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Abstract
A partitioned/combined computational method based on Newmark scheme is
proposed to analyze dynamic systems with different temporal scales and ele-
ment scales. To effectively filter spurious high-frequency vibration content and
retain the second-order accuracy simultaneously, Generalized-α schemes are
investigated and incorporated into the proposed method. The proposed method
can decompose a complete domain into several independent computational sub-
domains (≥3), and several independent substructures can be combined into a
complete computational structure. The accuracy and stability of responses in dif-
ferent subdomains can be ensured and adjusted by using their own integration
parameters and time-step sizes. The energy conservation property is preserved
in the proposed method. Only one calculation is performed at each time step
for all subdomains, and computational information exchange between subdo-
mains is only conducted at the system time step, therefore, the computational
efficiency is improved significantly compared with the existing multi-time-step
methods. The derivation process and theoretical demonstration of the proposed
method are given in detail. Two representative examples, namely, a single degree
of freedom system split into four subdomains and a sandwich beam subjected to
high-frequency impact loads, are studied to systematically demonstrate the pro-
posed method’s accuracy, energy properties, and efficiency compared with the
existing multi-time-step methods.

K E Y W O R D S

desirable algorithmic damping, energy conservation, multiple temporal and element scales,
partitioned/combined computation, stability and accuracy

1 INTRODUCTION

As the complexity of practical engineering problems increases significantly, how to simultaneously utilize the high effi-
ciency of explicit integration methods and the potential unconditional stability of implicit integration methods1,2 to
solve complex dynamic problems has been a topic of great interest. Partitioned computational methods considering
explicit/implicit hybrid schemes have been extensively researched to efficiently and accurately calculate responses of
complex dynamic systems.3

Three partitioned computational methods were developed to solve complex dynamic systems: the mixed methods,4
the multi-time-step methods,5 and the mixed-multi-time-step methods.6 The mixed methods (explicit and implicit)7
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considering a unique time step were proposed based on nodal or element partitioning. The multi-time-step methods
(also called sub-cycling)5 were then developed. Specifically, by using multi-time-step methods, a domain is partitioned
into multiple subdomains that are updated with different time steps. However, proof of stability is available only for
some particular integration schemes,8 or possible numerical dissipation occurs at the interfaces connected with differ-
ent subdomains. After Farhat and Roux developed the finite element tearing and interconnecting (FETI) method,9–11 the
mixed-multi-time-step methods (MMTS) were proposed. Using the FETI method, a complex or large-scale structure can
be divided into different subdomains with non-overlapping elements,6 that is, subdomains are interconnected by interface
nodes. Recently, by imposing velocity continuity conditions on the interfaces of shared nodes, Gravouil and Combescure
(GC method) proposed12 and improved MMTS methods13–17 to couple arbitrary Newmark schemes. However, energy
conservation can only be retained when all subdomains have a unique time step. To address this issue, Prakash and
Hjelmstad16,18,19 (PH) proposed an algorithm with the energy conservation property. Moreover, two new coupling meth-
ods, that is, BGC-micro and BGC-macro,20,21 were developed to couple the Newmark scheme and HHT-α scheme in a
linear dynamic system. The BGC-micro and BGC-macro methods considering Newmark scheme exactly match GC12 and
PH,16 respectively.

Despite numerous works investigated before, further developments towards efficient coupling computational methods
are necessary for higher dimensional problems. The main reasons include:

1. The border programme with complex time-consuming storage must be employed in the existing MMTS methods to
obtain responses of a coupling system; each subdomain vibration is divided into free vibrations and link vibrations;
and loads are also split into external excitations and link forces.20,21 Namely, the computational efficiency of existing
MMTS methods could be improved significantly. More information on the border programme and the computational
procedure of MMTS can be accessed in References 20,21.

2. To extend the application of MMTS methods to the system with multiple subdomains (≥3), the complex recursive
coupling approaches22–24 have to be employed to couple all subdomains simultaneously, which leads to some new
complex issues, such as searching for an optimal mesh decomposition.23 Namely, it is not easy to extend the application
of MMTS methods to the system with multiple subdomains (≥3) by using existing methods.25

To directly address these major drawbacks of the existing methods, i.e., low computational efficiency, limitation of
the number of subdomains (usually two), and energy dissipation, we propose a partitioned/combined computational
method. The main aims are: (a) to improve the computational efficiency; (b) to overcome the limitation on the number
of computational subdomains; and (c) to ensure the conservation of system energy and high accuracy. To clearly illus-
trate the proposed method, the remainder of this study is organized as follows. In Section 2, the interface-based coupling
dynamic equations and the compact form of dynamic equations considering Newmark method are derived to solve the
coupling subdomains with different element scales and temporal scales, respectively. In Section 3, using the velocity con-
tinuity condition and the velocity increment within the system time step, interface link forces are solved to decouple the
system into independent subdomains. In Section 4, the energy conservation property is investigated to discuss the stabil-
ity of the proposed method. In Section 5, to filter high-frequency spurious vibrations and ensure accuracy of responses
in the low-frequency simultaneously, Generalized-α integration schemes (NG)18,26 with desirable algorithmic damping
are studied and incorporated into the proposed method. It is worth noting that the energy stability derivation is only per-
formed for the proposed method with Newmark scheme in Sections 2, 3, and 4. In Section 6, two representative examples
are employed to demonstrate the accuracy, efficiency, and energy dissipation of the proposed method. Finally, the main
conclusions from this study are drawn in Section 7.

2 ESTABLISHMENT OF A MULTI-SCALE DYNAMIC SYSTEM

2.1 Interface-based dynamic equations with different element-scales

According to the frequency content and boundary conditions of the problem, the complete computational domain Ω
shown in Figure 1A is divided into S non-overlapping subdomains (i.e., subdomains are interconnected by interface
nodes, as shown in Figure 1B).9–11 The interconnected subdomains would be used to discuss the partitioned calcula-
tion method.27 Similarly, S independent substructures28–30 (see Figure 1C) are combined into an entire computational
domain, as shown in Figure 1A. The independent substructures would be used to discuss the combined calculation
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3496 YUAN et al.

F I G U R E 1 A partitioned/combined computational problem. Γt is boundary condition, and 𝚲1k⋅j and 𝚪k•j are the link force and the l
interface of the kth and jth subdomains, respectively

method. Interconnected subdomains/substructures (e.g., Ωk and Ωj) have shared nodes at the interface 𝚪k•j, as marked
in Figures 1B,D, created by partitioning/combining. Each subdomain/substructure is interconnected with multiple sub-
domains/substructures by link forces 𝚲lk⋅j (see Figure 1D). Where the superscripts k, j, and l indicate two subdomain
numbers and an interface number.

Hamilton’s principle is used to build coupling dynamic equations of subdomains with different element sizes (called
the element scale). Taking the kth subdomain for example, the difference between the kinetic energy and potential energy
for the system Ω is:

𝜁 =
S∑

k=1

(1
2

vkT Mkvk − 1
2

ukT Kkuk
)

(1)

where Mk, Kk, uk, and vk are the mass matrix, stiffness matrix, displacement vector, and velocity vector of the kth sub-
domain, respectively; and the letter □T indicates the matrix/vector transpose operation such as ukT and vkT . Note that
the calculation time point of all quantities in Equation (1) is set at the same time step such as tn+1, and scripts related to
time are thus temporarily ignored for simplification. The virtual work generated by non-conservation forces (i.e., external
excitations and damping forces) is calculated as:

𝛿𝜘 =
S∑

k=1
𝛿ukT (Pk − Ckvk) (2)

where Pk and Ck are the given external excitations and damping matrices of the kth subdomain, respectively. The velocity
continuity conditions are selected to be imposed on all interfaces.14,15 For instance, the continuity condition at the l
interface, connecting to the kth subdomain and the jth subdomain (see Figure 1B), is written as follows:

Lk⋅j
l vk + Lj⋅k

l vj = 0 (3)

where Lk⋅j
l is Boolean matrix; the superscripts refer to two subdomain numbers (Note the order of the letters); and the

subscript is the interface number. The matrix has L×Nk•j dimensions, where Nk•j indicates the number of degrees of
freedom (DOF) of the kth subdomain and L represents the number of DOF of the l interface connected with the jth
subdomain (i.e., a new boundary condition 𝚪k•j as shown in Figure 1D). Further information on the Boolean matrix can
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YUAN et al. 3497

be found in Reference 16. Based on the obtained system kinetic energy, potential energy, and virtual work, Hamilton
equation augmented with velocity continuity conditions are:

∫

t2

t1

(
𝛿𝜁 + 𝛿𝜘 + 𝛿

S∑

k=1

( Sk∑

l=1
𝝀

k⋅jT

l

(
Lk⋅j

l vk + Lj⋅k
l vj

)))
dt = 0 (4)

where 𝝀k⋅j
l is a Lagrange multiplier of the kth subdomain at the l interface,31 and Sk refers to the number of interfaces of

the kth subdomain (i.e., Sk subdomains interconnect with the kth subdomain). Substituting Equations (1) and (2) into
Equation (4), the total energy of the domain Ω is obtained as follows:

∫

t2

t1

S∑

k=1

⎛
⎜
⎜
⎜⎝

(
𝛿vkT Mkvk − 𝛿ukT Kkuk) + 𝛿ukT (Pk − Ckvk)+

Sk∑
l=1
𝛿𝝀

k⋅jT

l

(
Lk⋅j

l vk + Lj⋅k
l vj

)
+

Sk∑
l=1

(
𝝀

k⋅jT

l Lk⋅j
l 𝛿vk + 𝝀k⋅jT

l Lj⋅k
l 𝛿vj

)
⎞
⎟
⎟
⎟⎠

dt = 0 (5a)

The total energy can be written as:

∫

t2

t1

S∑

j=1

⎛
⎜
⎜
⎜⎝

(
𝛿vjT Mjvj − 𝛿ujT Kjuj) + 𝛿ujT (Pj − Cjvj)+

Sj∑
l=1
𝛿𝝀

j⋅kT

l

(
Lj⋅k

l vj + Lk⋅j
l vk

)
+

Sj∑
l=1

(
𝝀

j⋅kT

l Lj⋅k
l 𝛿vj + 𝝀j⋅kT

l Lk⋅j
l 𝛿vk

)
⎞
⎟
⎟
⎟⎠

dt = 0 (5b)

