal frequency ratio and the variation of optimal damping ratio
ersus the base mass ratio of NSIABI have been displayed in Fig. 13.
n previous sections, it has already been shown that for lower angle
i.e., 𝜃 ≤ 30◦), the effective mass of novel isolators has amplified
he most. In fact, the most feasible design for each isolator has been
chieved at lower angles which provides optimal vibration reduction
apacity for each isolator. To keep it in mind, for Fig. 13, 𝜃 has been
onsidered as 10◦ and other design parameters have been considered
s 𝜂𝑎 = 2, and 𝜇𝑇 = 0.10. The significant differences for 𝐻2 and
∞ optimized design parameters such as frequency and damping ratio

f novel isolators have been observed from Fig. 13. This scenario
appens because the 𝐻2 optimization method employs to minimize
he mean squared displacement of the main structure under random
xcitation. In contrast, the 𝐻∞ optimization method has been employed
o minimize the maximum amplitude of the frequency response under
armonic excitation, respectively. For better visualization, the values
f optimal frequency and damping ratios for each isolator have been
isted in Table 2. For Table 2, the structural parameters have been
onsidered as 𝜇𝑖𝑏 = 0.70, 𝜂𝑎 = 2, and 𝜇𝑇 = 0.10. Fig. 13(a) shows that
he 𝐻∞ optimized frequency ratio of novel isolators increases while
2 optimized frequency ratios decrease with an increase in the base

mass ratio of NSIABI. In fact, for NSIABI system, at higher mass ratio
(i.e., 𝜇𝑖𝑏 = 0.70), the difference between optimal frequency ratios is
near about 25.18% where at lower mass ratios (i.e., 𝜇𝑖𝑏 = 0.20) that is
3%. These trends have also been observed for NSBI and IABI systems,
espectively. Therefore, the higher base mass ratio has lengthened the
ime period of the 𝐻2 optimized isolated structures more than the lower
ase mass ratio while this trend is reciprocal for 𝐻∞ optimized isolated
tructures. However, the variation of 𝐻∞ optimized frequency ratio
or lower to higher base mass ratio is minor. Overall, the higher base
ass ratio has lengthened the time period of the isolated structures
ore than the lower base mass ratio. However, the nature of the

ptimal damping ratio plots is different from the optimal frequency
atio plots. Fig. 13(b) shows that both 𝐻2 and 𝐻∞ optimized damping
atio of the novel isolators decrease with increases of the base mass
atio of NSIABI. The trend of values is also different from Fig. 13(a).
ence, for NSIABI system, at higher mass ratio (i.e., 𝜇𝑖𝑏 = 0.70), the
ifference between optimal damping ratios is near about 5.67% where
t lower mass ratios (i.e., 𝜇𝑖𝑏 = 0.20) that is 19.17%. NSBI and IABI,

respectively, have followed the same trends. Therefore, the higher base
mass ratio has provided lower damping for the novel isolators, which
is feasible and can also be implemented for practical design purposes.
The lower damping system is also cost-effective and more durable
than the higher damping. The lower base mass ratio of NSIABI has
provided higher damping, which is also feasible but not cost-effective.
The durability of the isolated structure has also been distressed due to
the higher damping. Therefore, choosing a little higher base mass ratio
is recommended for the optimal design of these novel isolators, feasible,
cost-effective, and more durable.

Now, the variation of structural displacement of each 𝐻2 and 𝐻∞
optimized isolated structure has been investigated. To perform that,
the variation of displacement of the main structure of each isolated
structure versus frequency ratio has been shown in Fig. 14. Table 2

