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A B S T R A C T

The in-plane mechanics of two-dimensional heterogeneous hexagonal lattices are investigated. The heterogene-
ity originates from two physically realistic considerations: different constituent materials and different wall
thicknesses. Through the combination of multi-material and multi-thickness elements, the most general form
of 2D heterogeneous hexagonal lattices is proposed in this paper. By exploiting the mechanics of a unit cell
with multi-material and multi-thickness characteristics, exact closed-form analytical expressions of equivalent
elastic properties of the general heterogeneous lattice have been derived. The equivalent elastic properties
of the 2D heterogeneous lattice are Young’s modulli and Poisson’s ratios in both directions and the shear
modulus. Two distinct cases, namely lattices with thin and thick constituent members, are considered. Euler–
Bernoulli beam theory is employed for the thin-wall case, and Timoshenko beam theory is employed for the
thick-wall case. The closed-form expressions are validated by independent finite element simulation results.
The generalized expressions can be considered as benchmark solutions for validating future numerical and
experimental investigations. The conventional single-material and single-thickness homogeneous lattice appears
as a special case of the heterogeneous considered here. By introducing the Material Disparity Ratio (MDR)
and Geometric Disparity Ratio (GDR), variability in the equivalent elastic properties has been graphically
demonstrated. As opposed to classical homogeneous lattices, heterogeneous lattices significantly expand the
design space for 2D lattices. Orders-of-magnitude of variability in the equivalent elastic properties is possible
by suitably selecting material and geometric disparities within the lattices. The general closed-form expressions
proposed in this paper open up the opportunity to design next-generation heterogeneous lattices with highly
tailored effective elastic properties.
. Introduction

Mechanical metamaterials are formed by arranging different micro-
tructures to achieve the user defined novel macro-scale properties [1].
attice based mechanical metamaterials are formed by arranging the
eriodic unit cell in some particular arrangement to obtain unprece-
ented effective material properties. The unit cell of a lattice is gen-
rally formed of a different basic structural element based on the
pplication requirements. The microstructure of the unit cell and mate-
ial properties of the constituent elements define the overall properties
such as equivalent elastic modulli, Poisson’s ratios, buckling strength,
nergy absorption, vibration and wave propagation characteristics) of
he lattice material. The work of Gibson and Ashby [2] and Fleck
t al. [3] can be referred to as understanding the concept of cellular
aterials. Due to the advancement of additive manufacturing we have

he scope of exploiting innovative micro-structural design [4–6] to
xplore the fascinating material properties which are not possible in
aturally occurring materials. Most of the work in literature deals with
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developing microarchitectured lattice metamaterials with single mate-
rial for the constituent structural elements due to the manufacturing
easiness. Whereas, recent advanced technologies open up a space to
exploit different material for the microstructural elements along with
different geometries and it is shown that unprecedented properties
can be achieved considering multi-material microstructural design [7].
Though the analytical investigations are still limited in literature for the
multilateral lattices. In this work, we proposed generalized analytical
expressions for the equivalent elastic properties of the heterogeneous
hexagonal lattice.

The material and geometric properties of the periodic unit cell
dictates the mechanical properties of the micro-architectured materi-
als [8–10]. Several researchers proposed designs for obtaining a novel
class of metamaterials with user-defined properties. The honeycomb
material is being studied in an extensive manner [11–18] and utilized
to manufacture structural members in the aerospace industry due to
their high specific stiffness low relative density. It is also the geometric
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Fig. 1. (a) Illustration of a hexagonal heterogeneous lattice material (b) The unit cell used for the heterogeneous lattice with thickness 𝑡1, 𝑡2 and 𝑡3 and Young’s modulus 𝐸1 , 𝐸2
nd 𝐸3 for different beam members (c) A representative two noded beam element with three degrees of freedom (corresponds to the axial, transverse and rotational deformation)
t each node.
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lexibility and manufacturing suitability that the hexagonal material
s explored extensively. Researches have been performed to obtain
ifferent shapes for the unit cell such as rectangular, rhombus, re-
ntrant from the regular hexagonal material. In literature, we can
ind studies on analytical prediction of equivalent elastic modulli for
egular as well as irregular hexagonal lattice [19–23]. All these an-
lytical developments deal with single material lattice. Both material
nd geometric properties of constituent elements dictate the overall
ehaviour of the lattices and consequently, this opens up a significant
pportunity to explore a wide range of designs. The unit cell approach
s a widely used and acceptable approach to obtain the equivalent
aterial behaviour of the whole lattice [24–29]. There are also research
orks on the energy equivalence continuum-based approach to obtain

he equivalent continuum properties of the lattice structures. In [30]
aylor series expansion for the displacements of the repeating cell was
sed in this context.

Most of the works to obtain user defined novel equivalent ma-
erial properties are carried out by exploring the geometric aspects
f the repetitive unit cells or the microstructure. Keeping the mate-
ial the same and only by changing the geometry is quite easy and
uitable from the manufacturing point of view. It is noticed in the
iterature that different geometry for the microstructure expands the
esign space for mechanical metamaterials and increase the scope
or multi-functionality. The possibility to expand the multi-functional
esign space further with the help of additive manufacturing using
ifferent constituent materials along with the suitable geometry has
een described in some of the recent literature [31–33]. Most of the
orks for the multifunctional materials are based on the numerically

mplemented inverse design methodology to predict the intrinsic ma-
erials and their volume dfractions [34,35]. Though several analytical
ormulations for the equivalent elastic properties had been reported
or hexagonal structure, investigation of the heterogeneous lattices are
uch limited. Recently, an analytical study is performed on anisotropic

ailoring of multi-material lattices considering only the bending de-

ormation of the constituent beam members [36]. Our present work p

2

ddresses the analytical prediction and detailed study of all the equiv-
lent elastic properties for multilateral lattice considering both bending
nd axial deformation.

In this work, we focus on the development of analytical expressions
or the equivalent elastic properties of heterogeneous hexagonal lattices
y exploiting the stiffness components of the constituent members.
hese expressions are more general as one can obtain the special case of
lassical homogeneous hexagonal lattice [2]. The formulation can also
e utilized to obtain other geometries as well as auxetic case easily.
his analysis addresses the contribution from axial stretching of the
onstituent elements along with bending. The generalized formulation
s then used to get the expressions for thin and thick beams consid-
ring the Euler Bernoulli and Timoshenko beam theory respectively.
eterogeneous lattices can help in expanding the design space for
exagonal lattices for tuning the material properties as per engineering
equirements and the developed closed-form solutions can be utilized
s a benchmark solution for further studies. The paper is organized
s follows. In Section 2, the generalized formulation of the equivalent
aterial properties for heterogeneous lattice is derived. The formula-

ion can capture different geometric parameters for all the constituent
eams. Next, The closed-form expressions are utilized to obtain those
aterial properties considering Euler Bernoulli beam theory which is

pplicable for lattice with thin beams. Various cases are discussed
uch as the most general one that is all the material and geometric
roperties of a constituent element are different, multi-material but
ame wall thickness and same material but different wall thickness
re discussed in Section 3. The analytical formulation is extended for
hick beam configurations considering the Timoshenko beam theory
nd illustrated in Section 4. The results corresponding to the different
ases are obtained and discussed in Section 6. Finally, the conclusions
re drawn in Section 7.

. Equivalent elastic properties of heterogeneous lattices

In this section, the generalized expressions for the equivalent elastic

roperties of the heterogeneous lattice are derived. The equivalent



S. Mukherjee and S. Adhikari Thin-Walled Structures 167 (2021) 108188
Fig. 2. Schematic diagram of a unit cell and deformation patterns under the application of a uniform stress field 𝜎1 in the 1-direction. This configuration is used to derive the
expression of the longitudinal Young’s modulus �̄�1 and Poisson’s ratio 𝜈12.
T

elastic property of a lattice structure are obtained by exploiting the
periodicity of a suitably selected unit cell. The representative example
of a hexagonal heterogeneous lattice and its corresponding unit cell is
shown in Fig. 1. The entire lattice can be constructed by tessellating
the representative unit cell in both directions. We consider the effect of
both bending and stretching of the cell walls under the application of
in-plane tensile/compressive stresses. The constitutive element of the
unit cell in Fig. 1(b) can be modelled as a beam under the uniform
applied stress in the out-of-plane direction. Fig. 1(c) shows a schematic
of a two noded general beam element with six degrees of freedom. In
the following subsections, a general derivation of the equivalent elastic
properties of the heterogeneous lattice are obtained using the principle
of structural mechanics by exploiting the stiffness coefficients of the
constitutive beam elements.

2.1. The longitudinal Young’s modulus �̄�1

A uniform stress field 𝜎1 is applied to the unit cell in direction-1 as
shown in Fig. 2 to derive the expression of the equivalent longitudinal
Young’s modulus. This results in a force 𝑃 being applied at point A and
B on the unit cell. The magnitude of the force 𝑃 is given by

𝑃 = 𝜎1𝑏(ℎ + 𝑙 sin 𝜃) (1)

Considering 𝜂 and 𝛾 as deformations transverse and along the inclined
member AO and BO we have

𝜂𝐴 = 𝑃 sin 𝜃
𝐾𝑎

55
and 𝛾𝐴 = 𝑃 cos 𝜃

𝐾𝑎
44

(2)

𝜂𝐵 = 𝑃 sin 𝜃
𝐾𝑏

55

and 𝛾𝐵 = 𝑃 cos 𝜃
𝐾𝑏

44

(3)

Here 𝐾 𝑖
55 and 𝐾 𝑖

44 (𝑖 = 𝑎 and 𝑏) are elements of the stiffness matrix
of the inclined member AO and BO of length 𝑙. The deflection in the
1-direction of point A and B are therefore

𝛿1𝐴 = 𝜂𝐴 sin 𝜃 + 𝛾𝐴 cos 𝜃 = 𝑃

(

sin2 𝜃
𝐾𝑎

55
+ cos2 𝜃

𝐾𝑎
44

)

= 𝑃 sin2 𝜃
𝐾𝑎

55

(

1 + cot2 𝜃
𝐾𝑎

55
𝐾𝑎

44

) (4)

and

𝛿1𝐵 = 𝜂𝐵 sin 𝜃 + 𝛾𝐵 cos 𝜃 = 𝑃

(

sin2 𝜃
𝐾𝑏

55

+ cos2 𝜃
𝐾𝑏

44

)