According to the virtual work principle, the last element at Equation (5a) can be exchanged with the last element at
Equation (5b). The updated total energy of the system is:

∫

t2

t1

S∑

k=1

⎛
⎜
⎜
⎜⎝

(
𝛿vkT Mkvk − 𝛿ukT Kkuk) + 𝛿ukT (Pk − Ckvk)+

Sk∑
l=1
𝛿𝝀

k⋅jT

l

(
Lk⋅j

l vk + Lj⋅k
l vj

)
+

Sk∑
l=1

(
𝝀

k⋅jT

l Lk⋅j
l 𝛿vk + 𝝀j⋅kT

l Lk⋅j
l 𝛿vk

)
⎞
⎟
⎟
⎟⎠

dt = 0 (6)

Replacing 𝝀k⋅jT

l + 𝝀j⋅kT

l by 𝝀
k⋅jT

l and rearranging Equation (6), one has:

∫

t2

t1

S∑

k=1

⎛
⎜
⎜
⎜
⎜⎝

𝛿vkT

(
Mkvk +

Sk∑
l=1

L
kT

j

l 𝝀
k⋅j
l

)
+

𝛿ukT (Pk − Ckvk − Kkuk) +
Sk∑

l=1
𝛿𝝀

k⋅jT

l

(
Lk⋅j

l vk + Lj⋅k
l vj

)

⎞
⎟
⎟
⎟
⎟⎠

dt = 0 (7)

The displacement and velocity at the virtual times t1 and t2 satisfy: 𝛿uk
t1
= 𝛿uk

t2
= 0 and 𝛿vk

t1
= 𝛿vk

t2
= 0. Integrating the

first element of Equation (7) and rearranging it, one gets:

∫

t2

t1

⎛
⎜
⎜
⎜
⎜⎝

S∑

k=1

⎡
⎢
⎢
⎢
⎢⎣

𝛿ukT

(
Mkak + Ckvk + Kkuk +

Sk∑
l=1

Lk⋅jT

l
̇
𝝀

k⋅j
l − Pk

)

−
Sk∑

l=1
𝛿𝝀

k⋅jT

l

(
Lk⋅j

l vk + Lj⋅k
l vj

)

⎤
⎥
⎥
⎥
⎥⎦

⎞
⎟
⎟
⎟
⎟⎠

dt (8)

According to the principle of the variations calculus and replacing the variable ̇
𝝀

k⋅j
l by 𝚲lk⋅j (i.e., the link force at the l

interface, as marked in Figure 1D), the interface-based dynamic equations are derived as follows:

Mkak + Ckvk + Kkuk +
Sk∑

l=1
Lk⋅jT

l 𝚲lk⋅j = Pk k = {1, · · · S} (9)

For the kth subdomain with Sk interfaces (i.e., with j interconnected subdomains), the velocity continuity
conditions are:

Lk⋅j
l vk + Lj⋅k

l vj = 0 (l, j) = {1, · · · Sk} (10)
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3498 YUAN et al.

So far, interface-based coupling dynamic Equation (9) for subdomains with different element scales have been
established.

2.2 Compact form of dynamic equations with different temporal-scales

Due to the introduction of the temporal scale in this sub-section, subscripts related to time are added to variables for
interpretation, with the notation □lk•j

ti
. Its subscript ti refers to the time step number (called the temporal scale), and its

superscript lk•j indicates an interface number (l) and two subdomain numbers (k and j). Note that the interface number l
is marked only for the link force. The dynamic equations of subdomains with different temporal scales are here built using
the Newmark scheme since it has a strict energy stability demonstration.32 Incremental expressions of the displacement
and velocity for the kth subdomain are:

Δuk
ti+1
= 𝛽

kΔhk

𝛾k
Δvk

ti+1
+ Δhkvk

ti
+ 𝛾

k − 2𝛽k

2𝛾k
Δhk2 ak

ti
(11a)

Δak
ti+1
= 1
𝛾kΔhk

Δvk
ti+1
− 1
𝛾k

ak
ti

(11b)

where subscript ti and ti+1 represent two time-step numbers; Δhk implies the time-step size; the algorithmic parameters
𝛾

k and 𝛽k are adopted to adjust the accuracy and stability of Newmark schemes; andΔ denotes the increment of kinematic
quantities at each time-step size such asΔuk

ti+1
= uk

ti+1
− uk

ti
. It is worth noting that a subdomain can connect with multiple

subdomains, but an interface can and only can have two interconnected subdomains (see Figure 1). Two interconnected
subdomains with different temporal scales, as shown in Figure 2, are employed to illustrate the derivation process of the
compact form of dynamic equations with different temporal scales.

Substituting Equation (11) into the interface-based dynamic equations without damping (i.e., Equation (9)), the
incremental form of the dynamic Equation (9) for the kth subdomain is derived as:

K∗kΔvk
ti+1
+

Sk∑

l=1
Lk⋅jT

l Δ𝚲lk⋅j
ti+1
= ΔFk

ti+1
(12a)

K∗k = 1
𝛾kΔhk

Mk + 𝛽
kΔhk

𝛾k
Kk (12b)

ΔFk
ti+1
= ΔPk

ti+1
− Kk

(
𝛾

k − 2𝛽k

2𝛾k
Δhk2 ak

ti+1
+ Δhkvk

ti+1

)
+ 1
𝛾k

Mkak
ti+1

(12c)

F I G U R E 2 Two typical interconnected subdomains with different time sub-steps. Note that ΔT is the system time-step size; Δhk and
mk refer to the time step size and the number of the time sub-step, respectively33; and 𝚲k⋅j

tn
and 𝚲k⋅j

tn+1
indicate the link forces at the beginning tn

and end tn+1 time step, respectively (see Figure 1D)
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YUAN et al. 3499

For simplification, Equations (11) and (12) are rewritten in a compact form as follows:

K
∗kΔU

k
ti+1
+ L

T
kΔℜ

k
ti+1
= ΔP

k
ti+1
−N

k
U

k
ti+1

(13a)

K
∗k =

⎡
⎢
⎢
⎢⎣

Ik − 𝛽
kΔhk

𝛾k Ik 0

0 Kk
∗ 0

0 − 1
𝛾kΔhk Ik Ik

⎤
⎥
⎥
⎥⎦
ΔU

k
ti+1
=

⎡
⎢
⎢
⎢⎣

Δuk
ti+1

Δvk
ti+1

Δak
ti+1

⎤
⎥
⎥
⎥⎦

U
k
ti+1
=

⎡
⎢
⎢
⎢⎣

uk
ti+1

vk
ti+1

ak
ti+1

⎤
⎥
⎥
⎥⎦
ΔP

k
ti+1
=

⎡
⎢
⎢
⎢⎣

0
ΔPk

ti+1

0

⎤
⎥
⎥
⎥⎦
. (13b)

N
k =

⎡
⎢
⎢
⎢
⎢⎣

0 −ΔhkIk − 𝛾
k−2𝛽k

2𝛾k Δhk2 Ik

0 ΔhkKk 𝛾
k−2𝛽k

2𝛾k Δhk2 Kk − 1
𝛾k Mk

0 0 1
𝛾k Ik

⎤
⎥
⎥
⎥
⎥⎦

L
T
k =

⎡
⎢
⎢
⎢
⎢
⎢⎣

LkT
1

1

LkT
2

2

⋮

LkT
Sk

Sk

⎤
⎥
⎥
⎥
⎥
⎥⎦

T

Δℜk
ti+1
=

⎡
⎢
⎢
⎢
⎢
⎢⎣

Δ𝚲1k1
ti+1

Δ𝚲2k2
ti+1

⋮

Δ𝚲
SkkSk
ti+1

⎤
⎥
⎥
⎥
⎥
⎥⎦

. (13c)

Using Equations (9) and (13), coupling equations of S subdomains are derived as follows:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

K∗1ΔU
1
ti
+ L

T
1Δℜ

1
ti
= F

1
ti

∀ti ∈ {1,mi}
⋮ ⋮

K∗kΔU
k
tk
+ L

T
kΔℜ

k
tk
= F

k
tk

∀tk ∈ {1,mk}
⋮ ⋮

K∗SΔU
S
tS
+ L

T
SΔℜ

k
tS
= F

S
tS

∀tS ∈ {1,mS}

(14a)

Δℜk
tk
=

[
Δ𝚲1k⋅1

tk
Δ𝚲2k⋅2

tk
· · · Δ𝚲

Skk⋅Sk
tk

]T

(14b)

where mk =ΔT/Δhk is the number of the time sub-steps of the kth subdomain within ΔT, from the beginning time point
t1 to the ending time point tmk (see Figure 2). Each subdomain is connected to Sk subdomains by Sk interfaces, and the

whole domain has S̃ interfaces
(

S̃ = 1
2

∑S
k=1Sk

)
. The velocity continuity condition built at the system time step tn+1 is:

Lk⋅j
l vk

tn+1
+ Lj⋅k

l vj
tn+1

= 0 l = {1, · · · S̃} (15)

Although the velocity continuity conditions provide S̃ supplementary equations for solving Equation (14), the link
forces (e.g., Δ𝚲lk⋅j

ti
at Equation (14b), as shown in Figure 2) within the system time steps still cannot be calculated.

Therefore, to simplify the calculation of the link forces within ΔT, a linear interpolation is adopted as follows:

Δ𝚲lk⋅j = 𝚲lk⋅j
ti+1
−𝚲lk⋅j

ti
∀ti ∈ {1,mk}Δ𝚲lj⋅k = 𝚲lj⋅k

tj+1
−𝚲lj⋅k

tj
∀tj ∈

{
1,mj

}
(16a, b)

where Δ𝚲lk⋅j and Δ𝚲lj⋅k refer to the link force increments of the kth and jth subdomains, respectively. The total link forces
over the system time step ΔT have the following relationship.

Δ𝚲K⋅J = mk Δ𝚲lk⋅j = mjΔ𝚲lj⋅k (17)

So far, the coupling dynamic system is built at different temporal (i.e., Equation (9)) and element scales (i.e.,
Equation 14).34 The number of link forces (i.e., unknown quantities) is identical to the number of the velocity conti-
nuity conditions. Responses and link forces of the coupling system are only calculated at the system time step (i.e., tn
and tn+1), as shown in Figure 2. If interface link forces are obtained, subdomains can be decomposed into independent
subdomains with different time steps (see Figure 1B), and independent substructures with various integration parame-
ters can be combined into an entire calculational domain (see Figure 1C). Therefore, to decouple the coupling system or
couple independent computational substructures, the following method is formulated to solve the interface link forces at
the system time step.
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3500 YUAN et al.

