
Applied Mathematical Modelling 114 (2023) 694–721 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

The optimal design of dynamic systems with negative 

stiffness inertial amplifier tuned mass dampers 

Sudip Chowdhury 

a , 1 , Arnab Banerjee 

a , 2 , ∗, Sondipon Adhikari b , 3 

a Civil Engineering Department, Indian Institute of Technology Delhi (IITD), India 
b James Watt School of Engineering, The University of Glasgow, Glasgow, Scotland, UK 

a r t i c l e i n f o 

Article history: 

Received 6 October 2021 

Revised 2 October 2022 

Accepted 6 October 2022 

Available online 15 October 2022 

Keywords: 

Nonlinear negative stiffness inertial 

amplifier tuned mass dampers 

Nonlinear negative stiffness tuned mass 

dampers 

Nonlinear inertial amplifier tuned mass 

dampers 

Exact closed-form 

a b s t r a c t 

The negative stiffness inertial amplifier tuned mass dampers (NSIA-TMD) are introduced in 

this paper. Another two novel tuned mass dampers such as negative stiffness tuned mass 

damper (NS-TMD) and inertial amplifier tuned mass damper (IA-TMD) are mathematically 

developed from the negative stiffness inertial amplifier tuned mass dampers (NSIA-TMD) 

and the static masses of these three novel dampers are retained constant. The exact closed- 

form expressions for optimized system parameters for these novel dampers are obtained 

using H 2 and H ∞ 

optimization techniques. The dynamic responses of the SDOF systems 

controlled by H 2 and H ∞ 

optimized novel tuned mass dampers subjected to base exci- 

tations are obtained analytically. The dynamic response reduction capacities of the novel 

tuned mass dampers are compared with the dynamic response reduction capacities of tra- 

ditional tuned mass dampers (TMD). Therefore, the dynamic response reduction capacities 

of H 2 optimized NS-TMD, NSIA-TMD, and IA-TMD are significantly 45 . 51% , 43 . 47% , 41 . 08% 

superior to the H 2 optimized traditional tuned mass dampers. Furthermore, the dynamic 

response reduction capacities of H ∞ 

optimized NS-TMD, NSIA-TMD, and IA-TMD are signif- 

icantly 3 . 31% , 8 . 98% , 13 . 79% superior to the H ∞ 

optimized traditional tuned mass dampers. 

The nonlinear negative stiffness inertial amplifier tuned mass dampers (NNSIA-TMD) are 

also introduced in this paper. As a result, the dynamic response reduction capacities of 

H 2 optimized nonlinear negative stiffness tuned mass damper (NNS-TMD), NNSIA-TMD, 

and nonlinear inertial amplifier tuned mass damper (NIA-TMD) are significantly 24 . 54% , 

21 . 92% , 19 . 12% superior to the H 2 optimized traditional tuned mass dampers. Furthermore, 

the dynamic response reduction capacities of H ∞ 

optimized NNS-TMD, NNSIA-TMD, and 

NIA-TMD are significantly 3 . 01% , 9 . 04% , 15 . 08% superior to the H ∞ 

optimized traditional 

tuned mass dampers. The outcomes of this research are mathematically accurate and rel- 

evant to practical design applications. 
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1. Introduction 

The passive vibration control devices have been introduced to protect the structures and human lives from natural 

calamities like seismic events or cyclones. Tuned mass dampers (TMD) are one of these devices which provide significant 

resistance against vibration. Frahm [1] first patented the theory of TMD in 1909 without considering damping in TMD. A 

undamped TMD is considerably effective when the natural frequency of TMD is near to the excitation frequency, but lack of

vibration reduction occurs when excitation frequency deviates away from the natural frequency of TMD. Ormondroyd and 

Den Hartog later incorporated damped TMD and established closed-form formulas for optimal design parameters [2] . The 

H ∞ 

optimization method is based on fixed-point theory. This method is appropriate for harmonically excited structures [3–

6] . Den Hartog’s book illustrates this strategy thoroughly [7] . Since then, TMD has been extensively researched and utilized

in mechanical and civil applications such as automotive suspension systems, offshore platforms, buildings, and bridges [8–

15] . H 2 optimization is employed to determine optimal design parameters [16] when the controlled structure is subjected to 

white-noise random excitation [17–27] . Previous study shows a TMD’s capacity to suppress vibrations improves with mass. 

Smith has introduced a mechanical mechanism called an inerter to reduce structural vibrations [28,29] . This inerter 

has been induced into or in parallel with conventional passive vibration control devices to enhance its energy dissipation 

capacity by amplifying the substantial effective mass through rotating mass [30–33] . Inerters are used to increase the per-

formance of mechanical engineering machinery and parts, notably automotive and train suspensions [34–36] . Inspired by 

the successful application in the mechanical engineering field, inerter have also applied in civil engineering structures, and 

many researchers have achieved positive outcomes [37,38] . In particular, inerters have been implanted in the classical tuned 

mass damper [39–47] and base isolator to control the vibration response of different dynamic systems [48–54] . In this pa-

per, the main focus will be on TMDs. In fact, the most of the research on inerter-based tuned mass dampers is conducted

based on using a flywheel-gear inerter [39,47] . Furthermore, inertial amplifiers are mass amplification devices [55,56] that 

can increase effective system properties such as effective mass, stiffness, and damping of vibration control devices to in- 

crease their dynamic response reduction capacity [57–60] . Apart from the effective mass amplification devices, the dynamic 

response reduction capacity of conventional vibration control devices is amplified using negative stiffness and negative mass 

devices [61–75] . The combination of mass amplification and negative stiffness devices is observed in the metamaterial field 

[76–84] . For mitigating the dynamic responses of the structures, the mass amplification and negative stiffness devices are 

individually applied to the passive vibration control devices [85–93] . Overall state of the art shows that the combination

of inertial amplifiers and negative stiffness devices have not been applied to any conventional tuned mass dampers for 

enhancing their dynamic response capacity. A research gap has been identified from the state of the art. 

Therefore, the negative stiffness inertial amplifier tuned mass dampers (NSIA-TMD), negative stiffness tuned mass damper 

(NS-TMD), and inertial amplifier tuned mass damper (IA-TMD) are introduced in this paper, which are not presented in any 

previous research as per the author’s best knowledge. These novel tuned mass dampers are equipped with single degree 

of freedom systems for accessing their exact dynamic response reduction capacity. H 2 and H ∞ 

optimization techniques 

are applied to evaluate the optimal system parameters for these novel tuned mass dampers analytically [94] . The nonlinear

negative stiffness inertial amplifier tuned mass damper (NNSIA-TMD), nonlinear negative stiffness tuned mass damper (NNS- 

MD), and nonlinear inertial amplifier tuned mass damper (NIA-TMD) for single degree of freedom systems (SDOF) are also 

introduced in this paper. The dynamic response reduction capacities of H 2 and H ∞ 

optimized novel tuned mass dampers are

compared with the dynamic response reduction capacities of H 2 and H ∞ 

optimized traditional tuned mass dampers. 

2. Methodology 

2.1. Proposed novel tuned mass dampers 

The schematic diagram of a single degree of freedom system equipped with negative stiffness inertial amplifier tuned 

mass dampers (NSIA-TMD) has been displayed in Fig. 1 (a). The individual schematic diagram of a negative stiffness inertial

amplifier tuned mass damper (NSIA-TMD) has also been displayed in Fig. 1 (b). The free-body diagrams for top triangular

part kinematics under consideration in undeformed and deformed states have been shown in Fig. 1 (c). 

The free-body diagrams of the structural members of NSIA-TMD and the generation of inertial forces have been shown in 

Fig. 1 (d). The schematic diagrams of a single degree of freedom system equipped with negative stiffness tuned mass dampers

(NS-TMD) and inertial amplifier tuned mass dampers (IA-TMD) have been displayed in Fig. 1 (e) and (f).The dynamic effective

mass for these novel tuned mass dampers has been derived using these free-body diagrams. Another structural parameter 

has been introduced in this paper, namely the mass tuning ratio of NSIA-TMD, which denotes μ. The other two novel tuned

mass dampers, namely negative stiffness tuned mass damper (NS-TMD) and inertial amplifier tuned mass damper (IA-TMD) 

are mathematically formulated by altering the mass tuning ratio. The static mass, stiffness, and damping of these novel 

negative stiffness tuned mass dampers are denoted by the variables m d , k d , and c d . The effective mass, effective stiffness,

and effective damping of these novel negative stiffness tuned mass dampers are denoted by the variables m ad , k ad , and c ad .

m a , m b , and k b refer to the static masses and stiffness of the mass-spring-mass system. The negative stiffness of the entire

novel dampers has been generated through the vertical spring mass system attached to the amplifier’s mass. ẍ g denote for 

ground motion. All three novel dampers are installed at the top of a single degree of freedom system. m s , k s , and c s refer to

the mass, stiffness, and damping of the single degree of freedom system, which refers as “primary structure”. 
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Fig. 1. (a) The schematic diagram of a single degree of freedom system equipped with negative stiffness inertial amplifier tuned mass dampers (NSIA-TMD), 

(b) Negative stiffness inertial amplifier tuned mass dampers (NSIA-TMD), (c) The free-body diagrams for top triangular part kinematics under undeformed 

and deformed states consideration. (d) The free-body diagrams of the structural members of NSIA-TMD and the generation of inertial forces. (e) The 

schematic diagram of negative stiffness tuned mass damper. (f) The schematic diagram of inertial amplifier tuned mass damper. 

Table 1 

The values for mass tuning ratio. 

Mass tuning ratio NS-TMD NSIA-TMD IA-TMD 

μ 0 0 . 1 ≤ μ ≤ 0 . 9 1.0 

 

 

 

 

 

2.2. Equations of motion of novel tuned mass dampers 

Total static mass of the controlled system vertical mass-spring-mass system derives as m T = m a + m b . m a and m b are

individually derived as 

m a = μm T and m b = (1 − μ) m T (1) 

Applying μ, these novel tuned mass dampers have been mathematically formulated and the details values are listed in 

Table 1 . 

The mass tuning ratios for NS-TMD, NSIA-TMD, and NS-TMD are derived as μ = 0 , 0 . 1 ≤ μ ≤ 0 . 9 , and μ = 1 . 0 . The equa-

tion of motion of the vertical spring-mass system attached to the amplifier’s mass has been derived as 

m b ̈y b + k b (y b − y a ) = 0 (2) 

A small-amplitude vibration has been applied and the entire controlled structure moves towards the x -direction. As a 

result the small deflections for masses m a and m b are occur in x and y -directions. For y -direction, the steady stead solutions

are considered as y a = Y a e 
i ωt , y b = Y b e 

i ωt and substituted in Eq. (2) . Hence, the dynamic response of spring-mass system

derives as 

Y b = 

(
k b 

k b − m b ω 

2 

)
Y a (3) 

It has been considered that the entire structure is in an equilibrium state and momentum balance has occurred in the y

direction. As a result, the effective mass for the spring mass system derives 

m e ̇ y a = m b ̇ y b + m a ̇ y a 

and m e = (1 − μ) m T 

(
k b 

k b −m b ω 2 

)
+ μm T = (1 − μ) m T 

( 

1 

1 − ω 2 

ω 2 
b 

) 

+ μm T 
(4) 
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where m e refers to the effective mass for the amplifier’s mass, ω b = 

√ 

k b /m b refers to the natural frequency of the vertical

spring-mass system attached to the amplifier’s mass. The deformed mechanism of the negative stiffness inertial amplifier 

requires illustration for understanding the generation of dynamic negative effective properties such as mass and stiffness by 

the novel tuned mass dampers. 

To perform that, the schematic diagram for the top triangular part of the novel tuned mass dampers have also been

displayed in Fig. 1 (c). Hence, the total displacement responses x a and y a for top triangular part of the novel tuned mass

damper where the mass-spring-mass system installs, have been obtained using u s , u d , and θ . Using the effect of geometrical

considerations, the displacement response x a in horizontal direction has been derived as x a = ( u s + u d ) / 2 . The displacement

response in vertical direction y a has been derived using the difference between the height of the top triangular part un-

der undeformed and deformed states (i.e., y a = d 1 − d). The values for d 1 and d have been determined using Pythagoras’

theorem. Therefore, the detailed derivation has been illustrated below. 

d 2 1 − d 2 = 

( 

l 2 −
(

b 1 
2 

)2 
) 

−
( 

l 2 −
(

b 

2 

)2 
) 

= 

1 

4 

(
2 b(u d − u s ) − (u d − u s ) 

2 
)

(5) 

Now the difference between vertical heights in squared terms for top triangular part at undeformed and deformed condi- 

tions has been written as d 2 
1 

− d 2 = (d 1 + d)(d 1 − d) = (2 d + y a ) y a . This expression has been substituted in Eq. (5) which

leads to 

(2 d + y a ) y a = 

1 
4 

(
2 b(u d − u s ) − (u d − u s ) 2 

)
(6) 

The left-hand side of Eq. (6) indicates that it’s a quadratic equation. Eq. (6) also provides nonlinearity to the equa-

tions of motion for novel tuned mass dampers if large-amplitude vibration considers initially. The complexity will be ar- 

rived at while determining the optimized system parameters of novel tuned mass dampers analytically using H 2 and H ∞ 

optimization techniques. These analytical optimized system parameters of novel tuned mass dampers are significantly re- 

quired for these kinds of novel passive vibration devices to achieve their robust dynamic response reduction capacity. These 

novel tuned mass dampers and their corresponding solutions are not presented in any state of the art. Therefore, to achieve

the exact closed-form expressions for optimal design parameters of novel tuned mass dampers analytically using H 2 and 

H ∞ 

optimization methods, small-amplitude vibrations have been considered initially while forming equations of motion for 

these novel systems. Therefore, in the process of small-amplitude vibrations, these system have produced small deflections 

which enables to apply the linearized kinematics mechanism for these systems, respectively. Hence, the equations have been 

formed explicitly by considering (u d − u s ) 
2 � 2 b(u d − u s ) and y a � b tan θ = d. Therefore, the total displacement responses

x a and y a for top and bottom triangular part of the novel tuned mass dampers have been derived as 

x a = 

u s + u d 
2 

and y a = ± u d −u s 
2 tan θ

(7) 

where x a and y a refer to the deflection of amplifier’s effective mass m e in x and y -directions. The inertial forces p x and p y 
generated by the effective mass m e in x and y -directions at the top and bottom triangular parts of the novel tuned mass

dampers have been derived as 

p x = m e ̈x a and p y = m e ̈y a (8) 

The inertial forces develop through the rigid links p 1 and p 2 have been derived as 

p 1 = 

1 

2 

(
p y 

sin θ
− p x 

cos θ

)
and p 2 = 

1 

2 

(
p y 

sin θ
+ 

p x 

cos θ

)
(9) 

Using Eq. (9) , the total reaction forces which have developed at the horizontal terminals through the rigid have been

derived as 

F = 2 p 2 cos θ + k d (u d − u s ) 