= 𝑃 sin2 𝜃
𝑏

(

1 + cot2 𝜃
𝐾𝑏

55
𝑏

) (5)
𝐾55 𝐾44

3

The total deflection in 1-direction is

𝛿1 = 𝛿1𝐴 + 𝛿1𝐵 = 𝑃

(

sin2 𝜃

(

1
𝐾𝑎

55
+ 1

𝐾𝑏
55

)

+ cos2 𝜃

(

1
𝐾𝑎

44
+ 1

𝐾𝑏
44

))

(6)

The strain the 1-direction is obtained as

𝜖1 =
𝛿1

2𝑙 cos 𝜃
=

𝑃

(

sin2 𝜃

(

1
𝐾𝑎

55
+ 1

𝐾𝑏
55

)

+ cos2 𝜃

(

1
𝐾𝑎

44
+ 1

𝐾𝑏
44

))

2𝑙 cos 𝜃
(7)

Using this, the Young’s modulus in 1-direction is obtained in terms of
the elements of the stiffness matrix as

�̄�1 =
𝜎1
𝜖1

= 2 cos 𝜃

𝑏(𝛽 + sin 𝜃) sin2 𝜃

((

1
𝐾𝑎

55
+ 1

𝐾𝑏
55

)

+ cot2 𝜃

(

1
𝐾𝑎

44
+ 1

𝐾𝑏
44

))

(8)

From Eq. (8), it can be observed that for the inclined members only
two coefficients, 𝐾 𝑖

55 and 𝐾 𝑖
44 (𝑖 = 𝑎, 𝑏), contribute towards the value

of 𝐸1. In Section 2.2, the Poisson’s ratio 𝜈12, will be derived. It can be
noted that no assumptions are necessary for the displacement condition
at point O or the member OC.

2.2. The Poisson’s ratio 𝜈12

The Poisson’s ratio 𝜈12 is obtained considering the strain in the
direction 2 for applied stress in the 1-direction from Fig. 2. The total
deflection in the 2-direction is

−𝛿2 = −𝛿2𝑎 − 𝛿2𝑏 (9)

where,

−𝛿2𝑎 = 𝜂𝐴 cos 𝜃 − 𝛾𝐴 sin 𝜃 = 𝑃

(

sin 𝜃 cos 𝜃
𝐾𝑎

55
− sin 𝜃 cos 𝜃

𝐾𝑎
44

)

(10)

and

−𝛿2𝑏 = 𝜂𝐵 cos 𝜃 − 𝛾𝐵 sin 𝜃 = 𝑃

(

sin 𝜃 cos 𝜃
𝐾𝑏

55

− sin 𝜃 cos 𝜃
𝐾𝑏

44

)

(11)

he total strain in the 2-direction is

− 𝜖2 =
𝛿2 =

sin 𝜃 cos 𝜃

((

1
𝐾𝑎

55
+ 1

𝐾𝑏
55

)

−

(

1
𝐾𝑎

44
+ 1

𝐾𝑏
44

))
2(ℎ + 𝑙 sin 𝜃) 2(ℎ + 𝑙 sin 𝜃)
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Fig. 3. Schematic diagram of a unit cell and deformation patterns under the application
of uniform stress field 𝜎2 applied in the 2-direction. This configuration is used to derive
the expression of the longitudinal Young’s modulus �̄�2 and Poisson’s ratio 𝜈21.

(12)

Using the expressions of the strains in directions 1 and 2 given by Eqs.
(7) and (12), we obtain the Poisson’s ratio 𝜈12

𝜈12 = −
𝜖2
𝜖1

=

sin 𝜃 cos2 𝜃

((

1
𝐾𝑎

55
+ 1

𝐾𝑏
55

)

−

(

1
𝐾𝑎

44
+ 1

𝐾𝑏
44

))

(𝛽 + sin 𝜃)

(

sin2 𝜃

(

1
𝐾𝑎

55
+ 1

𝐾𝑏
55

)

+ cos2 𝜃

(

1
𝐾𝑎

44
+ 1

𝐾𝑏
44

))

(13)

rom equation (13), it can be observed that only two coefficients, 𝐾55
nd 𝐾44, contribute towards the value of 𝜈12.

.3. The transverse Young’s modulus �̄�2

The transverse Young’s modulus is derived by considering a uniform
tress field 𝜎2 applied to the unit cell in direction-2 as shown in Fig. 3.
he total vertical force 𝑊 on the unit cell is distributed on the two
onstituent beam members according to their stiffness values. Due to
he displacement compatibility condition, the deformation of point 𝐴
nd 𝐵 in the 2- direction are the same. Besides, the point O deflects
nly in the 2-direction. For the clarity of presentation, the deflection of
he point A or B and point O are considered separately in the derivation
nd also shown separately in Fig. 3. The magnitude of this vertical force
s given by

= 𝑊1 +𝑊2 = 2𝜎2𝑏𝑙 cos 𝜃 (14)

onsidering 𝜂𝐴 and 𝛾𝐴 as deformations transverse and along the in-
lined member AO, we have

𝐴 =
𝑊1 cos 𝜃
𝐾𝑎

55
and 𝛾𝐴 =

𝑊1 sin 𝜃
𝐾𝑎

44
(15)

imilarly, the axial and transverse deformations of member BO are

𝐵 =
𝑊2 cos 𝜃
𝐾𝑏

55

and 𝛾𝐵 =
𝑊2 sin 𝜃
𝐾𝑏

44

(16)

The deflection in the 2-direction of point A and point B are therefore

𝛿2A = 𝜂𝐴 cos 𝜃 + 𝛾𝐴 sin 𝜃 = 𝑊1

(

cos2 𝜃
𝑎 + sin2 𝜃

𝑎

)

(17)

𝐾55 𝐾44

4

and

𝛿2B = 𝜂𝐵 cos 𝜃 + 𝛾𝐵 sin 𝜃 = 𝑊2

(

cos2 𝜃
𝐾𝑏

55

+ sin2 𝜃
𝐾𝑏

44

)

(18)

The total force acting in the 2-direction at point O is 𝑊 . Therefore,
point O only has a deformation in the 2-direction due to the axial
deformation 𝛿2O of the vertical member OC

𝛿2O = 𝑊
𝐾 (ℎ)

44

(19)

The assumed compatibility condition is given by

𝛿2A = 𝛿2B (20)

Putting the values of 𝛿2B and 𝛿2B in Eq. (20) and performing some
algebraic manipulations we obtain

𝑊1 =

𝑊

(

cos2 𝜃
𝐾𝑏

55

+ sin2 𝜃
𝐾𝑏

44

)

(

cos2 𝜃

(

1
𝐾𝑎

55
+ 1

𝐾𝑏
55

)

+ sin2 𝜃

(

1
𝐾𝑎

44
+ 1

𝐾𝑏
44

)) = 𝑊 �̂�
�̂� + �̂�

(21)

and 𝑊2 =

𝑊

(

cos2 𝜃
𝐾𝑎

55
+ sin2 𝜃

𝐾𝑎
44

)

(

cos2 𝜃

(

1
𝐾𝑎

55
+ 1

𝐾𝑏
55

)

+ sin2 𝜃

(

1
𝐾𝑎

44
+ 1

𝐾𝑏
44

)) = 𝑊 �̂�
�̂� + �̂�

(22)

where

�̂� = cos2 𝜃
𝐾𝑎

55
+ sin2 𝜃

𝐾𝑎
44

(23)

and �̂� = cos2 𝜃
𝐾𝑏

55

+ sin2 𝜃
𝐾𝑎

44
(24)

Here (∙)(ℎ) corresponds to the properties arising from the vertical mem-
er OC of length ℎ.

The total deflection in the 2-direction is obtained as

2 =
𝛿2A + 𝛿2B

2
+ 𝛿2O = 𝑊

(

�̂��̂�
(�̂� + �̂�)

+ 1
𝐾ℎ

44

)

(25)

he strain the 2-direction is therefore

2 =
𝛿2

ℎ + 𝑙 sin 𝜃
=

2𝜎2𝑙𝑏 cos 𝜃

(

�̂��̂�
(�̂� + �̂�)

+ 1
𝐾ℎ

44

)

ℎ + 𝑙 sin 𝜃
(26)

Using this, the Young’s modulus in 1-direction is derived in terms of
the elements of the stiffness matrix as

�̄�2 =
𝜎2
𝜖2

=
(𝛽 + sin 𝜃)

2𝑏 cos 𝜃

(

�̂��̂�
(�̂� + �̂�)

+ 1
𝐾ℎ

44

) (27)

rom Eqs. (23), (24) and (27), it can be observed that only two
oefficients of the 6 × 6 element stiffness matrix of the inclined member
nd one coefficients of the 6 × 6 element stiffness matrix of vertical
ember, namely, 𝐾55, 𝐾44 and 𝐾 (ℎ)

44 , contribute towards the value of
2. The Poisson’s ratio corresponding to this stress field, namely 𝜈21, is

derived in 2.4.

2.4. The Poisson’s ratio 𝜈21

To obtain the Poisson’s ratio 𝜈21, we need to obtain the strain in
the direction 1 due to the applied stress in the 2-direction (Fig. 3). The
total deflection in the 1-direction is

𝛿 = 𝛾 cos 𝜃 − 𝜂 sin 𝜃 + 𝛾 cos 𝜃 − 𝜂 sin 𝜃 (28)
1 𝐴 𝐴 𝐵 𝐵
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Fig. 4. Schematic of the deformation patterns and internal forces under the application of the shear stress field 𝜏. These configurations are used to derive the expression of the
shear modulus �̄�12.
I

𝐹

a
m
v

o

𝑀

T
t
d
m

𝛿

H
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a

= 𝑊 �̂�
�̂� + �̂�

sin 𝜃 cos 𝜃

(

1
𝐾𝑎

44
− 1

𝐾𝑎
55

)

+ 𝑊 �̂�
�̂� + �̂�

sin 𝜃 cos 𝜃

(

1
𝐾𝑏

44

− 1
𝐾𝑏

55

)

(29)

The total strain in the 1-direction is

1 =
𝛿1

2𝑙 cos 𝜃
(30)

Using the expressions of the strains in directions 1 and 2 given by Eqs.
(26) and (30), we obtain the Poisson’s ratio 𝜈21

𝜈21 = −
𝜖1
𝜖2

=

(𝛽 + sin 𝜃) sin 𝜃

(

�̂�

(

1
𝐾𝑎

55
− 1

𝐾𝑎
44

)

+ �̂�

(

1
𝐾𝑏

55

− 1
𝐾𝑏

44

))

2(�̂� + �̂�)

(

�̂��̂�
(�̂� + �̂�)

+ 1
𝐾ℎ

44

)

(31)

From Eq. (31), it can be observed that only two coefficients of the 6 × 6
lement stiffness matrix of the inclined member and one coefficients of
he 6 × 6 element stiffness matrix of vertical member, namely, 𝐾55, 𝐾44
nd 𝐾 (ℎ)

44 , contribute towards the value 𝜈21.