3 PROPOSITION OF THE PARTITIONED/COMBINED COMPUTATIONAL
METHOD

Link forces between the interconnected subdomains are calculated in this section. Specifically, firstly, velocity increments
within ΔT are computed based on the initial information at tn. Interface link forces are then obtained using the velocity
continuity conditions.

3.1 Velocity increment within the system time step

The jth subdomain with mj time sub-steps (see Figure 2) is used to illustrate the calculation of velocity increments within
ΔT. The incremental form of the interface-based dynamic equation without damping is written as:

MΔatj+1 + KΔutj+1 + L
TΔℜtj+1 = ΔPtj+1 (18)

where Δ𝕽tj+1 refers to the link forces applied to the jth subdomain at the time sub-step tj+1, which are given in
Equation (14b). It is worth noting that only the jth subdomain is involved in the calculation process of velocity increments,
and the superscript j of all quantities is thus ignored temporarily in the derivation process of the link force. Moreover, the
link force increment at each time sub-step for the given interface is assumed to be constant (see Equation (17)), there-
fore, the subscript of the link force is simplified as Δ𝕽. Substituting incremental Newmark scheme (Equation 11) into
Equation (18), velocity increments are obtained as follows:

Δvtj+1 = K∗−1
(
ΔPtj+1 − L

TΔℜ − R∗atj − ΔhKvtj

)
(19a)

K∗ = 1
𝛾Δh

M + 𝛽Δh
𝛾

K R∗ = 𝛾 − 2𝛽
2𝛾

Δh2K − 1
𝛾

M (19b)

To solve velocity responses using the initial information, replacing velocity (i.e., vtj) and acceleration (i.e., atj) ele-
ments at the right side of Equation (19a) byΔvtj + vtj-1 andΔatj +atj-1, respectively, a recursive expression of the velocity
increment is obtained as follows:

Δvtj+1 = K∗−1
(
ΔPtj+1 − ΔPtj − R∗Δatj −

(
ΔhK − K∗)Δvtj

) (
tj =

{
1, 2 … mj

})
(20)

To remove the increment of accelerations at Equation (20), Equation (11b) is rewritten as follows:

Δatj+1 =
1
𝛾Δh

Δvtj+1 −
1
𝛾

(
Δatj + atj−1

)
(21)

The acceleration increment Δatj-1 within ΔT is calculated as:

Δatj+1 =
1
𝛾Δh

(
Δvtj+1 −

1
𝛾

j∑

i=1

(
𝛾 − 1
𝛾

)i−1

Δvtj+1−i

)
− 1
𝛾

(
𝛾 − 1
𝛾

)j

a0
(

tj =
{

0, 1 … mj
})

(22)

Substituting Equation (22) into Equation (20), the velocity increment is written as follows:

Δvtj+1 = K∗−1

(
ΔPtj+1 − ΔPn +

1
𝛾

(
𝛾 − 1
𝛾

)j−1

R∗a0 +
R∗

Δh𝛾2

j−1∑

i=1

(
𝛾 − 1
𝛾

)i−1

Δvtj−i − GΔvtj

)
(23a)

G = Δh
(
𝛽

1 + 𝛾
𝛾2 − 1 + 2𝛾

2𝛾

)
K + 1 + 𝛾

Δh𝛾2 M (23b)
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YUAN et al. 3501

Substituting the velocity solved at the previous steps into Equation (23) and simplifying them, the velocity increment
at arbitrary time step tn+1 is calculated as follows:

Δvtn+1 =
n∑

i=1
Ati

(
ΔPtn+2−i − ΔPtn+1−i +

1
𝛾

(
𝛾 − 1
𝛾

)n−i

R∗at0

)
+ Atn+1 K∗Δvt1 (24a)

Ati+1 = At1

(
G Ati +

1
Δh𝛾2 R∗

i−1∑

f=1

(
𝛾 − 1
𝛾

)i−1−k

Atf

)
(

ti =
{

1 … mj − 1
})

At1 = K∗−1
. (24b)

By adding up all velocity increments over ΔT, the total velocity increment ΔV is solved as:

ΔV =
mj−1∑

tii=1

(( ii∑

ti=1
Ati

)(
ΔPmj+1−tii − ΔPmj−tii +

1
𝛾

(
𝛾 − 1
𝛾

)mj−1−tii

R∗at0

))
+

( mj∑

ti=1
Ati

)
K∗Δvt1 (25)

Simplifying coefficients at Equation (25), the total velocity increment is rewritten as:

ΔV =
mj−1∑

tii=1
bmj+1−tii Ftii + bt1 K∗Δvt1 (26a)

bi =
mj+1−i∑

tf=1
Atf ti =

{
1, , ,mj

}
, Ftii =

(
ΔPmj+1−tii − ΔPmj−tii +

1
𝛾

(
𝛾 − 1
𝛾

)mj−1−tii

R∗at0

)
(26b)

As shown in Equation (26), the velocity increment of the system time step is solved by using the initial information at
tn (i.e., Δvt1 and at0). To solve the link forces in the next subsection, the first velocity increment Δvt1 is divided into two
parts, that is, Δvt1 and Δwt1, as follows:

Δvt1 = Δvt1 + Δwt1 (27a)

Δvt1 = K∗−1 (ΔPt1 − R∗at0 − ΔhKvt0

)
Δwt1 = −K∗−1 LTΔℜ (27b)

Substituting Equation (27) into Equation (26), the total velocity increment at ΔT is divided into two parts, that is, ΔV
and ΔW, which can be, respectively, written as follows:

ΔV = ΔV + ΔW (28a)

ΔV =
mj−1∑

tii=1
bmj+1−tii Ftii + bt1 K∗Δvt1 ΔW = −bt1 LTΔℜ (28b)

Except for external excitations Ftii, other coefficients at Equation (28) are constant for a linear system, which can be
given before operations.

3.2 Calculation of the interface link force

The lth interface, interconnecting with the kth and the jth subdomains (see Fig. b), is employed to illustrate the calculation
process of interface link forces by using the velocity continuity conditions (Equation (15)) and velocity increments solved
(Equation 28). The velocity continuity condition at the lth interface is rewritten as:

mk∑

ti=1
Lk⋅j

l Δvk
ti
+

mj∑

ti=1
Lj⋅k

l Δvj
ti
= 0 (29)
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3502 YUAN et al.

Velocity increments at time sub-steps are divided into free vibrations and link vibrations to calculate interface link
forces, and Equation (29) is rewritten as:

mk∑

ti=1
Lk⋅j

l

(
Δvk

ti + Δwk
ti

)
+

mj∑

ti=1
Lj⋅k

l

(
Δvj

ti
+ Δwj

ti

)
= 0 (30)

Using Equation (28), the velocity increments under link forces are solved as follows:

Δwk
ti
= −bk

t1
Lk⋅jT

l Δℜk Δwj
ti
= −bj

t1
Lj⋅kT

l Δℜj
. (31a, b)

Substituting the link forces in Equation (9) into Equation (31), one has:

Δwk
ti
= −bk

t1

Sk∑

l=1
Lk⋅jT

l Δ𝚲lk⋅j Δwj
ti
= −bj

t1

Sj∑

l=1
Lj⋅kT

l Δ𝚲lj⋅k . (32a, b)

As shown in Equation (32a), the kth subdomain is interconnected with Sk subdomains. The link forces of the kth
subdomains are divided into two parts, as presented in Equation (32a). Similar treatments are performed for the jth
subdomain. Therefore, Equation (32) is rewritten as follows:

Δwk
ti
= −bk

t1
Lk⋅jT

l 𝚲lk⋅j − bk
t1

Sk−1∑

l=1 (f≠j)
Lk⋅f T

l 𝚲lk⋅f Δwj
ti
= −bj

t1
Lj⋅kT

l 𝚲lj⋅k − bj
t1

Sj−1∑

l=1 (f≠k)
Lj⋅f T

l 𝚲lj⋅f . (33a, b)

Using Equation (28b), the velocity increments under external excitations are solved as:

ΔV
k
= bk

t1
K∗kΔvk

t1 +
mk−1∑

tii=1
bmk+1−tii F

k
tii
ΔV

j
= bj

t1
K∗jΔvj

t1
+

mj−1∑

tii=1
bmj+1−tii F

j
tii
. (34a, b)

Substituting Equations (16), (33), and (34) into the velocity continuity condition built at the system time step tn+1 (i.e.,
Equation (29)), one has:

mk∑

ti=1
Lk⋅j

l Δvk
ti +

mj∑

ti=1
Lj⋅k

l Δvj
ti
=

(
1

mk

mk∑

ti=1
Lk⋅j

l bk
t1

Lk⋅jT

l + 1
mj

mj∑

ti=1
Lj⋅k

l bj
t1

Lj⋅kT

l

)
Δ𝚲K⋅Jl

tn+1
+ 𝜕vK⋅J (35a)

𝜕vK⋅J =
Sk−1∑

l=1 (f≠j)

(
1

mk

mk∑

ti=1
Lk⋅j

l bk
t1

Lk⋅f T

l

)
Δ𝚲K⋅fl

tn+1
+

Sj−1∑

l=1 (f≠k)

(
1

mj

mj∑

ti=1
Lj⋅k

l bj
t1

Lj⋅f T

l

)
Δ𝚲J⋅fl

tn+1
(35b)

where 𝜕v refers to the additional velocity increment. All link force increments at time sub-steps are transferred into link
force increments at the system time step ΔT. By substituting Equations (34) and (37) into Equation (29), one gets:

VK⋅J = HK⋅JΔ𝚲K⋅J +
Sk−1∑

l=1 (f≠j)
HK⋅flΔ𝚲

K⋅fl +
Sj−1∑

l=1 (f≠k)
HJ⋅flΔ𝚲

J⋅fl (36)

where the coefficients are:

VK⋅J = Lk⋅j
l ΔV

k
+ Lj⋅k

l ΔV
j

HK⋅J =
⎛
⎜
⎜⎝

1
mk

mk∑

ti=1
Lk⋅j

l bk
t1

Lk⋅jT

l + 1
mj

mj∑

tj=1
Lj⋅k

l bj
t1

Lj⋅kT

l

⎞
⎟
⎟⎠

(37a)