has been employed to plot Fig. 14. The viscous damping ratio of the
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Fig. 11. (a) The variations of optimal frequency ratio 𝜂𝑖𝑏 versus base mass ratio 𝜇𝑖𝑏 of the novel isolators have been plotted for different values of mass tuning ratio 𝛾. (b) The
variations of optimal damping ratio 𝜁𝑖𝑏 versus base mass ratio 𝜇𝑖𝑏 of the novel isolators have been plotted for different values of mass tuning ratio 𝛾. For both graphs, the black
(𝛾 = 0), red (𝛾 = 0.5), and blue (𝛾 = 1.0) lines with markers have been employed to indicate these plots for each isolator (i.e., NSBI, NSIABI, IABI). Other system parameters are
considered as 𝜇𝑇 = 0.10 and 𝜃 = 10◦.
Fig. 12. (a) The variations of optimal frequency ratio 𝜂𝑖𝑏 versus base mass ratio 𝜇𝑖𝑏 of the NSIABI system have been plotted for different values of inertial angle 𝜃. (b) The
variations of optimal damping ratio 𝜁𝑖𝑏 versus base mass ratio 𝜇𝑖𝑏 of the NSIABI system have been plotted for different values of inertial angle 𝜃. For both graphs, the red (𝜃 = 10◦)
and black (𝜃 = 15◦) lines with markers have been employed to indicate each plot. Other system parameters are considered as 𝜇𝑇 = 0.10 and 𝛾 = 0.50.
Table 2
Exact values of optimal design parameters.

Optimal parameters NSBI NSIABI (𝛾 = 0.50) IABI

𝐻2 𝐻∞ 𝐻2 𝐻∞ 𝐻2 𝐻∞

Frequency ratio of isolators (𝜂𝑖𝑏) 0.4144 0.6107 0.4356 0.5822 0.4605 0.5366
Damping ratio of isolators (𝜁𝑖𝑏) 0.3589 0.3359 0.3773 0.4 0.3988 0.4931
o

structure 𝜁𝑠 is considered as 0.01. Fig. 14(a) shows the displacement
of the main structure isolated by 𝐻2 and 𝐻∞ optimized NSBI systems,
respectively. The peak displacement of 𝐻2 and 𝐻∞ optimized structure
14
has been obtained as 2.4636 and 2.7674. Therefore, the difference
between peak values is determined as 10.97% while for 𝐻2 and 𝐻∞
ptimized NSIABI systems; the difference is 7.16%. The peaks values for
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Fig. 13. (a) The variations of optimal frequency ratio 𝜂𝑖𝑏 versus base mass ratio 𝜇𝑖𝑏 of the 𝐻2 and 𝐻∞ optimized novel isolators have been plotted for different values of mass
tuning ratio 𝛾. (b) The variations of optimal damping ratio 𝜁𝑖𝑏 versus base mass ratio 𝜇𝑖𝑏 of the 𝐻2 and 𝐻∞ optimized novel isolators have been plotted for different values of

ass tuning ratio 𝛾. For both graphs, the black (𝛾 = 0), red (𝛾 = 0.5), and blue (𝛾 = 1.0) lines with markers have been employed to indicate these plots for each isolator (i.e., NSBI,
SIABI, IABI). Other system parameters are considered as 𝜇𝑇 = 0.10 and 𝜃 = 10◦.
Fig. 14. The variations of displacement of the main structure 𝐻𝑠(𝜂) isolated by (a) NSBI (𝛾 = 0), (b) NSIABI (𝛾 = 0.50), and (c) IABI (𝛾 = 1.0) versus frequency ratio 𝜂(𝜔∕𝜔𝑠) have
een plotted for 𝐻2 and 𝐻∞ optimized design parameters. Eqs. (A.6) and (A.7) have been applied to obtain the optimal frequency and damping ratio of the 𝐻2 optimized novel
solators, which have been applied to plot these graphs. Eqs. (73), (75) and (76) have been applied to obtain the optimal frequency and damping ratio of the 𝐻∞ optimized novel