= 

0 . 5 m e 

tan 

2 θ︸ ︷︷ ︸ 
c 1 

( ̈u d − ü s ) + 0 . 5 m e ︸ ︷︷ ︸ 
c 2 

( ̈u d + ü s ) + k ad (u d − u s ) (10) 

where c 1 = 

(
0 . 5 m e / tan 

2 θ
)

and c 2 = 0 . 5 m e are the additional effective masses which have been have been added to the

static mass of the novel tuned mass dampers m d to produce the total dynamic effective masses of them [16] . Hence, the

dynamic effective masses of the novel negative stiffness tuned mass damper derive as 

m ad = m d + 0 . 5 m e 

(
1 + 

1 

tan 

2 θ

)
= m d + �

(
(1 − μ) m T 

(
ω 

2 
b 

ω 

2 − ω 

2 

)
+ μm T 

)

b 
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= 

m 1 ω b 
2 − m 2 ω 

2 

ω b 
2 − ω 

2 
(11) 

where m 1 = (� m T + m d ) and m 2 = (� m T μ + m d ) , � = 0 . 5 

(
1 + 

1 

tan 2 θ

)
are introduced for the simplified representation of

Fig. 11 . The dynamic effective stiffness of the novel tuned mass dampers derives as 

k ad = m ad ω 

2 
d 

= 

m 1 ω b 
2 ω 2 

d 
−m 2 ω 

2 
ω 2 

d 

ω b 2 −ω 2 
(12) 

where the dynamic negative stiffness generates through (−m 2 ω 

2 ω 

2 
d 
) . Therefore, the generalized equations of motion for 

the single degree of freedom systems controlled by novel tuned mass dampers are determined as 

m ad ̈x d + c ad ̇ x d + k ad x d + m ad ̈x s = −m ad ̈x g 
m s ̈x s + c s ̇ x s + k s x s − c ad ̇ x d − k ad x d = −m s ̈x g 

(13) 

x s = (u s − x g ) and x d = (u d − u s ) refer to the relative dynamic responses of the primary structure and novel tuned mass

dampers. The steady state solutions for the dynamic responses of the primary structures and novel tuned mass dampers 

are considered as x s = X s e 
i ωt , x d = X d e 

i ωt , and ẍ g = A g e 
i ωt . ˙ (•) denotes the derivatives of variables w.r.t time. The steady state

solutions are substituted in Eq. (13) and the transfer function has been derived as [ 

( μ1 ω b 
2 + q 2 μ2 ) ( 2 qζd ω d + q 2 + ω d 2 ) 

q 2 + ω b 2 
q 2 ( μ1 ω b 

2 + q 2 μ2 ) 
q 2 + ω b 2 

− ( μ1 ω b 
2 + q 2 μ2 ) ω d ( 2 qζd + ω d ) 

q 2 + ω b 2 2 ζs ω s q + q 2 + ω s 
2 

] {
X d 

X s 

}
= −
[
μad 

1 

]
A g (14) 

where q = i ω, μad = (μ1 ω b 
2 + q 2 μ2 ) / (q 2 + ω b 

2 ) , μ1 = m 1 /m s = (�μT + μd ) , μ2 = m 2 /m s = (�μT μ + μd ) , and � =
0 . 5 

(
1 + 

1 

tan 2 θ

)
. μad defines as the mass ratio of total effective mass m ad to the SDOF system m s , μT refers the mass ra-

tio of the total static mass at lateral terminal to the SDOF system, μd denotes the ratio of static mass of NSIA-TMD to the

SDOF system m s . The dynamic response of the SDOF system is determined as 

H s (q ) = 

X s 

A g 
= 

−q 4 + ( −2 μ2 ζd ω d − 2 ζd ω d ) q 
3 + 

(
−ω d 

2 μ2 − ω b 
2 − ω d 

2 
)
q 2 

+ 

(
−2 μ1 ζd ω b 

2 ω d − 2 ζd ω b 
2 ω d 

)
q − ω b 

2 ω d 
2 μ1 − ω b 

2 ω d 
2 

�n 
(15) 

�n has been derived as 

�n ( q ) = 

q 6 + ( 2 μ2 ζd ω d + 2 ζd ω d + 2 ω s ζs ) q 5 + 

(
4 ζd ζs ω s ω d + ω 

2 
d 
μ2 + ω 

2 
b 

+ ω 

2 
s + ω 

2 
d 

)
q 4 

+ 

(
2 μ1 ζd ω 

2 
b 
ω d + 2 ζd ω 

2 
b 
ω d + 2 ζd ω 

2 
s ω d + 2 ζs ω 

2 
b 
ω s + 2 ω s ζs ω 

2 
d 

)
q 3 

+ 

(
4 ζd ζs ω 

2 
b 
ω s ω d + ω 

2 
b 
ω 

2 
d 
μ1 + ω 

2 
b 
ω 

2 
s + ω 

2 
b 
ω 

2 
d 

+ ω 

2 
s ω 

2 
d 

)
q 2 

+ 

(
2 ζd ω 

2 
b 
ω 

2 
s ω d + 2 ζs ω 

2 
b 
ω s ω 

2 
d 

)
q + ω 

2 
b 
ω 

2 
s ω 

2 
d 

(16) 

The dynamic responses of the novel tuned mass dampers and the shear force of the entire controlled structures are listed

in Appendix A. 

2.3. Effective mass formulation for novel tuned mass dampers 

The total static mass of the novel tuned mass dampers is derived as m d + 2 m T . The advantages of the negative stiffness

inertial amplifiers on the static property, such as mass and stiffness, have also been obtained mathematically. The ratio of 

the one side vertical total mass to the total static mass of the novel tuned mass dampers are derived as 

α = 

m T 

m d +2 m T 
and m T = 

(
α

1 −2 α

)
m d (17) 

The ratio of the static mass to the total static mass of the novel tuned mass dampers are derived as 

β = 

m d 

m d + 2 m T 

= (1 − 2 α) (18) 

where m d also represents as “damper mass”. The dynamic effective mass ratio of the novel tuned mass dampers are derived

as 

μ f = 

m d 

m d + 2 m T 

+ 

m T 

m d + 2 m T 

�

(
(1 − μ) 

(
ω 

2 
b 

ω 

2 
b 

− ω 

2 

)
+ μ

)

= (1 − 2 α) + α�

( 

(1 − μ) 

( 

1 

1 − η2 

η2 
b 

) 

+ μ

) 

(19) 

where μ f refers to the total dynamic mass to the total static mass of the novel tuned mass damper. At initial condition,

η/ηb = 0 . Therefore, Eq. (19) has been modified as 

μ f s = (1 − 2 α) + α� (20) 
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where μ f s refers to the static effective mass ratio. � = 0 . 5 

(
1 + 

1 

tan 2 θ

)
and θ refers to the inertial angle. η = ω/ω s refers

to the ratio of excitation frequency to the natural frequency of the primary structure. ηb = ω b /ω s refers to the ratio of the

vertical spring mass system to the primary structure. 

2.4. Effective stiffness formulation for novel tuned mass dampers 

The ratio of dynamic effective stiffness to the static effective stiffness of the novel tuned mass damper has been derived

as 

κ f = 

k ad 

k d 
= 

m 1 ω b 
2 ω 2 

d 
−m 2 ω 

2 
ω 2 

d 

m d ω 
2 
d ( ω b 2 −ω 2 ) 

(21) 

k ad and k d of Eq. (21) are divided by m s ω 

4 
s . Therefore, κ f has been non-dimensionalized as 

κ f = 

η2 
d 
ηb 

2 μ1 −η2 
d 
η2 μ2 

( μd η
2 
d ) ( ηb 

2 −η2 ) 
= 

�
(

μT 
μd 

)
+1 −

(
η2 

η2 
b 

)
�
(

μT 
μd 

)
μ−
(

η2 

η2 
b 

)
(

1 −
(

η2 

η2 
b 

)) (22) 

where μ1 = (�μT + μd ) , μ2 = (�μT μ + μd ) , � = 0 . 5 

(
1 + 

1 

tan 2 θ

)
, and μT = m T /m s and the governing parameters are μd ,

μ, θ , and μT . At initial condition, η/ηb = 0 . Therefore, Eq. (22) has been modified as 

κ f s = 0 . 5 

(
1 + 

1 
tan 2 θ

)(
μT 

μd 

)
+ 1 (23) 

where κ f s refers to the static effective stiffness ratio. 

2.5. H 2 optimization for novel tuned mass dampers 

H 2 optimization technique has been applied to minimize the standard deviation of the dynamic responses of the primary 

structure [16,95] . The main dynamic system’s damping has been considered zero to perform the H 2 optimization technique. 

Hence, after considering ζs = 0 for Eq. (16) , �n (q ) has been modified as 

�n ( q ) = 

q 6 + ( 2 μ2 ζd ω d + 2 ζd ω d ) q 
5 + 

(
μ2 ω 

2 
d 

+ ω 

2 
b 

+ ω 

2 
s + ω 

2 
d 

)
q 4 

+ 

(
2 μ1 ζd ω 

2 
b 
ω d + 2 ζd ω 

2 
b 
ω d + 2 ζd ω 

2 
s ω d 

)
q 3 + 

(
μ1 ω 

2 
b 
ω 

2 
d 

+ ω 

2 
b 
ω 

2 
s + ω 

2 
b 
ω 

2 
d 

+ ω 

2 
s ω 

2 
d 

)
q 2 

+2 qζd ω 

2 
b 
ω 

2 
s ω d + ω 

2 
b 
ω 

2 
s ω 

2 
d 

(24) 

where q = i ω. Hence, Eq. (24) is a 6 th order polynomial equation and the standard deviation of the dynamic responses of

the primary structures [16,95] have been derived as 

σ 2 
x s 

= 

S 0 π

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

4 μ3 
1 ζ

2 
d 
ω 

6 
b 
ω 

2 
s ω 

2 
d 

− 4 μ2 
1 μ2 ζ

2 
d 
ω 

4 
b 
ω 

4 
s ω 

2 
d 

+ μ4 
1 ω 

6 
b 
ω 

4 
d 

+12 μ2 
1 ζ

2 
d 
ω 

6 
b 
ω 

2 
s ω 

2 
d 

+ 4 μ2 
1 ζ

2 
d 
ω 

4 
b 
ω 

4 
s ω 

2 
d 

− 16 μ1 μ2 ζ
2 
d 
ω 

4 
b 
ω 

4 
s ω 

2 
d 

−4 μ1 μ2 ζ
2 
d 
ω 

2 
b 
ω 

6 
s ω 

2 
d 

+ 4 μ2 
2 ζ

2 
d 
ω 

2 
b 
ω 

6 
s ω 

2 
d 

+ μ3 
1 ω 

6 
b 
ω 

2 
s ω 

2 
d 

+4 μ3 
1 ω 

6 
b 
ω 

4 
d 

+ 2 μ3 
1 ω 

4 
b 
ω 

2 
s ω 

4 
d 

− μ2 
1 μ2 ω 

4 
b 
ω 

4 
s ω 

2 
d 

−6 μ2 
1 μ2 ω 

4 
b 
ω 

2 
s ω 

4 
d 

− 2 μ2 
1 μ2 ω 

2 
b 
ω 

4 
s ω 

4 
d 

+ 2 μ1 μ
2 
2 ω 

2 
b 
ω 

4 
s ω 

4 
d 

+12 μ1 ζ
2 
d 
ω 

6 
b 
ω 

2 
s ω 

2 
d 

− 12 μ2 ζ
2 
d 
ω 

4 
b 
ω 

4 
s ω 

2 
d 

+ 6 μ2 
1 ω 

6 
b 
ω 

4 
d 

+ μ2 
1 ω 

2 
b 
ω 

4 
s ω 

4 
d 

− 9 μ1 μ2 ω 

4 
b 
ω 

2 
s ω 

4 
d 

− 4 μ1 μ2 ω 

2 
b 
ω 

4 
s ω 

4 
d 

+4 ζ 2 
d 
ω 

6 
b 
ω 

2 
s ω 

2 
d 

− μ1 μ2 ω 

6 
s ω 

4 
d 

+ 3 μ2 
2 ω 

2 
b 
ω 

4 
s ω 

4 
d 

+ μ2 
2 ω 

6 
s ω 

4 
d 

+4 μ1 ω 

6 
b 
ω 

4 
d 

+ 3 μ2 ω 

4 
b 
ω 

4 
s ω 

2 
d 

− 4 ζ 2 
d 
ω 

4 
b 
ω 

4 
s ω 

2 
d 

− 3 μ1 ω 

6 
b 
ω 

2 
s ω 

2 
d 

+3 μ2 
1 ω 

4 
b 
ω 

2 
s ω 

4 
d 

− 4 μ2 ω 

4 
b 
ω 

2 
s ω 

4 
d 

+ ω 

6 
b 
ω 

4 
s − 2 ω 

6 
b 
ω 

2 
s ω 

2 
d 

+ ω 

6 
b 
ω 

4 
d 

− ω 

4 
b 
ω 

6 
s + 2 ω 

4 
b 
ω 

4 
s ω 

2 
d 

− ω 

4 
b 
ω 

2 
s ω 

4 
d 

− μ3 
1 μ2 ω 

4 
b 
ω 

2 
s ω 

4 
d 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

2 ω 4 
b 
ω d ζd ( μ1 ω 2 b 

−μ2 ω 2 s ) ω 6 s 

(25) 

Eq. (25) is partially differentiated by ζd and ω d . Therefore, the mathematical expressions for differentiation have been de- 

rived as 

∂ σ 2 
x s 

∂ ζ
= 0 and 

∂ σ 2 
x s 

∂ ω 
= 0 

(26) 

d d 
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Eq. (25) has been substituted in the first expression of Eq. (26) . Therefore, the closed-form expression for damping ratio of

the novel tuned mass dampers has been derived as 

ζd = 

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

μ4 
1 ω b 

6 ω d 
4 − μ1 

3 μ2 ω b 
4 ω s 

2 ω d 
4 + μ1 

3 ω b 
6 ω s 

2 ω d 
2 + 4 μ1 

3 ω b 
6 ω d 

4 

+2 μ1 
3 ω b 

4 ω s 
2 ω d 

4 − μ1 
2 μ2 ω b 

4 ω s 
4 ω d 

2 − 6 μ1 
2 μ2 ω b 

4 ω s 
2 ω d 

4 

−2 μ1 
2 μ2 ω b 

2 ω s 
4 ω d 

4 + 2 μ1 μ2 
2 ω b 

2 ω s 
4 ω d 

4 + 6 μ1 
2 ω b 

6 ω d 
4 

+3 μ1 
2 ω b 

4 ω s 
2 ω d 

4 + μ1 
2 ω b 

2 ω s 
4 ω d 

4 − 9 μ1 μ2 ω b 
4 ω s 

2 ω d 
4 

−4 μ1 μ2 ω b 
2 ω s 

4 ω d 
4 − μ1 μ2 ω s 

6 ω d 
4 + 3 μ2 

2 ω b 
2 ω s 

4 ω d 
4 

−3 μ1 ω b 
6 ω s 

2 ω d 
2 + 4 μ1 ω b 

6 ω d 
4 + 3 μ2 ω b 

4 ω s 
4 ω d 

2 

+ μ2 
2 ω s 

6 ω d 
4 − 4 μ2 ω b 

4 ω s 
2 ω d 

4 + ω b 
6 ω s 

4 − 2 ω b 
6 ω s 

2 ω d 
2 

+ ω b 
6 ω d 

4 − ω b 
4 ω s 

6 + 2 ω b 
4 ω s 

4 ω d 
2 − ω b 

4 ω s 
2 ω d 

4 

4 μ1 
3 ω b 

6 ω s 
2 ω d 

2 − 4 μ1 
2 μ2 ω b 

4 ω s 
4 ω d 

2 + 12 μ1 
2 ω b 

6 ω s 
2 ω d 

2 

+4 μ1 
2 ω b 

4 ω s 
4 ω d 

2 − 16 μ1 μ2 ω b 
4 ω s 

4 ω d 
2 − 4 μ1 μ2 ω b 

2 ω s 
6 ω d 

2 

+4 μ2 
2 ω b 

2 ω s 
6 ω d 

2 + 12 μ1 ω b 
6 ω s 

2 ω d 
2 − 12 μ2 ω b 

4 ω s 
4 ω d 

2 

+4 ω b 
6 ω s 

2 ω d 
2 − 4 ω b 

4 ω s 
4 ω d 

2 

(27) 