.5. The shear modulus �̄�21

The expression for the shear modulus 𝐺12 is derived in this section
onsidering the contribution of strains from bending and axial deforma-
ions. Fig. 4 depicts the details of the forces and deformation patterns
f both cases. For deriving the bending contributions, considering the
eformation of the adjacent cells, it can be deduced that the midpoint
f the vertical member will only have a deformation in the 1-direction
ue to shear. Therefore, in Fig. 4(a) unit cell with the vertical member
ith length ℎ∕2 and a slant member with length 𝑙 are considered. Due

o the symmetry points A and O will not have any relative movement.
he shear deflection 𝛾𝐷 due to bending consists of bending deflection
f the member OD and its deflection due to rotation of joint O arising
rom the bending of the slant members.

It can be noted here that the elements of the stiffness matrix (for
xample, refer to Eq. (66) later in the paper) will be different for the
5

vertical member and the slant member due to their different lengths.
The bending deformation of point D with respect to point O in the
direction 1 can be obtained using the stiffness elements of the stiffness
matrix with length ℎ∕2. The bending deformation 𝜂𝐷 is described
below.

𝜂𝐷 =
𝐹1

(

𝐾 (ℎ∕2)
55 −

𝐾 (ℎ∕2)
56 𝐾 (ℎ∕2)

65

𝐾 (ℎ∕2)
66

)

=
𝐹1𝐾

(ℎ∕2)
66

(

𝐾 (ℎ∕2)
55 𝐾 (ℎ∕2)

66 −
(

𝐾 (ℎ∕2)
56

)2
) (32)

n the above

1 = 2𝜏𝑙𝑏 cos 𝜃 (33)

nd we make use of the symmetry of the elements of the stiffness
atrix. Here (∙)(ℎ∕2) corresponds to the properties arising from the

ertical member OD of length ℎ∕2 as shown in Fig. 4(a).
From the diagram in Fig. 4(a), the moment acting on point O is

btained as

= 𝐹1 ×
ℎ
2
=

𝐹1ℎ
2

= 𝑀1 +𝑀2 (34)

he rotations of the two adjacent beams at point O are the same. On
he basis of the degrees of freedom as denoted in Section 2 (Fig. 1(c)),
eflection of the end O with respect to the end A due to application of
oment 𝑀 at the end O is given as

𝑟1 =
𝑀1
−𝐾𝑎

65
= 𝛿𝑟2 =

𝑀2

−𝐾𝑏
65

(35)

ere 𝐾65 denotes the stiffness element corresponding to the slant
ember. The negative sign emerges due to the direction of the rotation

s given in Fig. 1(c). The values of 𝑀1 and 𝑀2 are given by

𝑀1 = 𝑀
𝐾𝑎

65

𝐾𝑎
65 +𝐾𝑏

65

(36)

and 𝑀2 = 𝑀
𝐾𝑏

65

𝐾𝑎
65 +𝐾𝑏

65

(37)
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Thus the rotation of joint O can be expressed as

𝜙 = 𝜙1 = 𝜙2 =
𝛿𝑟1
𝑙

= −
𝑀1
𝑙𝐾𝑎

65
= −

𝐾𝑎
65

𝐾𝑎
65 +𝐾𝑏

65

𝑀
𝑙𝐾𝑎

65
= −

𝐹1ℎ
2𝑙(𝐾𝑎

65 +𝐾𝑏
65)

(38)

The shear deformation in the 1-direction due to bending at point D
under the application of shear stress 𝜏 can be expressed as

𝛿1𝐷 = 2
(

𝜙ℎ
2
+ 𝜂𝐷

)

= −
𝐹1ℎ2

2𝑙(𝐾𝑎
65 +𝐾𝑏

65)
+

2𝐹1𝐾
(ℎ∕2)
66

(

𝐾 (ℎ∕2)
55 𝐾 (ℎ∕2)

66 −
(

𝐾 (ℎ∕2)
56

)2
)

(39)

The factor 2 in the above expression arises due to the consideration
of two units shown in Fig. 4(b) to capture the total shear deformation
by representing a complete unit cell that can create the entire lattice
structure on tessellation.

To obtain the shear deformation due to axial stretching deformation,
we consider the forcing 𝐹1 in (33) and 𝐹2 as given by

𝐹2 = 𝜏𝑏(ℎ + 2𝑙 sin 𝜃) (40)

To calculate the forces acting on the member 𝑎 and 𝑏 due to 𝐹1, we
onsider the description in Fig. 4(b). The force 𝐹1 will be distributed

between the two members as per their stiffness. This configuration is
analogous to a parallel spring system. The compatibility condition is
that the displacements of the members 𝑎 and 𝑏 in the 1-direction are
the same. The total axial deformations of AO is 𝜂𝑎 = 𝜂𝐹1𝑎 + 𝜂𝐹2𝑎 and for

O it is 𝜂𝑏 = 𝜂𝐹1𝑏 + 𝜂𝐹2𝑏 . The axial deformation of AO and BO due to 𝐹 𝑎
1

and 𝐹 𝑏
1 are

𝜂𝐹1𝑎 =
𝐹 𝑎
1 cos 𝜃
𝐾𝑎

44
(41)

and 𝜂𝐹1𝑏 =
𝐹 𝑏
1 cos 𝜃

𝐾𝑏
44

(42)

he components of 𝜂𝐹1𝑎 in 1 and 2 directions are

𝐹 𝑎
1

1 = 𝜂𝐹1𝑎 cos 𝜃 =
𝐹 𝑎
1 cos2 𝜃
𝐾𝑎

44
and 𝛿

𝐹 𝑎
1

2 = 𝜂𝐹1𝑎 sin 𝜃 =
𝐹 𝑎
1 sin 𝜃 cos 𝜃

𝐾𝑎
44

(43)

imilarly, the components of 𝜂𝐹1𝑏 in 1 and 2 directions are

𝐹 𝑏
1

1 = 𝜂𝐹1𝑏 cos 𝜃 =
𝐹 𝑏
1 cos2 𝜃

𝐾𝑏
44

and 𝛿
𝐹 𝑏
1

2 = 𝜂𝐹1𝑏 sin 𝜃 =
𝐹 𝑏
1 sin 𝜃 cos 𝜃

𝐾𝑏
44

(44)

The compatibility condition is given by

𝜂𝐹1𝑎 cos 𝜃 = 𝜂𝐹1𝑏 cos 𝜃 (45)

From the force equilibrium one also has

𝐹1 = 𝐹 𝑎
1 + 𝐹 𝑏

1 (46)

Considering Eqs. (45) and (46) we obtain the expressions for 𝐹1 and 𝐹2
s

𝑎
1 = 𝐹1

(

𝐾𝑎
44

𝐾𝑎
44 +𝐾𝑏

44

)

and 𝐹 𝑏
1 = 𝐹1

(

𝐾𝑏
44

𝐾𝑎
44 +𝐾𝑏

44

)

(47)

To obtain the displacement contribution from the force 𝐹2, a similar
approach is considered and it is described below.

To calculate the forces acting on the members 𝑎 and 𝑏 due to 𝐹2
e consider Fig. 4(b). The two arms are acting as a parallel spring

ystem and 𝐹2 is getting distributed in the two members as per their
tiffness. The compatibility condition here is that the displacements in
he 2 direction are the same for members 𝑎 and 𝑏. The axial deformation

of BO and CD due to 𝐹 𝑎
2 and 𝐹 𝑏

2 are

𝜂𝐹2𝑎 =
𝐹 𝑎
2 sin 𝜃

𝑎 (48)

𝐾44

6

and 𝜂𝐹2𝑏 =
𝐹 𝑏
2 sin 𝜃

𝐾𝑏
44

(49)

The components of 𝜂𝐹2𝑎 in 1 and 2 directions are

𝛿
𝐹 𝑎
2

1 = 𝜂𝐹2𝑎 cos 𝜃 =
𝐹 𝑎
2 sin 𝜃 cos 𝜃

𝐾𝑎
44

and 𝛿
𝐹 𝑎
2

2 = 𝜂𝐹2𝑎 sin 𝜃 =
𝐹 𝑎
2 sin2 𝜃
𝐾𝑎

44
(50)

In the same manner, the components of 𝜂𝐹2𝑏 in 1 and 2 directions are

𝛿
𝐹 𝑏
2

2 = 𝜂𝐹2𝑏 cos 𝜃 =
𝐹 𝑏
2 sin 𝜃 cos 𝜃

𝐾𝑏
44

and 𝛿
𝐹 𝑏
2

2 = 𝜂𝐹2𝑏 sin 𝜃 =
𝐹 𝑏
2 sin2 𝜃

𝐾𝑏
44

(51)

The compatibility condition is given as

𝜂𝐹2𝑎 sin 𝜃 = 𝜂𝐹2𝑏 sin 𝜃 (52)

From the force equilibrium, one obtains

𝐹2 = 𝐹 𝑎
2 + 𝐹 𝑏

2 (53)

onsidering Eqs. (52) and (53) we obtain the expressions for 𝐹1 and 𝐹2
s

𝑎
2 = 𝐹2

(

𝐾𝑎
44

𝐾𝑎
44 +𝐾𝑏

44

)

and 𝐹 𝑏
2 = 𝐹2

(

𝐾𝑏
44

𝐾𝑎
44 +𝐾𝑏

44

)

