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Artificial neural network-based multiple-input multiple-output metamodel for
prediction of design parameters for a high-speed rail viaduct

Susmita Pandaa, Arnab Banerjeea, Ajinkya Baxyb, Bappaditya Mannaa and Sondipon Adhikaric

aDepartment of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, India; bDepartment of Mechanical Engineering,
Visvesvaraya National Institute of Technology, Nagpur, India; cJames Watt School of Engineering, The University of Glasgow, Glasgow, UK

ABSTRACT
The prediction of the design parameters of short to medium-span supported bridges in critical locations
(such as canal/road crossings) under the action of high-speed trains has been investigated in this article.
An artificial neural network (ANN)-based MIMO (multiple-input multiple-output) metamodels is proposed
in conjunction with the semi-analytical framework of simply-supported bridges. Three cases, namely single
moving load, series of moving loads at equal spacing (HSLM-B), and as per conventional train configur-
ation (HSLM-A) recommended in Eurocode1: EN 1991-2 (2003), are considered. The prime novelty of the
article is to develop a dimensionless semi-analytical framework to train and validate a MIMO metamodel
implementing ANN for predicting the multiple dynamic responses of bridges under high-speed loads. The
dependency of the maximum dynamic responses, that is, displacement, shear force, and bending
moment, on the governing parameters (structural and loading) have been elucidated using Pearson’s cor-
relation matrix for the three different train configurations. Further, the robustness and efficiency of the
best-fitted metamodels have been compared, and a user interface has been developed for ease of imple-
mentation. This platform evaluates the responses such as displacement, shear force, bending moment,
and structural safety confirming the standards of Eurocode EN 1990:2002þA1:2005 (E).
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1. Introduction

The emergence of a high-speed guided transit system is the
most pivotal alternative for transportation planning
(Sugawara, 1995). The important attributes of high-speed
rail (HSR) such as speed, reliability, safety, and comfort
have made comprehending travellers choose rail as their
effective means of communication (Li & Schm€ocker, 2017).
However, the structural safety and stability of the high-
speed rail bridges are questionable due to their increased
speed (Cantero et al., 2016; Garmendia et al., 2012; Jin &
Feng, 2020). The problem is aggravated especially in the
case of the simply-supported bridges as their displacement
response is more than that of a continuous bridge. More
than 70% of the bridges in developed countries are simply-
supported (Kang et al., 2018), particularly in situations such
as canal/road crossing. Additionally, due to ease in con-
struction and cost-effectiveness, multi-pier flyovers and ele-
vated bridges have evolved from simply supported
segmental modules. This topic has sought the attention of
many engineers and researchers to develop strategies
towards understanding the systematic mechanism of trans-
mission of dynamic moving load on the supporting struc-
tures (Arvidsson & Karoumi, 2014; Gbadeyan & Oni, 1995;
Grandi & Ramondenc, 1990; Kaynia et al., 2000; Olsson,
1991; Xia & Zhang, 2005; Yau et al., 1999). However, such
analyses are computationally very expensive.

To deal with this, a predictive metamodel employing artifi-
cial neural networks (ANN) is developed in this article to con-
serve computational effort and reduce the amount of expertise
needed in the preliminary evaluation of dynamic responses.
Metamodels, also known as response surfaces, black-box mod-
els, surrogate models, or emulators, are useful tools to mimic
complex systems’ input/output behaviour with relaxed accuracy
in a given domain (Han et al., 2012; Kullaa, 2009; Wang et al.,
2014). ANN-based surrogate models were widely used for pre-
dictive maintenance or damage detection of bridges (Goldberg,
2013; Modarres et al., 2018; Suryanita & Adnan, 2013, 2014;
Wedel & Marx, 2022). The list of various surrogate modelling
techniques in the state-of-art articles presented in Gordan
et al. (2022), Sun et al. (2020), and Yu et al. (2016) include
multivariate adaptive regressive spline models, random forests,
single hidden-layer feed-forward ANNs, radial basis function
network, support vector machines, Gaussian process regression,
automated learning of algebraic models, etc. A comparative
analysis of different predictive methods has been presented for
evaluating bridge response: multilinear regression, artificial
neural network, and regression tree (Mete et al., 2019). An
improved response surface method (RSM) and linear adaptive
weighted RSM (LAW-RSM) for assessing the reliability of the
time-dependent non-linear behaviour of high-speed railway
bridges were developed by Cho et al. (2010).

Various uncertainties, including stiffness, a moment of iner-
tia, damping of the primary suspension of the vehicle, and

CONTACT Arnab Banerjee abanerjee@iitd.ac.in
� 2023 Informa UK Limited, trading as Taylor & Francis Group

STRUCTURE AND INFRASTRUCTURE ENGINEERING
https://doi.org/10.1080/15732479.2023.2188599

http://crossmark.crossref.org/dialog/?doi=10.1080/15732479.2023.2188599&domain=pdf&date_stamp=2023-03-22
http://www.tandfonline.com


geometrical and mechanical properties of girders and slabs were
considered. Based on non-linear autoregressive with exogenous
input (NARX), a surrogate model was developed to analyse the
vehicle–bridge systems subjected to stochastic excitation (Han
et al., 2019; Li et al., 2021b; Rocha et al., 2016). Such a method
forecasts dynamic responses better than two-time numerical
simulation (or Monte Carlo simulation). Further, by using a
feed-forward neural network and deep long short-term memory
network, the prediction of time and frequency response of
vehicle–bridge interaction were conducted in (Li et al., 2021a).
The effect of track irregularities and noise level on predicting
dynamic responses was also investigated. With the aid of
Bayesian regularised back propagation neural network, the
dynamic responses of long-span bridges under the random
effects of winds and waves were investigated in (Fang et al.,
2020; Salcher et al., 2019). Such a method effectively captures
the non-linear vibration characteristic response of the bridge
under larger wind and wave loads. To date, the dedicated
research using ANN in the available literature (Mete et al., 2019;
Ok et al., 2012; Xu, 2020) focussed only on training problems
of MISO (multiple-input single-output) types and the literature
addressing problems of MIMO (multiple-input multiple-output)
types is quite scarce (Li et al., 2022; Tang et al., 2022).

This article proposes a semi-analytical methodological
framework for efficient prediction of bridge responses, includ-
ing displacement, shear force, and bending moment, using
analytical modelling. Further, to bypass the extensive computa-
tion, an ANN-based MIMO metamodel is developed in this
article. Based on the developed mathematical formulation for
moving load over the bridge, non-dimensional input and out-
put parameters are derived to produce data for the training of
neural networks. The concept of non-dimensionalization opti-
mises the entire computation process and increases efficiency.
The robustness of the proposed metamodel is verified with the
actual analytical model. Moreover, the prediction ability of the
present framework is investigated by developing a user
interface to allow researchers and engineers to design simply-
supported bridges with various ranges of parameters. A user-
friendly platform for comparing the resulting response with
the codal provision has also been made within the interface.

2. Mathematical formulation

In this section, a semi-analytical framework is formulated for
the problem idealising the elevated bridge subjected to moving
loads travelling at speed v over the length of bridge L at time t
as shown in Figure 1. The bridge is simplified as a simply-sup-
ported Euler-Bernoulli beam with vertical vibration modes
under different dynamic moving load cases to represent the
behaviour of moving train loads. Figure 1(c) shows the model-
ling of the moving load as a single load. However, the series of
load as illustrated in Figure 1d,e can be modelled as high-speed
load models (HSLM) mentioned in Eurocode (Bsi, 2002), i.e.
HSLM-B and HSLM-A. The HSLM-B model consists of a series
of loads separated at equal axle spacing of d as shown in Figure
1d. Similarly, a conventional train model in which each bogie
consists of a four-wheel assembly can be simplified into HSLM-
A as shown in Figure 1e.