Eq. (27) substitutes in Eq. (25) and a modified expression for Eq. (25) has been obtained which substitutes in the second

expression of Eq. (26) . Therefore, the closed-form expression for optimal frequency of the novel tuned mass dampers has 

been derived as 

( ω d ) opt = 

√ √ √ √ √ √ √ √ √ √ √ √ √ 

ω 

6 
b 
(3 μ1 ω s 

2 + 2 ω s 
2 − μ1 

3 ω s 
2 ) 

+ ω b 
4 ( μ1 

2 μ2 ω s 
4 − 3 μ2 ω s 

4 − 2 ω s 
4 ) 

ω 

6 
b 
(2 μ1 

4 + 8 μ1 
3 + 12 μ1 

2 + 8 μ1 + 2 ) 
+ ω b 

4 (−2 μ1 
3 μ2 ω s 

2 + 4 μ1 
3 ω s 

2 − 12 μ1 
2 μ2 ω s 

2 ) 
+ ω b 

4 (6 μ1 
2 ω s 

2 − 18 μ1 μ2 ω s 
2 − 8 μ2 ω s 

2 − 2 ω s 
2 ) 

+ ω b 
2 (−4 μ1 

2 μ2 ω s 
4 + 4 μ1 μ2 

2 ω s 
4 + 2 μ1 

2 ω s 
4 ) 

+ ω b 
2 (−8 μ1 μ2 ω s 

4 + 6 μ2 
2 ω s 

4 ) 
+2 μ2 

2 ω s 
6 − 2 μ1 μ2 ω s 

6 

(28) 

Eq. (28) has been non-dimensionalized and listed in Appendix B. Now, Eq. (28) substitutes in Eq. (27) and the closed-

form expressions for the optimal viscous damping ratio of the novel tuned mass dampers have been derived as 

(ζd ) opt = 

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

( μ1 ω b 2 −μ2 ω s 2 ) 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ω 

6 
b 
(20 μ1 

2 − μ1 
5 + 10 μ1 

3 + 15 μ1 + 4) 
+ ω b 

4 ( μ1 
4 μ2 ω s 

2 − 4 μ1 
3 ω s 

2 − 6 μ1 
2 μ2 ω s 

2 ) 
+ ω b 

4 (−12 μ1 
2 ω s 

2 − 8 μ1 μ2 ω s 
2 − 12 μ1 ω s 

2 ) 
+ ω b 

4 (−3 μ2 ω s 
2 − 4 ω s 

2 ) 
+ ω b 

2 ( −8 μ1 
2 ω s 

4 + 8 μ1 μ2 ω s 
4 − 8 μ1 ω s 

4 ) 
+8 μ2 ω b 

2 ω s 
4 − 4 μ1 ω s 

6 + 4 μ2 ω s 
6 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

8 ω b 
2 
(
3 μ1 ω b 

2 + 2 ω b 
2 − μ1 

3 ω b 
2 + μ1 

2 μ2 ω s 
2 − 3 μ2 ω s 

2 − 2 ω s 
2 
)( 

ω 

4 
b 
( μ1 

3 + 3 μ1 
2 + 3 μ1 + 1) 

+ ω b 
2 ( −μ1 

2 μ2 ω s 
2 + μ1 

2 ω s 
2 − 4 μ1 μ2 ω s 

2 − 3 μ2 ω s 
2 − ω s 

2 ) 
−μ2 ω s 

4 μ1 + μ2 
2 ω s 

4 

) 

(29) 

Eq. (29) has been non-dimensionalized and listed in Appendix B. 

2.6. H ∞ 

optimization for novel tuned mass dampers 

H ∞ 

optimization technique has been applied to minimize the maximum dynamic responses of the primary structures 

controlled by novel tuned mass dampers and the exact closed-form expressions for optimized system parameters for novel 

tuned mass dampers have been obtained. Hence, Eq. (14) has been non-dimensionalized and expressed as [ 

( μ2 η
2 −μ1 ηb 

2 ) ( 2 iη ζd ηd −η2 + ηd 
2 ) 

η2 −ηb 
2 − η2 ( μ2 η

2 −μ1 ηb 
2 ) 

η2 −ηb 
2 

− ηd ( μ2 η
2 −μ1 ηb 

2 ) ( 2 iη ζd + ηd ) 

η2 −ηb 
2 −η2 + 1 + 2 iζs η

] {
X d 

X s 

}
= −
[
μad 

1 

]
A g 
ω 2 s 

(30) 

where η = ω/ω s , μad = (μ1 ηb 
2 − η2 μ2 ) / ( ηb 

2 − η2 ) , and the details of other system parameters have already illustrated in

previous section. The dynamic response of SDOF system has been derived as 

H s (η) = 

X s 
A g 

ω 

2 
s = 

( 
η2 μ2 ηd 

2 − ηb 
2 μ1 ηd 

2 − η4 + η2 ηb 
2 + η2 ηd 

2 − ηb 
2 ηd 

2 

+2i ζd ηd η
(
( μ2 + 1 ) η2 − ( μ1 + 1 ) ηb 

2 
) ) 

�n 

(31) 
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�n has been derived as 

�n = 

η4 μ2 ηd 
2 + 4 η4 ζd ζs ηd − η2 ηb 

2 μ1 ηd 
2 − 4 η2 ηb 

2 ζd ζs ηd − η6 

+ η4 ηb 
2 + η4 ηd 

2 − η2 ηb 
2 ηd 

2 + η4 − η2 ηb 
2 − η2 ηd 

2 + ηb 
2 ηd 

2 

+i 

(
2 η5 μ2 ζd ηd − 2 η3 ηb 

2 μ1 ζd ηd + 2 η5 ζd ηd − 2 η3 ηb 
2 ζd ηd + 2 η5 ζs 

−2 η3 ηb 
2 ζs − 2 η3 ζs ηd 

2 + 2 η ηb 
2 ζs ηd 

2 − 2 η3 ζd ηd + 2 η ηb 
2 ζd ηd 

) (32) 

After considering ζs = 0 . The modulus of the dynamic response of the primary structure has been derived as 

| H s (η) | = 

√ 

A 

2 + ζ 2 
d 

B 

2 

C 2 + ζ 2 
d 

D 

2 
= 

∣∣∣∣ B 

D 

∣∣∣∣
√ √ √ √ 

(
A 
B 

)2 + ζ 2 
d (

C 
D 

)2 + ζ 2 
d 

(33) 

where 

A = η2 μ2 ηd 
2 − ηb 

2 ηd 
2 μ1 − η4 + η2 ηb 

2 + η2 ηd 
2 − ηb 

2 ηd 
2 

B = 2 ηd ζd η
3 μ2 − 2 η ηb 

2 μ1 ζd ηd + 2 η3 ζd ηd − 2 η ηb 
2 ζd ηd 

C = 

η4 μ2 ηd 
2 − η2 ηb 

2 μ1 ηd 
2 − η6 + η4 ηb 

2 + η4 ηd 
2 

−η2 ηb 
2 ηd 

2 + η4 − η2 ηb 
2 − η2 ηd 

2 + ηb 
2 ηd 

2 

D = 

2 η5 μ2 ζd ηd − 2 η3 ηb 
2 μ1 ζd ηd + 2 η5 ζd ηd 

−2 η3 ηb 
2 ζd ηd − 2 η3 ζd ηd + 2 η ηb 

2 ζd ηd 

(34) 

Now, applying the fixed-point theory [7,11,16] , two constraints have been derived which are listed below. (
A 

B 

)2 ∣∣∣∣
η j 

= 

(
C 

D 

)2 
∣∣∣∣
η j 

and 

(
B 

D 

)2 
∣∣∣∣
η1 

= 

(
B 

D 

)2 
∣∣∣∣
η2 

(35) 

After applying the first constraints of Eq. (35) , a polynomial equation has been derived which is expressed as 

η6 + 

(
−μ2 ηd 

2 − ηb 
2 − ηd 

2 − 1 

)
η4 

+ 

(
ηb 

2 μ1 ηd 
2 + ηb 

2 ηd 
2 + ηb 

2 + ηd 
2 
)
η2 − ηb 

2 ηd 
2 

= 0 (36) 

It has been considered that η3 > η2 > η1 . Therefore, the mathematical relation between roots have been derived as [96] : 

η2 
1 + η2 

2 + η2 
3 = μ2 ηd 

2 + ηb 
2 + ηd 

2 + 1 (37) 

η2 
2 η1 

2 + η3 
2 η1 

2 + η2 
2 η3 

2 = ηb 
2 μ1 ηd 

2 + ηb 
2 ηd 

2 + ηb 
2 + ηd 

2 (38) 

η1 
2 η2 

2 η3 
2 = ηb 

2 ηd 
2 (39) 

Now, using the second constraints of Eq. (35) , the closed-form expression for deriving η2 
1 

and η2 
2 

has been derived as 

η1 
2 + η2 

2 = 2 (40) 

where, the roots of polynomial equations have been derived as η2 
N terms where N = 1 , 2 , 3 , 4 , 5 , 6 . The values of multipli-

cation of roots have been neglected by considering η j+2 
1 

η j+2 
2 

� = 0 , where j = 1 , 2 , 3 , 4 , . . . . ∞ . using Eqs. (37) and (40) , the

closed-form equations for η2 
3 

has been derived and expressed as 

η2 
3 = ηd 

2 μ2 + ηb 
2 + ηd 

2 − 1 (41) 

Eq. (41) inserts in Eqs. (38) and (39) and a equation has been derived as (
ηb 

2 μ1 μ2 + ηb 
2 μ1 + ηb 

2 μ2 + ηb 
2 − 2 μ2 

2 − 3 μ2 − 1 

)
ηd 

4 

+ 

(
ηb 

4 μ1 + ηb 
4 − ηb 

2 μ1 − 3 ηb 
2 μ2 − 4 ηb 

2 + 4 μ2 + 3 

)
ηd 

2 

−ηb 
4 + 3 ηb 

2 − 2 

= 0 (42) 

The exact closed-form expression for optimized frequency ratio for novel tuned mass dampers is derived from Eq. (42) and

expressed as 

(ηd ) 
2 
opt = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−ηb 
4 μ1 − ηb 

4 + ηb 
2 μ1 + 3 ηb 

2 μ2 + 4 ηb 
2 − 4 μ2 − 3 

+ 

√ √ √ √ √ √ 

⎛ 

⎜ ⎝ 

η8 
b 
μ1 

2 + 2 ηb 
8 μ1 + ηb 

8 − 2 ηb 
6 μ1 

2 − 2 ηb 
6 μ1 μ2 

−6 ηb 
6 μ1 − 2 ηb 

6 μ2 − 4 ηb 
6 + ηb 

4 μ1 
2 + 2 ηb 

4 μ1 μ2 

+ ηb 
4 μ2 

2 + 2 ηb 
4 μ1 + 8 ηb 

4 μ2 + 6 ηb 
4 + 2 ηb 

2 μ1 

−6 ηb 
2 μ2 − 4 ηb 

2 + 1 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

2 ηb 
2 μ1 μ2 +2 ηb 

2 μ1 +2 ηb 
2 μ2 +2 ηb 

2 −4 μ2 
2 −6 μ2 −2 

(43) 

Now, η2 
1 , 2 has been derived as 

η2 
1 , 2 = 1 ±

√ 

ηb 
2 + ηd 

2 − ηb 
2 μ1 ηd 

2 − ηb 
2 ηd 

2 + 2 μ2 ηd 
2 − 1 

(44) 
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The exact closed-form expression for optimal ζd derives using the mathematical formulation below. 

∂| H s (η) | 2 
∂η2 

∣∣∣∣
η2 

1 , 2 

= 0 and (ζd ) opt = 

√ 

ζ 2 
d1 

+ ζ 2 
d2 

2 

(45) 

As a result, the exact closed-form expression for optimal (ζd 1 ,d 2 ) 
2 

opt 
derives as 

(ζd 1 ,d 2 ) 
2 

opt = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−η12 
1 , 2 + 

(
2 μ2 ηd 

2 + 2 ηb 
2 + 2 ηd 

2 + 2 

)
η10 

1 , 2 

+ 

( −μ2 
2 ηd 

4 − 2 ηb 
2 μ1 ηd 

2 − 2 ηb 
2 μ2 ηd 

2 

−2 μ2 ηd 
4 − ηb 

4 − 4 ηb 
2 ηd 

2 − ηd 
4 

−2 μ2 ηd 
2 − 4 ηb 

2 − 4 ηd 
2 − 1 

) 

η8 
1 , 2 

+ 

⎛ 

⎜ ⎝ 

2 ηb 
2 μ1 μ2 ηd 

4 + 2 ηb 
4 μ1 ηd 

2 + 2 ηb 
2 μ1 ηd 

4 

+2 ηb 
2 μ2 ηd 

4 + 2 ηb 
4 ηd 

2 + 2 ηb 
2 ηd 

4 + 2 ηd 
2 

+2 ηb 
2 μ1 ηd 

2 + 2 ηb 
2 μ2 ηd 

2 + 2 μ2 ηd 
4 

+2 ηb 
4 + 8 ηb 

2 ηd 
2 + 2 ηd 

4 + 2 ηb 
2 

⎞ 

⎟ ⎠ 

η6 
1 , 2 

+ 

( −ηb 
4 μ1 

2 ηd 
4 − 2 ηb 

4 μ1 ηd 
4 − ηb 

4 ηd 
4 − ηd 

4 

−2 ηb 
4 μ1 ηd 

2 − 2 ηb 
2 μ1 ηd 

4 − 2 ηb 
2 μ2 ηd 

4 

−4 ηb 
4 ηd 

2 − 4 ηb 
2 ηd 

4 − ηb 
4 − 4 ηb 

2 ηd 
2 

) 

η4 
1 , 2 

+ 

(
2 ηb 

4 μ1 ηd 
4 + 2 ηb 

4 ηd 
4 + 2 ηb 

4 ηd 
2 + 2 ηb 

2 ηd 
4 
)
η2 

1 , 2 

−ηb 
4 ηd 

4 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(
4 μ2 

2 ηd 
2 + 8 μ2 ηd 

2 + 4 ηd 
2 
)
η10 

1 , 2 

+ 

(
−8 ηb 

2 μ1 μ2 ηd 
2 − 8 ηb 

2 μ1 ηd 
2 − 8 ηd 

2 

−8 ηb 
2 μ2 ηd 

2 − 8 ηb 
2 ηd 

2 − 8 μ2 ηd 
2 

)
η8 

1 , 2 

+ 

(
4 ηb 

4 μ1 
2 ηd 

2 + 8 ηb 
4 μ1 ηd 

2 + 4 ηb 
4 ηd 

2 + 4 ηd 
2 

+8 ηb 
2 μ1 ηd 

2 + 8 ηb 
2 μ2 ηd 

2 + 16 ηb 
2 ηd 

2 

)
η6 

1 , 2 

+ 

(
−8 ηb 

4 μ1 ηd 
2 − 8 ηb 

4 ηd 
2 − 8 ηb 

2 ηd 
2 
)
η4 

1 , 2 

+4 ηd 
2 η2 

1 , 2 ηb 
4 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(46) 

Eq. (44) has been inserted in Eq. (46) and the second equation of Eq. (45) to obtain exact values of optimal viscous

damping of novel tuned mass dampers. 

