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a b s t r a c t 

Topological phononic crystals in the mechanical setup became a topic of great interest owing to their applicability 

in various engineering systems such as waveguides or vibration isolation devices. If such systems are composed 

of elastic structures, they are usually characterized by a bulk-edge correspondence where the geometrical and 

material properties can play important role in the existence of stable surface and boundary modes. This work 

investigates the band transition and topological interface modes in a beam array system, where two sub-lattices 

of vertically aligned, parallel, and elastically coupled beams are connected at the chain center. To illustrate the 

existence of interface modes and understand their behavior, the corresponding eigenvalue problem is solved and 

frequency response function is sought for the system with a finite number of unit cells. Localization of the interface 

modes is demonstrated based on the steady-state responses of the beam array system to harmonic excitation. The 

effects of introduced defect masses and inerters on interface states are studied separately. It is revealed that the 

introduction of a small defect mass in the form of concentrated mass attached to some beam in the system does 

not affect the interface modes within the observed frequency range. On the other side, inerters produce frequency 

shifts towards lower values, which even in the case of small values of the inerter parameter causes the interface 

modes to vanish or even to appear inside another frequency band gap. The obtained results give an insight into 

the influence of inerter devices and their mass amplification effect on the interface states in complex periodic 

elastic systems. It also investigates the possibility to tune interface modes without significantly affecting the main 

band structure properties of the system. 
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. Introduction 

The most common components of engineering systems are periodic

tructures, whose understanding of the dynamic behaviour or wave

ropagation properties is often the most important step in achieving

heir functionality. Such systems can be designed to achieve unique elas-

ic wave characteristics [1] , where many ideas come from condensed

atter physics and investigations in the field of photonic and phononic

rystals or acoustic metamaterials [2] . Probably the most intriguing is

n application of quantum spin Hall effects and other topological con-

epts [3–5] in acoustics and elasticity. Many studies paid attention to

opologically protected interface modes in 1D phononic crystals [6] and

atterned elastic structures [7] that are immune to defects and exhibit

cattering-free wave propagation. Based on their geometric properties,

eriodic structures can be classified as one-, two- or three-dimensional

nes, whose topological properties of wave modes can be determined

hrough topological invariants such as Berry phase [8] or its special
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ase called Zak phase [9,10] . As given in [11,12] , the Berry phase is a

eometric phase defined as the integration of Berry connection along a

losed-loop inside the Brillouin zone (BZ). Therefore, the key thing in

he emergence of interface modes in phononic crystals is the geometric

hases and wave mode polarization defined by the type of symmetry

f edge-mode state, which is the property that can be proved based on

xperiments and fundamental 1D or more complex 2D and 3D models of

coustic [13–15] and elastic systems [16–18] . Some authors [19] made a

onnection between the surface impedance of a one-dimensional PC and

ts Zak phases of the bulk bands to determine the existence of interface

tates in particular band gaps. This methodology was later applied to

etermine topological interface states in multiple bands photonic crys-

als [20] , one-dimensional labyrinthine acoustic metamaterials [21] and

ranslational metamaterials [22] . Another but similar approach relies

n the determination of topological invariants named winding num-

ers [23,24] representing eigenvectors around the origin of the com-

lex plane. Marques et al. [25] proposed the generalization of the Zak

hase for lattice models with a non-centered inversion symmetry axis

y adding the appropriate correction term. Based on the Wilson-loop

pproach, Wang et al. [26] demonstrated that the nontrivial winding of

he Berry phases can be destroyed by adding trivial bulk bands due to
1 
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o  
ragile topology in certain topological classical-wave systems. However,

s revealed in [8] for one-dimensional elastic superlattices composed of

everal masses and spring stiffnesses, a Berry (Zak) phase of individual

ands can differ from usual values of 0 or 𝜋 when the summation of the

erry phases overall bands is an integer multiple of 2 𝜋. According to

27] , in such cases, the winding number represented by this integer is

ot an important value in standard discussions of Zak phases which is

nly meaningful in mod 2 𝜋. In our study, this property will be exploited

hen analysing the topological interface states in an array of coupled

eam structures. 