To retain the deterministic nature of the semi-analytical
framework, the vehicle-track interaction (track and rail
irregularities) has been ignored. However, by suitably
including the structural damping ratio, the effects of train-
bridge interaction can be established (Museros & Alarc�on,
2002). Further, the inclusion of rail irregularities has not
been considered as it can be a stochastic process that may
not be a topic of concern for the present scenario. The elas-
tic and inertial effects of the vehicle have been ignored by
considering the smaller ratio of the vehicle to bridge mass.
Therefore, the train models are kept general as moving
forces as suggested by Eurocode1: EN 1991-2 (2003).

2.1. Equation of motion of beam under the effect of
dynamic moving loads

The governing equation of motion of the beam (with damp-
ing) under the action of a moving vehicle can be given as
follows (Yang et al., 1997):

qA
@2fWbðx, tÞ

@t2
þ EI

@4fWbðx, tÞ
@x4

þ Cb
@fWbðx, tÞ

@t
¼ PV , (1)

where qA, EI, Cb and PV¼mass per unit area, flexural rigid-
ity, damping coefficient of the bridge, forces due to the
moving load; ~Wb ¼ dynamic displacement of the bridge at
position x and time t and dðxÞ represents Dirac delta func-
tion. The forcing function for different load models can be
defined as follows:

� For single load model as shown in Figure 1b:

PV ¼ dðx� vtÞP1PðtÞ, (2)

where P1 and PðtÞ ¼ HðtÞ �H t � L
v

� �� �
are the gravita-

tional weight of the running train and step function,
respectively.

� As per Eurocode model “HSLM-B” as shown in Figure 1c

PV ¼
XN
n¼1

PNd x� vðt � tkÞ½ �PðtÞ, (3)

where tk ¼ ðk� 1Þ dv is the time taken by the kth load
with corresponding step function PðtÞ ¼ ½Hðt � tkÞ�
H t � L

v � tk
� ��:

� As per Eurocode model ‘HSLM-A’ as shown in Figure 1d

PV ¼
XN
n¼1

P1d x� vðt � tkDÞ½ �Pðt1Þ

þ
XN
n¼1

P2d x� v t � b
v
� tkD

� �� 	
Pðt2Þ

þ
XN
n¼1

P3d x� v t � bþ c
v

� tkD

� �� 	
Pðt3Þ

þ
XN
n¼1

P4d x� v t � 2bþ c
v

� tkD

� �� 	
Pðt4Þ,

(4)

where tkD ¼ ðk� 1Þ Dv is the time delay of the kth bogie with
corresponding step function as follows:
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Pðt1Þ ¼ Hðt � tkDÞ �H t � L
v
� tkD

� �� 	
,

Pðt2Þ ¼ H t � b
v
� tkD

� �
�H t � L

v
� d

v
� tkD

� �� 	
,

Pðt3Þ ¼ H t � bþ c
v

� tkD

� �
�H t � L

v
� bþ c

v
� tkD

� �� 	
,

Pðt4Þ ¼ H t � 2bþ c
v

� tkD

� �
�H t � L

v
� 2bþ c

v
� tkD

� �� 	
,

(5)

2.2. Modal superposition method

Using the modal superposition method, the order of governing
equation of motion presented in Equation (1) can be reduced.

In this method, the dynamic displacement ~Wbðx, tÞ can be
assumed as a function of generalised coordinate ~QbjðtÞ and
shape function /jðxÞ: The mode shapes of a simply-supported
beam are of sinusoidal nature as evidenced in Figure 2. Thus,
the dynamic displacement ~Wbðx, tÞ can be expressed as follows:

fWbðx, tÞ ¼
X1
j¼1

~QbjðtÞ/jðxÞ �
XJ
j¼1

~QbjðtÞ sin
jpx
L

� �
: (6)

Correspondingly, shear force ~V and bending moment ~M
can be given as follows:

~V ¼ EI
d3fWb

dx3
¼ EI

d3

dx3
XJ
j¼1

~QbjðtÞ/jðxÞ
0@ 1A

¼ EI
d3

dx3
XN
j¼1

~QbjðtÞ sin
jpx
L

0@ 1A,

(7)

Figure 1. (a) Conceptualisation of model of elevated simply-supported bridge unit under the action of moving loads; (b) simplified idealisation of moving load as
single load model; (c) simplified idealisation of series of moving load spaced at equidistant to each other (HSLM-B train model); and (d) simplified idealisation of
series of loads as per conventional train model (HSLM-A train model).

Figure 2. Mode-shape of a simply-supported beam for (a) odd modes; (b) even modes.
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~M ¼ �EI
d2fWb

dx2
¼ �EI

d2

dx2
XN
j¼1

~QbjðtÞ/jðxÞ
0@ 1A

¼ �EI
d2

dx2
XJ
j¼1

~QbjðtÞ sin
jpx
L

0@ 1A:

(8)

Using the above mode superposition method, Equation
(1) becomes

qA
XN
j¼1

€~QbjðtÞ/jðxÞ þ Cb

XN
j¼1

_~QbjðtÞ/jðxÞ

þ EI
j4p4

L4
XN
j¼1

~QbjðtÞ/jðxÞ ¼ PV :

(9)

Multiplying /iðxÞ to both sides of Equation (9) and inte-
grating from 0 to L, we get

€~QbjðtÞ
XN
j¼1

ðL
0
/iðxÞ/jðxÞdxþ

Cb

qA
_~QbjðtÞ

XN
j¼1

ðL
0
/iðxÞ/jðxÞdx

þ EI
qA

j4p4

L4
~QbjðtÞ

XN
j¼1

ðL
0
/iðxÞ/jðxÞdx ¼ 1

qA

ðL
0
/iðxÞðPVÞdx:

(10)

Using orthogonality principle of mode shapes, replacing
subscript /i into /j, Equation (10) reduces to

~€Qbj þ 2fbxbj
~_Qbj þ x2

bj
~Qbj ¼

Ð L
0 /jðxÞðPVÞdx
qA
Ð L
0 /2

j ðxÞdx
, (11)

where xbj is the natural frequency of the beam given as
follows:

x2
bj ¼

j4p4

L4
EI
qA

� �
, (12)

and fb is the damping coefficient expressed as the ratio of
the damping constant to the critical damping con-
stant (Cc ¼ 2qAxbj).

Some of the influential non-dimensional parameters have
been introduced as follows: The dimensionless displacement

of beam fQbjðx, tÞ can be given as follows:

~Qbjðx, tÞ
Dst

¼ Qbjða, sÞ, (13)

where Dst is an arbitrary constant called static displacement.
The dimensionless length and time can be represented as

follows:

a ¼ x=L, s ¼ xbt, (14)

where t is the total time taken by the moving load under
velocity v to traverse through the length of the beam L.