3. Results and discussion 

3.1. Effective mass and stiffness 

Eqs. (19) and (20) are applied to identify the effect of negative stiffness inertial amplifier on the static system properties

of the novel tuned mass dampers. The contour diagram of μ f s as a function of α and θ has been displayed in Fig. 2 (a).

Overall result shows that the static effective mass ratio μ f s has only contained the effect of the inertial amplifier; mass 

amplification occurs at lower values of inertial angle θ . This figure also shows that adequate mass amplification occurs 

at θ ≤ 30 ◦. Hence, these values of inertial angle have been acknowledged as the critical angles for the novel tuned mass

dampers. The maximum amount of mass amplification occurs at θ ≤ 14 ◦. This mass amplification at a lower angle signifi-

cantly increases the effective damping of the novel tuned mass damper, which helps to dissipate the energy of the controlled

structures during vibration. Therefore, lower values of inertial angles (i.e., θ ≤ 14 ◦) have been recommended for designing 

these novel dampers. Hence, θ = 14 ◦ has been applied throughout the paper for determining the results. 

The maximum mass amplification occurs for higher values of α, which defines the ratio of total vertical mass to the total

static mass of the novel tuned mass dampers, implying that the static effective mass increases when α increases. For better

understanding, if the value of μT considers as 0.01, then the value of α only depends upon the static mass of novel dampers,

i.e., μd + 2 μT which implies lower static mass provides more static mass amplifications than the higher static mass. 

Furthermore, the effectiveness of the negative stiffness inertial amplifier on the static masses of the novel tuned mas 

dampers has been observed in Fig. 2 (b), where the contour diagram of the dynamic effective mass (μ f ) as a function of

μ and η/ηb has been observed to the system’s resonating frequency regions. α = 0 . 20 and θ = 14 ◦ are applied for this

graph. Precisely, at 1 . 01 ≤ η/ηb ≤ 1 . 96 and for μ = 0 which represents the (NS-TMD). The effectiveness of the inertial am-

plifier tends to zero for NS-TMD at that particular frequency region. Hence, It has been proved that the vertical spring-

mass system attached to the amplifier’s mass produces dynamic negative masses near resonance frequency efficiently, and 

these spring-mass systems exactly behave as negative stiffness devices. For μ > 0 , the presence of dynamic negative masses

decreases and becomes zero at μ = 1 . 0 . 0 . 1 ≤ μ ≤ 0 . 5 represents the NSIA-TMD with higher values of dynamic negative

masses, whereas 0 . 6 ≤ μ ≤ 0 . 9 represents the NSIA-TMD with lower values of dynamic negative masses near resonating

frequency region. μ = 1 . 0 represents IA-TMD and zero negative masses are observed in the overall frequency region; only 

the mass amplifications occur for this particular system. The significant amount of mass amplifications are occurred at 
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Fig. 2. (a) The contour diagram of μs f as a function of α and θ and (b) the contour diagram of μ f as a function of μ and η/ηb have been displayed. 

Fig. 3. (a) The contour diagram of κ f s as a function of (μT /μd ) and θ and (b) the contour diagram of (κ f ) as a function of μ and η/ηb have been displayed. 

 

 

 

 

 

η/ηb > 1 . 96 , which provides enhanced effective mass to the IA-TMD without adding any static masses. Therefore, the sig-

nificant amount of dynamic negative masses are observed for NS-TMD ( μ = 0 ) and NSIA-TMD ( 0 . 1 ≤ μ ≤ 0 . 9 ), whereas the

significant amount of positive effective masses is observed for IA-TMD ( μ = 1 ) which influences the dynamic effective stiff-

ness of the novel tuned mass dampers simultaneously. 

Eqs. (22) and (23) are applied to identify the effect of negative stiffness inertial amplifiers on the static stiffness of the

novel tuned mass dampers. The contour diagram of κ f s as a function of μT /μd and θ has been displayed in Fig. 3 (a).

The static effective stiffness ratio κ f s has only contained positive effective stiffness with higher values at lower values of 

inertial angle θ . Basically, the effective stiffness of novel dampers increases when the inertial angle decreases. In fact, the 

larger positive effective stiffness provided by the novel dampers enhances the dampers’ restoring forces and has potentially 

reduced the deflections of the primary dynamic systems during vibration. This figure also shows that adequate stiffness 

amplification occurs at θ ≤ 30 ◦. Hence, these values of inertial angle have been verified again and acknowledged as the 

critical angles for the novel tuned mass dampers. For θ ≤ 14 ◦, the effective stiffness amplifications are appeared the most 
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Fig. 4. The variations of optimal frequency ratio ηd versus mass tuning ratio μ for different values of (a) inertial angle θ and (b) damper mass ratio μd of 

novel tuned mass dampers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

and these values for inertial angles are recommended to achieve robust dynamic response reduction capacity for novel 

tuned mass dampers. Another observations, the maximum positive effective stiffness amplification occurs for higher values 

of μT /μd , implying that the static effective stiffness increases when μT /μd increases. 

In addition, the effectiveness of the negative stiffness inertial amplifiers on the static stiffness of the novel tuned mass 

dampers have been observed in Fig. 3 (b), where the contour diagram of the dynamic effective stiffness (κ f ) as a function of

μ and η/ηb has been observed to the system’s resonating frequency regions. μT /μd = 0 . 33 and θ = 14 ◦ are applied for this

graph. The positive dynamic effective stiffness amplifications are observed at 0 ≤ η/ηb ≤ 0 . 99 whereas the negative dynamic 

effective stiffness is located at 1 . 01 ≤ η/ηb ≤ 1 . 96 for NS-TMD (μ = 0) . Therefore, the negative dynamic system properties

are only observed at near resonating frequencies for NS-TMD where the inertial amplifiers’ effect is null. It has also been

crosschecked and verified that the vertical spring-mass system attached to the amplifier’s mass produces dynamic negative 

masses near resonance frequency efficiently, and these spring-mass systems exactly worked as negative stiffness devices. 

These dynamic negative stiffness lessen the frequency of the dampers, providing higher dynamic effective damping to the 

novel tuned mass damper, which significantly contributes to dissipating the energy of the controlled dynamic systems. Over- 

all results showed that these negative stiffness inertial amplifiers-based tuned mass dampers increase traditional tuned mass 

dampers’ dynamic response reduction capacity through higher energy dissipation, giving more restoring forces and damping 

forces reduction simultaneously sufficient load-bearing capacity to the controlled dynamic systems. For μ > 0 , the presence 

of dynamic negative stiffness decreases and becomes zero at μ = 1 . 0 . 0 . 1 ≤ μ ≤ 0 . 5 represents the NSIA-TMD with higher

values of dynamic negative stiffness, whereas 0 . 6 ≤ μ ≤ 0 . 9 represents the NSIA-TMD with lower values of dynamic neg-

ative stiffness near resonating frequency region. μ = 1 . 0 represents IA-TMD and zero negative stiffness is observed in the

overall frequency region; only the mass amplifications and slight stiffness amplifications occur for this system. The signif- 

icant amount of mass amplifications and slight stiffness amplifications occurred at η/ηb > 1 . 96 , which provides enhanced

effective mass to the IA-TMD without adding any static masses. Therefore, the significant amount of dynamic negative stiff- 

ness is observed for NS-TMD ( μ = 0 ) and NSIA-TMD ( 0 . 1 ≤ μ ≤ 0 . 9 ), whereas a notable amount of positive effective stiffness

is observed for IA-TMD ( μ = 1 ) which influences the dynamic effective stiffness of the novel tuned mass dampers during

vibration. Therefore, the negative stiffness inertial amplifiers based tuned mass dampers increase the dynamic response re- 

duction capacity of traditional tuned mass dampers through higher energy dissipation, giving more restoring forces and 

damping forces reductions simultaneously sufficient load-bearing capacity to the controlled dynamic systems. 

3.2. H 2 optimization 

The variations of ηd versus μ for different values of θ are displayed in Fig. 4 (a). The black ( θ = 5 ◦), red ( θ = 14 ◦), blue

( θ = 24 ◦), and cyan ( θ = 30 ◦) lines with markers are applied to identify each plot. The system parameters are considered as

μT = 0 . 01 and μd = 0 . 03 . The optimal frequency ratio of novel tuned mass dampers increases as the inertial angle of the

amplifier increases. Thus, the natural frequency of novel tuned mass dampers increases, as do the restoring forces, possibly 

reducing primary dynamic system deflections during vibration. The inverse effect occurs as the damper mass ratio increases. 
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Fig. 5. The variations of optimal viscous damping ratio ζd versus mass tuning ratio μ for different values of (a) inertial angle θ and (b) damper mass ratio 

μd of novel tuned mass dampers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variations of optimal frequency ratio ηd versus mass tuning ratio μ of the novel tuned mass dampers for the 

different values of damper mass ratio μd have been displayed in Fig. 4 (b). The black ( μd = 0 . 01 ), red ( μd = 0 . 03 ), blue

( μd = 0 . 05 ), and cyan ( μd = 0 . 07 ) lines with markers are applied to identify each plot. The system parameters are consid-

ered as μT = 0 . 01 and θ = 14 ◦. The optimal frequency ratio increases as the mass tuning ratio of the novel tuned mass

dampers increase and decreases as the damper mass ratio increases. Therefore, the natural frequency of the novel tuned 

mass dampers decreases, whereas the structure’s time period increases, potentially reducing primary dynamic system de- 

flections during vibration. For both Fig. 4 (a) and (b), the optimal frequency ratio increases as the mass tuning ratio increases.

Thus, the natural frequency of the novel tuned mass dampers decreases, as do the restoring forces, possibly reducing the 

primary dynamic system’s deflections during vibration. 

The variations of optimal damping ratio ζd versus mass tuning ratio μ of the novel tuned mass dampers for the different

values of inertial angle θ have been displayed in Fig. 5 (a). The black ( θ = 5 ◦), red ( θ = 14 ◦), blue ( θ = 24 ◦), and cyan ( θ =
30 ◦) lines with markers are applied to identify each plot. For this graph, other system parameters are considered as μT =
0 . 01 and μd = 0 . 03 . The optimal damping ratio of the novel tuned mass dampers decreases as the mass tuning ratio and

inertial angle increase. Thus, the damping increases at a lower damping ratio for IA-TMD and slightly higher for NS-TMD 

and NSIA-TMD, as does the damping force reduction capacity, possibly reducing the primary dynamic system’s deflections 

during vibration effectively. In contrast, the damping ratio increases as the damper mass ratio increases, which has been 

observed from Fig. 5 (b). 

The black ( μd = 0 . 01 ), red ( μd = 0 . 03 ), blue ( μd = 0 . 05 ), and cyan ( μd = 0 . 07 ) lines with markers are applied to identify

each plot. The system parameters are considered as μT = 0 . 10 and θ = 14 ◦. 

As the damper mass ratio increases, the optimal damping ratio also increases. Thus, a higher damper mass ratio provides 

additional damping force reduction capacity, enabling these dampers to surpass conventional tuned mass dampers in terms 

of response reduction capacity. 

The optimal damping ratio for Fig. 5 (a) decreases as the inertial angle decreases. The damping ratio increases at θ = 5 ◦

according to the mass tuning ratio. However, when the inertial angle increases, this characteristic changes. When θ ≥ 10 ◦

is increased, the optimal damping ratio decreases. Fig. 5 (b) provides a smooth transition between mass tuning ratio and

optimal damping ratio. For each value of damper mass ratio, the optimal damping ratio is decreasing when mass tuning 

ratio increases. 

The variations of the dynamic responses of the primary structures controlled by H 2 optimized NSIA-TMD ( μ = 0 . 50 )

versus frequency ratio for different values of damping ratios have been displayed in Fig. 6 . Eqs. (28) , (B.1), (29) , and (B.2) are

implemented to obtain optimal frequency and damping ratios for Fig. 6 . The system parameters are considered as μd = 0 . 03 ,

μT = 0 . 01 , μ = 0 . 50 , and θ = 14 ◦. P, Q, R, and S are the fixed points in Fig. 6 . 

As a result, the optimal values for the NSIA-TMD’s frequency and damping ratios are obtained as 0.8583 and 0.17, re-

spectively. At ζb = 0 , it was noticed that the primary structure’s displacement response was unconstrained. As a result, the

displacement amplitudes are unrestrained at their respective Eigen frequencies (i.e., η = 0 . 7769 , 1 . 112 , 1 . 987 , 1 . 992 ). When
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Fig. 6. The variations of the dynamic responses of the primary structures controlled by H 2 optimized NSIA-TMD ( μ = 0 . 50 ) versus frequency ratio for the 

different values of damping ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the damping ratio of the NSIA-TMD is increased, the responses across the domain of system resonances are attenuated. 

This displacement graph may also be used to find the resonance, minimum areas [16] . At η = 0 . 7885 , 1 . 079 , the resonance

peaks have been discovered. Due to NSIA-TMD damping, there has been a movement away from the eigen frequencies. The 

minima frequency region’s peak has likewise been determined to be η = 0 . 9294 . The anti-resonance frequency region’s peak

has been detected at η = 1 . 995 . The log plots were used to detect the resonant, anti-resonance, minimum frequency peaks

in these displacement graphs. The primary structure’s maximum displacement response has been calculated to be 4.6878. 