(54)

The lengths of the unit cell in Fig. 4(b) in the 1 and 2 directions are
given by

𝐿1 = 2𝑙 cos 𝜃 (55)

and 𝐿2 = (ℎ + 𝑙 sin 𝜃) (56)

Total deflections on 1 and 2 directions will consist of the deflection of
AO and BO due to 𝐹1 and 𝐹2. The expressions are as follows

𝛿1 = 𝛿𝐹11 + 𝛿𝐹21 = 𝜂𝐹1𝑎 cos 𝜃 + 𝜂𝐹2𝑎 cos 𝜃 + 𝜂𝐹2𝑏 cos 𝜃 (57)

=
𝐹1 cos2 𝜃
𝐾𝑎

44 +𝐾𝑏
44

+ sin 𝜃 cos 𝜃

(

𝐹 𝑎
2

𝐾𝑎
44

+
𝐹 𝑏
2

𝐾𝑏
44

)

=
𝐹1 cos2 𝜃
𝐾𝑎

44 +𝐾𝑏
44

+
2𝐹2 sin 𝜃 cos 𝜃
𝐾𝑎

44 +𝐾𝑏
44

= 𝜏𝑙𝑏 cos 𝜃
𝐾𝑎

44 +𝐾𝑏
44

(

2 cos2 𝜃 + 2(𝛽 + 2 sin 𝜃) sin 𝜃
)

(58)

𝛿2 = 𝛿𝐹12 + 2𝛿𝐹22 = 𝜂𝐹1𝑎 sin 𝜃 + 𝜂𝐹1𝑏 sin 𝜃 + 2𝜂𝐹2𝑏 sin 𝜃

= sin 𝜃 cos 𝜃

(

𝐹 𝑎
1

𝐾𝑎
44

+
𝐹 𝑏
1

𝐾𝑏
44

)

+
2𝐹2 sin

2 𝜃
𝐾𝑎

44 +𝐾𝑏
44

=
2𝐹1 sin 𝜃 cos 𝜃
𝐾𝑎

44 +𝐾𝑏
44

+
2𝐹2 sin

2 𝜃
𝐾𝑎

44 +𝐾𝑏
44

= 𝜏𝑙𝑏 sin 𝜃
𝐾𝑎

44 +𝐾𝑏
44

(

4 cos2 𝜃 + 2(𝛽 + 2 sin 𝜃) sin 𝜃
)

(59)

The total shear strain arising due to bending and axial deformation is
given by

𝛾 =
𝛿1 + 𝛿1𝐷

𝐿2
+

𝛿2
𝐿1

=
𝛿1 + 𝛿1𝐷
ℎ + 𝑙 sin 𝜃

+
𝛿2

2𝑙 cos 𝜃

=
𝛿1𝐷

ℎ + 𝑙 sin 𝜃
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝛾𝑏

+
𝛿1

ℎ + 𝑙 sin 𝜃
+

𝛿2
2𝑙 cos 𝜃

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛾𝑠

(60)

Here 𝛾𝑏 and 𝛾𝑠 are respectively the bending and stretching components
of the total shear strain.

Now using Eq. (39) we obtain the bending component of the shear
strain as

𝛾𝑏 =
𝛿1𝐷

(ℎ + 𝑙 sin 𝜃)

=
𝐹1

(ℎ + 𝑙 sin 𝜃)

⎛

⎜

⎜

⎜

⎜

⎝

− ℎ2

2𝑙(𝐾𝑎
65 +𝐾𝑏

65)
+

2𝐾 (ℎ∕2)
66

(

𝐾 (ℎ∕2)
55 𝐾 (ℎ∕2)

66 −
(

𝐾 (ℎ∕2)
56

)2
)

⎞

⎟

⎟

⎟

⎟

⎠

= 𝜏𝑏 cos 𝜃
(𝛽 + sin 𝜃)

⎛

⎜

⎜

⎜

⎜

− ℎ2

𝑙(𝐾𝑎
65 +𝐾𝑏

65)
+

4𝐾 (ℎ∕2)
66

(

𝐾 (ℎ∕2)
55 𝐾 (ℎ∕2)

66 −
(

𝐾 (ℎ∕2)
56

)2
)

⎞

⎟

⎟

⎟

⎟

(61)
⎝ ⎠
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The stretching component of the shear strain can be simplified as

𝛾𝑠 =
𝛿1

ℎ + 𝑙 sin 𝜃
+

𝛿2
2𝑙 cos 𝜃

= 2𝜏𝑏 cos 𝜃
(𝛽 + 2 sin 𝜃)(𝐾𝑎

44 +𝐾𝑏
44)

(

cos2 𝜃 + (𝛽 + sin 𝜃) sin 𝜃
)

+ 𝜏𝑏 sin 𝜃
2 cos 𝜃(𝐾𝑎

44 +𝐾𝑏
44)

(

4 cos2 𝜃 + 2(𝛽 + 2 sin 𝜃) sin 𝜃
)

(62)

Substituting the expressions of both the shear strains, the modulus can
be obtained as

�̄�12 =
𝜏
𝛾
= 𝜏

𝛾𝑏 + 𝛾𝑠

= 1

𝑏 cos 𝜃
(𝛽 + sin 𝜃)

⎛

⎜

⎜

⎜

⎜

⎝

− ℎ2

𝑙(𝐾𝑎
65 +𝐾𝑏

65)
+

4𝐾 (ℎ∕2)
66

(

𝐾 (ℎ∕2)
55 𝐾 (ℎ∕2)

66 −
(

𝐾 (ℎ∕2)
56

)2
)

⎞

⎟

⎟

⎟

⎟

⎠

+ 2𝑏 cos 𝜃
(𝛽 + sin 𝜃)(𝐾𝑎

44 +𝐾𝑏
44)

(

cos2 𝜃 + (𝛽 + 2 sin 𝜃) sin 𝜃
)

+ 𝑏 sin 𝜃
2 cos 𝜃(𝐾𝑎

44 +𝐾𝑏
44)

(

4 cos2 𝜃 + 2(𝛽 + 2 sin 𝜃) sin 𝜃
)

(63)

t can be observed from Eq. (63) that two different stiffness matrices
ontribute to the shear modulus which include stiffness terms 𝐾65 and
44 of the inclined member. Additionally, stiffness terms 𝐾 (ℎ∕2)

55 , 𝐾 (ℎ∕2)
56

nd 𝐾 (ℎ∕2)
66 of the vertical member with half the length also contribute

o the shear modulus.

. Heterogeneous lattices with thin walls

.1. The stiffness matrix: Euler–Bernoulli beam theory

Euler Bernoulli beam theory is suitable to model constituent beam
ith thin walls (𝛼 < 0.1). The governing equation of the transverse
eflection for an Euler–Bernoulli beam [37] is given by

𝐼 𝜕
4𝑤
𝜕𝑥4

= 𝑓𝑏 (64)

ere 𝑤 ≡ 𝑤(𝑥) and 𝑓𝑏 ≡ 𝑓𝑏(𝑥) are the transverse displacement
nd applied transverse forcing on the beam. 𝐸𝐼 denote the bending
tiffness, 𝐼 is the area moment of inertia of the beam cross section and 𝐸
s the Young;’s modulus of the beam material. The equation governing
onsidering the axial deformation is as follows

𝐴 𝜕2𝑢
𝜕𝑥2

= 𝑓𝑎 (65)

here 𝑢 ≡ 𝑢(𝑥) and 𝑓𝑥 ≡ 𝑓𝑎(𝑥) are the axial displacement and applied
xial forcing on the beam respectively. 𝐸𝐴 depicts the axial stiffness of
he beam and 𝐴 is the cross sectional area of the beam. Finite element
ormulation with cubic shape function for the bending and linear shape
unction for the axial deformation can exactly represent the above
orce–displacement relationship of a beam element. The beam element
as three degrees of freedom in each node, which correspond to axial,
ransverse and rotational deformations. The expression for the stiffness
atrix [37,38] of the beam element is

𝑖𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝐸𝐴
𝐿

0 0 −𝐸𝐴
𝐿

0 0

0 12𝐸𝐼
𝐿3

6𝐸𝐼
𝐿2

0 −12𝐸𝐼
𝐿3

6𝐸𝐼
𝐿2

0 6𝐸𝐼
𝐿2

4𝐸𝐼
𝐿

0 −6𝐸𝐼
𝐿2

2𝐸𝐼
𝐿

−𝐸𝐴
𝐿

0 0 𝐸𝐴
𝐿

0 0

0 −12𝐸𝐼
𝐿3

−6𝐸𝐼
𝐿2

0 12𝐸𝐼
𝐿3

−6𝐸𝐼
𝐿2

0 6𝐸𝐼 2𝐸𝐼 0 −6𝐸𝐼 4𝐸𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(66)
⎣ 𝐿2 𝐿 𝐿2 𝐿 ⎦

7

Here 𝑖, 𝑗 = 1,… , 6 denotes the entries corresponding to the degrees
of freedom and shown in Fig. 1(c). The entries of the stiffness matrix
corresponding to for 𝑖, 𝑗 = 1 and 4 correspond to the axial deformation
governed by Eq. (65), while the entries for 𝑖, 𝑗 = 2, 3, 5 and 6 correspond
to the bending deformation governed by Eq. (64). The elements of the
stiffness matrix will be used for both the inclined member (𝐿 = 𝑙) and
he vertical member (𝐿 = ℎ) in the unit cell.