HK⋅fl =
1

mk

mk∑

ti=1
Lk⋅j

l bk
t1

Lk⋅f T

l HJ⋅fl =
1

mj

mj∑

ti=1
Lj⋅k

l bj
t1

Lj⋅f T

l (37b)
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YUAN et al. 3503

It is worth noting that for a linear system, except for VK⋅J at Equation (37a), other coefficients are constant, which
can be given before a calculation. Furthermore, for the system with only two subdomains/substructures, the velocity
continuity condition is written as follows:

Lk⋅j
l ΔV

k
+ Lj⋅k

l ΔV
j
=

⎛
⎜
⎜⎝

1
mk

mk∑

ti=1
Lk⋅j

l bk
t1

Lk⋅jT

l + 1
mj

mj∑

tj=1
Lj⋅k

l bj
t1

Lj⋅kT

l

⎞
⎟
⎟⎠
Δ𝚲K⋅Jl

tn+1
(38)

Equation (38) is simplified as:
HK⋅JΔ𝚲K⋅J = VK⋅J (39)

where the coefficients are designed as follows:

VK⋅J = Lk⋅j
l ΔV

k
+ Lj⋅k

l ΔV
j

HK⋅J =
⎛
⎜
⎜⎝

1
mk

mk∑

ti=1
Lk⋅j

l bk
t1

Lk⋅jT

l + 1
mj

mj∑

tj=1
Lj⋅k

l bj
t1

Lj⋅kT

l

⎞
⎟
⎟⎠

(40)

So far, the link forces at the lth interface are solved. For a domain with S subdomains, S̃ velocity continuity conditions
(Equation 15) are imposed on corresponding interfaces. Therefore, S̃ link forces can be written into linear equations as
follows:

Lk⋅j
l ΔV

k
+ Lj⋅k

l ΔV
j
= HK⋅JΔ𝚲K⋅Jl

tn+1
+ 𝜕vK⋅J ∀ l ∈ {1, , , S̃} (41)

All interface link forces are solved by using Equation (41). By using the solved link forces, the coupling system can
be decomposed into several independent computational subdomains (i.e., partitioned calculation, see Figure 1A,B), and
each independent substructure can be combined into an entire computational domain (i.e., combined calculation, see
Figure 1B,C).

3.3 Implementation of the proposed method

Interface link forces are calculated by using Equation (41). Therefore, each subdomain at time sub-steps can be solved
independently and be coupled at the system time step, and freely combined computations of different substructures can
be conducted. Independent dynamic equations are written as follows:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

K
1
∗ΔU

1
ti
= F

1
ti
− L

T
1Δℜ

1
ti

∀ti ∈ {1,mi}
⋮

K
k
∗ΔU

k
tk
= F

k
tk
− L

T
kΔℜ

k
tk

∀tk ∈ {1,mk}
⋮

K
S
∗ΔU

S
tS
= F

S
tS
− L

T
tS
ΔℜS

tS
∀tS ∈ {1,mS}

(42)

To detail the implementation process of the new proposed method, the detailed calculation procedure is given in
Table A1.

4 ENERGY INVESTIGATION OF THE PROPOSED METHOD

4.1 Discussion of the interface pseudo-energy

The following pseudo-energy norm32 is employed to demonstrate the stability of the proposed method with Newmark
scheme:

[1
2

akT A
k
ak + 1

2
vkT Kkvk

]tn+1

tn

= −
(
𝛾

k − 1
2

)
ΔakT

tn+1
A

k
Δak

tn+1
+ 1
Δhk

ΔvkT

tn+1
ΔRk

tn+1
(43)
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3504 YUAN et al.

A
k
= Mk + Δhk2

(
𝛽

k − 1
2
𝛾

k
)

Kk ΔRk = ΔPk
tn+1

+
Sk∑

l=1
Lk⋅jT

l 𝚲lk⋅j
tn+1

(44)

where the symbol [ ] is the increment of kinematic quantities from time step tn to tn+1. Note that damping is ignored in
the expression, and link forces

∑Sk
l=1𝚲

lk⋅j
tn+1

and external excitations ΔPk
tn+1

are acted on the kth subdomain. Further details
on the pseudo-energy can be found in Reference 3. The incremental form of Equation (44) is:

ΔEk
kin + ΔEk

int = ΔEk
diss + ΔEk

ext (45a)

ΔEk
kin =

[1
2

akT A
k
ak

]tn+1

tn

ΔEk
int =

[1
2

vkT Kkvk
]tn+1

tn

(45b)

ΔEk
diss = −

(
𝛾

k − 1
2

)
ΔakT

tn+1
A

k
Δak

tn+1
ΔEk

ext =
1
Δhk

ΔvkT

tn+1
Lk⋅jT

l ΔRk
tn+1

(45c)

The system without external excitations is used to discuss the stability of the proposed method. For the kth subdomain,
the pseudo-energy ΔEk

ext generated by link forces is:

ΔEk
link = ΔEk

ext =
1
Δhk

ΔvkT

tn+1
Lk⋅jT

l

Sk∑

l=1
Δ𝚲lk⋅j

tn+1
(46)

According to the requirements of stability derived in Reference 3 (i.e., 𝛾 ≥ 1∕2 and A is positive definite), the
stability of an individual subdomain under link forces can be ensured if ΔEk

ext ≤ 0. Therefore, to ensure the stabil-
ity of the kth subdomain, ΔEk

link ≤ 0 (i.e., Equation 46) is required. Referring to Equation (45), for the entire system
with S subdomains and different time sub-steps, the total pseudo-energy within the system time step can be derived
as follows:

S∑

k=1

( mk∑

tk=1

(
ΔEk

kin,tk
+ ΔEk

int,tk

))
=

S∑

k=1

( mk∑

tk=1

(
ΔEk

diss,tk

))
+ ΔElink (47)

The total pseudo-energy dissipated at all interfaces is calculated as follows:

ΔElink =
S̃∑

l=1

⎛
⎜
⎜⎝

mk∑

tk=1

(
ΔEk⋅j

ext,tk

)
+

mj∑

tj=1

(
ΔEj⋅k

ext,tj

)⎞
⎟
⎟⎠

(48)

Substituting Equation (46) into Equation (48), the total pseudo-energy dissipated at all interfaces is:

ΔElink =
S̃∑

l=1

⎛
⎜
⎜⎝

mk∑

tk=1

1
Δhk

ΔvkT

tk
Lk⋅jT

l

(
𝚲lk⋅j

tk
−𝚲lk⋅j

tk−1

)
+

mj∑

tj=1

1
ΔhjΔvjT

i⋅jL
j⋅kT

l

(
𝚲lj⋅k

tj
−𝚲lj⋅k

tj−1

)⎞
⎟
⎟⎠

(49)

Using the assumption of link forces (i.e., Equation 16) and the time step ratios, the total pseudo-energy is simplified
as follows:

ΔElink =
1
ΔT

S̃∑

l=1

⎛
⎜
⎜⎝

⎛
⎜
⎜⎝

mk∑

tk=1
ΔvkT

tk
Lk⋅jT

l +
mj∑

tj=1
ΔvjT

tj
Lj⋅kT

l

⎞
⎟
⎟⎠
Δ𝚲K⋅Jl

⎞
⎟
⎟⎠

(50)

Substituting velocity continuity conditions Equation (29) into Equation (50), one has:

ΔElink = 0 (51)
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YUAN et al. 3505

Therefore, when the linear interpolation assumption of link forces (i.e., Equation 16) and the velocity continuity
conditions (i.e., Equation 29) are fulfilled at all interfaces, the total interface pseudo-energy generated by link forces
is equal to zero; algorithmic parameters do not influence the interface pseudo-energy; and the system stability can be
ensured. It is worth noting that due to floating-point operation errors, tiny pseudo-energy is generated and accumulated
along with time, which would be further studied in the numerical demonstration.

4.2 Investigation of the interface mechanical energy

The following classical mechanical energy generated by link forces and algorithmic parameters is used to further inves-
tigate the interface energy of the dynamic system calculated by the proposed method with Newmark scheme. Further
information can be found in Reference 32.

[1
2

vTMv + 1
2

uTKu
]tn+1

tn

= ΔuT (
𝛾Ptn+1 + (1 − 𝛾)Ptn

)
−
(
𝛾 − 1

2

)
ΔuTKΔu

−
(
𝛾 − 1

2

)(
𝛽 − 1

2
𝛾

)
Δh2ΔaTMΔa −

(
𝛽 − 1

2
𝛾

) 1
2
Δh2[aTMa

]tn+1
tn

(52)

The mechanical energy increment of the kth subdomain is written as follows:

Δ𝜏k
ti
+ Δ𝜐k

ti
= ΔukT

ti

Sk∑

l=1
Lk⋅jT

l

(
𝛾

k𝚲lk⋅j
ti+1
+

(
1 − 𝛾k)𝚲lk⋅j

ti

)
−
(
𝛾

k − 1
2

)
ΔukT

ti
KΔuk

ti

−
(
𝛾

k − 1
2

)(
𝛽

k − 1
2
𝛾

k
)
Δhk2ΔakT

ti
MΔak

ti
−
(
𝛽

k − 1
2
𝛾

k
)
Δok

ti
(53a)

Δ𝜏k
i =

1
2

vkT

ti+1
Mvk

ti+1
− 1

2
vkT

ti
Mvk

ti
Δ𝜐k

ti
= 1

2
ukT

ti+1
Kuk

ti+1
− 1

2
ukT

ti
Kuk

ti
(53b)

Δok
ti
= 1

2
Δhk2 akT

ti+1
Mak

ti+1
− 1

2
Δhk2 akT

ti
Mak

ti
(53c)

where Δ𝜏k
ti

, Δ𝜐k
ti
, and Δok

ti
refer to the kinetic energy, the potential energy, and the dissipative energy increments for the

kth subdomain at the ti time step, respectively. External excitations are not considered in the analysis (i.e., Pn=Pn+1= 0).
For the kth subdomain with mk time steps and Sk interfaces, the mechanical energy increment over ΔT is calculated as:

ΔWorkk =
mk∑

ti=1

(
Δ𝜏k

ti
+ Δ𝜐k

ti

)