When the NSIA-TMD damping goes to ∞ , the controlled structure’s displacement peaks merge into one. As a result, the

displacement peaks of the primary structure and the tuned mass damper have been connected. Double peaks are shown, 

signifying that the whole system has been compressed to a 2DOF system. 

The variations of the dynamic responses of the primary structures controlled by H 2 optimized NS-TMD ( μ = 0 ) versus

frequency ratio for different values of damping ratios have been displayed in Fig. 7 (a). Eqs. (28) , (B.1), (29) , and (B.2) are

implemented to obtain optimal frequency and damping ratios for Fig. 7 (a). 

The system parameters are considered as μd = 0 . 03 , μT = 0 . 01 , μ = 0 , and θ = 14 ◦. P, Q, R, and S are the fixed points in

Fig. 7 (a). 

As a result, the optimal values for the NS-TMD’s frequency and damping ratios are obtained as 0.8469 and 0.17, re-

spectively. At ζb = 0 , it was noticed that the primary structure’s displacement response was unconstrained. As a result, the

displacement amplitudes are unrestrained at their respective eigen frequencies (i.e., η = 0 . 7626 , 1 . 118 , 1 . 974 , 1 . 980 ). When

the damping ratio of the NS-TMD is increased, the responses across the domain of system resonances are attenuated. This 

displacement graph may also be used to find the resonance, minimum areas [16] . At η = 0 . 7771 , 1 . 082 , the resonance peaks

have been discovered. Due to NS-TMD damping, there has been a movement away from the eigen frequencies. The min- 

ima frequency region’s peak has likewise been determined to be η = 0 . 9252 . The anti-resonance frequency region’s peak

has been detected at η = 1 . 99 . The log plots were used to detect the resonant, anti-resonance, minimum frequency peaks

in these displacement graphs. The primary structure’s maximum displacement response has been calculated to be 4.5069. 

When the NS-TMD damping goes to ∞ , the controlled structure’s displacement peaks merge into one. As a result, the dis-

placement peaks of the primary structure and the tuned mass damper have been connected. Double peaks are shown, 

signifying that the whole system has been compressed to a 2DOF system. 

The variations of the dynamic responses of the primary structures controlled by H 2 optimized IA-TMD ( μ = 1 . 0 ) versus

frequency ratio for different values of damping ratios have been displayed in Fig. 7 (b). Eqs. (28) , (B.1), (29) , and (B.2) are

implemented to obtain optimal frequency and damping ratios for Fig. 7 (b). The system parameters are considered as μd =
0 . 03 , μT = 0 . 01 , μ = 1 , and θ = 14 ◦. P and Q indicate two fixed points in Fig. 7 (b). 

As a result, the optimal values for the IA-TMD’s frequency and damping ratios ratios are obtained as 0.8703 and 0.16. At

ζb = 0 , it was noticed that the primary structure’s displacement response was unconstrained. As a result, the displacement

amplitudes are unbounded at their respective Eigen frequencies (i.e., η = 0 . 7972 , 1 . 076 ). When the damping ratio of the

IA-TMD is increased, the responses across the domain of system resonances are attenuated. This displacement graph may 

also be used to find the resonance, minimum areas [16] . At η = 0 . 786 , 1 . 107 , the resonance peaks have been discovered.

Due to IA-TMD damping, there has been a movement away from the eigen frequencies. The minima frequency region’s peak 
706 



S. Chowdhury, A. Banerjee and S. Adhikari Applied Mathematical Modelling 114 (2023) 694–721 

Fig. 7. The variations of the dynamic responses of the primary structures controlled by H 2 optimized NS-TMD ( μ = 0 ) versus frequency ratio for the 

different values of damping ratios. (b) The variations of the dynamic responses of the primary structures controlled by H 2 optimized IA-TMD ( μ = 1 . 0 ) 

versus frequency ratio for the different values of damping ratios. 

Fig. 8. The variations of optimal frequency ratio ηd versus mass tuning ratio μ for different values of (a) inertial angle θ and (b) damper mass ratio μd of 

novel tuned mass dampers. 

 

 

has likewise been determined to be η = 0 . 9332 . The log plots were used to detect the resonant, anti-resonance, minimum

frequency peaks in these displacement graphs. The primary structure’s maximum displacement response has been calculated 

to be 4.9029. When the IA-TMD damping goes to ∞ , the controlled structure’s displacement peaks merge into one. As a

result, the displacement peaks of the primary structure and the tuned mass damper have been connected. Single peak is 

shown, signifying that the whole system has been compressed to an SDOF system. 
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Fig. 9. The variations of optimal viscous damping ratio ζd versus mass tuning ratio μ for different values of (a) inertial angle θ and (b) damper mass ratio 

μd of novel tuned mass dampers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. H ∞ 

optimization 

The variations of ηd versus μ for different values of θ are displayed in Fig. 8 (a). The black ( θ = 5 ◦), red ( θ = 14 ◦), blue

( θ = 24 ◦), and cyan ( θ = 30 ◦) lines with markers are applied to identify each plot. The system parameters are considered as

μT = 0 . 01 and μd = 0 . 03 . 

The optimal frequency ratio of novel tuned mass dampers increases as the inertial angle of the amplifier increases. Thus, 

the natural frequency of novel tuned mass dampers increases, as do the restoring forces, possibly reducing primary dynamic 

system deflections during vibration. The inverse effect occurs as the damper mass ratio increases. 

The variations of optimal frequency ratio ηd versus mass tuning ratio μ of the novel tuned mass dampers for the different

values of damper mass ratio μd have been displayed in Fig. 8 (b). The black ( μd = 0 . 01 ), red ( μd = 0 . 03 ), blue ( μd = 0 . 05 ),

and cyan ( μd = 0 . 07 ) lines with markers are applied to identify each plot. The system parameters are considered as μT =
0 . 01 and θ = 14 ◦. The optimal frequency ratio increases as the mass tuning ratio of the novel tuned mass dampers increase

and decreases as the damper mass ratio increases. Therefore, the natural frequency of novel tuned mass dampers decreases, 

whereas the structure’s time period increases, potentially reducing primary dynamic system deflections during vibration. 

However, for both Fig. 8 (a) and (b), the optimal frequency ratio is increasing when the mass tuning ratio increases. Thus,

the natural frequency of novel tuned mass dampers increases, as do the restoring forces, possibly reducing primary dynamic 

system deflections during vibration. 

The variations of optimal damping ratio ζd versus mass tuning ratio μ of the novel tuned mass dampers for the different

values of inertial angle θ have been displayed in Fig. 9 (a). The red ( θ = 14 ◦), blue ( θ = 24 ◦), and cyan ( θ = 30 ◦) lines with

markers are applied to identify each plot. The system parameters are considered as μT = 0 . 01 and μd = 0 . 03 . The optimal

damping ratio of novel tuned mass dampers decreases as the inertial angle of the amplifier increases. Thus, the damping 

increases at a lower damping ratio for IA-TMD and slightly higher for NS-TMD and NSIA-TMD, as does the damping force

reduction capacity, possibly reducing the primary dynamic system’s deflections during vibration effectively. In contrast, the 

damping ratio increases as the damper mass ratio increases, which has been observed from Fig. 9 (b). The black ( μd = 0 . 01 ),

red ( μd = 0 . 03 ), blue ( μd = 0 . 05 ), and cyan ( μd = 0 . 07 ) lines with markers are applied to identify each plot. The system

parameters are considered as μT = 0 . 10 and θ = 14 ◦. As the damper mass ratio increases, the optimal damping ratio also

increases. Thus, a higher damper mass ratio provides additional damping force reduction capacity, enabling these dampers 

to surpass conventional tuned mass dampers in terms of response reduction capacity. 

The variations of the dynamic responses of the primary structures controlled by H ∞ 

optimized NSIA-TMD ( μ = 0 . 50 )

versus frequency ratio for different values of damping ratios have been displayed in Fig. 10 . Eqs. (43) , (45) , and (46) are

implemented to obtain optimal frequency and damping ratios for Fig. 10 . The system parameters are considered as μd =
0 . 03 , μT = 0 . 01 , μ = 0 . 50 , and θ = 14 ◦. For all graphs, P, Q, and R are indicating three fixed points. P, Q, R are the fixed

points in Fig. 10 . 
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Fig. 10. The variations of the dynamic responses of the primary structures controlled by H ∞ optimized NSIA-TMD ( μ = 0 . 50 ) versus frequency ratio for 

the different values of damping ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a result, the optimal values for the NSIA-TMD’s frequency and damping ratios are obtained as 0.8698 and 0.36, respec-

tively. At ζb = 0 , it was noticed that the primary structure’s displacement response was unconstrained. As a result, the dis-

placement amplitudes are unbounded at their respective eigen frequencies (i.e., η = 0 . 7773 , 1 . 117 , 1 . 986 ). When the damping

ratio of the NSIA-TMD is increased, the responses across the domain of system resonances are attenuated. This displacement 

graph may also be used to find the resonance, minimum areas [16] . At η = 0 . 9353 , the resonance peak has been discovered.

Due to NSIA-TMD damping, there has been a movement away from the eigen frequencies. The anti-resonance frequency 

region’s peak has been detected at η = 1 . 999 . The log plots were used to detect the resonant, anti-resonance, minimum fre-

quency peaks in these displacement graphs. The primary structure’s maximum displacement response has been calculated 

to be 6.6852. When the NSIA-TMD damping goes to ∞ , the controlled structure’s displacement peaks merge into one. As a

result, the displacement peaks of the primary structure and the tuned mass damper have been connected. Double peaks are 

shown, signifying that the whole system has been compressed to a 2DOF system. 

The variations of the dynamic responses of the primary structures controlled by H ∞ 

optimized NS-TMD ( μ = 0 ) versus

frequency ratio for different values of damping ratios have been displayed in Fig. 11 (a). Eqs. (43) , (45) , and (46) are imple-

mented to obtain optimal frequency and damping ratios for Fig. 11 (a). The system parameters are considered as μd = 0 . 03 ,

μT = 0 . 01 , μ = 0 , and θ = 14 ◦. P, Q, R are the fixed points in Fig. 11 (a). 

As a result, the optimal values for the NS-TMD’s frequency and damping ratios are obtained as 0.8446 and 0.42, respec-

tively. At ζb = 0 , it was noticed that the primary structure’s displacement response was unconstrained. As a result, the dis-

placement amplitudes are unbounded at their respective eigen frequencies (i.e., η = 0 . 7651 , 1 . 122 , 1 . 974 ). When the damping

ratio of the NS-TMD is increased, the responses across the domain of system resonances are attenuated. This displacement 

graph may also be used to find the resonance, minimum areas [16] . At η = 0 . 9353 , the resonance peak has been discov-

ered. Due to NS-TMD damping, there has been a movement away from the eigen frequencies. The anti-resonance frequency 

region’s peak has been detected at η = 2 . 001 . The log plots were used to detect the resonant, anti-resonance, minimum fre-

quency peaks in these displacement graphs. The primary structure’s maximum displacement response has been calculated 

to be 7.1530. When the NS-TMD damping goes to ∞ , the controlled structure’s displacement peaks merge into one. As a

result, the displacement peaks of the primary structure and the tuned mass damper have been connected. Double peaks are 

shown, signifying that the whole system has been compressed to a 2DOF system. 

The variations of the dynamic responses of the primary structures controlled by H ∞ 

optimized IA-TMD ( μ = 1 . 0 ) versus

frequency ratio for different values of damping ratios have been displayed in Fig. 11 (b). Eqs. (43) , (45) , and (46) are imple-

mented to obtain optimal frequency and damping ratios for Fig. 11 (b). The system parameters are considered as μd = 0 . 03 ,

μT = 0 . 01 , μ = 1 . 0 , and θ = 14 ◦. P, Q are the fixed points in Fig. 11 (b). 

As a result, the optimal values for the IA-TMD’s frequency and damping ratios are obtained as 0.8965 and 0.30, re-

spectively. At ζb = 0 , it was noticed that the primary structure’s displacement response was unconstrained. As a result, the

displacement amplitudes are unbounded at their respective eigen frequencies (i.e., η = 0 . 8008 , 1 . 12 ). When the damping

ratio of the IA-TMD is increased, the responses across the domain of system resonances are attenuated. This displacement 

graph may also be used to find the resonance, minimum areas [16] . At η = 0 . 9189 , the resonance peaks have been dis-
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Fig. 11. The variations of the dynamic responses of the primary structures controlled by H ∞ optimized NS-TMD ( μ = 0 ) versus frequency ratio for the 

different values of damping ratios. (b) The variations of the dynamic responses of the primary structures controlled by H ∞ optimized IA-TMD ( μ = 1 . 0 ) 

versus frequency ratio for the different values of damping ratios. 

Table 2 

H 2 optimized design parameters in terms of closed-form expressions for novel tuned 

mass dampers and traditional tuned mass dampers. 

System Proposed by H 2 optimization 

ηd ζd 

NS-TMD This study Eq. (B.1) Eq. (B.2) 

NSIA-TMD This study Eq. (B.1) Eq. (B.2) 

IA-TMD This study Eq. (B.1) Eq. (B.2) 

TMD Iwata [97] , Warburton et al. [98] 1 
1+ γ

√ 

2+ γ
2 

√ 

γ ( 4+3 γ ) 
8 ( 1+ γ ) ( 2+ γ ) 

TMD Warburton et al. [98] , Zilletti [99] 1 √ 

1+ γ

√ 
γ

2 

Where γ = μd + 2 ( μa + μb ) ; total static mass of novel tuned mass dampers and 

traditional tuned mass dampers are equal. 

 

 

 

 

 

 

 

covered. Due to IA-TMD damping, there has been a movement away from the eigen frequencies. The primary structure’s 

maximum displacement response has been calculated to be 6 . 2731 . When the IA-TMD damping goes to ∞ , the controlled

structure’s displacement peaks merge into one. As a result, the displacement peaks of the primary structure and the tuned 

mass damper have been connected. Single peak is shown, signifying that the whole system has been compressed to an SDOF

system. 