.2. The equivalent elastic properties: The general case

This section deals with the generalized formulation of equivalent
lastic modulli considering beam with rectangular cross section. The
xpressions for the moment of inertia and the cross sectional area
ppears in Eq. (66) are as follows

= 1
12

𝑏𝑡3 and 𝐴 = 𝑏𝑡 (67)

We define the following non-dimensional geometric parameters

𝛼 = 𝑡
𝑙

and 𝛽 = ℎ
𝑙

(68)

From the derivations in Sections 2.1 and 2.3, it can be observed that
two coefficients of the 6 × 6 element stiffness matrix of the inclined
member and one coefficients of the 6 × 6 element stiffness matrix of
vertical member, namely, 𝐾55, 𝐾44 and 𝐾 (ℎ)

44 , are necessary to obtain
𝐸1, 𝐸2𝜈12 and 𝜈21. The simplified expressions of moment of inertia and
the cross-sectional area in Eq. (67), the stiffness coefficients are given
by

𝐾𝑎
55 =

12𝐸1𝐼1
𝑙3

= 𝐸1𝑏𝛼
3
1 , 𝐾

𝑎
44 =

𝐸1𝐴1
𝑙

= 𝐸1𝑏𝛼1

and 𝐾 (ℎ)
44 =

𝐸3𝐴3
ℎ

=
𝐸3𝑏𝑡3
ℎ

=
𝐸3𝑏𝛼3

𝛽
(69)

Using these stiffness coefficients, from Eqs. (8), (27), (13) and (31)
we have the following closed-form expressions for the equivalent elastic
properties (see Eqs. (72) and (73) in Box I).

For the shear modulus, seven elements from two different stiffness
matrices are necessary. They are four stiffness coefficients 𝐾 𝑖

65 and 𝐾 𝑖
44

ith 𝐾 𝑖
65 = −6𝐸𝐼

𝑙2
= −1∕2

𝐸𝑖𝑏𝑡𝑖3

𝑙2
= −1∕2𝐸𝑖𝑏𝛼3𝑖 𝑙 from the inclined

members. Where 𝑖 = 𝑎 and 𝑏 denotes the two inclined members. We
also need three elements of the stiffness matrix of the vertical member
mentioned below

𝐾 (ℎ∕2)
55 =

12𝐸3𝐼
(ℎ∕2)3

=
8𝐸3𝑏𝛼33

𝛽3
, 𝐾 (ℎ∕2)

56 = −
6𝐸3𝐼
(ℎ∕2)2

= −
2𝐸3𝑏𝛼33 𝑙

𝛽2
,

𝐾 (ℎ∕2)
66 =

4𝐸3𝐼
(ℎ∕2)

=
2𝐸3𝑏𝛼33 𝑙

2

3𝛽

(74)

sing these expressions, from Eq. (63) we obtain

.3. The equivalent elastic properties: Special cases

.3.1. Heterogeneous lattices with single material and uniform wall thick-
ess

This section deals with the closed-form expression of the hexagonal
attice with uniform wall thickness for all the constituent beam mem-
ers and with the same material properties. The expressions are derived
rom the generalized expressions (see Eqs. (70), (71), (72), (73) and
75)) considering 𝛼1 = 𝛼2 = 𝛼3 and 𝐸1 = 𝐸2 = 𝐸3.

�̄�1 =
𝐸𝛼3 cos 𝜃

(𝛽 + sin 𝜃)
(

sin2 𝜃 + 𝛼2 cos2 𝜃
)

(76)

�̄�2 =
𝐸𝛼3(𝛽 + sin 𝜃)

(1 − 𝛼2) cos3 𝜃 + 𝛼2(2𝛽 + 1) cos 𝜃
(77)

𝜈12 =
(1 − 𝛼2) sin 𝜃 cos2 𝜃

( 2 2 2
)

(78)

(𝛽 + sin 𝜃) sin 𝜃 + 𝛼 cos 𝜃
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s
o

3
n

t
c
p
i

3

m
f
t
e

𝜈

�̄�1 =
2 cos 𝜃𝐸1𝐸2𝛼31𝛼

3
2

(𝛽 + sin 𝜃) sin2 𝜃(𝐸2𝛼32 (1 + 𝛼21 cot
2 𝜃) + 𝐸1𝛼31 (1 + 𝛼22 cot

2 𝜃))
(70)

�̄�2 =
(𝛽 + sin 𝜃)

2 cos 𝜃

(

𝛽
𝐸3𝛼3

+
(1 + 𝛼21 tan

2 𝜃)(1 + 𝛼22 tan
2 𝜃) cos2 𝜃

𝐸1𝛼31 (1 + 𝛼22 tan
2 𝜃) + 𝐸2𝛼32 (1 + 𝛼21 tan

2 𝜃)

) (71)

𝜈12 =
cos2 𝜃(𝐸2𝛼32 (1 − 𝛼21 ) + 𝐸2𝛼31 (1 − 𝛼22 ))

(𝛽 + sin 𝜃) sin 𝜃(𝐸2𝛼32 (1 + 𝛼21 cot
2 𝜃) + 𝐸1𝛼31 (1 + 𝛼22 cot

2 𝜃))
(72)

𝜈21 =
(𝛽 + sin 𝜃)

𝐸3𝛼3
𝛽

sin 𝜃
(

(1 + 𝛼21 tan
2 𝜃)(1 − 𝛼22 ) + (1 + 𝛼22 tan

2 𝜃)(1 − 𝛼21 )
)

(

𝐸1𝛼31 (1 + 𝛼22 tan
2 𝜃) + 𝐸2𝛼32 (1 + 𝛼21 tan

2 𝜃) + cos2 𝜃(1 + 𝛼21 tan
2 𝜃)(1 + 𝛼22 tan

2 𝜃)
𝐸3𝛼3
𝛽

) (73)

Box I.
�̄�12 =
1

cos 𝜃
(𝛽 + sin 𝜃)

(

2𝛽2

(𝐸1𝛼31 + 𝐸2𝛼32 )
+

2𝛽3

𝐸3𝛼33

)

+
2 cos 𝜃

(

2 + 𝛽 sin 𝜃 − cos2 𝜃
)

(𝛽 + sin 𝜃)
(

𝐸1 𝛼1 + 𝐸2 𝛼2
)

+
sin 𝜃 (2 + 𝛽 sin 𝜃)

cos 𝜃
(

𝐸1 𝛼1 + 𝐸2 𝛼2
) (75)

Box II.
m

4

4

n
m
w
t
o
p
s
w
u
t
e
g
t

𝑘

H
w

𝜈21 =
(1 − 𝛼2) sin 𝜃(𝛽 + sin 𝜃)

(1 − 𝛼2) cos2 𝜃 + 𝛼2(2𝛽 + 1)
(79)

and �̄�12 =
𝐸𝛼3(𝛽 + sin 𝜃)

(

𝛽2(1 + 2𝛽) + 𝛼2(cos 𝜃 + (𝛽 + sin 𝜃) tan 𝜃)2
)

cos 𝜃
(80)

These expressions match exactly with Ref. [23]. The classical Gib-
on Ashby expressions for the equivalent material properties can be
btained considering 𝛼2 ≪ 1 in the above expressions.

.3.2. Heterogeneous lattices with single material but different wall thick-
esses

This section presents the closed-form expressions of hexagonal lat-
ice considering 𝐸1 = 𝐸2 = 𝐸3 but for different 𝛼 values for the
onstituent beam members. Substituting these in the generalized ex-
ressions (70), (71), (72), (73) and (75) we obtain Eqs. (83)–(85) given
n Box II.

.3.3. Heterogeneous lattices with uniform wall thickness
In this section, we can find the expressions for the equivalent

aterial properties of hexagonal lattice considering different material
or constituent beam member of the unit cell keeping their thickness
he same. The Eqs. (70), (71), (72), (73) and (75) from the generalized
xpressions are used to derive the following expressions

�̄�1 =
2𝐸1𝐸2𝛼3 cos 𝜃

(𝛽 + sin 𝜃)
((

sin2 𝜃 + 𝛼2 cos2 𝜃
) (

𝐸1 + 𝐸2
))

(86)

�̄�2 =
(𝛽 + sin 𝜃)

2 cos 𝜃
(

𝛽
𝐸3

+
cos2 𝜃(1 + 𝛼2 tan2 𝜃)

(𝐸1 + 𝐸2)𝛼2

)
(87)

12 =
cos2 𝜃(1 − 𝛼2)

(𝛽 + sin 𝜃)(1 + 𝛼2 cot2 𝜃) sin 𝜃
(88)

𝜈21 =
2𝛼

𝐸3𝛼
𝛽

(1 − 𝛼2)(𝛽 + sin 𝜃) sin 𝜃

𝛼3(𝐸1 + 𝐸2) +
𝐸3𝛼
𝛽

cos2 𝜃(1 + 𝛼2 tan2 𝜃)
(89)
s

8

and

�̄�12 =
𝛼3

cos 𝜃
(𝛽 + sin 𝜃)

(

2𝛽2

(𝐸1 + 𝐸2)
+

2𝛽3

𝐸3

)

+
2 cos 𝜃

(

2 + 𝛽 sin 𝜃 − cos2 𝜃
)

𝛼2

(𝛽 + sin 𝜃)
(

𝐸1 + 𝐸2
)

+
𝛼2 sin 𝜃 (2 + 𝛽 sin 𝜃)
cos 𝜃

(

𝐸1 + 𝐸2
) (90)

Ignoring the axial stretching effect, that 𝛼2 ≪ 1, these expressions
atch exactly with Ref. [36].