A speed parameter g can be introduced to define the
ratio of the frequency of load x to the natural frequency of
the beam xb as follows:

g ¼ x
xb

¼ pv
L
L2

p2

ffiffiffiffiffiffi
qA
EI

r
: (15)

2.2.1. Case-1: Single moving load
The numerator of Equation (11) i.e. the forcing function
due to vehicle PV can be solved as follows:ðL

0

PV/jdx ¼
ðL
0

dðx� vtÞPoPðtÞ/jðxÞdx

¼ PoPðtÞ/jðvtÞ ¼ PoPðtÞ sin jpvt
L

� �
:

(16)

From g, the velocity v can be written as follows:

v ¼ Lxbg
p

: (17)

Using Equation (14) and Equation (17), the inner term
of Equation (16) can be modified as (for single moving
load): ðL

0

PV/jdx ¼ PoPðtÞ sin jgsð Þ: (18)

Similarly for moving load at equidistant, inner term
Equation (16) can be written as follows:ðL

0

PV/jdx ¼ PoPðtÞ sin j
pv
L
ðt � tkÞ

� �

¼ PoPðtÞ sin j
pLxbg
pL

s
xb

� �s
xb

� �� 	
¼ PoPðtÞ sin jgðs� �sÞ� �

:

(19)

Using Equations (13) and (14) of non-dimensional
parameters, Equation (11) becomes

x2
b
€Qbj þ 2fbxbjxb Qbj

: þx2
bjQbj ¼ 2

LqA
PoPðtÞ
Dst

� �
sin jgs

� 	
:

(20)

Dividing the Equation (20) by xb
2, we get

€Qbj þ 2fb
xbj

xb
Qbj

:

þ
x2

bj

x2
b

Qbj ¼ 2
LqAx2

b

PoPðtÞ
Dst

� �
sin jgs

� 	
:

(21)

The value of xbj

xb
¼ j2 can be substituted in Equation (21)

€Qbj þ 2j2fb Qbj

: þj4Qbj ¼ 2Po
x2

bLqADst

� �
PðtÞ sin jgs

� 	
: (22)

Let

2Po
LqADstx2

b

¼ 1 (23)

or using Equation (12), Dst can be written as follows:

Dst ¼ 2PoL4qA
LqAp4EI

¼ 2PoL3

p4EI
: (24)

Equation (21) for single moving load can be re-written
using Equation (15) parameters as follows:

€Qbj þ 2j2fb Qbj

: þj4Qbj ¼ PðtÞ sin jgs: (25)
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The generalised coordinate Qbj for forced vibration dur-
ing Dt � tiþ1 � Dt þ L

V , i.e. the force is on the bridge can
be given as (Yang et al., 1997):

Qbj ¼ 1

ð1� g2Þ2 þ ð2fbgÞ2
ð1� g2Þ sin ðjgsÞ � 2fbg cos ðjgsÞ
� �

,

(26)

where tiþ1 is the time step of the next iteration. When the
force has left the bridge, tiþ1 � Dt þ L

V , the free vibration
response induced can be written as:

Qbj ¼ 1

ð1� g2Þ2 þ ð2fbgÞ2

geð�sfbÞ 2fb cos s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
� ð1� g2 � 2f2bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� f2bÞ
q sin s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q24 350@ 1A:
(27)

The total response of the beam (forcedþ free) can be
rewritten as:

Qbj ¼ 1

ð1� g2Þ2 þ ð2fbgÞ2
 "

ð1� g2Þ sin ðjgsÞ � 2fbg cos ðjgsÞ
#

þ geð�sfbÞ
"
2fb cos s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
� ð1� g2 � 2f2bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� f2bÞ
q

sin s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q #!
:

(28)

Equation (28) can be written in reduced form as follows:

Qbj ¼ F
h
ð1� g2Þ sin ða1Þ � 2fbg cos ða1Þ

þ geð�sfbÞð2fb cos ðb1Þ � G sin ðb1Þ
i
,

(29)

where F ¼ 1
ð1�g2Þ2þð2fbgÞ2 , a1 ¼ jgs, b1 ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
and

G ¼ ð1�g2�2f2bÞffiffiffiffiffiffiffiffiffiffi
ð1�f2bÞ

p : Thus, the total displacement of the beam in

summation form can be written as follows:

Wbða, sÞ ¼
X1
j¼1

F
h
ð1� g2Þ sin ða1Þ � 2fbg cos ða1Þ

þ ge�ðsfbÞð2fb cos ðb1Þ � G sin ðb1Þ
i
sin jpa:

(30)

Accordingly, the shear force ~V given in Equation (7) for
the beam under the action of moving loads can be com-
puted as follows:

~V ¼ EI
L3

XN
j¼1

QbjðsÞDst
d3

da3
sin ðjpaÞ

0@ 1A
¼ j3p3

EI
L3

Dst

XN
j¼1

QbjðsÞ cos ðjpaÞ
0@ 1A:

(31)

The shear force in dimensionless form, V, can be written
as follows:

V ¼
~VL3

EIp3Dst
¼ j3

XN
j¼1

QbjðsÞ cos ðjpaÞ
0@ 1A, (32)

¼ j3
X1
j¼1

F
h
ð1� g2Þ sin ða1Þ � 2fbg cos ða1Þ

þ geð�sfbÞð2fb cos ðb1Þ � G sin ðb1Þ
i
cos ðjpaÞ: (33)

Similarly, the bending moment ~M in Equation 8 can be
written as

~M ¼ � EI
L2

XN
j¼1

QbjðsÞDst
d2

da2
sin jpa

0@ 1A
¼ �j2p2

EI
L2

Dst

XN
j¼1

QbjðsÞ sin jpa
0@ 1A:

(34)

The corresponding bending moment in dimensionless
form can be written as

M ¼
~ML2

EIp2Dst
¼ �j2

XN
j¼1

QbjðsÞ sin jpa
0@ 1A

¼ �j2
X1
j¼1

F
h
ð1� g2Þ sin ða1Þ � 2fbg cos ða1Þ

þ geð�sfbÞð2fb cos ðb1Þ � G sin ðb1Þ
i
sin jpa:

(35)

2.2.2. Case-2: Loads spaced at equidistant - HSLM-B
For HSLM-B model, Equation (21) can be written as fol-
lows:

€Qbj þ 2fbj
2 Qbj

:

þj4Qbj ¼
XN
K¼1

PðtÞ sin jgðs� �s
� �Þ, (36)

where tk ¼ p�ðk�1Þ
g is the dimensionless time taken by the kth

load, � ¼ d
L is the dimensionless distance between the adja-

cent loads. and �s ¼ xbtk is the time delay of the kth load on
the bridge. Using the concept of a single load model on a
beam, the generalised solution for HSLM-B can be obtained
as follows:

Qbj ¼ F AHðs� �sÞ þ ð�1Þnþ1BH s� p
g
� �s

� �� 	
, (37)

where the coefficients of Equation (37) can be simplified as

A ¼ sin ðc1Þ � 2fbg cos ðc1Þ
þ geð�sfbÞ 2fb cos ðd1Þ � G sin ðd1Þ½ �, (38)

B ¼ sin ðc2Þ � 2fbg cos ðc2Þ
þ geð�sfbÞ 2fb cos ðd2Þ � G sin ðd2Þ½ �, (39)

where c1 ¼ jgðs��sÞ, d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
ðs��sÞ, c2 ¼ jg s� p

g��s
� �

and d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
s� p

g��s
� �
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2.2.3. Loads represented as bogies-HSLM-a
For HSLM-A model, Equation (21) can be written as
follows:

€Qbj þ 2fbj
2 Qbj

: þj4Qbj ¼
XN
K¼1

PðtÞ sin jgðs� �sD
� �Þ�

þ sin jgðs� �sb � �sD
� �Þ

þ sin jgðs� �sc � �sD
� �Þ

þ sin jgðs� �se � �sD
� �Þ�,

(40)

where tkD¼ p�Dðk�1Þ
g is the time taken by kth bogie separated

by �D ¼ D
L as shown in Figure 1e,f with corresponding time

lag �sD ¼ xbtkD: Similarly tb ¼ �bp
xbg

is the time taken distance

between loads Pt1 and Pt2 separated by �b ¼ b
L

� �
with time

lag �sb ¼ xbtb, tc ¼ �cp
xbg

is the time taken between loads Pt1

and Pt3 separated by distance �c ¼ bþc
L

� �
with time lag �sc ¼

xbtc, te ¼ �ep
xbg

is the time taken between loads Pt1 and Pt4

separated by �e ¼ 2bþc
L

� �
and time lag �se ¼ xbte

respectively.
Adopting the similar procedure as followed for the

HSLM-B model, the generalised coordinate for HSLM-A
can be given as follows:

Qbj ¼ F

�
A1Hðs� �sDÞ þ A2ð�1Þjþ1H s� p

g
� �sD

� �
þ B1Hðs� �sb � �sDÞ þ B2ð�1Þjþ1H s� �sb � p

g
� �sD

� �
þ C1Hðs� �sc � �sDÞ þ C2ð�1Þjþ1H s� �sc � p

g
� �sD

� �
þ D1Hðs� �se � �sDÞ þ D2ð�1Þjþ1H s� �se � p

g
� �sD

� �	
,

(41)

where

A1 ¼ sin ðc1Þ � 2fbg cos ðc1Þ
þ geð�sfbÞ 2fb cos ðd1Þ � G sin ðd1Þ½ �, (42)

A2 ¼ sin ðc2Þ � 2fbg cos ðc2Þ
þ geð�sfbÞ 2fb cos ðd2Þ � G sin ðd2Þ½ �, (43)

B1 ¼ sin ðc3Þ � 2fbg cos ðc3Þ
þ geð�sfbÞ 2fb cos ðd3Þ � G sin ðd3Þ½ �, (44)

B2 ¼ sin ðc4Þ � 2fbg cos ðc4Þ
þ geð�sfbÞ 2fb cos ðd4Þ � G sin ðd4Þ½ �, (45)

C1 ¼ sin ðc5Þ � 2fbg cos ðc5Þ
þ geð�sfbÞ 2fb cos ðd5Þ � G sin ðd5Þ½ � (46)

C2 ¼ sin ðc6Þ � 2fbg cos ðc6Þ
þ geð�sfbÞ 2fb cos ðd6Þ � G sin ðd6Þ½ �, (47)

D1 ¼ sin ðc7Þ � 2fbg cos ðc7Þ
þ geð�sfbÞ 2fb cos ðd7Þ � G sin ðd7Þ½ �, (48)

D2 ¼ sin ðc8Þ � 2fbg cos ðc8Þ
þ geð�sfbÞ 2fb cos ðd8Þ � G sin ðd8Þ½ �, (49)

where c3 ¼ jgðs� �sbÞ, d3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
ðs� �sb � �sDÞ, c4 ¼

jg s� �sb � p
g � �sD

� �
, d4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
s� �sb � p

g � �sD
� �

, c5 ¼
jgðs� �sc � �sDÞ, d5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
s� �sc � p

g � �sD
� �

, c6 ¼
jgðs� �sc � �sDÞ and d6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
ðs� �sc � p

g � �sDÞ, c7 ¼
jgðs� �se � �sDÞ and d7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
s� �se � p

g � �sD
� �

, c8 ¼
jgðs� �se � �sDÞ and d8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2bÞ

q
s� �se � p

g � �sD
� �

:

A summary of the dimensionless design parameters for
the different models and their corresponding output has
been listed in Tables 1 and 2, respectively, which governs
the design of simply-supported bridges under the action of

Table 1. Input parameters.

Dimensional input parameters Dimensionless input parameters

Speed of moving load, v g¼ pv
Lxb

Flexural rigidity, EI
Mass per unit length, qA
Natural frequency of the beam, xb xb¼p2

L2

ffiffiffiffi
EI
qA

q
Damping of the beam, f –
Distance between the adjacent loads, Ld �d ¼ Ld

L

Distance between the adjacent bogies, Lb �b ¼ Lb
L

Distance between the adjacent car units, Lc �c ¼ Lc
L

Table 2. Various output parameters.

Dimensional
output parameter Factor

Dimensionless
output parameter

Displacement, fQbj Ddis¼ 2PL3
p4EI Qb¼ eQb

Ddis

Shear force, fVbj Dsf¼ 2P
p Vb¼ eVbDsf

Bending moment, fMb Dbm¼ 2PL
p2 Mb¼ eMb

Dbm

Figure 3. Flowchart of the proposed analytical model.
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moving loads. Additionally, a flowchart has been shown in
Figure 3 to recap the entire analytical procedure.

3. Application of artificial neural network (ANN) in
problems considering the moving load analysis
over simply-supported beams

The application of ANN-based metamodels to predict the
dynamic behaviour of various systems is widely reported in
the literature (Huang & Fu, 2019; Lu et al., 2012; Salehi &
Burgue~no, 2018; Thai, 2022; Vodithala et al., 2020).
However, implementing the MIMO metamodel with a gen-
eralised feed-forward (GFF) neural network is an improve-
ment over traditional MISO problems. The connection
between neurons of non-adjacent layers in GFF makes the
process trained with supervised learning. A schematic of a
typical metamodel ANN architecture is illustrated in Figure

4. ANNs comprise node layers containing an input layer,
one or more hidden layers, and an output layer. Each of
these layers contains a connection of interconnected neu-
rons. An ANN can learn the complicated relationship
between the input and output parameters based on the
interconnections of the layers via neurons. As a rule of
thumb, the number of hidden neurons should be 2/3 the
size of the input layer, plus the size of the output layer, or
less than twice the size of the input layer. The number of
neurons in the hidden layer to achieve good accuracy
depends on how complicated the dataset you are using to
train your ANN. Further, the efficiency of a trained dataset
is determined if the overfitting of the model has been pre-
vented. In this case, we have used a regularisation technique
called early stopping which enables the training to be auto-
matically stopped when a chosen metric has stopped
improving. The analysis has been performed with 7 hidden
layers and neurons varying from 5 - 300. An ANN can learn
the complicated relationship between the input and output
parameters based on the interconnections of the layers via
neurons and associated weight and threshold. Further, there
are no back-loops in the feed-forward network, i.e. nodes
never form a cycle. The input data is weighted by weighing

vectors A
!

and B
!

, as shown in Figure 3, summed up and,

Figure 4. Architecture of ANN network diagram for MIMO model.

Table 3. Computational efficiency.

Computational time (s)

Number of time step Theoretical solution Metamodels

10 2–3 1–2
100 300–400 2–4
1000 800–1000 5–8
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if the neuron is activated, then passed on to the next neu-
ron. The activation function plays a pivotal role in activating
a neuron. The usage of sigmoid and hyperbolic tangent acti-
vation functions is usually not recommended in networks
with multiple hidden layers due to vanishing gradient prob-
lems. However, the rectified linear activation function
(ReLU) which can be given as f ðaÞ ¼ maxf0, ag possesses
two major benefits: sparsity (when a � 0) and a reduced
likelihood of vanishing gradient. This feature allows the
model to learn faster and perform better and hence has
been used as an activation function in the present study.
The present analysis has been performed with Intel(R)
Xeon(R) E-2186G CPU @ 3.80GHz, 3792Mhz having 6
Core(s). Table 3 shows the computational efficiency between
theoretical solutions and metamodels. It can be found that
metamodels are much faster than conventional theoretical
methods for solving the same problem with higher time
steps.