One can distinguish two main approaches that are used in mechani-

al systems to generate interface modes and named upon analog effects

n solid physics. The first approach is based on the quantum Hall ef-

ect (QHE) that breaks the time-reversal symmetry and belongs to ac-

ive techniques since it includes components active in time [28] . On the

ther side, the second approach is passive and it is based on the quantum

alley Hall effect (QVHE) or quantum spin Hall effect (QSHE). As given

n [29] , the coupling of two degenerate wave modes and creation of dou-

le Dirac cone along the irreducible Brillouin zone boundary [30] is an

mportant sign of the existence of interface states in mechanical systems.

any studies reported how by breaking the time-reversal symmetry one

an generate interface modes [31,32] , while Pal et al. [33] investigated

he elastic analogs of the quantum valley Hall effect through discrete one

nd two-dimensional lattices. The aforementioned studies are mostly

oncerned with linear analysis where interface modes are topologically

rotected and robust to defects and uncertainties. Recently, Pal et al.

34] investigated the effect of spring nonlinearity on interface modes in

iscrete one-dimensional spring-mass and two-dimensional lattice sys-

ems. 

In this study, the main interest is devoted to topological inter-

ace modes in one-dimensional elastic phononic crystals. One such sys-

em was studied by Yin et al. [35] , where topological transition point

as confirmed for both longitudinal waves and bending waves. It is

orth noting that topological interface states for elastic waves in one-

imensional systems are mostly induced by Bragg scattering. However,

an et al. [36] demonstrated that it is possible to excite interface state

y local resonances in the sub-wavelength range. Similarly, Huang et al.

37] realized topological edge modes in the one-dimensional compos-

te structure as a result of both Bragg scattering and local resonances.

ome authors have studied the topologically protected interface modes

or both in-plane and out-of-plane [38] bulk elastic waves. Existence of

opologically protected interface modes in PCs is a unique property that

an be applied to solve many engineering problems in wave localization

nd isolation [13] , control of vibrations, waveguiding [39] , acoustic fo-

using and cloaking [40] , energy harvesting [41] etc. In our study, the

articular interest is paid to an array of elastic structures that are cou-

led through elastic medium [42] . For example, Rosa et al. [43] studied

he topological pumping in the array of semi-infinite continuous elas-

ic beams coupled through a distributed stiffness showing that adiabatic

tiffness modulations along the beams length causes the transition of lo-

alized states from one to the opposite boundary of an array. Moreover,

ome authors raise the question of using the active elastic metamateri-

ls to achieve controllable elastic cloaking [44] or tunable topological

tates [45] . 

The majority of studies are limited to the wave propagation anal-

sis of simple sandwich beams with softcore [46] or rigidly connected

hrough periodically distributed ribs [47] . When more complex multiple

oupled structures systems are considered, the analyses are mostly lim-

ted to dynamic studies of systems with multiple coupled beams [48] or

lates [49] through discrete elastic or viscoelastic medium. Recently,

arli či ć et al. [50] studied the Bloch wave propagation in an array of

lastically coupled Rayleigh beams of finite length and with correspond-

ng boundary conditions. Similar configurations of arrays of parallelly

onnected rods and beams were investigated and exploited in waveguid-

ng applications [39,51,52] . This study is focused on the investigation
2 
f topological interface states in such systems and the effect of different

arameters on that topology. 