. Heterogeneous lattices with thick walls

.1. The stiffness matrix: Timoshenko beam theory

In this section, we discuss the closed-form solution for heteroge-
eous lattices and their special cases considering thick constituent beam
embers. The Euler–Bernoulli beam theory may lead to a higher error
hen the beams become thick. In this case, the Timoshenko beam

heory can be used to obtain better results. We can also find work
n refined theory like direct asymptotic integration of the exact 3D
roblem of elasticity [39]. This is an advanced theory and there is a
ignificant potential to exploit this in future studies. In our analysis,
e did not consider the effect of the junction of the three beam in a
nit cell and due to this reason, the 𝛼 value is not considered very high
o avoid large errors in the numerical calculations. To understand the
ffect of the joint we refer to the work Malek and Gibson [40]. The
overning equations for the transverse deflection [37] of a beam as per
he Timoshenko beam theory are as follows

𝐴𝐺 𝜕
𝜕𝑥

( 𝜕𝑤
𝜕𝑥

− 𝜃
)

= 0 and 𝐸𝐼 𝜕
2𝜃

𝜕𝑥2
+ 𝑘𝐴𝐺

( 𝜕𝑤
𝜕𝑥

− 𝜃
)

= 𝑓𝑏 (91)

ere 𝜃 ≡ 𝜃(𝑥) is the rotation of the beam, 𝑘𝐴𝐺 is the shear stiffness
ith 𝐺 as the shear modulus and 𝑘 is the shear coefficient. We consider

olid rectangular sections with 𝑘 = 5∕6 for our studies. The stiffness
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�̄�1 =
2 cos 𝜃𝐸𝛼31𝛼

3
2

(𝛽 + sin 𝜃) sin2 𝜃(𝛼32 (1 + 𝛼21 cot
2 𝜃) + 𝛼31 (1 + 𝛼22 cot

2 𝜃))
(81)

�̄�2 =
𝐸 (𝛽 + sin 𝜃)

2 cos 𝜃

(

𝛽
𝛼3

+
(1 + 𝛼21 tan

2 𝜃)(1 + 𝛼22 tan
2 𝜃) cos2 𝜃

𝛼31 (1 + 𝛼22 tan
2 𝜃) + 𝛼32 (1 + 𝛼21 tan

2 𝜃)

) (82)

𝜈12 =
cos2 𝜃(𝛼32 (1 − 𝛼21 ) + 𝛼31 (1 − 𝛼22 ))

(𝛽 + sin 𝜃) sin 𝜃(𝛼32 (1 + 𝛼21 cot
2 𝜃) + 𝛼31 (1 + 𝛼22 cot

2 𝜃))
(83)

𝜈21 =

𝛼3
𝛽

sin 𝜃
(

(1 + 𝛼21 tan
2 𝜃)(1 − 𝛼22 ) + (1 + 𝛼22 tan

2 𝜃)(1 − 𝛼21 )
)

(

𝛼31 (1 + 𝛼22 tan
2 𝜃) + 𝛼32 (1 + 𝛼21 tan

2 𝜃) + cos2 𝜃(1 + 𝛼21 tan
2 𝜃)(1 + 𝛼22 tan

2 𝜃)
𝛼3
𝛽

) (84)

and �̄�12 =
𝐸

cos 𝜃
(𝛽 + sin 𝜃)

(

2𝛽2

(𝛼31 + 𝛼32 )
+

2𝛽3

𝛼33

)

+
2 cos 𝜃

(

2 + 𝛽 sin 𝜃 − cos2 𝜃
)

(𝛽 + sin 𝜃)
(

𝛼1 + 𝛼2
)

+
sin 𝜃 (2 + 𝛽 sin 𝜃)
cos 𝜃

(

𝛼1 + 𝛼2
) (85)

Box III.
atrix [37,38] of the Timoshenko beam element can be expressed as

𝑠 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝐴
𝐿

0 0 −𝐸𝐴
𝐿

0 0

0 12 𝐸𝐼
(1 +𝛷)𝐿3

6 𝐸𝐼
(1 +𝛷)𝐿2

0 −12 𝐸𝐼
(1 +𝛷)𝐿3

6 𝐸𝐼
(1 +𝛷)𝐿2

0 6 𝐸𝐼
(1 +𝛷)𝐿2

(4 +𝛷)𝐸𝐼
(1 +𝛷)𝐿

0 −6 𝐸𝐼
(1 +𝛷)𝐿2

(2 −𝛷)𝐸𝐼
(1 +𝛷)𝐿

−𝐸𝐴
𝐿

0 0 𝐸𝐴
𝐿

0 0

0 12 𝐸𝐼
(1 +𝛷)𝐿3

−6 𝐸𝐼
(1 +𝛷)𝐿2

0 12 𝐸𝐼
(1 +𝛷)𝐿3

−6 𝐸𝐼
(1 +𝛷)𝐿2

0 6 𝐸𝐼
(1 +𝛷)𝐿2

(2 −𝛷)𝐸𝐼
(1 +𝛷)𝐿

0 −6 𝐸𝐼
(1 +𝛷)𝐿2

(4 +𝛷)𝐸𝐼
(1 +𝛷)𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(92)

he term 𝛷 gives the relative importance of the shear deformations to
he bending deformations. For a rectangular cross-section

= 12𝐸𝐼
𝑘𝐴𝐺𝐿2

=
2(1 + 𝜈)

𝑘

( 𝑡
𝐿

)2
(93)

ere is 𝜈 is the Poisson’s ratio of the beam material and we have used
he relationships

𝐺 = 𝐸∕2(1 + 𝜈) (94)

𝐼 = 1
12

𝑏𝑡3 (95)

and 𝐴 = 𝑏𝑡 (96)

or beams with a length-to-depth ratio less than 5. has significant
hear deformation effects. The stiffness matrix reduces to classical
uler–Bernoulli case for 𝛷 = 0. The Timoshenko beam model can be
onsidered as a generalization of the Euler–Bernoulli beam theory in
he static regime.

The element stiffness matrix is obtained in Eq. (92) using the
imoshenko beam theory considers the shear deformation. To obtain
he expressions of 𝐸1, 𝐸2𝜈12 and 𝜈21 the necessary stiffness coefficients
re

𝐾 𝑖
55 =

12
1 +𝛷𝑖

𝐸𝑖𝐼𝑖
𝑙3

=
𝐸𝑖𝑏𝛼3𝑖
1 +𝛷𝑖

, 𝐾 𝑖
44 =

𝐸𝑖𝐴𝑖
𝑙

= 𝐸𝑖𝑏𝛼𝑖 and

𝐾 (ℎ)
44 =

𝐸3𝐴3
ℎ

=
𝐸3𝑏𝛼3

𝛽

(97)

where from Eq. (93) we have

𝛷 =
2(1 + 𝜈𝑖)𝛼2 (98)
𝑖 𝑘 𝑖

9

where 𝑖 = 𝑎, 𝑏. For the shear modulus, seven elements from two
different stiffness matrices are necessary unlike the previous case. They
are four coefficients of the 6 × 6 element stiffness matrix of the inclined
members (𝐾 𝑖

65, 𝐾 𝑖
44) as in (97). Their expressions for the coefficients

are 𝐾 𝑖
65 = −1∕2

𝐸𝑖𝑏𝑡𝑖3

𝑙2
(

1 +𝛷𝑖
) = −1∕2

𝐸𝑖𝑏𝛼𝑖3𝑙
(

1 +𝛷𝑖
) (𝑖 = 𝑎 and 𝑏). The shear

correction factor for the vertical member can be obtained from Eq. (93)
as

𝛷(ℎ∕2) = 𝛷3 =
2(1 + 𝜈)

𝑘

(

𝑡
ℎ∕2

)2
=

2(1 + 𝜈)
𝑘

4𝛼33
𝛽2

(99)

We other three three elements of the stiffness matrix of the vertical
member needed for the shear modulus are given by

𝐾 (ℎ∕2)
55 = 8

𝐸3𝑏𝛼33

𝛽3

(

1
1 +𝛷3

)

𝐾 (ℎ∕2)
56 = −2

𝐸3𝑏𝛼33𝑙
𝛽2

(

1
1 +𝛷3

)

and 𝐾 (ℎ∕2)
66 =

𝐸3𝑏𝛼33𝑙2

6𝛽

(

4 +𝛷3
1 +𝛷3

)

(100)

4.2. The equivalent elastic properties: The general case

This section deals with the most general case for the equivalent elas-
tic properties of the heterogeneous hexagonal lattice considering thick
beam assumption. Here, all the material properties and the thickness
of the constituent beam members are considered as different and the
generalized expressions are obtained form Eqs. (8), (27), (13), (31) and
(63) as given in Box III

In the above, the expressions of �̂� and �̂� are defined as follows

�̂� =
(1 +𝛷1) cos2 𝜃

𝐸1𝛼31

(

1 + tan2 𝜃
𝛼21

1 +𝛷1

)

(106)

and �̂� =
(1 +𝛷2) cos2 𝜃

𝐸2𝛼32

(

1 + tan2 𝜃
𝛼22

1 +𝛷2

)

(107)

The above expressions are now utilized to obtain the following
special cases.
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�̄�1 =
2 cos 𝜃𝐸1𝐸2𝛼31𝛼

3
2

(𝛽 + sin 𝜃) sin2 𝜃
((

1 + 𝜙1
)

𝐸2 𝛼23 +
(

1 + 𝜙2
)

𝐸1 𝛼13 + 𝛼21𝛼
2
2 cot

2 𝜃
(

𝐸1 𝛼1 + 𝐸2 𝛼2
))

(101)

�̄�2 =
(𝛽 + sin 𝜃)

2 cos 𝜃
(

�̂��̂�
(�̂� + �̂�)

+
𝛽

𝐸3 𝛼3

) (102)

𝜈12 =
𝐸1𝛼13

(

1 + 𝜙2 − 𝛼22
)

+ 𝐸2𝛼23
(

1 + 𝜙1 − 𝛼12
)

sin 𝜃 (𝛽 + sin 𝜃)
(

𝐸2𝛼32
(

1 + 𝜙1 + 𝛼12 cot2 𝜃
)

+ 𝐸1𝛼31
(

1 + 𝜙2 + 𝛼22 cot2 𝜃
))

(103)

𝜈21 =

(𝛽 + sin 𝜃) sin 𝜃

(

�̂�

(

1 + 𝜙1 − 𝛼12
)

𝐸1𝛼31
+ �̂�

(

1 + 𝜙2 − 𝛼22
)

𝐸2𝛼32

)

2(�̂� + �̂�)
(

�̂��̂�
(�̂� + �̂�)

+
𝛽

𝐸3 𝛼3

) (104)

and �̄�12 =
1

cos 𝜃
(𝛽 + sin 𝜃)

(

2𝛽2
(

1 + 𝜙1
) (

1 + 𝜙2
)

𝐸3 𝛼33
(

2 + 𝜙2 + 𝜙1
) +

𝛽3
(

4 + 𝜙3
)

2𝐸3 𝛼33

)

+
2 cos 𝜃

(

2 + 𝛽 sin 𝜃 − cos2 𝜃
)

(𝛽 + sin 𝜃)
(

𝐸1 𝛼1 + 𝐸2 𝛼2
) +

sin 𝜃 (2 + 𝛽 sin 𝜃)
cos 𝜃

(

𝐸1 𝛼1 + 𝐸2 𝛼2
) (105)

Box IV.
Fig. 5. Figure showing (a) Finite element model of the entire lattice. The left edge of the lattice is fixed and a uniformly distributed load is applied at the right edge for the
analysis, (b) the deformed shape of the lattice for the application of load in the x direction.
T
t
c