isolators, which have been applied to plot these graphs. The black and red dash lines have been implemented to address the displacement plot of the main structures isolated by
𝐻2 and 𝐻∞ novel isolators. Other system parameters are considered as 𝜁𝑠 = 0.01, 𝜇𝑖𝑏 = 0.70 and 𝜃 = 10◦.
NSIABI optimized systems have already shown in Fig. 14(b). However,
for IABI systems, this scenario is reciprocal. Fig. 14(c) shows that the
peak values of the main structure isolated by 𝐻2 and 𝐻∞ optimized
IABI systems have been determined as 2.1476 and 2.0662, respectively.
Therefore, the structural displacement of 𝐻2 optimized IABI system
3.8% more than the 𝐻∞ optimized IABI system, respectively. These
numerical values indicate that 𝐻2 optimized NSBI and NSIABI systems
are more effective than 𝐻∞ optimized NSBI and NSIABI system while
𝐻∞ optimized IABI is more effective than 𝐻2 optimized IABI system,
respectively. However, the variation is less for each optimized system
(i.e., < 11%). Overall both optimized novel isolators are more feasible,
cost-effective, and durable than the traditional base isolators.
15
6. Performance evaluation of optimized novel base isolators

After deriving the exact closed-form expressions for optimal de-
sign parameters for novel base isolation devices using 𝐻2 and 𝐻∞
optimization methods, the optimal performance of each isolator has
been determined. The peak displacement amplitude of main struc-
tures isolated by each isolator has been obtained and compared with
the structure’s corresponding displacement response isolated by the
traditional base isolator. These evaluation processes have helped to
investigate the exact vibration reduction capacity of each novel isolator
compared to the traditional one. First, the dynamic performance of 𝐻2
optimized NSBI, NSIABI, and IABI systems have been investigated and
later the 𝐻∞ one. Therefore, the variation of structural displacements of
controlled and uncontrolled structures versus frequency ratio has been
shown in Fig. 15(a). To plot this figure, Eq. (A.6) and Eq. (A.7) have
been utilized to obtain the optimal design parameters and other system
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Fig. 15. (a) The variations of displacement of the main structure 𝐻𝑠(𝜂) isolated by TBI, NSBI (𝛾 = 0), (b) NSIABI (0.10 < 𝛾 < 0.90), and IABI (𝛾 = 1.0) versus frequency ratio 𝜂(𝜔∕𝜔𝑠)
ave been plotted for different values of mass tuning ratio of the novel isolators. The black dotted and magenta dash-dotted, red, blue, other colored dash–dash lines have been
pplied to indicate the displacement of the uncontrolled structure and structure isolated by TBI, NSBI, IABI, and NSIABI systems. Eqs. (A.6) and (A.7) have been applied to obtain
he optimal frequency and damping ratio of the 𝐻2 optimized novel isolators, which have been applied to draw this graph. Other system parameters are considered as 𝜁𝑠 = 0.01,
𝑖𝑏 = 0.70 and 𝜃 = 10◦. (b) The variation of peak structural displacement versus mass tuning ratio 𝛾 of the novel isolators has been drawn. The black line with marker employs to
ndicate this plot.
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arameters are considered as 𝜇𝑖𝑏 = 0.7, 𝜁𝑠 = 0.01, 𝜃 = 10◦, 𝜂𝑎 = 2, and
𝑇 = 0.10. Using Eq. (A.6) and for 𝛾 = 0, 0.1, 0.2,… , 1, the optimal
requency ratios of the novel isolators 𝜂𝑖𝑏 have been determined as
.4144, 0.4184, 0.4226, 0.4268, 0.4311, 0.4356, 0.4403, 0.4451, 0.45,
.4552, 0.4605. The optimal damping ratio 𝜁𝑖𝑏 have been obtained
s 0.3589, 0.3624, 0.3659, 0.3696, 0.3734, 0.3773, 0.3813, 0.3855,
.3897, 0.3942, 0.3988 using Eq. (A.7). After considering these pa-
ameters, the peak displacement amplitudes of main structures isolated
y novel isolators have been determined as 2.4636, 2.4208, 2.3764,
.3301, 2.2820, 2.2321, 2.1857, 2.1759, 2.1666, 2.1570, 2.1476, while
he peak displacement amplitude of the structure isolated by TBI has
een evaluated as 9.1319. Therefore, these results indicate that the
ibration reduction capacity of NSBI, NSIABI, and IABI is significantly
3.02%, 75.55%, and 76.48%, superior to the TBI. For better visual-
zing these results, the variation of peak displacement amplitude of
he main structure versus the mass tuning ratio of NSIABI systems has
een displayed in Fig. 15(b). After that, the performance evaluation of
∞ optimized novel isolators has proceeded. Therefore, the variation