=
mk∑

ti=1
ΔukT

ti

Sk∑

l=1
Lk⋅jT

l

(
𝛾

k𝚲lk⋅j
ti+1
+

(
1 − 𝛾k)𝚲lk⋅j

ti

)
−
(
𝛾

k − 1
2

) mk∑

ti=1
ΔukT

ti
KΔuk

ti

−
(
𝛾

k − 1
2

)(
𝛽

k − 1
2
𝛾

k
)
Δhk2

mk∑

ti=1
ΔakT

ti
MΔak

ti
−
(
𝛽

k − 1
2
𝛾

k
) mk∑

i=1
Δok

ti
(54)

The total increments of the system mechanical energy within ΔT for all subdomains are:

ΔWork = ΔWlink + ΔWdiss (55a)

ΔWlink =
S∑

k=1

mk∑

ti=1
ΔukT

ti

Sk∑

l=1
Lk⋅jT

l

(
𝚲lk⋅j

ti
+ 𝛾kΔ𝚲lk⋅j

ti+1

)
(55b)

ΔWdiss = −
S∑

k=1

(
𝛾

k − 1
2

) mk∑

ti=1
ΔukT

ti
KΔuk

ti

−
S∑

k=1

(
𝛾

k − 1
2

)(
𝛽

k − 1
2
𝛾

k
)
Δhk2

mk∑

ti=1
ΔakT

ti
MΔak

ti
−

S∑

k=1

(
𝛽

k − 1
2
𝛾

k
) mk∑

ti=1
Δok

ti
(55c)

 10970207, 2023, 16, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7256 by <
Shibboleth>

-m
em

ber@
gla.ac.uk, W

iley O
nline L

ibrary on [09/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3506 YUAN et al.

where ΔW link and ΔW diss are the interface mechanical energy generated by link forces and the algorithmic dissipa-
tion energy, respectively.35 The algorithmic dissipation ΔW diss is often used to filter high-frequency spurious vibration
content.36 Moreover, the mechanical energy increment ΔW link of all interfaces is calculated as follows:

ΔWlink =
S̃∑

l=1

⎛
⎜
⎜⎝

mk∑

tk=1
ΔukT

tk
Lk⋅jT

l

(
𝚲lk⋅j

tk
+ 𝛾kΔ𝚲lk⋅j

tk+1

)
+

mj∑

tj=1
ΔujT

tj
Lj⋅kT

l

(
𝚲lk⋅j

tj
+ 𝛾kΔ𝚲lk⋅j

tj+1

)⎞
⎟
⎟⎠

(56)

The interface displacement elements (e.g., ΔukT

tk
and ΔujT

tj
) are inconsistent, and thus the total interface mechanical

energy may exist in interconnected interfaces. Furthermore, the second-order accuracy (𝛾k = 1/2) is usually required in
numerical results, hence, the system mechanical energy (Equation 55) can be rewritten as:

ΔWork = 1
2

S̃∑

l=1

⎛
⎜
⎜
⎜
⎜⎝

mk∑
tk=1
ΔukT

tk
Lk⋅jT

l

(
𝚲lk⋅j

ik
+ 𝚲lk⋅j

tk+1

)

+
mj∑

tj=1
ΔujT

tj
Lj⋅kT

l

(
𝚲lk⋅j

tj
+ 𝚲lk⋅j

tj+1

)

⎞
⎟
⎟
⎟
⎟⎠

−
S∑

k=1

(
𝛽

k − 1
4

) mk∑

tk=1
Δok

tk
(57)

Based on the expression of the system mechanical energy (i.e., Equation (57)), only when all subdomains have the
constant time step ΔT and the same parameters 𝛽k = 1/4, the system mechanical energy is conservative (i.e., Δwork= 0).

5 EXTENSION OF THE PROPOSED METHOD (GENERALIZED-𝛂)

To obtain more desirable accuracy and algorithmic damping simultaneously, six integration schemes of Generalized-𝛼
(NG; i.e., NOCH-α, CH-α, NOHHT-α, HHT-α, NOWBZ-α, and WBZ-α) are investigated and incorporated into the pro-
posed method above. More information on NG can be obtained in Reference 18. Specifically, link forces are firstly solved
by using both the velocity increments and the velocity continuity conditions at the system time step. The coupling sys-
tem is then decomposed into several independent subdomains using the solved link forces. The calculation of velocity
increments and link forces, and the implementation of NG are successively discussed in this section.

5.1 Calculation of the velocity increment

The incremental expressions of NG without damping18 are:

M
(
(1 − 𝛼)Δatn+1 + atn

)
+ K

(
(1 − 𝜂)Δutn+1 + utn

)

= (1 − 𝜂)ΔFtn+1 + Ftn − LT (
(1 − 𝜂)Δ𝚲 + 𝚲tn

)
(58a)

Δutn+1 =
𝛽Δh
𝛾
Δvtn+1 + Δhvtn +

(
𝜀 − 𝛽𝜇

𝛾

)
Δh2atn Δatn+1 =

1
Δh𝛾

Δvtn+1 +
(
𝜇

𝛾
+ 1

)
atn (58b)

where 𝛼, 𝛿, 𝜂, 𝜀, 𝛽, 𝜇, and 𝛾 are algorithmic parameters, which are used to adjust the accuracy and dissipation properties
of NG. An individual subdomain with m sub-steps is investigated to calculate the velocity increment within the system
time step. Note the superscript of all quantities is ignored due to the consideration of the individual subdomain. Using
Equation (58), the velocity increment is derived as follows:

K
∗
Δvtn+1 = (1 − 𝜂)ΔFtn+1 + Ftn −

(
Kutn + (1 − 𝜂)ΔhK vtn + R

∗
atn

)
− LT (

(1 − 𝜂)Δ𝚲 + 𝚲tn

)
(59a)

K
∗
=

(
(1 − 𝛼)
Δh𝛾

M + Δh𝛽(1 − 𝜂)
𝛾

K
)

R
∗
=

(
(1 − 𝜂) (𝛾𝜀 − 𝛽𝜇)

𝛾
Δh2K + (𝛼(𝛾 + 𝜇) − 𝜇)

𝛾
M

)
(59b)
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YUAN et al. 3507

The first velocity increment is solved as follows:

Δvt1 = K
∗−1 (

(1 − 𝜂)ΔFt1 + Ft0 − LT (
(1 − 𝜂)Δ𝚲 + 𝚲t0

)
−
(

Kut0 + (1 − 𝜂)ΔhK vt0 + R
∗
at0

))
(60)

Using Equations (59a) and (59b), displacement and acceleration are, respectively, calculated as:

Δutn =

((
−𝜇
𝛾

)n−1
𝛾𝜀 − 𝛽𝜇

𝛾
Δh2at0 + Δhvt0 +

n−1∑

i=1

(
1 +

(
−𝜇
𝛾

)i−1
𝛾𝜀 − 𝛽𝜇
𝛾2

)
ΔhΔvtn−i +

𝛽Δh
𝛾
Δvtn

)
(61)

Δatn+1 =
1

h𝛾

(
Δvtn −

𝛾 + 𝜇
𝛾

n−1∑

i=1

(
−𝜇
𝛾

)i−1

Δvtn−i

)
− 𝛾 + 𝜇

𝛾

(
−𝜇
𝛾

)n−1

at0 (62)

Substituting the solved displacement and acceleration into Equation (59), the velocity recursive function can be
derived as:

Δvtn+1 = K
∗−1

⎛
⎜
⎜
⎜⎝

(1 − 𝜂)Ftn+1 + (2𝜂 − 1)Ftn − 𝜂Ftn−1 − LT (
(1 − 𝜂)Δ𝚲 + 𝚲tn

)
− ΔhKut0

−
(
−𝜇
𝛾

)n−1
𝛈at0 + 𝛍Δvtn − Δh

n−1∑
i=1

(
K + 1

𝛾Δh2

(
−𝜇
𝛾

)i−1
𝛈
)
Δvtn−i

⎞
⎟
⎟
⎟⎠

(63)

where coefficients matrices involved in Equation (62) are designed as:

𝛈 = a1K + a2M a1 = Δh2 (𝛾𝜀 − 𝛽𝜇)(𝛾𝜂 − (1 − 𝜂)𝜇)
𝛾2 a2 =

(𝛾 + 𝜇)(𝜇 − 𝛼(𝛾 + 𝜇))
𝛾2 (64)

𝛍 = a3M + a4K a3 =
1 − 2𝛼
Δh𝛾

+ (1 − 𝛼)𝜇
Δh𝛾2 a4 = Δh

(
𝜂 − 1 − 𝜀(1 − 𝜂) + 𝛽𝜂

𝛾
+ 𝛽(1 − 𝜂)𝜇

𝛾2

)
(65)

Substituting the velocity increment solved at previous time-steps into Equation (63), the velocity increment at arbitrary
time step tn+1 can be solved as follows:

Δvtn+1 =
n∑

i=1
Ai

⎛
⎜
⎜⎝

(1 − 𝜂)Ftn+1 + (2𝜂 − 1)Ftn − 𝜂Ftn−1

− LTΔ𝚲 − ΔhKut0 −
(
−𝜇
𝛾

)n−1
𝛈 at0

⎞
⎟
⎟⎠
+ K

∗
An+1vt1 (66a)

Ai+1 = K
∗−1

(
𝛍Ai − Δh

n−1∑

i=1

(
K +

(
−𝜇
𝛾

)n−1−i 𝛈
𝛾Δh2

)
Ai

)
(i = {1 … m − 1}) A1 = K

∗−1

(66b)

By adding up all velocity increments and substitutingΔvt1 into the sum, the total velocity increment within the system
time step is solved as:

ΔV = ΔV1 + ΔV2 + ΔV3 (67a)

ΔV1 =
m−1∑

j=1

(( j∑

i=1
Ai

)(
(1 − 𝜂)Ftn+1 + (2𝜂 − 1)Ftn − 𝜂Ftn−1 − ΔhKvt0 −

(
−𝜇
𝛾

)n−1

𝛈 at0

))
(67b)

ΔV2 =

( m∑

i=1
Ai

)(
𝜂Ft0 + (1 − 𝜂)Ft1 − K

(
ut0 + (1 − 𝜂)Δhvt0

)
− R

∗
at0 − LT𝚲t0

)
(67c)

ΔV3 =

( m∑

i=1
(m + 1 − i)Ai − 𝜂

m∑

i=1
Ai

)
LTΔ𝚲 (67d)
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3508 YUAN et al.