4
n

a
(
a

𝐸

4.3. The equivalent elastic properties: Special cases

4.3.1. Heterogeneous lattices with single material and uniform wall thick-
ness

Using the generalized expressions (Eqs. (101), (102), (103), (104)
and (105)) we derive the expressions for the special case where the
material and the thicknesses of the all constituent beam members are
same. The equivalent elastic properties are given by

�̄�1 =
𝐸𝛼3 cos 𝜃

(𝛽 + sin 𝜃)
(

(1 +𝛷) sin2 𝜃 + 𝛼2 cos2 𝜃
)

(108)

�̄�2 =
𝐸𝛼3(𝛽 + sin 𝜃)

(1 +𝛷 − 𝛼2) cos3 𝜃 + 𝛼2(2𝛽 + 1) cos 𝜃
(109)

𝜈12 =
cos2 𝜃

(

1 +𝛷 − 𝛼2
)

(𝛽 + sin 𝜃) sin 𝜃
(

1 +𝛷 + 𝛼2 cot2 𝜃
) (110)

𝜈21 =
(𝛽 + sin 𝜃) sin 𝜃

(

1 +𝛷 − 𝛼2
)

(1 +𝛷 − 𝛼2) cos2 𝜃 + 𝛼2(2𝛽 + 1)
(111)
10
and

�̄�12 =
𝐸𝛼3(𝛽 + sin 𝜃)

(

𝛽2(1 +𝛷 + 2𝛽) + 8𝛽𝛷 + 𝛼2 (cos 𝜃 + (𝛽 + sin 𝜃) tan 𝜃)2
)

cos 𝜃
(112)

hese expressions match exactly with Ref. [23]. Substituting 𝛷 = 0,
he equations derived here reduce to the corresponding Euler–Bernoulli
ase discussed in the previous section.

.3.2. Heterogeneous lattices with single material but different wall thick-
esses

Closed form expressions are obtained considering 𝐸1 = 𝐸2 = 𝐸3
nd different wall thickness for the constituent beam members in Eqs.
101), (102), (103), (104) and (105). The equivalent elastic properties
re given by

̄
1 =

2 cos 𝜃𝐸𝛼3
1𝛼

3
2

(𝛽 + sin 𝜃) sin2 𝜃
((

1 + 𝜙1
)

𝛼23 +
(

1 + 𝜙2
)

𝛼13 + 𝛼2
1𝛼

2
2 cot

2 𝜃
(

𝛼1 + 𝛼2
))

(113)

�̄�2 =
(𝛽 + sin 𝜃)

2 cos 𝜃
(

�̂��̂� +
𝛽

) (114)
(�̂� + �̂�) 𝐸 𝛼3
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Fig. 6. Contour plot of the normalized equivalent elastic properties for hexagonal lattice as a function of the geometric and material disparity ratio. (a) �̄�1, Euler Bernoulli beam
(EB) (b) �̄�1, Timoshenko beam (TB), (c) �̄�2, Euler Bernoulli beam (EB) and (d) �̄�2, Timoshenko beam (TB). The value of 𝛽 = 1 and 𝜃 = 300. The value corresponding to the general
isotropic case (GDR = 1, MDR = 1, 𝜃 = 300) is denoted by a black dot.
Table 1
Geometric parameters of the unit cell and the whole lattice used for the finite element analysis.
Length (mm) Thickness (mm) Width (mm) 𝐿𝑥 (mm) 𝐿𝑦 (mm) Cell angle (𝜃)

𝑙 = ℎ = 8.23 𝑡=0.8 𝑏=1 293.93 195.1 300
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11
.3.3. Heterogeneous lattices with uniform wall thickness

This subsections deals with lattice with different material properties
or the constituent beam members but same thickness. The equivalent
lastic properties are obtained from Eqs. (101), (102), (103), (104) and
105).
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(𝛽 + sin 𝜃) sin2 𝜃
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(120)
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) (121)
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sin 𝜃 (𝛽 + sin 𝜃)
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𝐸2𝛼3
(
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)
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(

1 + 𝜙2 + 𝛼2 cot2 𝜃
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(122)
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b
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Fig. 7. Contour plot of the Poisson’s ratio for hexagonal lattice as a function of the geometric and material disparity ratio. (a) 𝜈12, Euler Bernoulli beam (EB) (b) 𝜈12, Timoshenko
eam (TB), (c) 𝜈21, Euler Bernoulli beam (EB) and (d) 𝜈21, Timoshenko beam (TB). The value of 𝛽 = 1 and 𝜃 = 300. The value corresponding to the general isotropic case (GDR =

1, MDR = 1, 𝜃 = 300) is denoted by a black dot.
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n the above, the expressions of �̂� and �̂� are defined as follows
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(1 +𝛷1) cos2 𝜃
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(126)

In the next section, we validate the analytical expressions derived in
the paper with independent finite element simulation results.
12
Table 2
Different materials and their elastic properties used in the finite element simulation.

No. Material Young’s Modulus (GPa) Poisson’s ratio

1 Steel (ASTM-A36) 200 0.30
2 Steel (AISI 302) 180 0.30
3 Aluminium 70 0.33
4 Bronze 120 0.34
5 Brass 100 0.33

Table 3
Comparison of the normalized longitudinal Young’s modulus (𝐸1∕(𝐸𝛼3)) for the
hexagonal lattices obtained from closed form solution and finite element analysis. The
normalization is carried out considering 𝐸 value of Steel for the first 5 cases and for
6 and 7 the 𝐸 value of Aluminium is considered.

Case Materials Analytical FE % error

1 Steel (ASTM-A36) 2.2458 2.2788 1.4692
2 Steel+AL 1.1645 1.2195 4.7295
3 Steel + Brass 1.4972 1.5829 5.7276
4 Steel+Bronze 1.6843 1.7632 4.6872
5 Steel(ASTM-A36+AISI 302) 2.1276 2.1695 1.9731
6 AL+Bronze 2.8367 2.8317 0.1758
7 AL+Brass 2.6421 2.6493 0.2725



S. Mukherjee and S. Adhikari Thin-Walled Structures 167 (2021) 108188

Fig. 8. Contour plot of the normalized equivalent shear modulus for hexagonal lattice as a function of the geometric and material disparity ratio. (a) �̄�12, Euler Bernoulli beam
(EB) (b) �̄�12, Timoshenko beam (TB). The value of 𝛽 = 1 and 𝜃 = 300. The value corresponding to the general isotropic case (GDR = 1, MDR = 1, 𝜃 = 300) is denoted by a black
dot.

Fig. 9. Contour plot of the normalized equivalent elastic properties for auxetic hexagonal lattice as a function of the geometric and material disparity ratio. (a) �̄�1, Euler Bernoulli
beam (EB) (b) �̄�1, Timoshenko beam (TB), (c) �̄�2, Euler Bernoulli beam (EB) and (d) �̄�2, Timoshenko beam (TB). The value of 𝛽 = 2 and 𝜃 = −300. The value corresponding to
the regular lattice (GDR = 1, MDR = 1, 𝜃 = 300) is denoted by a black dot.

13
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Fig. 10. Contour plot of the Poisson’s ratio for auxetic hexagonal lattice as a function of the geometric and material disparity ratio. (a) 𝜈12, Euler Bernoulli beam (EB) (b) 𝜈12,
Timoshenko beam (TB), (c) 𝜈21, Euler Bernoulli beam (EB) and (d) 𝜈21, Timoshenko beam (TB). The value of 𝛽 = 2 and 𝜃 = −300. The value corresponding to the regular lattice
(GDR = 1, MDR = 1, 𝜃 = 300) is denoted by a black dot.
5. Finite element analysis of the lattice

The finite element (FE) validation of the closed form expressions
is conducted in this section. The finite element model of the entire
lattice is shown in Fig. 5(a). Fig. 5(a) also shows the boundary condition
and loading condition applied to the lattice for performing the finite
element simulation. The commercial software NASTRAN has been used
to obtain the FE results. The unit cell of the lattice is shown in Fig. 1(b).
The details of the geometric parameters of the unit cell and the whole
lattice used for the finite element analysis are shown in Table 1.

Five different materials are used to create multi-material lattices.
These materials include tow versions of steel (ASTM-A36 and AISI 302),
aluminium, bronze and brass. Elastic properties of these five materials
are given in Table 2.

These materials are selected for illustrative purposes only. The finale
element analysis methodology as well as the analytical expressions are
not restricted to these materials.

Solid elements with 722 019 nodes and 355 208 elements are se-
lected following a mesh convergence study for the finite element model.
The validation is performed by considering both single material and
multimaterial case. The equivalent longitudinal Young’s modulus is
obtained considering the average displacements of all the nodes at the
right edge of the lattice (distributed load application side). The strain is
obtained by dividing this average displacement with the length of the
14
lattice (𝐿𝑥). The effective stress is derived by dividing the total force
with the surface area of the edge. Finally, the equivalent Young’s modu-
lus is obtained by dividing the stress with the effective strain. Fig. 5(b)
shows a typical deformation pattern of the lattice material under the
application of a uniformly distributed load at the right edge. In Table 3
analytical results are compared with finite element simulation results.
Equivalent normalized Young’s modulus, i.e. 𝐸1∕(𝐸𝛼3) is obtained for
both closed-form and FE based results. The value of 𝛼 = 𝑡∕𝑙 = 0.097
and we considered Euler Bernoulli based closed-form expression for
comparing with the FE results. For the multimaterial case, we consider
𝐸1 = 𝐸3 and various combinations of materials are used for numerical
simulations. Results show that the finite element results differ from the
closed-form solution though the error is within 6%.