f structural displacements of controlled and uncontrolled structures
ersus frequency ratio has been shown in Fig. 16(a). For these plots,
he optimal design parameters such as frequency and damping ratio
f NSIABI systems have been determined using Eq. (73), Eq. (75),
nd Eq. (76). Other design parameters are considered as 𝜇𝑖𝑏 = 0.7,
𝑠 = 0.01, 𝜃 = 10◦, 𝜂𝑎 = 2, and 𝜇𝑇 = 0.10. Using Eq. (73) and
or 𝛾 = 0, 0.1, 0.2,… , 1, the optimal frequency ratios of the novel
solators 𝜂𝑖𝑏 have been determined as 0.6106, 0.6058, 0.6006, 0.5949,
.5888, 0.5822, 0.5749, 0.5668, 0.5579, 0.5479, 0.5366. The optimal
amping ratio 𝜁𝑖𝑏 have been obtained as 0.3358, 0.3474, 0.3595,
.3722, 0.3857, 0.4, 0.4154, 0.4320, 0.4502, 0.4704, 0.4930 using
q. (75), and Eq. (76), respectively. All the optimal design parameters
or each isolator have been considered for these plots. It needs to be
oted that for TBI, 𝜇𝑇 in Eq. (11) is considered as 0, and the NSIABI
ystem will behave as TBI. After considering these parameters, the
eak displacement amplitudes of main structures isolated by novel
solators have been determined as 2.7675, 2.6896, 2.6166, 2.5448,
.4741, 2.4043, 2.3354, 2.2672, 2.1997, 2.1327, 2.0662, while the
aximum displacement amplitude of structure isolated by TBI has been
16

a

btained as 9.1319. Hence, results show that the vibration reduction
apacity of NSBI, NSIABI, and IABI is significantly 69.69%, 73.67%,
nd 77.37% superior to the TBI, respectively. For better visualizing
hese results, the variation of peak displacement amplitude of the main
tructure versus the mass tuning ratio of NSIABI systems has been
hown in Fig. 16(b). For both cases, it has been observed that the
ABI system has superior vibration reduction capacity to the NSBI and
SIABI. This scenario happens because the inertial amplifier has been
nhanced the effective mass of the isolator, which amplifies the inertial
orces inside the isolated structure during vibration. In contrast, the
egative stiffness only provides additional flexibility to the isolated
tructure, enhancing the main structure’s time period during vibration.
owever, the combined effect of the inertial amplifier and negative

tiffness is robust. As the vibration reduction capacity of 𝐻2 and 𝐻∞
ptimized IABI is only 0.46% and 3% superior to the 𝐻2 and 𝐻∞
ptimized NSIABI system, which is very much negligible. The best
art of this paper is that all three novel base isolators have at least
9% more vibration reduction capacity than traditional base isolators,
espectively.

. Summary and conclusions

Inspired by the negative stiffness and inertial amplifier concept, this
aper proposed a negative stiffness inertial-amplifier-base-isolator (NSI-
BI). From this NSIABI, there are two different novel isolators: negative
tiffness base isolator (NSBI) and inertial amplifier base isolator (IABI)
roduced by altering the novel isolators’ mass tuning ratio combined
tatic mass of the entire system constant. These novel isolators have
een significantly increased the dynamic effective mass of the system,
imultaneously enhancing the time period of the controlled structure
uring vibration. Therefore, these improved the vibration reduction
apacity of the traditional base isolator without increasing the total
tatic masses. To drive the closed-form expressions for optimal design
arameters, 𝐻2 and 𝐻∞ optimization methods have been employed
hen the controlled structures were subjected to white-noise random
nd harmonic excitations, respectively. Finally, the responses of 𝐻2

nd 𝐻∞ optimized base isolators have been determined and compared



International Journal of Mechanical Sciences 218 (2022) 107044S. Chowdhury et al.