3.1. Data generation and training

A flowchart provided in Figure 5 gives an insight into the
entire process involved in training and validating the model.
In this work, the beam and vehicle parameters (such as
length of the beam, material properties and fundamental
frequency of the beam, damping of the beam, speed of mov-
ing load, number of car units, the distance between adjacent
car units, etc.) are used as an input parameter to the meta-
model and the network is trained to predict the various
parameters such as dynamic displacement, shear force and
bending moment. A complete list of the input and output
parameters is tabulated in Table 1. The data required to
train the ANN was generated using the procedure described
in Section 2.2. Note, the procedure discussed in Section 2.2
was verified against the published literature. The data thus
generated was categorised into training data (70%) and test-
ing data (30%). Due to various orders present in the input
data, it was normalised using the Min-Max scheme. Such a
scheme ensures that all the input data lies between zero and
one, thus eliminating any bias. The training data was used
to train the network to create a model which minimises the
mean square error function.

3.2. Metrices for evaluation of the bridge responses

The statistical performance indicators such as the mean
square error (MSE), root mean square error (RMS) and
explained variance score (EVS) are used in the analysis to
assess the reliability of the developed MIMO metamodel.
The MSE value determines the mean error between the esti-
mated and measured values. Alternatively, it measures the

variance of residuals or non-fit in the population. However,
RMS is a standardised measure of the degree of fit in the
sample or how accurately the network predicts the measured
output. The EVS or coefficient of determination explains
the dispersion of errors of a given dataset, and quantile-
quantile plots are also used to evaluate the network
performance. Let us consider the predicted value of the ith

sample to be zi and zi is the corresponding measured
(actual) value over n samples, then the metric parameters
can be calculated as follows:

MSEðz,�zÞ ¼ 1
n

Xn�1

i¼1

zi � �zij j, EVSðz,�zÞ

¼ 1�
Pn

i¼1ðzi � �ziÞ2Pn
i¼1ðzi � zÞ2 , RMS ¼

Pn
i¼1ðzi � ziÞ2Pn
i¼1ððzÞ � ziÞ2

,

(50)

where z ¼ 1
n

Pn
i¼1 zi:

The sensitivity analysis of different output parameters on
the input parameters can be measured using the Pearson

Table 4. Pearson correlation coefficient (Edwards, 1976).

Pearson’s correlation

Strong Moderate Weak

0.7–1.0 0.3–0.7 0–0.3
Positive values Proportionally correlated
Negative values Inversely correlated

Figure 5. Flowchart for training and validation of the dataset.

Table 5. Bridge and load parameters for single moving load (Yang et al.,
2004).

Item Notation Value

Length of the bridge L 20m
Elastic rigidity EI 10 Gpa
Mass per unit length m 3000 kg/m
Damping of the beam fb 2.50%
Mass of moving load P 6 kN
Fundamental frequency of bridge xb 14.25 rad/sec
Speed of vehicle v 27.78m/s

Table 6. Bridge and load parameters for series of moving load (Yang et al.,
2004).

Item Notation Value

Length of the bridge L 20m
Modulus of elasticity E 29.43 GPa
Moment of inertia I 3.81m4

Mass per unit length qA 34,088 kg/m
Number of bogies Nb 5
Mass of each bogie P 22,000 kg
Distance between loads a 24m
Speed of vehicle v 34m/s
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correlation coefficient, widely called PCC or the bivariate cor-
relation (Benesty et al., 2009; Edwards, 1976; Glen, 2021;
Sedgwick, 2012), or simply as the correlation coefficient which
is a measure of linear correlation between two sets of data. It
can be defined as the ratio between the covariance of two vari-
ables and the product of their standard deviations; which
ranges between �1 to 1. The strength of a parameter can be
defined as weak, moderate, and strong depending upon the
range mentioned in Table 4. The positive values indicate a dir-
ect relationship between input and output parameters, i.e. if
the input parameter increases, the resultant output also
increases. However, the negative values imply the inversely
proportional relationship between input and output parameters
and vice-versa in the case dictated above.

4. Results and discussion

4.1. Validation of the proposed theory

The effectiveness of the proposed method has been elucidated
by considering a simply-supported beam under the effect of a
single load moving at a speed of 100 km/h¼ 27.78 m/s and a
series of load models (HSLM-B) at a resonance speed of
32m/s. The details regarding the bridge and load parameters
are mentioned in Tables 5 and 6 adopted from Yang et al.
(2004). The dimensionless displacement obtained at the mid-
point of the beam under can be transformed into a dimen-
sional one by multiplying the constant, the so-called static
displacement Dst. It can be observed in Figure 6 that the
dynamic mid-point displacement of the beam is consistent
with the results published in the literature, which provides
confidence in the developed model for further analysis.

A detailed discussion of the results obtained from the analyt-
ical solution and MIMO metamodel is described in the follow-
ing section. The resulting responses of a beam, displacement,
shear force, and bending moment, as mentioned in Table 2,
have been investigated in detail for different load models.

4.2. Single moving load

Most of the existing studies in the literature are confined to
a single mode for the sake of brevity in the analysis.

However, consideration of the higher modes allows us to
verify the location of the maximum response, which has
extreme significance in designing. In this section, the ana-
lysis with higher modes was performed to check the conver-
gence of the total response, which consists of forced and
free vibration. Figure 7a and 7a1 shows the variation of
dimensionless displacement with respect to the speed par-
ameter, g. The value of g has varied from 0 to 3 in order to
consider both the effect of speed as well as to understand
the influence of free and forced vibrations. For most of the
short-span girders of length shorter than 30m and speed of
traversing being 140 km/h, values of g less than 0.5 are suffi-
cient. However, g greater than 0.5 finds application in most
of the bridges with extremely high speeds (Yang et al.,
2004). It can be noticed that the higher modes of displace-
ment response converge to the first mode. The total
response of the bridge increases rapidly from g¼ 0.2, attains
a maximum value at gmax¼ 0.6 or, and decreases after that.
The response is predominantly governed by forced vibration
and yields maximum dynamic amplification at a lower
speed parameter. The maximum displacement occurs at the
mid-point of the simply-supported bridge for higher vibra-
tion modes, as indicated in Figure 7b because the shape
function of the higher even modes (j¼ 2, 4, 6, … ) is asym-
metrical. Therefore, the range of g from 0.2 to 0.8 is of
utmost importance for designing simply-supported high-
speed rail bridges.

Some of the specific points of g, i.e. 0.147, 0.199, 0.63, 1,
1.76, 2.28, were chosen to study the total response (displace-
ment) in-depth with the square root of the sum of squares
of the first three modes’ response. The brighter colour of
the contour maps indicates the maximum displacement with
time on one axis and space on the other, as shown in
Figure 7c–h. For the values of g < 1 as shown in Figure 7c–
f, the maximum amplitude occurs due to the forced vibra-
tion and for g > 1, the free vibration influences the
response which lasts longer and then decays with time as
shown in Figure 7g,h.