5.2 Calculation of the interface link force

For an interface, interconnecting with two subdomains, as shown in Figure 2, the velocity continuity condition
(Equation (29)) is used to couple the two subdomains, and the linear interpolation is employed to calculate the interme-
diated link forces (Equation 16) at time sub-steps. Using Equation (67), velocity increments of the two subdomains over
ΔT are solved as follows:

ΔVA = ΔVA
1 + ΔVA

2 + ΔVA
3 (68a)

ΔVB = ΔVB
1 + ΔVB

2 + ΔVB
3 (68b)

Substituting the two velocity increments into the continuity condition Equation (29), one has:

LA
(
ΔVA

1 + ΔVA
2
)
+ LB

(
ΔVB

1 + ΔVB
2
)
=

⎛
⎜
⎜
⎜⎝

LA

(ma∑
i=1
(ma + 1 − i)A

A
i − 𝜂a

ma∑
i=1

A
A
i

)
LT

A∕ma+

LB

(mb∑
i=1
(mb + 1 − i)A

B
i − 𝜂b

mb∑
i=1

A
B
i

)
LT

B∕mb

⎞
⎟
⎟
⎟⎠

Δ𝚲A⋅B (69)

The total link force over the system time step is calculated by the matrix division operation (i.e., ∖) as follows:

Δ𝚲A⋅B = H2∖DV2 (70)

where coefficients matrices are:

H2 =
⎛
⎜
⎜
⎜⎝

LA

(ma∑
i=1
(ma + 1 − i)A

A
i − 𝜂a

ma∑
i=1

A
A
i

)
LT

A∕ma+

LB

(mb∑
i=1
(mb + 1 − i)A

B
i − 𝜂b

mb∑
i=1

A
B
i

)
LT

B∕mb

⎞
⎟
⎟
⎟⎠

(71a)

DV2 = LA
(
ΔVA

1 + ΔVA
2
)
+ LB

(
ΔVB

1 + ΔVB
2
)

(71b)

So far, link forces are solved, two interconnected subdomains are decomposed into independent computational sub-
domains; two independent substructures can be coupled into an entire domain; and the number of subdomains can easily
extend to multi-subdomains.

5.3 Implementation of Generalized-𝛂

Substituting the solved link forces (Equation (70)) into the coupling equations (Equation (14)), the decoupling subdo-
mains with different time steps can be solved independently and efficiently. Using dynamic Equation (28), decoupling
equations are written as follows:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

K
1
∗Δv1

ti
= F

1
ti
− L

T
1Δℜ

1
ti

∀ti ∈ {1,m1}
⋮

K
k
∗Δvk

tk
= F

k
tk
− L

T
kΔℜ

k
tk

∀tk ∈ {1,mk}
⋮

K
S
∗ΔvS

tS
= F

S
tS
− L

T
SΔℜ

S
tS

∀tS ∈ {1,mS}

(72)

where the intermediated link forces 𝚲j can be solved by using Equation (16). It is important to note that for all integra-
tion methods with a single time step, only the Newmark method can provide the strict energy stability demonstration.32

Therefore, numerical analyses are performed to verify the energy stability characteristics of the proposed method with
NG schemes. The implementation of the proposed method with NG can similarly refer to Table A1.
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YUAN et al. 3509

6 REPRESENTATIVE EXAMPLES AND DEMONSTRATION

Two representative numerical examples are adopted to investigate the properties of the proposed method. Specifically, a
single DOF oscillator with an analytical solution is used to discuss the energy dissipation and accuracy properties, and a
sandwich beam subjected to high-frequency impact loadings is employed to study the accuracy, dissipation property, and
computational efficiency of the proposed method in terms of a complex dynamic system.

6.1 Single DOF system with an analytical solution

An oscillator split into four parts, that is, subdomain A (Sub_A), Sub_B, Sub_C, and Sub_D, is here discussed, as shown
in Figure 3. The dynamic equation and initial conditions are:

ma(t) + ku(t) = 0
u(0) = 1, v(0) = 0 (73)

where a(t) and u(t) refer to the acceleration and displacement of the entire oscillator, respectively. The analytical solution
is u(t)= cos(𝜔t), where 𝜔 is the natural frequency of the oscillator. The initial mechanical energy and pseudo-energy of
the oscillator are W0 = 146,300 and E0 = 1.0701845 × 1016, respectively. In this example, the interface mechanical energy
and pseudo-energy are discussed first. Subsequently, the proposed method’s accuracy is studied by varying time-step sizes,
time-step ratios, and algorithmic parameters of subdomains.

6.1.1 Investigation of energy dissipation

To study the properties of the mechanical energy and pseudo-energy of the proposed method, three cases are discussed,
whose computational parameters are given in Table 1. In particular, Case I: to study the influence of time step ratios on
the system energy dissipation, different time-step sizes of subdomains are selected according to the frequency content of
subdomains. Case II: to explore the effect of time-step sizes, the time-step sizes of Case I are increased by 10 times and
maintained at the same ratio. Case III: the same time-step size is set in all subdomains for comparison. For convenience,
the reduced angular frequency (Φ= 2π Δt/ΔT) is employed in the analysis.20,21 ΦB = 0.1 (i.e., Δt/ΔT = 0.016) is set as the
critical ratio of the time step size/the system period (Δt/ΔT) to accurately compute the system responses, and the critical
time stepΔt is thus limited to 3.6974× 10−7 s. More information on the critical time step can be found in References 20,21.

Interface mechanical energy
To study the properties of the interface mechanical energy under different time step ratios, the proposed method (includ-
ing Newmark scheme and six NG schemes; 𝜌= 1) is used to calculate the coupling oscillator with different time step ratios,
and the interface mechanical energy of Cases I and III is presented in Figure 4. It is worth noting that the six schemes of

(A) (B)

F I G U R E 3 Complex oscillator split into four subdomains (ma, mb, mc, md) and (Ka, Kb, Kc, Kd) are the masses and stiffness of the four
subdomains, respectively
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3510 YUAN et al.

T A B L E 1 Calculation parameters of the split oscillator

Mass Stiffness Time sub-steps Parameters

Items ×10−6 × 103 Case I× 10−8 Case II× 10−7 Case III× 10−6 Ratios (𝜸, 𝜷)

Sub_A 1.0 40 0.5 0.5 1.0 20 (1/2, 1/4)

Sub_B 1.0 0.1 10 10 1.0 1 (1/2, 1/4)

Sub_C 1.0 250 0.2 0.2 1.0 50 (1/2, 1/4)

Sub_D 1.0 2.5 2.0 2.0 1.0 5 (1/2, 1/4)

Entire domain 4.0 292.6 Δt= 3.6974× 10−7 27.05 (1/2, 1/4)

Note: Note that algorithmic parameters of Newmark are given in brackets as (𝛾 , 𝛽); and the calculation time is 0.01 s.

F I G U R E 4 Interface mechanical energy under different time step ratios
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YUAN et al. 3511

NG method have the same displacement and velocity integration scheme as Newmark scheme with (1/2, 1/4) when 𝜌= 1,
and thus Equation (56) can be used to calculate the interface mechanical energy of NG schemes; only case numbers are
marked in the figure because seven energy curves are overlapped for all cases; and upper limit and lower limit of the inter-
face mechanical energy are 0.004339363 and−0.004339363, respectively. Due to the same time step size and algorithmic
parameters (𝛽 = 1) used in all subdomains of Case III, the interface mechanical energy is always zero, which can also be
confirmed by Equation (56). To observe the results of Case I, an enlarged view from 0.98× 10−2 s to 1× 10−2 s is depicted
in Figure 4B. It is shown that the interface mechanical energy generated by link forces is extremely small compared with
the initial mechanical energy (W0 = 146,300), and the periodic oscillation property is observed. To explore the periodicity
of the energy oscillation, the interface mechanical energy is divided into two continuous periodic oscillations according
to the parity of time steps, which are shown in Figures 4C,D. The energy amplitude is not amplified and minified within
the entire calculation time for the entire system. Therefore, for subdomains with different time step ratios (i.e., Case I),
zero dissipation of mechanical energy is ensured in the dynamic computation, but a small part of the system mechanical
energy is transferred as the interface mechanical energy with the periodic oscillation property. In addition, for subdo-
mains with the same time step sizes and algorithmic parameters 𝛽 = 1/4 (i.e., Case III), the system mechanical energy is
conservative, and zero mechanical energy is ensured at the interface of interconnected subdomains.

To investigate the effect of time-step sizes on the interface mechanical energy, for Case II and Case III, curves of the
interface mechanical energy and its enlarged view are depicted in Figure 5. Note that the time-step size of Sub_B in
Case II (i.e., Δtb = 1.0× 10−6 (ΦB = 0.27)) is larger than the critical time-step size (ΦB = 0.1), which leads to large period
elongations.36 Namely, interface link forces calculated by both Newmark schemes and NG schemes (𝜌= 1) are coarse.

F I G U R E 5 Interface mechanical energy under different time-step sizes solved by using the proposed method including Newmark
scheme and NG schemes (𝜌= 1)
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3512 YUAN et al.

Therefore, the amplitude of the interface energy is amplified significantly compared with that of Case I (i.e., the time step
sizes of subdomains can be used to adjust the interface mechanical energy), but it is still extremely small compared with
W0. Moreover, according to the parity of time steps, the interface mechanical energy is also divided into two continuous
periodic oscillations, which are plotted in Figure 5B,C, and periodic oscillation is still observed within the entire calcu-
lation time. Namely, zero dissipation and the periodic oscillation of the interface mechanical energy can be observed in
dynamic computation.

Interface pseudo-energy
The theoretical interface pseudo-energy under all cases should be equal to zero according to Equation (51). However, the
initial input pseudo-energy is E0 = 1.0701845× 1016, and the pseudo-energy amplitude is close to 1.8887× 1014 for the four
subdomains. Therefore, a tiny pseudo-energy is observed in numerical results due to floating-point operation errors, and
it is accumulated and amplified by the system time step (see Equation (50)). To accurately calculate the pseudo-energy, the
rational number operations are conducted, and zero dissipation of the interface pseudo-energy is found in the numerical
results. Therefore, the proposed method features the pseudo-energy conservation property.