𝜂
b
t
𝜁
e

t
c
t

Fig. 16. (a) The variations of displacement of the main structure 𝐻𝑠(𝜂) isolated by TBI, NSBI (𝛾 = 0), (b) NSIABI (0.10 < 𝛾 < 0.90), and IABI (𝛾 = 1.0) versus frequency ratio
(𝜔∕𝜔𝑠) have been plotted for different values of mass tuning ratio of the novel isolators. The black dotted and magenta dash-dotted, red, blue, other colored dash–dash lines have
een applied to indicate the displacement of the uncontrolled structure and structure isolated by TBI, NSBI, IABI, and NSIABI systems. Eqs. (73), (75) and (76) have been applied
o obtain the optimal frequency and damping ratio of the 𝐻∞ optimized novel isolators, which have been applied to draw this graph. Other system parameters are considered as
= 0.01, 𝜇 = 0.70 and 𝜃 = 10◦. (b) The variation of peak structural displacement versus mass tuning ratio 𝛾 of the novel isolators has been drawn. The black line with marker
𝑠 𝑖𝑏

mploys to indicate this plot.
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o investigate the vibration reduction capacity of each novel isolator
ompared to the traditional base isolator. The significant outcomes are
he following:

• The newly derived exact closed-form expressions for optimal
design parameters of three novel isolators, namely NSBI, NSIABI,
and IABI, have been introduced in this paper. These expressions
have been derived analytically using 𝐻2 and 𝐻∞ optimization
methods, respectively.

• Results showed that the vibration reduction capacity of 𝐻2 opti-
mized NSBI, NSIABI, and IABI is significantly 73.02%, 75.55%,
and 76.48%, superior to the TBI, respectively.

• While, the vibration reduction capacity of 𝐻∞ optimized NSBI,
NSIABI, and IABI is significantly 69.69%, 73.67%, and 77.37%
superior to the TBI, respectively.

• Results from both optimized systems showed that the IABI system
had more vibration reduction capacity than NSBI and NSIABI.
This scenario happens because the inertial amplifier has been
enhanced the effective mass of the traditional base isolator, which
amplifies the inertial forces inside the isolated structure during
vibration.

• The effective mass amplification occurred at 𝜃 ≤ 30◦, which have
been recognized as the critical angles for the novel isolators, re-
spectively. Besides, the significant amount of mass amplification
occurred at 𝜃 ≤ 12◦.

• The dynamic negative effective stiffness provided additional flex-
ibility to the isolated structure, enhancing the main structure’s
time period during vibration. Additionally, the dynamic effective
stiffness amplifications at 0.65 ≤ 𝜂∕𝜂𝑎 ≤ 1.0 and 2 ≤ 𝜂∕𝜂𝑎 ≤ 3.0
also provides sufficient load-bearing capacity to the controlled
structures during vibration simultaneously.

• Overall, NSBI (𝛾 = 0) and NSIABI (0.1 ≤ 𝛾 ≤ 0.5) produce a signifi-
cant amount of dynamic negative effective stiffness amplification.
In contrast, a significant amount of dynamic positive effective
mass amplification has been observed in IABI (𝛾 = 1) and other
NSIABI systems having the values of 0.6 ≤ 𝛾 ≤ 0.9. Therefore,
the combination of the negative stiffness and inertial amplifier
is robust. The NSIABI systems can enhance the structure’s time
17
period and increase the energy dissipation property of the base
isolator simultaneously during vibration.

• For all cases, the IABI system (𝛾 = 1.0) does not produce any
negative mass and negative stiffness during vibration. It can only
provide a significant amount of dynamic positive effective mass,
which have amplified the effective damping of the system. Hence,
the energy dissipation capacity of the isolator has been increased
during vibration, respectively.

• Finally, it has been concluded that these negative stiffness inertial
amplifiers based isolators have enhanced the energy dissipation
capacity of the traditional base isolators, providing additional
flexibility simultaneously sufficient load-bearing capacity to the
controlled structures.