Figure 8 shows maximum shear force and bending
moment in dimensionless form and their variation along
the bridge length to speed parameter for different modes (1,
3, 5, and 10). Figure 8 (a) and (b) show that the shear force

Figure 6. Comparison of the mid-point displacement response of the simply-supported beam for (a) single moving load; (b) Series of load as per HSLM-B model.
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response which occurs at one of the support of the simply-
supported bridge does not converge and increases for higher
modes with increasing g.

However, the higher modes of the bending moment
response converge to the first mode for g < 1:5: While the
values of g > 1.5, the bending moment response converges
from third modes as shown in Figure 8e. A similar observa-
tion in the location of the bending moment has been

noticed. For values of g < 1:5, the maximum bending
moment occurs at the mid-point whereas for values of g >
1:5, it bifurcates towards the ends of the beam as shown in
Figure 8f. The influence of higher modes, particularly on
shear force and bending moment, is due to the presence of
the additional term, for instance, j3 for shear force and j2

for bending moment as described in Equations (31) and
(34). It all depends on the vibration mode that has been

Figure 7. (a)�Dimensionless maximum displacement Wbj

Dst
; (a1) enlarged view of Fig.(a) for g upto 0.7; (b) position a over the bridge (a) with respect to the speed

parameter g; (c) contour for g¼ 0.147; (d) contour for g¼ 0.199; (e) contour for g¼ 0.63; (f) contour for g¼ 1; (g) contour for g¼ 1.76; (h) contour for g¼ 2.28
with respect to time and length over the bridge a.
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excited where the resonant frequency gets interfered with
the higher frequency of the beam. Similar observations were
also reported by (Yang et al., 2004). Therefore, the computa-
tional design of simply-supported bridges should be made
with a minimum of the first three modes recommended by
(Bsi, 2002).

The loss (training and validation) versus epoch for
various output parameters listed in Table 2 are plotted in
Figure 9a–c. From these figures, it is evident that the
overfitting of the model is avoided. In addition, the

quantile-quantile plot of the prediction and actual values
are shown in Figure 9d–f. The best-fitted metamodels
through ANN are achieved with a value of R2¼0.99, and
other metrics such as MSE, RMS, and EVS have been
listed in Table 7.

Figure 8. (a) �Dimensionless maximum shear force Vb
Dst

versus speed parameter g; (b) position of maximum amplitude of Vb
Dst

over the length of the bridge a versus
speed parameter g; (c) �Dimensionless maximum bending moment Mb

Dst
versus speed parameter g; (d) Position of maximum amplitude of Mb

Dst
over the length of the

bridge a versus speed parameter g.

Figure 9. Loss versus epoch for (a) displacement; (b) shear force; (c) Bending moment; Prediction versus actual for (d) displacement; (e) shear force; (f) bending
moment; and (g) Pearson correlation matrix with speed parameter g and damping f for single load model.

Table 7. Metrices for the single load model.

Single load model

Output parameter MSE RMS EVS

Displacement 0.00304 0.0036 0.9999
Shear Force 0.00713 0.0092 0.9995
Bending moment 0.00149 0.0019 0.9999

Table 8. Comparison of analytical and the ML-based model for single load
model.

Speed (m/s) 38.32 67.56 96.81 126.06

g 0.42 0.74 1.06 1.39
f 0.033 0.022 0.038 0.005
�Yb ðmÞ 0.001571 0.00165 0.00141 0.00127
�YbMLðmÞ 0.001572 0.0017 0.00142 0.00126
Error (%) 0.26 0.36 0.37 0.92
VbðkNÞ 7.78 10.38 8.21 11.19
�VbMLðkNÞ 7.75 10.42 8.28 11.11
Error (%) 0.41 0.37 0.93 0.68
MbðkN:mÞ 40.74 42.43 36.24 40.27
�MbMLðkN:mÞ 40.61 42.31 35.98 40.12
Error (%) 0.33 0.28 0.68 0.26
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The dependency of various output parameters on various
input parameters has been thoroughly investigated through
sensitivity analysis as shown in Figure 9. A comparison
between the analytical solution and ANN-based model is
established, and their corresponding error percentages are
mentioned in Figure 8.

Based on Pearson’s classification as described in Table 4,
the input parameters can be correlated as per their strength
indicated in Figure 9g. The speed parameter has a moderate
negative linear relationship with displacement and a weak
negative relationship with bending moment. Referring to
Table 8, it can be observed that with an increasing value of
g, the amplitude of displacement of the beam decreases.
Similar observations were reported for bending moment
also. The reason can be attributed to the fact that the dis-
placement increases up to a critical speed (g ranging
between 0.6 and 1) and then decreases. A similar observa-
tion has been reported in the analytical model as shown in
Figure 7. An error of less than 1% is noticed for displace-
ment and bending moment with the fitted models.

However positive relationship of speed parameter exists
for shear force, i.e., with an increasing value of g, the shear
force in the beam increases as clearly evident in Table 8 and
pretty well matches the mathematical results with error per-
centage less than 1%. The next parameter under observation
is the damping of the beam, which plays a crucial role in
suppressing most of the vibrational energy–the lower values
of damping results in higher amplitude of responses and
vice-versa. Thus damping of the beam indicates a weak to
moderate influence on the output parameters.

4.3. HSLM

The short-span bridges (L< 7m) can be analysed using
HSLM-B as per Eurocode provision (Bsi, 2002) where train

loads are idealised as a series of loads lagging by an equal
amount. Figure 10 (a) shows the dimensionless displacement
response for series of loads (N-loads ¼ 5) situated at equi-
distant to each other with a time lag Td. In addition, their
combined response has been shown in Figure 10b. The ana-
lysis has been conducted for different modes (j¼ 1, 3, 5,
10), and it can be observed in Figure 10c,d that the higher
modes of the displacement response occur at the mid-point
of the simply-supported bridge converges to the first mode.

The variation of maximum displacement has been shown
in Figure 11a–d using contour maps for governing parame-
ters, i.e. speed parameter, g and the ratio of the distance
between loads to the length of the bridge � for the number
of loads (N¼ 5, 10, 15, 20). The possible combinations of
the distance between the wheelset to the length of the bridge
(�) have been analysed to assess the best-fit range of values
that can minimise the amplification of responses due to
moving loads. The dynamic displacement for the different
number of loads for values of �¼ 0.1, 0.6, and 0.8 has been
presented in Figure 11. It can be noticed that the dynamic
displacement for values of �¼ 0.6 and 0.8 is much lower as
compared to �¼ 0.1. Further, it can be confirmed from con-
tours that if the distance between loads, i.e. (�¼ 0.1), is
small, the displacement values are quite large. This states
that if the loads are closer, their responses can interfere
with each other and lead to excessive deformation of the
bridge deck. However, their interference can be minimised
if they are at an optimal distance apart.

Figure 12a shows the variation of maximum responses of
the bridge in dimensionless form normalised concerning the
highest value of the response that occurred for 20 loads.
The values with which normalisation has been performed
are 21.58 for displacement, 23.93 for shear force, and 21.58
for bending moment, respectively. It can be observed that
responses increase with the increasing number of loads. The

Figure 10. �Dimensionless displacement; (a) series of load (N¼ 5) with time lag � ¼ 0:1 at g ¼ 0:6; (b) Cumulative response of series of loads; (c) convergence of
different modes; and (d) distance over the bridge a.
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Figure 11. �Dimensionless displacement response for (a) number of loads ¼ 5; (b) number of loads ¼ 10; (c) number of loads ¼ 15; and (d) number of loads ¼
20 for HSLM-B.