Recently, the inerter devices are often used to reduce the vibration

esponses of various engineering systems [53–55] . As given in [53,56] ,

nerter can be considered as a two-terminal mass element whose ter-

inals can move freely to provide a resisting force proportional to

heir relative acceleration, where a small actual mass can be magni-

ed into a large apparent mass. Among the first applications of the in-

rter system are related to the amplification of viscous-damping force

57] , while different realizations of these mechanisms are proposed in

he literature [58–61] . To model the inerter system, usually the inerter,

pring, and damping elements are proposed in the literature based on

nergy methods [62] or moment of equilibrium equations [63] . Inert-

rs are then used to represent the restoring force in discrete coupled

ass-spring systems [64,65] , beam structures [66] or nonlinear coupled

lates [62,67] . Some recent findings [68] revealed how inertial ampli-

cation affects wave dispersion in acoustic metamaterials and demon-

trated the possibility to wider the band gaps via inertial amplification.

t is well known that active elastic metamaterials have advantages over

assive ones since their wave propagation and topological properties

an be controlled in real-time without changing their material or geo-

etrical features. On the other side, inerters embedded into the meta-

aterial or phononic type system are behaving as passive components.

owever, in [69,70] the authors demonstrated that inerters with easily

hangeable inertance properties can be constructed and therefore used

or tuning of the overall properties of the system. 

Inspired by the above studies, we intend to investigate topological

nterface modes in a multiple beam array system consisting of elastically

onnected beams of finite length with inerters located in the elastic lay-

rs at the interface. In some earlier research papers, the main focus was

ut on the initial Bloch bands when analysing the interface modes gen-

rated in an elastic medium with longitudinal and bending elastic waves

35] , with less attention to localization at higher wave modes. Recent in-

estigations included the analysis of multiple interface modes induced

y band transitions and exchange in wave mode polarization at both

ower and higher wave modes [29] . However, the aforementioned stud-

es are mostly limited to the analysis of one-dimensional phononic type

lastic structures observed as beams with periodically varying geometry

n the form of changing stepwise circular cross-sections. We aim to show

he existence of multiple interface modes in the proposed beam array

ystem at both lower and higher frequency wave modes that are gen-

rated by bending vibrations of beams. The corresponding eigenvalue

roblem will be established and solved to analyse the band structure of

he proposed system configuration based on the Euler-Bernoulli beam

nd Winkler’s type elastic foundation models. Band inversion effect with

ransition points will be demonstrated based on dispersion analysis at

he edges of the first Brillouin zone. The existence of interface modes

ill be illustrated through eigenvalues and frequency response func-

ion analysis of a beam array system with a finite number of unit cells.

oreover, the steady-state responses of beams within the beam array

ystem will be studied for different harmonic excitation frequencies to

onfirm the interface mode localization at the interface. The effect of

he so-called defect mass, i.e. the case with some beam in the system

aving attached concentrated mass, is investigated to demonstrate the

obustness of the interface modes to applied changes. The previously

entioned analyses will be repeated for the beam array configuration

ith inerters at the interface. The influence of the inerter parameter on

igenvalues, frequency response function, and steady-state responses in

pace will be studied to show its effects on interface modes. This theoret-

cal study will contribute to the understanding of topological mechanics

f connected elastic structures and lead to the possible application of

assive components such as inerters in the tuning of topologically pro-

ected edge modes. 

This work is organized as follows: the general mechanical model

f the periodic beam array system with elastically coupled beams and
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Fig. 1. Illustration of the mechanical inerter and beam 

array system with two sub-lattices of unit cells which 

are inverted copies of each other and connected at the 

interface beam through springs or springs and inerters. 
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nerters, Galerkin approximation procedure, Floquet-Bloch theorem, the

efinition of the eigenvalue problem, and derivation of the frequency re-

ponse function is presented in Section 2 . Numerical results for the fre-

uency response function, band inversion, steady-state response in space

nd particular interface modes of a simple mass-spring-inerter system

nd chosen configuration of the multiple Euler-Bernoulli beams array

ystems with and without inerters or defect mass, are given in Section 3 .

inally, Section 4 is the conclusion underlying the main contributions

nd the future work. 