3.4. Performance evaluation of optimized novel tuned mass dampers in comparison to optimized traditional tuned mass dampers 

The variations of structural displacement versus frequency ratio for uncontrolled structure and structure controlled 

by H 2 optimized novel tuned mass dampers, traditional tuned mass damper (TMD) are shown in Fig. 12 . For Fig. 12 (a),

Eqs. (B.1) and (B.2) are implemented to obtain optimal frequency and damping ratio for H 2 optimized novel tuned mass

dampers. For traditional tuned mass damper, the closed-form equations for optimal design parameters are adopted from 

Iwata [97] , Warburton et al. [98] . The exact closed-form expressions for H 2 optimized design parameters of novel tuned

mass dampers and traditional tuned mass dampers are listed in Table 2 . The damping ratio for structure has been consid-

ered as 0.01 (i.e., ζs = 0 . 01 ). The peak displacement of uncontrolled structure determines as 50.0025. The peak displacement

of structure controlled by traditional TMD determines as 7.5055. The peak displacement of structure controlled by NS-TMD 

determines as 4.3684. The peak displacement of structure controlled by IA-TMD determines as 4.7237. The peak displace- 

ments of structure controlled by NSIA-TMD determine as 4.3991, 4.4308, 4.4634, 4.4970, 4.5317, 4.5676, 4.6047, 4.6430, 

4.6826. 
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Fig. 12. (a) The variations of structural displacement H s (η) versus frequency ratio η for uncontrolled structure and structure controlled by H 2 optimized 

novel tuned mass dampers, traditional tuned mass damper (TMD-Iwata [97] , Warburton et al. [98] ). (b) The variations of structural displacement H s (η) 

versus frequency ratio η for uncontrolled structure and structure controlled by H 2 optimized novel tuned mass dampers, traditional tuned mass damper 

(TMD- Warburton et al. [98] , Zilletti [99] ). Eqs. (B.1) and (B.2) are implemented to obtain the optimal frequency and damping ratio for H 2 optimized novel 

tuned mass dampers. 
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Based on the derived results, the response reduction capacities of H 2 optimized NS-TMD, NSIA-TMD, and IA-TMD have 

been determined in comparison to the H 2 optimized traditional TMD. Therefore, the response reduction capacities of H 2 

optimized NS-TMD, NSIA-TMD, and IA-TMD 41 . 79% , 39 . 62% , 37 . 06% superior to the H 2 optimized traditional TMD proposed

by Iwata [97] , Warburton et al. [98] . 

Fig. 12 (b) shows the variations of structural displacement H s (η) versus frequency ratio η for uncontrolled structure and 

structure controlled by H 2 optimized novel tuned mass dampers, traditional tuned mass damper. For this figure, the opti- 

mal closed-form expression for traditional tuned mass dampers have been adopted from Warburton et al. [98] , Zilletti [99] .

Eqs. (B.1) and (B.2) are implemented to determine optimal frequency and damping ratio for H 2 optimized novel tuned mass

dampers. The peak dynamic response of the primary structure controlled by traditional TMD is obtained as 8.0177. The peak 

dynamic response of the primary structure controlled by NS-TMD determines as 4.3684. The peak dynamic response of the 

primary structure controlled by IA-TMD determines as 4.7237. The peak dynamic responses of the primary structures con- 

trolled by NSIA-TMD systems are determined as 4.3991, 4.4308, 4.4634, 4.4970, 4.5317, 4.5676, 4.6047, 4.6430, 4.6826. There- 

fore, the dynamic response reduction capacities of H 2 optimized NS-TMD, NSIA-TMD, and IA-TMD 45 . 51% , 43 . 47% , 41 . 08%

superior to the H 2 optimized traditional TMD proposed by Warburton et al. [98] , Zilletti [99] . Overall, the dynamic response

reduction capacity of H 2 optimized NS-TMD is significantly superior to the H 2 optimized NSIA-TMD and H 2 optimized IA- 

MD, depicting that the performance of novel tuned mass dampers decreases as the mass tuning ratio increases. 

The variations of dynamic responses of the primary structures controlled by novel tuned mass dampers vs frequency 

ratio have been displayed in Fig. 13 . The primary structure’s damping ratio considers as 0.01 (i.e., ζs = 0 . 01 ). Eq. (B.1) and

Eq. (B.2) are implemented to determine the frequency and viscous damping ratios for novel tuned mass dampers. 

For all three figures (i.e., Fig. 13 (a)–(c)), the displacement responses of primary structures are increasing when the values 

of inertial angle increase. Overall results show that the dynamic response reduction capacity of novel tuned mass dampers 

are downgraded when the inertial angle increases. Therefore, to acquire the optimum vibration reduction capacity from 

novel tuned mass dampers, lower inertial angle θ has been recommended, respectively. 

The variations of dynamic responses of the primary structures versus frequency ratio for the uncontrolled structure and 

structures controlled by H ∞ 

optimized novel tuned mass dampers, traditional tuned mass damper (TMD) are shown in 

Fig. 14 . 

For Fig. 14 (a), Eqs. (43) , (45) , and (46) are implemented to obtain optimal frequency and damping ratios for H ∞ 

optimized

novel tuned mass dampers. For traditional tuned mass damper, the closed-form equations for optimal design parameters has 

been adopted from Ormondroyd and Den Hartog [2] , Nishihara and Asami [100] . The exact closed-form expressions for H ∞ 

optimized design parameters of novel tuned mass dampers and traditional tuned mass dampers are listed in Table 3 . The

damping ratio for structure has been considered as 0.01 (i.e., ζs = 0 . 01 ). The maximum displacement of uncontrolled struc-

ture determines as 50.0025. The peak displacement of structure controlled by traditional TMD determines as 6.6325. The 
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Fig. 13. The variations of structural displacement H s (η) versus frequency ratio η for structures controlled by (a) NS-TMD, (b) NSIA-TMD, and (c) IA-TMD 

for different values of θ . 

Fig. 14. (a) The variations of structural displacement H s (η) versus frequency ratio η for uncontrolled structure and structure controlled by H ∞ optimized 

novel tuned mass dampers, traditional tuned mass damper (TMD-Ormondroyd and Den Hartog [2] , Nishihara and Asami [100] ). (b) The variations of 

structural displacement H s (η) versus frequency ratio η for uncontrolled structure and structure controlled by H ∞ optimized novel tuned mass dampers, 

traditional tuned mass damper (TMD- Krenk [101] ). Eqs. (43) , (45) , and (46) are implemented to obtain optimal frequency and damping ratios for H ∞ 
optimized novel tuned mass dampers. 

Table 3 

The values of H ∞ optimized design parameters for novel tuned mass dampers and traditional tuned mass 

dampers. 

System Proposed by H ∞ optimization 

ηd ζd 

NS-TMD This study Eq. (43) Eq. (46) 

NSIA-TMD This study Eq. (43) Eq. (46) 

IA-TMD This study Eq. (43) Eq. (46) 

TMD Ormondroyd and Den Hartog [2] Nishihara and Asami [100] 1 
1+ γ

√ 

3 γ
8 ( 1+ γ ) 

TMD Krenk [101] 1 
1+ γ

√ 

γ
2 ( 1+ γ ) 

Where γ = μd + 2 ( μa + μb ) ; total static mass of novel tuned mass dampers and traditional tuned mass 

dampers are equal. 
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peak displacement of structure controlled by NS-TMD determines as 6.4126. The peak displacement of structure controlled 

by IA-TMD determines as 5.7235. The peak displacements of structure controlled by NSIA-TMD determine as 6.3324, 6.2550, 

6.1800, 6.1072, 6.0364, 5.9677, 5.9012, 5.8374, 5.7776. 

Based on the derived results, the response reduction capacities of H ∞ 

optimized NS-TMD, NSIA-TMD, and IA-TMD have 

been determined in comparison to the H ∞ 

optimized traditional TMD. Therefore, the response reduction capacities of H ∞ 

optimized NS-TMD, NSIA-TMD, and IA-TMD 3 . 31% , 8 . 98% , 13 . 79% superior to the traditional TMD. Fig. 14 (b) shows the vari-

ations of structural displacement H s (η) versus frequency ratio η for uncontrolled structure and structure controlled by H ∞ 

optimized novel tuned mass dampers, traditional tuned mass damper. For this figure, the optimal closed-form expression for 

traditional tuned mass dampers have been adopted from Krenk [101] . Eqs. (43) , (45) , and (46) are implemented to obtain

optimal frequency and damping ratios for H ∞ 

optimized novel tuned mass dampers. 

The peak dynamic response of the primary structure controlled by traditional TMD has been determined as 6.6215. The 

peak dynamic response of the primary structure controlled by NS-TMD determines as 6.4216. The peak dynamic response 

of the primary structure controlled by IA-TMD determines as 5.7235. The peak dynamic responses of the primary structures 

controlled by NSIA-TMD systems are determined as 6.3324, 6.2550, 6.1800, 6.1072, 6.0364, 5.9677, 5.9012, 5.8374, 5.7776. 

Therefore, the dynamic response reduction capacities of H ∞ 

optimized NS-TMD, NSIA-TMD, and IA-TMD 3 . 01% , 8 . 83% , 13 . 56%

superior to the traditional TMD. 

Overall, the dynamic response reduction capacity of H ∞ 

optimized IA-TMD is significantly superior to the H ∞ 

optimized 

NS-TMD and H ∞ 

optimized NSIA-TMD, depicting that the performance of novel tuned mass dampers increases as the mass 

tuning ratio increases. 

4. Nonlinear dynamic analysis of nonlinear negative stiffness inertial amplifier tuned mass dampers 

Now, large-amplitude vibrations are addressed for tuned mass dampers with negative stiffness inertial amplifiers. In 

the process of large-amplitude vibrations, these novel dampers have caused substantial deflections, enabling the nonlinear 

kinematics mechanism to be applied in these passive vibration control systems. The effective mass for the vertical spring 

mass systems are derived as 

m e = (1 − μ) m T 

(
k b 

k b −m b ω 2 

)
+ μm T = (1 − μ) m T 

( 

1 

1 − ω 2 

ω 2 
b 

) 

+ μm T (47) 

After considering large-amplitude deflections in x and y -directions, the closed-form expressions for displacements of effec- 

tive mass m e in x and y -directions have been derived as 

x a = 

u s + u d 

2 

and y a = l sin θ −
√ 

l 2 sin 

2 θ − x d l cos θ − x 2 
d 

4 

(48) 

where x d = u d − u s , defines the relative displacement of novel dampers w.r.t the main structure. Eq. (48) has been differen-

tiated with respect to time ’t’. Therefore, the exact closed-form expressions for velocity responses are derived as 

˙ x a = 

˙ u s + 

˙ u d 

2 

and 

˙ y a = 

(2 l cos θ + x d ) ̇ x d √ 

16 l 2 sin 

2 θ − 16 x d l cos θ − 4 x 2 
d 

(49) 

where (•) refers the derivative with respect to time. Applying Eq. (49) , the total kinetic energies for novel dampers are

derived as 

E k = 

1 
2 

m d ˙ u 

2 
d 

+ 2 × 1 
2 

m e 

(
˙ x 2 a + 

˙ y 2 a 

)
= 

1 
2 

m d ˙ u 

2 
d 

+ 

m e ̇ x 
2 
d 
(2 l cos θ+ x d ) 2 

16 l 2 sin 2 θ−16 x d l cos θ−4 x 2 
d 

+ 

m e ( ̇ u s + ̇ u d ) 2 
4 

(50) 

The total potential energy for these novel dampers are derived as 

E v = 

1 
2 

k d x 
2 
d 

(51) 

Therefore, the Lagrange’s equations [102] are applied to derive the equations of motion for the novel dampers. The La- 

grange’s equations are listed below. 

d 
dt 

(
∂E k 
∂ ̇ x j 

)
− ∂E k 

∂x j 
+ 

∂E v 
∂x j 

+ 

∂E d 
∂ ̇ x j 

= 0 (52) 

where E d is the energy dissipated by the novel dampers. x j defines the coordinates of x d = u d − u s and x s = u s − x g , j refers to

the subscript for nominating the main structure and damper. The relative displacement of the main structure with respect 

to the ground is defined by x s . Therefore, the equation of motion for dampers has been derived as (
m d + 

2 m e l 
2 

4 l 2 sin 

2 θ − 4 x d l cos θ − x 2 
d 

)
︸ ︷︷ ︸ 

m ad 

ẍ d + k d x d = −( m e + m d ) ̈x g (53) 
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Therefore, the total effective mass for the novel dampers are derived as 

m ad = 

(
m d + 

2 m e l 
2 

4 l 2 sin 

2 θ − 4 x d l cos θ − x 2 
d 

)
(54) 

However, to produce nonlinear dynamic responses of the controlled structure analytically, m ad needs to be generalized using 

Taylor expansions at the static equilibrium [59] (i.e., x d = 0 ). Therefore, the generalized effective mass for novel dampers has

been derived as 

m ad = m 0 + m 1 x d + m 2 x 
2 
d 

= m d + 0 . 5 m e 

(
1 + 

1 

tan 

2 θ

)
︸ ︷︷ ︸ 

m 0 

+ 

cos θm e 

2 l sin 

4 θ︸ ︷︷ ︸ 
m 1 

x d + 

(1 + 3 cos 2 θ ) m e 

4 l 2 sin 

6 θ︸ ︷︷ ︸ 
m 2 

x 2 
d (55) 

The equations of motion of the dynamic systems controlled by novel tuned mass dampers have already been derived as 

m ad ̈x d + c ad ̇ x d + k ad x d + m ad ̈x s = −m ad ̈x g 
m s ̈x s + c s ̇ x s + k s x s − c ad ̇ x d − k ad x d = −m s ̈x g 

(56) 

The nonlinear equations of motion for the controlled structures have been produced after substituting Eq. (55) into Eq. (56) .