Comparison with existing methods
It is not easy to extend the application of the four-subdomain system to the existing multi-time step methods.13–17,36

Therefore, the oscillator split into two subdomains is investigated to compare with the existing multi-time step methods.
Specifically, the mass and stiffness of Sub_A and Sub_B are ma =mb = 1× 10−6 and Ka =Kb = 1× 104, respectively; the
time steps for Sub_A and Sub_B are 1× 10−6 and 1× 10−7, respectively; the simulation time is 0.01 s; the pseudo-energy
of NG schemes (𝜌= 0.5) is analogously calculated by using Equation (50); and the initially imported pseudo-energy is
ΔEinitial,n = 1× 1014. Accumulated interface pseudo-energy curves are plotted in Figure 6. It is shown that the accumu-
lated pseudo-energy gradually dissipates with time and approaches the initially imported pseudo-energy at the end time
(0.01 s) for GC and BGC_Micro. On the contrary, the pseudo-energy is zero for the proposed method with different
schemes, BGC_Macro, and PH. Moreover, the pseudo-energy of the proposed method can also be directly derived from
Equation (50). Note that to avoid floating-point operation errors, rational number operations should be chosen in the
computation. Therefore, the proposed method features the interface pseudo-energy conservation property.

F I G U R E 6 Pseudo-energy of various coupling methods (m= 10). Pre_() denotes the Presented method with specified schemes such as
Pre_NM represents Newmark scheme; the number in brackets refers to 𝜌; and CH and HHT have the same schemes when 𝜌= 0.5, which are
written as Pre_CH_HHT
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YUAN et al. 3513

6.1.2 Discussion of accuracy

The accumulated absolute error1 of the coupling oscillator is calculated to assess the accuracy property of the proposed
method considering varying integration schemes.

Errork =
√

ek∕etheo k = a, b, c, d (74a)

ẽk =
N∑

i=1

(
Wkmk∗(i−1)+1

simu −W i
theo

)2
, ẽtheo =

N∑

i=1

(
W i

theo

)2 i = {1, 2, , ,N} (74b)

where ẽk and ẽtheo refer to the accumulated absolute errors of numerical solutions and theoretical solutions,
respectively; Wksimu and W theo indicate the numerical solutions and theoretical solutions of each subdomain,
respectively; and N and mk denote the numbers of the system time step and time sub-steps of the kth subdo-
main within the calculation time of 0.001 s, respectively. Various time-step sizes and algorithmic parameters of
the proposed method are employed in the calculation below to explore the accuracy property under different
scenarios.

6.1.3 Different time-step sizes

Computational conditions
The time-step sizes of Sub_A, Sub_B, Sub_C, and Sub_D are, respectively, ΔhB =ΦB, ΔhA =ΔhB/20, ΔhC =ΔhB/50, and
ΔhD =ΔhB/5; the range of ΦB from 0.01 to 0.1 is examined in the computation; CH, HHT, WBZ, and Newmark with
the macro time step are used to calculate the entire oscillator (i.e., Figure 3A) for comparison. The results of all sub-
domains have similar patterns, and the results of Sub_B have relatively large absolute errors due to the used macro
time step, and the error curves of Sub_B under different methods are thus shown in Figure 7. It is shown that the
absolute errors of all quantities (i.e., displacement, velocity, and acceleration) increase with the time-step size (ΦB).
Except for Newmark method, the accumulated absolute errors of all quantities for the proposed method decrease
with the increase of the 𝜌 as Pre_CH-WBZ (0) has the largest error. The error curves of the integration schemes with
𝜌= 1 (i.e., Pre_CH and Pre_HHT-WBZ) are overlapped. Due to the realization of the small-time step at subdomains,
errors from the proposed method are smaller than errors from CH, HHT, and WBZ. Compared with Newmark method
with the second-order accuracy, the proposed method maintains the second-order accuracy in terms of displacement
and velocity results. For 𝜌= 1 (i.e., Pre_CH and Pre_HHT-WBZ), the acceleration of the proposed method has the
second-order accuracy, and the acceleration of the proposed method only has the first-order accuracy when 𝜌≠ 1 such
as Pre_CH-HHT (0.5). Thus, both the time-step size and spectral radius can be used to adjust the accuracy of the
proposed method.

6.1.4 Various algorithmic parameters

To investigate the accuracy properties of the proposed method under different algorithmic parameters (i.e., 𝛽 and 𝜌), based
on the following computational conditions, the error curves of Sub_B with the macro time step are presented in Figure 8.
Computational conditions: The time-step sizes of Sub_A, Sub_B, Sub_C, and Sub_D are, respectively, ΔhB =ΦB = 0.1,
ΔhA =ΔhB/20,ΔhC =ΔhB/10, andΔhD = hB/5; corresponding time step ratios are (20, 1, 10, 5); algorithmic parameters of
the four subdomains are given in Table 2; and CH, HHT, WBZ, and Newmark method with the macro time step are used
to calculate the entire oscillator for comparison. It is shown that since more accurate link forces are solved in subdomains
with the micro time-step size by the proposed method with Newmark scheme, the results of all calculation quantities from
the proposed method with Newmark scheme (i.e., Pre_NM) have higher accuracy than that from Newmark method with
parameters, except for (𝛽 = 1/12.8–1/11.2). Similar observations can be found in other algorithm pairs such as Pre_CH
and CH. Moreover, except for Newmark method, the accumulated absolute errors of all quantities decrease with the
increase of the parameters 𝛽 and 𝜌. Therefore, decreasing the time step sizes of subdomains can improve the computa-
tional accuracy of the coupling system, and the accuracy of all subdomains can be adjusted by using their own integration
parameters.
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3514 YUAN et al.

F I G U R E 7 Error curves of integration methods considering different time-step sizes

6.1.5 Comparison with existing methods

To compare with the accuracy of the existing coupling methods, based on the following computational conditions, the
oscillator with two subdomains (i.e., Sub_A and Sub_B) is employed to study the accuracy properties of the proposed
method under different algorithmic parameters 𝛽 by contrast. Computational conditions: The time steps are ΔhA = 10−6 s
and Δh=ΔhA/20; corresponding mass and stiffness information of the two subdomains is given in Table 1; algorithmic
parameters (𝛾 = 1/2 and various 𝛽) and (𝛾 = 1/2 and 𝛽 = 1/4) of the existing methods with Newmark scheme (i.e., PH,
BGC_Macro, BGC_Micro, and GC) are employed to solve responses of Sub_A and Sub_B, respectively; and Newmark

 10970207, 2023, 16, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7256 by <
Shibboleth>

-m
em

ber@
gla.ac.uk, W

iley O
nline L

ibrary on [09/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



YUAN et al. 3515

F I G U R E 8 Error curves of integration methods considering various algorithmic parameters (𝛽 or 𝜌). Note that the upper abscissa and
lower abscissa indicate the varying parameter 𝛽 (Pre_NM) and 𝜌 (Pre_NG), respectively

T A B L E 2 Algorithmic parameters of the four subdomains

Items Pre_CH Pre_HHT Pre_WBZ Pre_NW CH/HHT/WBZ/Newmark

Sub_A and Sub_C 𝜌 𝜌 𝜌 (1/2, 𝛽) 𝜌 or (1/2, 𝛽)

Sub_B and Sub_D 𝜌= 1 𝜌= 1 𝜌= 1 (1/2, 1/4) 𝜌= 1 i.e., (1/2, 1/4)

method with (𝛾 = 1/2 and various 𝛽) and Δh= 10−6 s is used to calculate the entire oscillator for comparison. Due to the
employed macro time step, error curves of Sub_A under various 𝛽 are shown in Figure 9.

It is shown that Newmark with parameters (𝛽 = 1/12.8–1/11.2) has higher accuracy than that of the
energy-conservative coupling methods (i.e., PH, BGC_Macro, and Pre_NM). Furthermore, although more accurate link
forces are solved in Sub_B with a micro time step, the third-order accuracy cannot be obtained for the energy-conservative
coupling methods. Accuracy for the energy-conservative coupling methods gradually increases from 𝛽 = 1/12 to the two
sides. When Newmark scheme is used in the analysis for the two-subdomain scenario, the proposed method exactly
regresses to PH and BGC_Macro.
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3516 YUAN et al.

F I G U R E 9 Error curves of integration methods considering various algorithmic parameters 𝛽 (𝜌= 1 and m= 20)

6.2 Sandwich beam subjected to high-frequency impacts

A sandwich beam with multiple local damages, as shown in Figure 10, is used to investigate the computational accuracy,
energy property, and efficiency of the proposed method in terms of complex problems. The dimension information of
the beam and the notch is given in Figure 10A,B, respectively. The material parameters for material 1 are: Young mod-
ulus= 150 GPa, density= 6300 kg/m3, and Poisson’s parameter= 0.3. The material parameters for material 2 are: Young
modulus= 270 GPa, density= 9100 kg/m3, and Poisson’s parameter= 0.3. Loads applied to the beam in the vertical and
horizontal directions are:

{
Fv(t) = 2P sin(𝜔t)
Fh(t) = 2P sin(𝜔t)

P = 1e5, 𝜔 = 10𝜋 (75)

where P and 𝜔 are the amplitude and the frequency of applied loads in vertical and horizontal directions, respectively.
Considering the symmetry of the beam and vertical loads and the anti-symmetry of the horizontal loads, the half structure
is modelled in this study. Two models are built in the analysis for comparison. In particular, an entire model with 2524
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YUAN et al. 3517

F I G U R E 10 A damaged sandwich beam (Unit: m). (A) Sandwich beam subjected to high-frequency impact loads and its dimension,
and (B) Dimension of the notch

F I G U R E 11 Finite element analytical model of the beam

T A B L E 3 Time-step sizes of different cases

Item Case 1 Case 2 Case 3 Case 4 Case 5 Ratios

Sub_A (5× 10−7, 1/4) (5× 10−7, 1/3) (5× 10−7, 1/4) (5× 10−8, 1/4) (1× 10−6, 1/4) 50

Sub_B (1× 10−8, 1/4) (1× 10−8, 1/3) (1× 10−8, 1/6) (1× 10−9, 1/3) (2× 10−8, 1/4) 1

Sub_C (1× 10−7, 1/4) (1× 10−7, 1/3) (1× 10−7, 2/5) (1× 10−8, 2/5) (2× 10−7, 1/4) 10

Entire model (2× 10−9, 1/4)

Note: Note that the first and second numbers in all brackets are the time-step size and algorithmic parameter 𝛽, respectively; algorithmic parameter 𝛾 = 1/2 is
assumed in all cases to ensure the second order in results; and implicit schemes and explicit schemes are used in Sub_A/C and Sub_B, respectively, that is,
hybrid schemes are used in this calculation.