Figure 12. Variation of (a) �Normalised Dimensionless displacement response; (b) Maximum g; (c) Maximum � for HSLM-B.
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maximum g for the maximum displacement and bending
moment to occur lies between 0.5 and 0.65; however, for
shear force, it lies between 1.3 and 2.7 depending on the
number of loads as shown in Figure 12b. Therefore, a lower
range of g ¼ 0.1 to 0.45 and a higher range of g ¼ 0.7–1.2
would be recommended for the safe design of simply-sup-
ported bridges against displacement. Similarly, based on the
number of loads a range of g 1.8–3 is safe for N-loads ¼ 2–
12 whereas 0.5–2 for N-loads > 12. The values of � where
the maximum dynamic displacement, shear force, and bend-
ing moment occurs varies for � ranging from 0.1 to 0.2 as
shown in Figure 12c.

The training and validation of the HSLM-B model have
been presented in the form of loss versus epoch as shown in
Figure 13a–c for output parameters mentioned in Table 2.
The best fit models are obtained for epochs varying from 40
to 60, and the factors evaluated from the analysis, such as
MSE, RMS, and EVS, are mentioned in Table 9. Further,

the prediction and actual values of the best-fitted models
were compared as shown in Figure 13d–f, respectively. The
models used for the fitting produce a satisfactory result for
the output parameters considered in this study. A compari-
son between the analytical solution and the MIMO model
has been evaluated. The actual and predicted values for four
different combinations of the input parameters have been
considered arbitrarily, and error percentages have been
highlighted in Table 10, which is within 2%.

The sensitivity of various parameters listed in Table 10
on output is illustrated in Figure 13g. The displacement,
shear force, and bending moment of the beam possess a
weak positive correlation with the speed parameter, g.
However, these responses are susceptible to the �, i.e. the
distance between loads to the length of the bridge. As the
value of � decreases, the displacement response of the beam
amplifies because of the interference caused by the closely-
spaced loads under the combination (i) as dictated in Table
10. Further, the number of loads, N on the bridge, correlates
moderately with the abovementioned outputs in the analysis.
As N increases, the output responses increase. These results
bear sufficient generality with the proposed analytical model
as shown in Figure 12. The damping factor of the beam has
a weak relationship with the output parameters (Table 11).

4.4. HSLM-A

For long-span bridges (L> 7m), Eurocode (Bsi, 2002) sug-
gests the practice of HSLM-A in which the articulated train
system can be considered as bogie consisting of four loads
separated by a time lag of Tb and Tc as shown in Figure 14a.

Figure 13. Loss versus epoch for (a) displacement; (b) shear force; (c) bending moment; Prediction versus actual for (d) displacement; (e) shear force; (f) bending
moment; and (g) Pearson correlation matrix for HSLM-B with speed parameter g, distance between loads to the length of the bridge �, number of loads N, and
damping f.

Table 9. Metrices for the HSLM-B model.

HSLM-B

Output parameter MSE RMS EVS

Displacement 0.0189 0.033 0.999
Shear force 0.0901 0.167 0.9989
Bending moment 0.06 0.116 0.998

Table 10. Comparison of analytical and the ML-based model for HSLM-B.

Speed (m/s) 29.52 88.57 243.53 457.5

g 0.1 0.3 0.825 1.55
� 0.1 0.65 0.325 0.45
N 6 17 20 21
f 0 0.03 0.05 0.0125
�Yb (m) 0.00284 0.00077 0.00175 0.00139
�YbML (m) 0.00285 0.00076 0.00174 0.00141
Error (%) 0.35 0.7 0.11 1.32
�Vb (kN) 11.47 40.87 71.81 70.78
�VbML (kN) 11.46 39.8 72.76 70.85
Error (%) 0.12 2.62 1.33 0.105
Mb (kN.m) 74.109 188.76 385.4 377.3
�MbML (kN.m) 74.106 190.15 448.8 401.29
Error (%) 0.003 0.74 1.9 2.12

Table 11. Dimensionless normalised values for different values of �b.

�b Displacement Shear force Bending moment

0.1 96 105.1 96
0.2 84.79 94.48 84.79
0.3 77.42 87.3 77.42
0.4 70.13 78.78 70.13

14 S. PANDA ET AL.



The influencing parameters in this model can be
regarded as:

� speed parameter, g,
� number of bogies (N-bogies),
� the ratio of the distance between wheels to the length of

the bridge (b/L), �b, and

� the ratio of the distance between the first and last load
in a bogie to the length of the bridge, �D.

The parameter �c can be expressed as the function of �b
and �D as �D ¼ 2�b þ �c, or �c ¼ 1 - 2�b. Therefore, the val-
ues of �d should not exceed 0.5, and further analysis has
been carried out for �b up to 0.4. Figure 15a,b shows the

Figure 14. Conventional train model as bogie system with time lag, �D ¼ 0:1, �d ¼ 0:1 for g ¼ 0:4 as per HSLM-A (a)�Dimensionless displacement of 2 individual
bogie; (b)�Dimensionless displacement of bogies in cumulative form.

Figure 15. Variation of (a) �normalised dimensionless maximum displacement response; (b) �Normalised dimensionless maximum shear force response; (c)�normalised dimensionless maximum bending moment response; (d) maximum g corresponding to the �Normalised dimensionless maximum displacement
response; (e) maximum g corresponding to the �Normalised dimensionless maximum displacement response; (f) maximum g corresponding to �Normalised dimen-
sionless maximum shear force response; (g) maximum � corresponding to �Normalised dimensionless maximum shear force response; (h) maximum � correspond-
ing to �Normalised dimensionless maximum bending moment response; (i) maximum � corresponding to �Normalised dimensionless maximum bending moment
response for HSLM-A.
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dimensionless displacement response of individual two bogie
system and their summation response, respectively. Figure
15 shows the maximum responses ((a) displacement, (b)
shear force, and (c) bending moment) in dimensionless
form normalised in a similar fashion as in HSLM-B, i.e.
with respect to response values that occurred for 25 number
of bogies presented in Table 11 for various values of �b. It
can be noticed that the values are increasing with increasing
bogies and the values of �b.

The maximum speed parameter at which maximum
responses are attained can be obtained from Figure 15d–f.
The maximum displacement and bending moment occur
when g lies between 0.6 and 0.95, whereas the maximum
shear force occurs when g is between 0.5 and 3 for different
values of �b. The distance from centre to centre of bogies
�D, which is responsible for much higher responses, lies

between 0.1 to 0.8 for displacement and bending moment;
however, it is 0.1–0.6 for shear force, respectively. Based on
the train configuration (number of bogies and their adjacent
distances), one can safely design long-span simply supported
bridges for the desired speed.

Similar to the single load model and HSLM-B, the loss
versus epoch plots for training and validation loss were
investigated as shown in Figure 16a–c. An epoch of 40-90 is
sufficient to train the training losses with the validation loss.
Further, the prediction and actual values of the fitted model
were compared as shown in Figure 16d–f. The statistical
evaluation for the fitted models for HSLM-A is noted in
Table 12. A case study with different combinations of input
parameters has been considered the study for a constant
value of the distance between the rear and far wheels in a
car unit, D¼ 1. It can be observed that the difference in the
actual and predicted values varies within 6% for the output
parameters as shown in Table 13, which is within the
acceptable limits of accuracy.