Therefore, the nonlinear equations of motion of structure controlled by nonlinear novel tuned mass dampers have been 

derived as 

m 0 ̈x d + 2 m 0 ζd ω d ˙ x d + m 0 ω d 
2 x d + m 1 x d ̈x d + 2 m 1 ζd ω d x d ̇ x d + m 1 ω d 

2 x 2 
d 

+ m 2 x d 
2 ẍ d + 2 m 2 ζd ω d x d 

2 ˙ x d + m 2 ω d 
2 x d 

3 + m 0 ̈x s + m 1 x d ̈x s + m 2 x d 
2 ẍ s 

= −m 0 ̈x g − m 1 x d ̈x g − m 2 x d 
2 ẍ g 

m s ̈x s + c s ̇ x s + k s x s − 2 m 0 ζd ω d ˙ x d − 2 m 1 ζd ω d x d ̇ x d − 2 m 2 ζd ω d x d 
2 ˙ x d 

−m 0 ω d 
2 x d − m 1 ω d 

2 x 2 
d 

− m 2 ω d 
2 x d 

3 = −m s ̈x g 

(57) 

The above equations seem to be very nonlinear. Initially, equivalent linearization method has been applied to deter- 

mine the dynamic responses of structures controlled by nonlinear novel tuned mass dampers. Each nonlinear element of 

the equations of motion have been linearized individually [95] . To perform this linearization process, zero mean has been

considered. Therefore, the linearized form of each nonlinear element has been derived as 

m 

e 
d1 

= E 

{
∂ ( m 1 x d ̈x d ) 

∂ ̈x d 

}
= 0 and m 

e 
d2 

= E 

{
∂ ( m 2 x d 

2 ẍ d ) 
∂ ̈x d 

}
= 0 

c e 
d1 

= E 

{
∂ ( 2 m 1 ζd ω d x d ̇ x d ) 

∂ ̇ x d 

}
= 0 and c e 

d2 
= E 

{
∂ ( 2 m 2 ζd ω d x d 

2 ˙ x d ) 
∂ ̇ x d 

}
= 0 

k e 
d1 

= E 

{
∂ ( m 1 ω d 

2 x 2 
d ) 

∂x d 

}
= 0 and k e 

d2 
= E 

{
∂ ( m 2 ω d 

2 x d 
3 ) 

∂x d 

}
= 3 m 2 ω 

2 
d 
σ 2 

x d 

m 

e 
s 1 = E 

{
∂ ( m 1 x d ̈x s ) 

∂ ̈x s 

}
= 0 and m 

e 
s 2 = E 

{
∂ ( m 2 x d 

2 ẍ s ) 
∂ ̈x s 

}
= 0 

m 

e 
g1 = E 

{
∂ ( m 1 x d ̈x g ) 

∂ ̈x g 

}
= 0 and m 

e 
g2 = E 

{
∂ ( m 2 x d 

2 ẍ g ) 
∂ ̈x g 

}
= 0 

(58) 

Eq. (58) has been substituted in Eq. (57) , which leads to 

m 0 ̈x d + 2 m 0 ζd ω d ˙ x d + m 0 ω d 
2 x d + 3 m 2 ω 

2 
d 
σ 2 

x d 
x d + m 0 ̈x s = −m 0 ̈x g 

m s ̈x s + c s ̇ x s + k s x s − 2 m 0 ζd ω d ˙ x d − m 0 ω d 
2 x d − 3 m 2 ω 

2 
d 
σ 2 

x d 
x d = −m s ̈x g 

(59) 

The steady state solutions are derived as x d = X d e 
i ωt , x s = X s e 

i ωt , and Ẍ g = A g e 
i ωt for harmonic base excitation. The steady

state solutions are substituted in Eq. (59) to derive the transfer function for evaluating the dynamic responses of the 

controlled structures. Hence, the transfer function has been derived as [(
3 σx d 

2 μ2 + μ0 

)
ω d 

2 + 2 qζd ω d μ0 + q 2 μ0 q 2 μ0 

−3 σx d 
2 μ2 ω d 

2 − 2 qζd ω d μ0 − μ0 ω d 
2 2 ζs ω s q + q 2 + ω s 

2 

]{
X d 

X s 

}
= −
[
μ0 

1 

]
A g (60) 

where q = i ω, μ0 = ( ̃  μ1 ω b 
2 + q 2 ˜ μ2 ) / (q 2 + ω b 

2 ) , ˜ μ1 = ˜ m 1 /m s = (�μT + μd ) , ˜ μ2 = ˜ m 2 /m s = (�μT μ + μd ) , and � =
0 . 5 

(
1 + 

1 

tan 2 θ

)
. μ0 defines the mass ratio of 1 st effective mass m 0 of novel nonlinear tuned mass dampers to the primary

structure m s , μT refers the ratio of the total static mass at one side vertical terminal to the mass of the primary structure

m s , μd denotes the ratio of static mass of novel dampers to the primary structure m s . k 3 d = 3 μ2 ω d 
2 σx d 

2 + ω d 
2 μ0 , defines

the effective stiffness of equivalent linearized nonlinear tuned mass dampers. Therefore, the exact closed-form expression 

for the dynamic responses of the nonlinear tuned mass dampers has been derived as 

H d (q ) = 

X d 
A g 

= 

−( 2 qζs + ω s ) μ0 ω s 

�
(61) 
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Fig. 15. The variations of dynamic responses of the uncontrolled structure and structures controlled by H 2 optimized TMD, NNS-TMD, NNSIA-TMD, and 

NIA-TMD. For TMD, the optimal design parameters are adopted from the published papers, studied by Iwata [97] , Warburton et al. [98] , and Zilletti [99] . 

 

 

 

The exact closed-form expression for dynamic responses of the primary structures are derived as 

H s (q ) = 

X d 
A g 

= 

−3 σx d 
2 μ0 μ2 ω d 

2 − 2 qζd ω d μ0 
2 − 3 σx d 

2 μ2 ω d 
2 

−2 qζd ω d μ0 − μ0 
2 ω d 

2 − q 2 μ0 − μ0 ω d 
2 

�

(62) 

The closed-form expressions for � has been derived as 

� = 

q 4 μ0 + 

(
2 ζd μ0 

2 ω d + 2 ζd μ0 ω d + 2 ζs ω s μ0 

)
q 3 

+ 

(
3 σx d 

2 μ0 μ2 ω d 
2 + 4 ζd ζs μ0 ω s ω d + 3 σx d 

2 μ2 ω d 
2 

+ μ0 
2 ω d 

2 + ω s 
2 μ0 + μ0 ω d 

2 

)
q 2 

+ 

(
6 ζs ω s σx d 

2 μ2 ω d 
2 + 2 ζd ω s 

2 μ0 ω d + 2 ζs ω s μ0 ω d 
2 
)
q 

+3 ω s 
2 σx d 

2 μ2 ω d 
2 + ω s 

2 μ0 ω d 
2 

(63) 

To derive the closed-form expression for σx d 
2 from Eq. (60) , initially, considers σx d 

2 = 0 . Now, it has been considered

that the controlled structures are subjected to white-noise random base excitation. The viscous damping ratio of the primary 

structures are considered as zero (i.e., ζs = 0 . Hence, Eq. (61) has been modified as 

H d (q ) = 

X d 
A g 

= 

−( q 2 + ω b 2 ) ω s 2 

q 6 + ( 2 ˜ μ2 ζd ω d + 2 ζd ω d ) q 
5 

+ 

(
ω d 

2 μ2 + ω b 
2 + ω s 

2 + ω d 
2 
)
q 4 

+ 

(
2 ˜ μ1 ζd ω b 

2 ω d + 2 ζd ω b 
2 ω d + 2 ζd ω s 

2 ω d 

)
q 3 

+ 

(
˜ μ1 ω b 

2 ω d 
2 + ω b 

2 ω s 
2 + ω b 

2 ω d 
2 + ω s 

2 ω d 
2 
)
q 2 

+2 qζd ω b 
2 ω s 

2 ω d + ω b 
2 ω s 

2 ω d 
2 

(64) 

Therefore, using Eq. (64) , the standard deviation for dynamic response [16,94] of nonlinear novel tuned mass damper 

σx d 
2 has been derived as 

σ 2 
x d 

= 

S 0 π

⎛ 

⎜ ⎝ 

− ˜ μ2 
1 ω b 

4 ω d 
2 + ˜ μ1 ˜ μ2 ω b 

2 ω s 
2 ω d 

2 − ˜ μ1 ω b 
4 ω s 

2 

−2 ˜ μ1 ω b 
4 ω d 

2 − ˜ μ1 ω b 
2 ω s 

2 ω d 
2 + ˜ μ2 ω b 

2 ω s 
4 

+2 ˜ μ2 ω b 
2 ω s 

2 ω d 
2 + ˜ μ2 ω s 

4 ω d 
2 − ω b 

4 ω d 
2 

⎞ 

⎟ ⎠ 

2 ω b 4 ζd ( ̃ μ1 ω b 2 − ˜ μ2 ω s 2 ) ω s 4 ω d 3 

(65) 

The variations of optimal displacement responses of primary structure controlled by H 2 optimized tuned mass damper 

(TMD), nonlinear negative stiffness tuned mass damper (NNS-TMD), nonlinear negative stiffness inertial amplifier tuned 

mass damper (NNSIA-TMD), and nonlinear inertial amplifier tuned mass damper (NIA-TMD) have been shown in Fig. 15 . 

The variations of the dynamic responses of the uncontrolled structure have also been varied to investigate the optimum 

dynamic response reduction capacity of proposed nonlinear tuned mass dampers. The viscous damping ratio of the primary 

structures considers as ζs = 0 . 01 . The system parameters for nonlinear mass dampers are considered as μd = 0 . 03 , μT =
0 . 01 , ηb = 2 . 0 , and θ = 30 ◦. μ = 0 , μ = 0 . 5 , and μ = 1 . 0 are considered for NNS-TMD, NNSIA-TMD, and NIA-TMD. The length
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Fig. 16. The variations of dynamic responses of the uncontrolled structure and structures controlled by H ∞ optimized TMD, NNS-TMD, NNSIA-TMD, and 

NIA-TMD. For TMD, the optimal design parameters are adopted from the published papers, studied by Ormondroyd and Den Hartog [2] , Nishihara and 

Asami [100] , and Krenk [101] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the rigid links has been considered as l = 0 . 05 m. The time period of the main structure is considered as T s = 0 . 5 s.

S 0 = 1 N 

2 s kg 
−2 

has been considered as the constant spectral density for white-noise random excitation. Eqs. (B.1) and

(B.2) have been applied to determine optimal frequency and damping ratio for H 2 optimized novel tuned mass dampers. The 

maximum displacement of the uncontrolled structure has been determined as 50. The maximum displacement of primary 

structure controlled by TMD, studied by Iwata [97] , Warburton et al. [98] has been determined as 7.5055. The maximum

displacements of primary structure controlled by nonlinear negative stiffness tuned mass damper (NNS-TMD), nonlinear 

negative stiffness inertial amplifier tuned mass damper (NNSIA-TMD), and nonlinear inertial amplifier tuned mass damper 

(NIA-TMD) have been derived as 6.05, 6.26, and 6.48. Therefore, the dynamic response reduction capacities of NNS-TMD, 

NNSIA-TMD, and NIA-TMD have been determined as 87 . 90% , 87 . 48% , and 87 . 04% . The dynamic response reduction capacities

of these novel nonlinear dampers are also been compared with the traditional tuned mass dampers, studied by Iwata [97] ,

Warburton et al. [98] . 

Therefore, the dynamic response reduction capacities of NNS-TMD, NNSIA-TMD, and NIA-TMD are significantly 19 . 39% , 

16 . 59% , and 13 . 66% superior to the TMD, studied by Iwata [97] , Warburton et al. [98] . The variations of the dynamic re-

sponse of primary structures controlled by TMD, studied by Warburton et al. [98] , and Zilletti [99] have been shown in

Fig. 15 (b). The dynamic response reduction capacities of NNS-TMD, NNSIA-TMD, and NIA-TMD are compared with the TMD, 

studied by Warburton et al. [98] , and Zilletti [99] . The peak displacement of the primary structure controlled by TMD has

been determined as 8.0177. Therefore, the dynamic response reduction capacities of NNS-TMD, NNSIA-TMD, and NIA-TMD 

are significantly 24 . 54% , 21 . 92% , and 19 . 12% superior to the TMD, studied by Warburton et al. [98] , and Zilletti [99] . The vari-

ations of optimal dynamic responses of the primary structures controlled by H ∞ 

optimized tuned mass damper (TMD), non- 

linear negative stiffness tuned mass damper (NNS-TMD), nonlinear negative stiffness inertial amplifier tuned mass damper 

(NNSIA-TMD), and nonlinear inertial amplifier tuned mass damper (NIA-TMD) have been shown in Fig. 16 . The variations 

of displacements of the uncontrolled structure have also been varied to investigate the optimum vibration reduction ca- 

pacity of proposed nonlinear tuned mass dampers. The viscous damping ratio of the main structure has been considered as 

ζs = 0 . 01 . The system parameters for nonlinear mass dampers are considered as μd = 0 . 03 , μT = 0 . 01 , ηb = 2 . 0 , and θ = 14 ◦.

μ = 0 , μ = 0 . 5 , and μ = 1 . 0 are considered for NNS-TMD, NNSIA-TMD, and NIA-TMD. The length of the rigid links has been

considered as l = 0 . 10 m. The time period of the main structure is considered as T s = 0 . 5 s. S 0 = 1 N 

2 s kg −2 has been con-

sidered as the constant spectral density for white-noise random excitation. Eqs. (43) , (45) and (46) are applied to determine

optimal frequency and damping ratio for H ∞ 

optimized novel tuned mass dampers. 

The peak dynamic response of the uncontrolled structure has been determined as 50. The peak dynamic response of 

primary structure controlled by TMD, studied by Ormondroyd and Den Hartog [2] , Nishihara and Asami [100] has been de-

termined as 6.63. The peak dynamic responses of primary structure controlled by nonlinear negative stiffness tuned mass 

damper (NNS-TMD), nonlinear negative stiffness inertial amplifier tuned mass damper (NNSIA-TMD), and nonlinear iner- 

tial amplifier tuned mass damper (NIA-TMD) have been derived as 6.43, 6.03, and 5.63. Therefore, the dynamic response 

reduction capacities of NNS-TMD, NNSIA-TMD, and NIA-TMD have been determined as 87 . 14% , 87 . 94% , and 88 . 74% . The dy-
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namic response reduction capacities of these novel nonlinear dampers are also been compared with the traditional tuned 

mass dampers, studied by Ormondroyd and Den Hartog [2] , Nishihara and Asami [100] . Therefore, the dynamic response

reduction capacities of NNS-TMD, NNSIA-TMD, and NIA-TMD are significantly 3 . 01% , 9 . 04% , and 15 . 08% superior to the TMD,

studied by Ormondroyd and Den Hartog [2] , Nishihara and Asami [100] . The variations of the dynamic responses of the

primary structure controlled by TMD, studied by Krenk [101] and proposed nonlinear tuned mass dampers are shown in 

Fig. 16 (b). Hence, the maximum dynamic response of the TMD, studied by Krenk [101] has also been determined as 6.62.

Therefore, the dynamic response reduction capacities of NNS-TMD, NNSIA-TMD, and NIA-TMD are significantly 2 . 87% , 8 . 89% ,

and 14 . 95% superior to the TMD, studied by Krenk [101] . 

5. Summary and conclusions 

The negative stiffness tuned mass dampers (NS-TMD), negative stiffness inertial amplifier tuned mass dampers (NSIA- 

MD), and inertial amplifier tuned mass dampers (IA-TMD) are introduced in this paper. Two distinct novel tuned mass 

dampers are derived from NSIA-TMD: negative stiffness tuned mass damper (NS-TMD) and inertial amplifier tuned mass 

damper (IA-TMD), are mathematically developed by altering the mass tuning ratio of NSIA-TMD, keeping the combined 

static mass of the entire system constant. The negative stiffness inertial amplifier tuned mass dampers (NSIA-TMD) are 

increased the system’s dynamic mass significantly and provided dynamic negative stiffness. As a result, it increases the dy- 

namic response reduction capacity of the traditional tuned mass damper (TMD), keeping the total static mass constant. The 

exact closed-form expressions for optimal design parameters of these novel tuned mass dampers subjected to random-white 

noise and harmonic excitations were driven by the H 2 and H ∞ 

optimization methods. The nonlinear negative stiffness iner- 

tial amplifier tuned mass damper (NNSIA-TMD), nonlinear negative stiffness tuned mass damper (NNS-TMD), and nonlinear 

inertial amplifier tuned mass damper (NIA-TMD) for single degree of freedom systems (SDOF) are also introduced in this 

paper. Finally, the dynamic response reduction capacities of H 2 and H ∞ 

optimized novel tuned mass dampers were com- 

pared to the dynamic response reduction capacities of H 2 and H ∞ 

optimized traditional tuned mass dampers. The significant 

outcomes are listed below. 