DOFs (i.e., the first model) is solved by using a unique time step, whose results are regarded as the reference values. The
second model is composed of three subdomains, as shown in Figure 11. The numbers of DOF for Sub_A, Sub_B, and
Sub_C are, respectively, 440, 1666, and 462. It is important to note that the 1st order frequency, the 7th order frequency, and
the highest frequency of the steel beam are, respectively, 302.24 Hz, 10015.86 Hz (Φ= 0.063), and 6,090,536 Hz (Φ= 38.27),
and a small-time step size is thus required to capture high-frequency responses of the beam. Five scenarios of time step
sizes are set in the second model as presented in Table 3 to discuss the accuracy, energy, and efficiency of the proposed
method. More specifically, two time-step ratios (i.e., 50 and 10) of subdomains are set in all cases of the second model to
explore the influence of time step ratios on the accuracy; the same time-step ratios but different algorithmic parameters
are employed in Cases 1, 2, and 3 to investigate the effect associated with algorithmic parameters; and the time-step size
of Case 3 is decreased by 10 times (i.e., Case 4) and increased by 2 times (i.e., Case 5) to analyze the influence of the
time-step size. It is worth noting that the algorithmic parameters of Sub_B in Case 3 is set as 1/6, and the explicit scheme
is used in the calculation of Sub_B.

6.2.1 Investigation of accuracy

Since high-frequency vibrations are observed in the horizontal direction based on the numerical results of the three
subdomains, the responses of G point (marked in Figure 11) in the horizontal direction are presented in Figure 12 to
assess the accuracy of the high-frequency computation. It is worth noting that displacement responses at the G point,
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3518 YUAN et al.

F I G U R E 12 Structural responses of the G point considering different cases. For (A–D), the first, second, and third letters in labels
mean the ‘Case’, case number, and subdomain number (Sub_B and Sub_C). Pre_HHT-B in (E, F) is the presented method with three NG
schemes considering varying 𝜌, and B and C are the names of the two subdomains
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YUAN et al. 3519

F I G U R E 13 Accumulated interface mechanical energy under different cases. The case number is labelled at the behind of labels

from Sub B and Sub C, overlap with the reference values for all computational cases. Local high-frequency responses of
velocity and acceleration, as marked in Figure 12A,C, are enlarged in Figure 12B,D, respectively. Due to high-frequency
vibrations of the steel beam (e.g., the 7th frequency is 10015.86 Hz) and a large time step (1.0× 10−6) adopted, inconsis-
tent acceleration responses (see Figure 13E) are captured in Case 5. Except for a slight difference in accelerations in Case
5, all responses at the G point from the two subdomains are overlapped for all cases. Therefore, interconnected subdo-
mains, solved by the proposed method accounting for different parameters and time-step sizes, can be coupled very well.
Moreover, due to the relatively small time-steps used in Case 4, responses of displacements and velocities overlap with
the reference results. Although the same time-step sizes are employed in Cases 1, 2, and 3, slight differences are observed
in the results due to different algorithmic dissipations. With the decrease of the time-step sizes (from Case 5 to Case 3 to
Case 4), responses for all cases gradually approach the reference values, as shown in Figures 12B,D. Therefore, both the
time-step size and algorithmic parameters can be used to adjust the accuracy of the proposed method.

Moreover, to explore the computational accuracy of the proposed method considering various NG schemes, Case 1 is
calculated, that is, different time step sizes and time step ratios are discussed in the analysis. High-frequency responses
of accelerations at G point and its enlarged view are given in Figure 12E,F, respectively. Four combined schemes are
investigated as Pre_HHT_B(0.5) denotes the responses of B subdomain at G point considering 𝜌= 0.5, and HHT represents
the same schemes used in three subdomains. It is shown that all results can have a good match with the reference value,
except for the high-frequency region (see Figure 12E); and for all combined schemes, responses of two subdomains at
G point overlap (see Figure 12F). Therefore, considering various time-step sizes and ratios, algorithmic parameters, and
schemes, the proposed method with NG can obtain desirable results.
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3520 YUAN et al.

6.2.2 Analysis of system energy

To explore the characteristics of accumulated mechanical energy under different time-step sizes and algorithmic param-
eters, based on the obtained numerical results of the three subdomains, each part of accumulated interface mechanical
energy (see Equation 55) is separately given in Figure 13. Some observations on Worklink are found: it gradually increases
with the increasing time-step size such as Cases 4, 3, and 5; and it is almost equal to zero for Case 4 with the smallest
time step. Therefore, time-step sizes of subdomains can be used to adjust the interface mechanical energy generated by
link forces. In addition, for the cases with the same time-step sizes and different algorithmic parameters such as Cases 1,
2, and 3, Worklink is slightly different. Thus, algorithmic parameters have a slight influence on Worklink. Although New-
mark schemes with parameters (1/2, 1/4) are used in all subdomains of Case 1, Worklink still exists in interfaces due to
the different time-step sizes. Some similar conclusions are found in Workdiss, as depicted in Figure 13B. Specifically, the
time-step size can be employed to effectively adjust dissipative energy, as shown in Case 4. For Newmark scheme with
parameters (1/2, 1/4), tiny dissipative energy Workdiss is still observed in Cases 1 and 5. Workext shown in Figure 13C is
almost equal to the total energy (Work). In addition, the theoretical pseudo-energy does not exist in interfaces, but a tiny
pseudo-energy is observed at interfaces due to floating-point operation errors.

6.2.3 Evaluation of efficiency

To assess the computational efficiency of the proposed method, two subdomains (i.e., Sub_A and Sub_B) are combined
into a new computational domain by using the reconstructed interfaces (i.e., la•c and lc•a). The time-step sizes of Sub_A
and Sub_B are, respectively, 2e-7 s and 1e-7 s. The computational efficiency of two element sizes is investigated. In par-
ticular, element size 1 is identical to that of the model in Figure 12, and half of the element size 1 is set as size 2. Based
on the discussion of the computational efficiency, as shown in Figure 9, Pre_NM, BGC_Macro, and PH have the same
computational accuracy, and they have higher accuracy than BGC_Micro and GC. Two parameter combinations are ana-
lyzed in this study, (i.e., Pre_NM_c1 and Pre_NM_c2). The five methods are here compared in the analysis. To observe
the variation of the computational cost with the simulation time, given the element size 1, Figure 14A shows the elapsed
times of various computational methods under 10 kinds of simulation time. Figure 14B presents the elapsed times of var-
ious computational methods considering two kinds of element sizes and the simulation time of 0.02 s. For the existing
MMTS methods, all subdomain vibrations of the existing MMTS methods are split into free vibrations and link vibrations
(i.e., twice complete vibrations are performed at each time step). Moreover, the time-consuming border programme is
employed in the computational process, especially for the subdomains with micro time steps. Hence, the existing meth-
ods are not dominant in computational efficiency. Conversely, once the calculation is performed at each time step of all

F I G U R E 14 Computational time of various methods with parameter combination 1 (Pre_NM_c1: 𝛾A = 𝛾B = 1/2 and 𝛽A = 𝛽B = 1/4)
parameter combination 2 (Pre_NM_c2: 𝛾A = 𝛾B = 1/2 and 𝛽A = 𝛽B = 1/6)
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YUAN et al. 3521

subdomains; computational information exchange between subdomains is only conducted at the system time step; and
the time-consuming border programme is not required in the computation. Therefore, the efficiency of the proposed
method is improved significantly compared to the existing MMTS methods. In addition, compared with the computa-
tional time using the implicit scheme, the explicit schemes of the proposed method can largely reduce the computational
time.

7 CONCLUSIONS

In this study, an efficient partitioned/combined computational method with energy conservation property was proposed
to solve dynamic systems with multiple temporal and element scales (i.e., multi-subdomains ≥3). Generalized-𝛼 integra-
tion schemes32 with desirable algorithmic damping were extended and incorporated into the proposed method to filter
spurious high-frequency vibration content effectively and retain the second-order accuracy simultaneously. The theo-
retical demonstration was given in detail. Two representative examples were used to demonstrate the accuracy, energy
properties, and efficiency of the proposed method.

The novelty of this paper lies in (1) decomposing an entire computational domain into several independent com-
putational subdomains (≥3), (2) combining several independent substructures with different time steps and integration
schemes into an entire computational domain, (3) ensuring the desirable algorithmic damping and accuracy by using the
Generalized-α schemes, and (4) improving the computational efficiency significantly and the accuracy. Some of the key
contributions to the paper are as follows:

1. Computational information exchange between subdomains or substructures is only conducted at the interfaces
of interconnected subdomains and the system time step. Moreover, only once subdomain calculation under link
forces and external forces is conducted for each time step compared with other existing methods. Therefore, the
computational efficiency is improved significantly.

2. The proposed method has the energy conservation property, but a small part of the system mechanical energy would
be transferred into the periodic interface mechanical energy. Therefore, the proposed method features the interface
pseudo-energy conservation property.

3. The unconditional stability of the implicit scheme and the high efficiency of the explicit scheme are retained in the solv-
ing process of different subdomains due to the independence of all subdomains. Generalized-α schemes with desirable
algorithmic damping can be employed to filter high-frequency spurious vibration content and ensure the second-order
accuracy.

The developed method will be extended to the calculation of subdomains with crossing interfaces and the nonlinear
computation in further research.
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APPENDIX A

T A B L E A1 Implementation flowchart of Pre_NM

(1) Calculate matrices and parameters of all subdomains

Kk
,Mk

, 𝛾
k
, 𝛽

k
,Δhk

,K∗k
,

(
Lk⋅jT

l j = (1, … , Sk)
)

(see Equation 12)

(2) Given initial conditions and condensed matrix

uk
t0
, vk

t0
, VK⋅J , HK⋅J , HK⋅f 1, HJ⋅f 1, (see Equation (37))

(3) Calculate link forces at the system time step

VK⋅J (see Equation (36))

(4) Calculate the responses of all subdomains

K
k
∗ΔU

k
tk
= F

k
tk
− L

T
kΔℜ

k
tk

∀tk ∈ {1,mk} (see Equation (42))

(5) Return to (3) for the next step or stop
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