• Another observation is that the vibration reduction capacity of
both optimized IABI is only 0.46% and 3% superior to the 𝐻2
and 𝐻∞ optimized NSIABI system, which is very much negligi-
ble. Overall these three novel base isolators have at least 69%
more vibration reduction capacity than traditional base isolators,
respectively.

ne of the main contributions of this paper is the new closed-form
xpressions for optimal design parameters of novel isolators. These
xpressions provided optimal design for these novel isolators, which
elped to achieve maximum vibration reduction. These novel isolators
re cost-effective and have better energy dissipation than other existing
ase isolators without damaging the primary structure. The practical
ealization, experimentation, and prototyping of the proposed negative
tiffness inertial amplifier base isolator will be the future scope of the
esearch.
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Fig. C.17. The variations of displacement of the main structure 𝐻𝑠(𝜂) isolated by (a) NSBI (𝛾 = 0) and (b) IABI (𝛾 = 1) versus frequency ratio 𝜂(𝜔∕𝜔𝑠) have been plotted for
different values of damping ratio of these novel isolators. The black dash, blue dotted, and red lines have been implemented to address the displacement plots for damping ratio
of 0, ∞, and (𝜁𝑖𝑏)𝑜𝑝𝑡. Eqs. (73), (75) and (76) have been applied to obtain the optimal frequency and damping ratio of the NSBI and IABI systems, which have been applied to
plot these graphs. Other system parameters are considered as 𝜇𝑖𝑏 = 0.70 and 𝜃 = 10◦. For all graphs, P, Q, and R are indicating three fixed points, and the corresponding frequency
ratios have been denoted as 𝜂1, 𝜂2, and 𝜂3.
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Appendix A. Closed-form expressions from 𝑯𝟐 optimization
method

In Eq. (42), 𝑞 = i𝜔 and coefficients of 𝑞 have been listed below.
𝑎0 = 𝜇𝜗𝜔𝑎

2𝜔𝑖𝑏
2𝜔𝑠

2

𝑎1 = 2 𝜁𝑖𝑏𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏𝜔𝑠

2 + 2 𝜁𝑠𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2𝜔𝑠

𝑎2 = 4 𝜁𝑖𝑏𝜁𝑠𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏𝜔𝑠 + 𝜇𝛷𝜔𝑖𝑏

2𝜔𝑠
2 + 𝜇𝜗𝜔𝑎

2𝜔𝑖𝑏
2

+ 𝜇𝜗𝜔𝑎
2𝜔𝑠

2 + 𝜔𝑎
2𝜔𝑠

2

𝑎3 = 2 𝜁𝑖𝑏𝜇𝛷𝜔𝑖𝑏𝜔𝑠
2 + 2 𝜁𝑖𝑏𝜇𝜗𝜔𝑎

2𝜔𝑖𝑏 + 2 𝜁𝑠𝜇𝛷𝜔𝑖𝑏
2𝜔𝑠

+ 2 𝜁𝑠𝜇𝜗𝜔𝑎
2𝜔𝑠 + 2 𝜁𝑠𝜔𝑎

2𝜔𝑠

𝑎4 = 4 𝜁𝑖𝑏𝜁𝑠𝜇𝛷𝜔𝑖𝑏𝜔𝑠 + 𝜇𝛷𝜔𝑖𝑏
2 + 𝜇𝛷𝜔𝑠

2 + 𝜇𝜗𝜔𝑎
2 + 𝜔𝑠

2

𝑎5 = 2 𝜁𝑖𝑏𝜇𝛷𝜔𝑖𝑏 + 2 𝜁𝑠𝜇𝛷𝜔𝑠 + 2 𝜁𝑠𝜔𝑠

𝑎6 = 𝜇𝛷

(A.1)
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The values of 𝑏𝑛 in Eq. (43) have been obtained from Eq. (45). There-
fore, the values of 𝑏𝑛 have been derived as

𝑛 = 6, 𝑏0 = 𝜇𝜗
2𝜔𝑎

4𝜔𝑖𝑏
4, 𝑏1 = 4 𝜁𝑖𝑏2𝜇𝜗2𝜔𝑎

4𝜔𝑖𝑏
2 − 2𝜇𝛷𝜇𝜗𝜔𝑎

2𝜔𝑖𝑏
4,

𝑏2 = −8 𝜁𝑖𝑏2𝜇𝛷𝜇𝜗𝜔𝑎
2𝜔𝑖𝑏

2 + 𝜇𝛷
2𝜔𝑖𝑏

4,

𝑏3 = 4 𝜁𝑖𝑏2𝜇𝛷2𝜔𝑖𝑏
2, 𝑏4 = 0, and 𝑏5 = 0

(A.2)

he extended form of the Eq. (46) has been listed below.