In the case of HSLM-A, the number of car units N has a
weak positive correlation with all the output parameters.
The speed parameter has a moderate to strong positive cor-
relation with displacement, shear force, and bending
moment. Further, the distance between loads �b has more
sensitivity on output than the distance between the consecu-
tive car units �c. Additionally, the damping of the bridge
possesses a weak relationship with the output parameters.

5. Interface

A user-defined interface has been provided with three mod-
ules for three different load models; one of them (HSLM-B)
has been shown in Figure 17. The steps to be followed by
the respective user is described as follows:

� The details of moving load such as wheel load, number
of loads, the distance between the rear and front wheels,

Figure 16. Loss versus epoch for (a) displacement; (b) shear force; (c) bending moment; Prediction versus actual for (d) displacement; (e) shear force; (f) Bending
moment; and (g) Pearson correlation matrix for HSLM-A with the number of car units N-bogies, speed parameter g, the distance between loads to the length of
the bridge �b, the distance between consecutive car units to the length of the bridge �c, and damping f.

Table 12. Metrices for the HSLM-A model.

HSLM-A

Output parameter MSE RMS EVS

Displacement 0.0093 0.0155 0.9997
Shear force 0.172 0.3046 0.9997
Bending moment 0.2215 0.4812 0.9934

Table 13. Comparison of analytical and the ML-based model for HSLM-A.

Speed (m/s) 24.13 84.46 199.01 289.6

g 0.1 0.35 0.825 1.2
�d 0.1 0.3 0.6 0.2
�c 0.3 0.1 0.2 0.15
N 10 17 25 6
f 0.025 0.05 0.0425 0
�Yb (m) 0.00207 0.0022 0.0023 0.0028
�YbML (m) 0.00214 0.0024 0.00244 0.0029
Error (%) 3.7 5.57 5.42 3
�Vb (kN) 1784.09 1565.45 2509.97 3547.2
�VbML (kN) 1777.09 1539.22 2499.48 3585.68
Error (%) 0.39 1.67 0.42 0.105
Mb (kN m) 763.32 653.08 925.33 1484.87
�MbML (kN m) 749.95 649.74 921.99 1469.85
Error (%) 1.75 0.51 0.36 1.01
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and consecutive distance between car units have to be
provided. Similarly, the bridge parameters such as length,
flexural rigidity, mass per unit length, etc., have to be
filled in the initial step.

� For short-span bridges (L < 7 m), HSLM-B is recom-
mended, and for bridges span > 7m, HSLM-A is recom-
mended by codal provision.

� By clicking the compute button, the respective responses,
such as displacement, shear force, and bending moment,
can be assessed.

� Further, the obtained displacement response of the
bridge deck can be checked against the values provided
in the Eurocode EN 1990:2002þA1:2005 (E), clause
A2.4.4.2.3 according to which the maximum vertical dis-
placement should not exceed L/600.

� A Disclaimer at the end will represent whether the per-
mitted bridge displacement is safe or unsafe.

The details of the publicly available user-defined dashboard
have been provided https://github.com/SusmitaIITDmetalab/
Susmita_Meta.git upon the publication of the work.

6. Conclusions

The present study illustrates the combined multi-modal
response combining forced and free vibration of a simply
supported beam subjected to different models of moving
loads in dimensionless form. Further, the accuracy of the
model has been verified with the available literature. Finally,
an artificial neural network-based multi-input multi-output
metamodel is developed for predicting the design parame-
ters bypassing all these extensive semi-analytical computa-
tions. The development of the semi-analytical framework for

the prediction of peak dynamic responses of the bridge in
conjunction with ANN-based MIMO metamodeling is the
prime novelty of the article. The important conclusions that
can be drawn are as follows:

� With the variation of the speed parameter g, the
dynamic displacement increases and reaches the max-
imum at g¼ 0.6–0.65 and thereafter decreases for the
moving load models considered in this study, namely
single load model, HSLM-B and HSLM-A, respectively.

� Forced vibration dominates for g < 1, while for g > 1
the accumulation of free vibration influences the
dynamic response of the bridge.

� The position of maximum displacement occurs at mid-span;
however, the location of maximum bending moment is
dependent on the mode under consideration as well as the
speed parameter. The location of the maximum amplitude
of shear force always occurs at either end of the beam.

� The dynamic responses of the defined load models pos-
sess strong to moderate correlation with speed parame-
ters g and �, i.e. the distance between wheel loads to the
length of the bridge.

� In the case of HSLM-B, the maximum displacement
response is attained at g¼ 0.5 to 0.65. However, for
shear force and bending moment, the values of g vary
from 2.5 to 3, and � varies from 0.1 to 0.2.

� With the increase in values of �b in the HSLM-A model,
the dynamic responses (displacement, shear force, and
bending moment) increase. The maximum dynamic dis-
placement and bending moment occur for �D ¼ 0.1 to
0.8 for a range of g¼ 0.6 to 0.95. However, maximum
shear force occurs for range of �D ¼ 0.1 to 0.6 for
g¼ 0.5 to 3 for different configuration values of �b.

Figure 17. User-defined interface for the design of simply-supported bridges under high-speed train loads.

STRUCTURE AND INFRASTRUCTURE ENGINEERING 17

https://github.com/SusmitaIITDmetalab/Susmita_Meta.git
https://github.com/SusmitaIITDmetalab/Susmita_Meta.git


� A maximum error of 1%, 2%, and 6% is noticed in the
prediction of the design parameters using ANN-based
metamodel with that of the semi-analytical model for
single load, HSLM-B, and HSLM-A.

The effect of factors such as rail irregularities and fatigue
has not been included in the present scope of work and can
be considered as the limitation of the proposed theory.
Further, the cumbersome process of complicated analytical
formulations can be reduced with a cost-efficiency cognitive
structure of ANN-based metamodels. Such MIMO models
possess huge future applications in high-speed bridge
designing and optimising the design parameters for vibra-
tion control of bridges.
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Appendix

Notation
qA mass per unit area
EI flexural rigidity

Cb damping coefficient of the bridge
PV forces due to the moving load
~Wb dynamic displacement of the bridge
x position on the bridge
t time taken by moving force to travel the bridge
dðxÞ dirac-delta function
v speed of the moving vehicle
L length of bridge
d axle spacing
d/v time lag
P0 gravitational weight of the running train
P(t) step function
tkd time delay of kth load in HSLM-B model
tkD time delay of kth load in HSLM-A model
~QbjðtÞ generalised coordinate
/jðxÞ shape function of jth mode
~V shear force
~M bending moment
M dimensionless bending moment
V dimensionless shear force
x frequency of vibration of moving load
xbj natural frequency of the beam for $jth^$ mode
xb natural frequency of the beam for first mode
fb damping coefficient
Cc critical damping constantfQbjðx, tÞ dimensionless displacement of beam
Dst static constant
a dimensionless length over the bridge
s dimensionless time
�s dimensionless time for HSLM-B
g speed parameter
N-bogies number of bogies
�d ratio of the distance between loads to the length

of the bridge in HSLM-B model
�D ratio of the distance of a single bogie to the

length of the bridge
xd damped frequency of vibration of the beam
Mv, Cv, Kv, and Fv mass, damping, stiffness, and force matrices
tkD and �sD time taken and corresponding time lag of the

$kth^$ bogie separated by �D
tb and �sb time taken and corresponding time lag of loads

Pt1 and Pt2 separated by �d
tc and �sc time taken and corresponding time lag of loads

Pt1 and Pt3 separated by �c
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