• For both H 2 and H ∞ 

optimization techniques, the optimal frequency ratio of novel dampers are increasing when mass 

tuning ratio increases. 
• For both H 2 and H ∞ 

optimization techniques, the optimal damping ratio of novel dampers are decreasing when mass 

tuning ratio increases. 
• The lower value of inertial angle has been recommended to design optimal novel tuned mass dampers to acquire maxi- 

mum vibration reduction capacity. 
• The dynamic response reduction capacity of H 2 optimized NS-TMD is significantly superior to the H 2 optimized NSIA- 

TMD and H 2 optimized IA-TMD, depicting that the performance of novel tuned mass dampers decreases as the mass 

tuning ratio increases. Besides, the dynamic response reduction capacity of H ∞ 

optimized IA-TMD is significantly superior 

to the H ∞ 

optimized NS-TMD and H ∞ 

optimized NSIA-TMD, depicting that the performance of novel tuned mass dampers 

increases as the mass tuning ratio increases. 
• The dynamic response reduction capacities of H 2 optimized NS-TMD, NSIA-TMD, and IA-TMD are significantly 41 . 79% , 

39 . 62% , 37 . 06% superior to the H 2 optimized traditional TMD proposed by Iwata [97] , Warburton et al. [98] . Furthermore,

the dynamic response reduction capacities of H 2 optimized NS-TMD, NSIA-TMD, and IA-TMD are significantly 41 . 79% , 

39 . 62% , 37 . 06% superior to the H 2 optimized traditional TMD proposed by Iwata [97] , Warburton et al. [98] . 
• The dynamic response reduction capacities of H ∞ 

optimized NS-TMD, NSIA-TMD, and IA-TMD are significantly 3 . 31% , 

8 . 98% , 13 . 79% superior to the H ∞ 

optimized traditional TMD proposed by Ormondroyd and Den Hartog [2] , Nishihara

and Asami [100] . Furthermore, the dynamic response reduction capacities of H ∞ 

optimized NS-TMD, NSIA-TMD, and 

IA-TMD are significantly 3 . 01% , 8 . 83% , 13 . 56% superior to the traditional TMD proposed by Krenk [101] . 
• The dynamic response reduction capacities of H 2 optimized NNS-TMD, NNSIA-TMD, and NIA-TMD are significantly 19 . 39% , 

16 . 59% , 13 . 66% superior to the H 2 optimized traditional TMD proposed by Iwata [97] , Warburton et al. [98] . Furthermore,

the dynamic response reduction capacities of H 2 optimized NS-TMD, NSIA-TMD, and IA-TMD are significantly 24 . 54% , 

21 . 92% , 19 . 12% superior to the H 2 optimized traditional TMD proposed by Iwata [97] , Warburton et al. [98] . 
• The dynamic response reduction capacities of H ∞ 

optimized NNS-TMD, NNSIA-TMD, and NIA-TMD are significantly 3 . 01% , 

9 . 04% , 15 . 08% superior to the H ∞ 

optimized traditional TMD proposed by Ormondroyd and Den Hartog [2] , Nishihara and

Asami [100] . Furthermore, the dynamic response reduction capacities of H ∞ 

optimized NNS-TMD, NNSIA-TMD, and NIA- 

TMD are significantly 2 . 87% , 8 . 89% , 14 . 95% superior to the traditional TMD proposed by Krenk [101] . 

The paper’s novelty lies in proposing novel negative stiffness inertial amplifier tuned mass dampers, which are not 

present in the state of the art based on the author’s best knowledge. The paper makes several significant contributions. 

Additionally, the proposition of the new closed-form expressions for optimal design parameters of the novel tuned mass 

dampers is another significant contribution of this paper. These equations resulted in the optimal design of these novel 

tuned mass dampers, resulting in the maximum amount of vibration reduction. The practical realization, experimentation, 

and prototyping of the proposed negative stiffness inertial amplifier tuned mass dampers will be the future scope of the 

research. 
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Appendix A. Closed-form equations from ( Section 2.2 ) 

The dynamic responses of the novel tuned mass dampers have been derived as 

H d (q ) = 

X d 

A g 
= 

−( 2 qζs + ω s ) ω s 

(
q 2 + ω b 

2 
)

�n 
(A.1) 

The shear force of the entire controlled systems have been derived as 

H s f (q ) = 

qζs X s + ω 2 s X s 
A g 

= 

⎛ 

⎝ 

−q 4 + ( −2 μ2 ζd ω d − 2 ζd ω d ) q 
3 + 

(
−ω d 

2 μ2 − ω b 
2 − ω d 

2 
)
q 2 

+ 

(
−2 μ1 ζd ω b 

2 ω d − 2 ζd ω b 
2 ω d 

)
q − ω b 

2 ω d 
2 μ1 − ω b 

2 ω d 
2 

⎞ 

⎠ ( qζs + ω s 2 ) 

�n 

(A.2) 

Appendix B. Closed-form equations from H 2 optimization ( Section 2.5 ) 

The non-dimensional form of Eq. (28) has been listed below. 

( ηd ) opt = 

√ √ √ √ √ √ √ √ 

3 μ1 ηb 
6 + 2 ηb 

6 − μ1 
3 ηb 

6 + μ1 
2 μ2 ηb 

4 − 3 μ2 ηb 
4 − 2 ηb 

4 

2 μ1 
4 ηb 

6 − 2 μ1 
3 μ2 ηb 

4 + 8 μ1 
3 ηb 

6 + 4 μ1 
3 ηb 

4 + 12 μ1 
2 ηb 

6 

+8 μ1 ηb 
6 − 12 μ1 

2 μ2 ηb 
4 − 4 μ1 

2 μ2 ηb 
2 + 4 μ1 μ2 

2 ηb 
2 

+6 μ1 
2 ηb 

4 + 2 μ1 
2 ηb 

2 − 18 μ1 μ2 ηb 
4 − 8 μ1 μ2 ηb 

2 

+6 μ2 
2 ηb 

2 + 2 μ2 
2 − 8 μ2 ηb 

4 + 2 ηb 
6 − 2 ηb 

4 − 2 μ1 μ2 

(B.1) 

where ηd = ω d /ω s , defines the optimal frequency ratio of damper to main dynamic system. 

The non-dimensional form of Eq. (29) has been listed below. 

(ζd ) opt = 

√ √ √ √ √ √ √ √ √ √ √ √ √ √ 

( μ1 ηb 
2 −μ2 ) 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

20 μ1 
2 ηb 

6 − μ1 
5 ηb 

6 + μ1 
4 μ2 ηb 

4 + 10 μ1 
3 ηb 

6 

+15 μ1 ηb 
6 − 4 μ1 

3 ηb 
4 − 6 μ1 

2 μ2 ηb 
4 − 12 μ1 

2 ηb 
4 

−8 μ1 
2 ηb 

2 − 8 μ1 μ2 ηb 
4 + 4 ηb 

6 + 8 μ1 μ2 ηb 
2 

−12 μ1 ηb 
4 − 8 μ1 ηb 

2 − 4 μ1 − 3 μ2 ηb 
4 + 4 μ2 

−4 ηb 
4 + 8 μ2 ηb 

2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

8 ηb 
2 
(
3 μ1 ηb 

2 + 2 ηb 
2 − μ1 

3 ηb 
2 + μ1 

2 μ2 − 3 μ2 − 2 

)(
μ3 

1 ηb 
4 − μ1 

2 μ2 ηb 
2 + 3 μ1 

2 ηb 
4 + μ1 

2 ηb 
2 − 4 μ1 μ2 ηb 

2 

−μ2 μ1 + μ2 
2 + 3 μ1 ηb 

4 − 3 μ2 ηb 
2 + ηb 

4 − ηb 
2 

)
(B.2) 

Appendix C. Closed-form equations from H ∞ 

optimization ( Section 2.6 ) 

The displacement response of the novel tuned mass dampers is derived as 

H d (η) = 

X d 
A g 

ω 

2 
s = 

η2 −ηb 
2 +2 ζs i η ( η2 −ηb 

2 ) 
�n 

(C.1) 
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[5] D. Čakmak, Z. Tomi ̌cevi ́c, H. Wolf, Ž. Boži ́c, D. Semenski, Stability and performance of supercritical inerter-based active vibration isolation systems, J.
Sound Vib. 518 (2021) 116234 . 
718 

http://refhub.elsevier.com/S0307-904X(22)00479-6/sbref0002
http://refhub.elsevier.com/S0307-904X(22)00479-6/sbref0003
http://refhub.elsevier.com/S0307-904X(22)00479-6/sbref0004
http://refhub.elsevier.com/S0307-904X(22)00479-6/sbref0005


S. Chowdhury, A. Banerjee and S. Adhikari Applied Mathematical Modelling 114 (2023) 694–721 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[6] M. Baduidana, A. Kenfack-Jiotsa, Optimal design of inerter-based isolators minimizing the compliance and mobility transfer function versus harmonic 
and random ground acceleration excitation, J. Vib. Control 27 (11–12) (2021) 1297–1310 . 

[7] J.P. Den Hartog, Mechanical Vibrations, Courier Corporation, 1985 . 
[8] S. Kopylov, Z. Chen, M.A. Abdelkareem, Implementation of an electromagnetic regenerative tuned mass damper in a vehicle suspension system, IEEE

Access 8 (2020) 110153–110163 . 
[9] S. Adhikari, S. Bhattacharya, Dynamic analysis of wind turbine towers on flexible foundations, Shock Vib. 19 (1) (2012) 37–56 . 

[10] J. Wang, C. Lin, B. Chen, Vibration suppression for high-speed railway bridges using tuned mass dampers, Int. J. Solids Struct. 40 (2) (2003) 465–491 .

[11] A. Batou, S. Adhikari, Optimal parameters of viscoelastic tuned-mass dampers, J. Sound Vib. 445 (2019) 17–28 . 
[12] G. Barone, M. Di Paola, F.L. Iacono, G. Navarra, Viscoelastic bearings with fractional constitutive law for fractional tuned mass dampers, J. Sound Vib.

344 (2015) 18–27 . 
[13] G. Pipitone, G. Barone, A. Palmeri, Stochastic design of double-skin façades as seismic vibration absorbers, Adv. Eng. Softw. 142 (2020) 102749 . 

[14] S. Kasinos, A. Palmeri, M. Lombardo, S. Adhikari, A reduced modal subspace approach for damped stochastic dynamic systems, Comput. Struct. 257
(2021) 106651 . 

[15] M. De Angelis, F. Petrini, D. Pietrosanti, Optimal design of the ideal grounded tuned mass damper inerter for comfort performances improvement in
footbridges with practical implementation considerations, Struct. Control Health Monit. 28 (9) (2021) e2800 . 

[16] S. Chowdhury, A. Banerjee, S. Adhikari, Optimal negative stiffness inertial-amplifier-base-isolators: exact closed-form expressions, Int. J. Mech. Sci. 

218 (2022) 107044 . 
[17] S.R. Patro, A. Banerjee, S. Adhikari, G. Ramana, Kaimal spectrum based H2 optimization of tuned mass dampers for wind turbines, J. Vib. Control

(2022) . SAGE Publications Sage UK, London, England, 10775463221092838 
[18] A. Sinha, Optimal damped vibration absorber for narrow band random excitations: a mixed H 2 / H ∞ optimization, Probab. Eng. Mech. 24 (2) (2009)

251–254 . 
[19] T. Asami, O. Nishihara, A.M. Baz, Analytical solutions to H ∞ and H 2 optimization of dynamic vibration absorbers attached to damped linear systems,

J. Vib. Acoust. 124 (2) (2002) 284–295 . 

[20] T. Asami, O. Nishihara, H 2 optimization of the three-element type dynamic vibration absorbers, J. Vib. Acoust. 124 (4) (2002) 583–592 . 
[21] Y. Cheung, W.O. Wong, H 2 optimization of a non-traditional dynamic vibration absorber for vibration control of structures under random force

excitation, J. Sound Vib. 330 (6) (2011) 1039–1044 . 
[22] A. Palmeri, M. Lombardo, A new modal correction method for linear structures subjected to deterministic and random loadings, Comput. Struct. 89

(11–12) (2011) 844–854 . 
[23] H.H. Khodaparast, J.E. Mottershead, M.I. Friswell, Perturbation methods for the estimation of parameter variability in stochastic model updating, 

Mech. Syst. Signal Process. 22 (8) (2008) 1751–1773 . 

[24] H.H. Khodaparast, J. Mottershead, Efficient methods in stochastic model updating, Stoch. Model. 7 (8) (2008) 9 . 
[25] S. Adhikari, M. Friswell, G. Litak, H.H. Khodaparast, Design and analysis of vibration energy harvesters based on peak response statistics, Smart Mater.

Struct. 25 (6) (2016) 065009 . 
[26] S. Dey, T. Mukhopadhyay, H.H. Khodaparast, S. Adhikari, A response surface modelling approach for resonance driven reliability based optimization

of composite shells, Periodica Polytech. Civ. Eng. 60 (1) (2016) 103–111 . 
[27] T. Mukhopadhyay, S. Adhikari, Stochastic mechanics of metamaterials, Compos. Struct. 162 (2017) 85–97 . 

[28] M.C. Smith, The inerter: a retrospective, Annu. Rev. Control, Robot., Auton. Syst. 3 (2020) 361–391 . 

[29] M.C. Smith, Synthesis of mechanical networks: the inerter, IEEE Trans. Autom. Control 47 (10) (2002) 1648–1662 . 
[30] L. Marian, A. Giaralis, Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically sup- 

port-excited structural systems, Probab. Eng. Mech. 38 (2014) 156–164 . 
[31] D. Pietrosanti, M. De Angelis, M. Basili, Optimal design and performance evaluation of systems with tuned mass damper inerter (TMDI), Earthq. Eng.

Struct. Dyn. 46 (8) (2017) 1367–1388 . 
[32] A . Giaralis, A . Taflanidis, Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based

on reliability criteria, Struct. Control Health Monit. 25 (2) (2018) e2082 . 

[33] R. Ruiz, A. Taflanidis, A. Giaralis, D. Lopez-Garcia, Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of
multi-storey building structures, Eng. Struct. 177 (2018) 836–850 . 

[34] Z. Zhao, Q. Chen, R. Zhang, C. Pan, Y. Jiang, Optimal design of an inerter isolation system considering the soil condition, Eng. Struct. 196 (2019)
109324 . 

[35] D. De Domenico, P. Deastra, G. Ricciardi, N.D. Sims, D.J. Wagg, Novel fluid inerter based tuned mass dampers for optimised structural control of
base-isolated buildings, J. Frankl. Inst. 356 (14) (2019) 7626–7649 . 

[36] G. Moghimi, N. Makris, Seismic response of yielding structures equipped with inerters, Soil Dyn. Earthq. Eng. 141 (2020) 106474 . 
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