2
𝑦𝑠

=
𝑆0𝜋 𝜂𝑖𝑏

((

4 𝜁𝑖𝑏2𝜇𝜗 + 𝜇𝜗𝜂𝑖𝑏2 + 1
)

𝜂𝑎2 − 4 𝜁𝑖𝑏2𝜇𝛷 − 𝜇𝛷𝜂𝑖𝑏2 − 1
)

2𝜁𝑖𝑏
(

𝜂𝑎2 − 1
)

𝜔𝑠
3

(A.3)

he extended form of the Eq. (47) has been listed below.

2
�̇�𝑠

=

𝑆0𝜋𝜔𝑖𝑏

(

(

4 𝜁𝑖𝑏2𝜇𝜗 + 4 𝜁𝑖𝑏2 + 𝜇𝜗𝜂𝑖𝑏2
)

𝜂𝑎2

−4 𝜁𝑖𝑏2𝜇𝛷 − 4 𝜁𝑖𝑏2 − 𝜇𝛷𝜂𝑖𝑏2

)

2𝜁𝑖𝑏
(

𝜂𝑎2 − 1
)

(A.4)

The extended form of the Eq. (48) has been listed below.

𝜎2𝑠𝑓 =
𝑆0𝜋 𝜔𝑖𝑏

((

4 𝜁𝑖𝑏2𝜇𝜗 + 𝜇𝜗𝜂𝑖𝑏2 + 1
)

𝜂𝑎2 − 4 𝜁𝑖𝑏2𝜇𝛷 − 𝜇𝛷𝜂𝑖𝑏2 − 1
)

2𝜁𝑖𝑏
(

𝜂𝑎2 − 1
)

(A.5)

he non-dimensional form of Eq. (52) has been expressed as

𝜂𝑖𝑏)𝑜𝑝𝑡 =

√

2
√

(𝜇𝜗𝜂𝑎2 − 𝜇𝛷)
(

𝜂𝑎2 − 1
)

2(𝜇𝜗𝜂𝑎2 − 𝜇𝛷)
(A.6)

he non-dimensional form of Eq. (53) has been expressed as

𝜁𝑖𝑏)𝑜𝑝𝑡 = 1∕4

√

6 𝜂𝑎2 − 6
𝜇𝜗𝜂𝑎2 − 𝜇𝛷

(A.7)

ppendix B. Closed-form expressions from 𝑯∞ optimization
method

The coefficients of 𝑥 in Eq. (71) have been listed below and using

these expressions, the closed-form expressions for optimal frequency
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A
a

R

ratio of the novel isolators have been derived.
𝑤2 =

(

−4 𝜂𝑎2𝜇𝛷𝜇𝜗 + 4𝜇𝛷
2)

𝑤1 =
(

−2 𝜂𝑎4𝜇𝜗
2 + 8 𝜂𝑎2𝜇𝛷𝜇𝜗 − 2 𝜂𝑎2𝜇𝛷 − 2 𝜂𝑎2𝜇𝜗 − 6𝜇𝛷

2 + 6𝜇𝛷
)

𝑤0 = 𝜂𝑎
4𝜇𝜗

2 − 𝜂𝑎
4𝜇𝜗 − 3 𝜂𝑎2𝜇𝛷𝜇𝜗 + 𝜂𝑎

2𝜇𝛷 + 3 𝜂𝑎2𝜇𝜗 − 𝜂𝑎
2 + 2𝜇𝛷

2

− 4𝜇𝛷 + 2

(B.1)

ppendix C. Optimal displacement plots of 𝑯∞ optimized NSBI
nd IABI systems

See Fig. C.17.
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