6. The analysis of different material and geometric distributions

6.1. Effect of heterogeneity in material and geometric properties

In this section, the effect of multi-material and multi-thickness on
the equivalent elastic proprieties are investigated for regular as well
as auxetic lattices. Figs. 6–8 show the contour plots of normalized
Young’s modulli, Poisson’s ratios and shear modulus respectively as
a function of material disparity ratio and geometric disparity ratio
considering both thin and thick beam assumption for regular hexagonal
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Fig. 11. Contour plot of the normalized equivalent shear modulus for auxetic hexagonal lattice as a function of the geometric and material disparity ratio. (a) �̄�12, Euler Bernoulli
beam (EB) (b) �̄�12, Timoshenko beam (TB). The value of 𝛽 = 2 and 𝜃 = −300. The value corresponding to the regular lattice (GDR = 1, MDR = 1, 𝜃 = 300) is denoted by a black
dot.
Fig. 12. Contour plot of the normalized equivalent elastic modulli and Poisson’s ratios as a function of the cell angle (𝜃) and material disparity ratio (MDR = 𝐸2∕𝐸1) considering
hin beam assumption. The value of 𝛼1 = 0.05, 𝛽 = 2 and 𝐸1 = 70 Gpa. The values corresponding to the regular lattice (MDR = 1, 𝜃 = ±300) are denoted by black dots.
G

M

eterogeneous lattice. Whereas, Figs. 9–11 represents the auxetic cases.
e define the new measures, Material Disparity Ratio (MDR) and
15
eometric Disparity Ratio (GDR) as

DR =
𝐸2 and GDR =

𝛼2 (127)

𝐸1 𝛼1
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Fig. 13. Contour plot of the normalized equivalent elastic modulli and Poisson’s ratio as a function of the cell angle (𝜃) and material disparity ratio (MDR = 𝐸2∕𝐸1) considering
thick beam assumption. The value of 𝛼1 = 0.05, 𝛽 = 2 and 𝐸1 = 70 Gpa. The values corresponding to the regular lattice (MDR = 1, 𝜃 = ±300) are denoted by black dots.
Fig. 14. Contour plot of the normalized equivalent shear modulus as a function of the cell angle (𝜃) and material disparity ratio (MDR = 𝐸2∕𝐸1) considering (a) thin and (b)
thick beam assumption. The value of 𝛼1 = 0.05, 𝛽 = 2 and 𝐸1 = 70 Gpa. The values corresponding to the regular lattice (MDR = 1, 𝜃 = ±300) are denoted by black dots.
We can observe from the figures that the values of Young’s modulli
and shear modulus monotonically increase with increasing MDR and
GDR. For 𝜈21 the value gradually decreases with an increase in MDR
and GDR values. The trends of the contour lines for both thin and
16
thick beam assumptions are the same whereas it is observed that the
contour shift towards the right when the GDR increases. That means for
constituent beams with thin beam assumption overestimates the values
of the equivalent material properties for higher GDR values. The same
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Fig. 15. Contour plot of the normalized equivalent elastic modulli and Poisson’s ratio as a function of the cell angle (𝜃) and geometric disparity ratio (GDR = 𝛼2∕𝛼1) considering
thin beam assumption. The value of 𝛼1 = 0.05, 𝛽 = 2 and 𝐸1 = 70 Gpa. The values corresponding to the regular lattice (GDR = 1, 𝜃 = ±300) are denoted by black dots.
s applicable to lower GDR values and it is clear from Fig. 8. The values
f the equivalent material properties for conventional hexagonal lattice
ith cell angle 300 are shown by a black dot in each of these plots.
hese results show that for the equivalent elastic modulli, order-of-
agnitude difference can be achieved by varying the MDR and GDR

alues. Therefore, it is clear from these contour plots that considering
ifferent material and thickness properties for the constituent beam
embers, the design space for the hexagonal lattice can be increased

ignificantly.

.2. Effect of material disparity

In this section, the effect of material disparity is investigated on the
quivalent elastic properties of the hexagonal lattice. The thicknesses of
ll the constituent beam elements are the same but Young’s modulus of
he beam member 𝑏 is varied. The Young’s modulus of the vertical beam
s kept the same as beam member 𝑎. The contour plots in this section
epresent the variation of equivalent elastic properties for regular as
ell as auxetic hexagonal lattice material. The contour plot, Fig. 12 of
ormalized elastic properties and Poisson’s ratios are obtained consid-
ring the Euler Bernoulli model for constituent beams. The value of 𝐸1
ecreases with increasing theta value and remain almost the same with
ncreasing MDR. Whereas, 𝐸2 increase with theta and MDR ratio. For a
articular value of theta the 𝐸1 increases up to MDR = 2 after that the
̄1 value remain almost same with increasing MDR. Whereas, the value
f 𝐸 keep on increasing with increasing MDR value for a particular
2

17
theta but the increase is gradual. The material disparity hardly affects
𝜈12 and 𝜈21. The next contour plot Fig. 13 is the same investigation
but considering Timoshenko beam theory for the constituent beam
elements. Though there are differences in the values of the properties
from the Euler Bernoulli case it is hard to recognize them from the
plots. The trends are the same for all the properties. Fig. 14 shows
the variation of shear modulus with MDR and cell angle. It can be
observed that for a particular value of MDR the value increases with
cell angle. Though the trend for the regular and auxetic case are the
same the increase in value for regular lattice starts earlier. The values
corresponding to the conventional regular hexagonal and auxetic lattice
are shown in the plots as black dots and the plots reveal that the design
space is enlarged due to the utilization of different constituent beam
elements.

We can observe from the above sections that the effect of mate-
rial and geometric variability on the equivalent elastic properties are
different. The effect of geometric properties on the elastic properties
is more significant considering the same disparity ratio. By changing
the geometric disparity ratio the values of the elastic constants can be
increased significantly. Whereas, the material variability can be utilized
where we need a very much controlled increase.

6.3. Effect of geometric disparity

This section deals with the effect of geometric disparity on the
equivalent elastic modulli of the hexagonal lattice (both regular and
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Fig. 16. Contour plot of the normalized equivalent elastic modulli and Poisson’s ratio as a function of the cell angle (𝜃) and geometric disparity ratio (GDR = 𝛼2∕𝛼1) considering
thick beam assumption. The value of 𝛼1 = 0.05, 𝛽 = 2 and 𝐸1 = 70 Gpa. The values corresponding to the regular lattice (GDR = 1, 𝜃 = ±300) are denoted by black dots.
Fig. 17. Contour plot of the normalized equivalent shear modulus as a function of the cell angle (𝜃) and geometric disparity ratio (GDR = 𝛼2∕𝛼1) considering (a) thin and (b)
thick beam assumption. The values corresponding to the regular lattice (GDR = 1, 𝜃 = ±300) are denoted by black dots.
auxetic). Here, we consider that the material of all the constituent beam
elements is the same but the thickness of the two slant beam members
are varying. The thickness of the vertical beam is kept the same as
beam member 𝑎 and the thickness of the beam member 𝑏 is kept on
increasing to obtain the contour plots. Fig. 15 shows the contour plot
18
of the normalized elastic properties and Poisson’s ratios considering
the Euler Bernoulli model for constituent beams. It can be observed
that the 𝐸1 decreases with increasing theta value and for all values
of GDR. Whereas, 𝐸2 increase with theta and GDR. For a particular
value of theta the 𝐸1 increases up to 𝛼2∕𝛼1 = 2 after that the 𝐸1 value
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remain almost same with increasing GDR. Whereas, the value of 𝐸2
keep on increasing with increasing GDR value for a particular theta
and the increase is very fast. The value of 𝜈12 remains almost the same
with increasing GDR value and it decreases with increasing theta. The
trend of 𝜈21 is increasing for higher theta values and it decreases with
GDR value for a particular theta. The value of 𝐺12 increases with theta
and also with GDR value but at a slow rate after GDR value 2. The
next contour plot Fig. 16 is the same investigation but considering
Timoshenko beam theory for the constituent beam elements. Fig. 17
shows the variation of shear modulus with GDR and cell angle.

7. Conclusions

The most general form of 2D heterogeneous hexagonal lattices
was proposed in this paper through the combination of multi-material
and multi-thickness elements. A physics-based analytical prediction
approach for the equivalent elastic properties of such heterogeneous
hexagonal lattices was developed. The equivalent elastic properties
consist of five quantities, namely, the Young’s modulli and Poisson’s
ratios in both directions and the shear modulus. The analytical for-
mulation was based on a unit cell comprised of three different beams
with different thicknesses and material properties. A novel aspect of
the theoretical derivations is the employment of physics-based com-
patibility conditions and boundary conditions. The mechanical analysis
was implemented in such a way that the equivalent elastic properties
are expressed in terms of the elements of the stiffness matrices of the
constituent beams. This allowed the genetic expressions to be applied
for special cases of thin and thick-walled lattices using Euler–Bernoulli
and Timoshenko beam theories, respectively. The closed-form expres-
sions of the equivalent elastic properties were obtained in terms of the
geometric properties of the hexagonal unit cell and material properties
and thicknesses of the cell walls. A rigorous finite element validation
was performed for the closed-from expressions using the commercial
software NASTRAN. Validation results demonstrate excellent accuracy
(less than 6% error) of the new expressions derived in the paper.
Variations in the material and geometric properties of the cell walls
are quantified by defining the Material Disparity Ratio (MDR) and
the Geometric Disparity Ratio (GDR). Numerical results obtained show
that for certain combinations of MDR and GDR, the equivalent elastic
modulli of a heterogeneous lattice can be orders-of-magnitude different
from its homogeneous counterpart.

The novelty of this work lies in the conceptual development of
heterogeneous lattices and subsequently the generalized analytical for-
mulation to quantify the equivalent elastic properties. The key features
of this present work include:

• A general methodology to derive the equivalent elastic properties
of heterogeneous hexagonal lattice considering the coefficients of
the stiffness matrix of constituent beams.

• The most general analytical expressions for equivalent elastic
properties of 2D heterogeneous hexagonal lattices from which
other geometries and special cases can be derived in a straight-
forward manner.

• Investigation of thin-walled and thick-walled lattices and closed-
form expressions of some physically relevant limiting cases.

• The framework of an enriched design space for lattice materials
due to the generalization of the constituent beam elements from
a geometric and material perspective.

The closed-form expressions can be utilized as a benchmark solution for
further studies. The formulation can be utilized or extended for a large
class of constituent beam elements such as beam with varying depth
and functionally graded beams as the expressions are in terms of the el-
ements of the stiffness matrix. The analytical expressions are well suited
for the design of heterogeneous lattices with highly tailored effective
elastic properties as constraints. Future works arising from this paper
19
will include buckling and instability analysis, dynamic behaviour such
as bandgap studies and nonlinear analysis of heterogeneous lattices.
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