. Problem formulation 

.1. Beam array system with inerters 

According to the definition given in [56] , the ideal inerter is a me-

hanical one-port with the property that the equal and opposite forces

t the terminals are proportional to the relative acceleration between

hem. If we consider the two terminals as connection points to other

lements (see Fig. 1 a for details) and we have displacements 𝑦 1 and 𝑦 2 ,

e can express the force at the terminal as 

 ( 𝑡 ) = 𝑑( ̈𝑦 2 ( 𝑡 ) − 𝑦 1 ( 𝑡 )) 

here 𝑑 > 0 is the inertance with units of kilograms. The terminals are

lso the application points for the forces, which are colinear with the line

oining the terminals. Therefore, the main property of the ideal inerter

s proportionality between force and relative acceleration. 

In this section, an example of a phononic beam array system is given

ased on the periodically repeating unit cell containing two identical
3 
eam elements with the same boundary conditions and coupled through

lastic layers of different stiffness properties. It is considered that the

eam array system is constructed from two sub-lattices of unit cells that

re inverted copies of each other and connected at the interface, where

ach sub-lattice has 𝑛 unit cells with two alternating stiffnesses of con-

ecting layers (see Fig. 1 b). Unit cells are periodically distributed in 𝑧 -

irection. Ideal inerters are introduced in the coupling layers below and

bove the interface beam, while other coupling layers remain the same.

y introducing the assumptions from the Euler-Bernoulli beam theory

nd elastic layers with inerters, the governing equation of motion for

he interface beam is given as 

𝐴 ̈𝑤 𝑎, 0 + 𝐸𝐼𝑤 

′′′′
𝑎, 0 + 2 𝑑 �̈� 𝑎, 0 − 𝑑( ̈𝑤 𝑏, 0 + �̈� 𝑏, −1 ) + 2 𝑘 1 𝑤 𝑎, 0 − 𝑘 1 ( 𝑤 𝑏, 0 + 𝑤 𝑏, −1 ) 

= 𝑓 𝑎, 0 ( 𝑥, 𝑡 ) , (1) 

here () ′′′′ ≡ 𝜕 4 ∕ 𝜕𝑥 4 , ̈() ≡ 𝜕 2 ∕ 𝜕𝑡 2 . In general, 𝑤 𝑢,𝑝 and 𝑓 𝑢,𝑝 ( 𝑥, 𝑡 ) are the

isplacement and applied periodic force of the 𝑢 -th beam in the 𝑝 -th

nit cell for 𝑢 = 𝑎, 𝑏 , while 𝜌, 𝐴 , 𝐸 and 𝐼 denotes beam’s density, cross-

ectional area, Young’s modulus and cross-sectional moment of inertia,

espectively. The beams within the unit cell and with neighboring cells

re connected through coupling layers of different stiffnesses 𝑘 1 and 𝑘 2 
xcept at the interface beam, which is from both sides connected with

djacent beams through the coupling layers of the same stiffness 𝑘 1 and

nertia amplification 𝑑 properties. 

The governing equations for the beams in the unit cells bellow the

nterface coupled with elastic layers without inerters are given as 

𝐴 ̈𝑤 𝑎,𝑝 + 𝐸𝐼𝑤 

′′′′
𝑎,𝑝 

+ 𝑘 2 ( 𝑤 𝑎,𝑝 − 𝑤 𝑏,𝑝 ) + 𝑘 1 ( 𝑤 𝑎,𝑝 − 𝑤 𝑏,𝑝 −1 ) = 𝑓 𝑎,𝑝 ( 𝑥, 𝑡 ) , (2) 



M. Caji ć, J. Christensen and S. Adhikari International Journal of Mechanical Sciences 205 (2021) 106573 

𝜌

a

𝜌

𝜌

F  

t  

e  

o  

b

𝜌  

𝜌

F  

i  

p  

𝑢  

c  

w  

t  

s

 

m  

e  

e  

i

(

o

(

w  

f

2

 

b  

f

𝑤

w  

t  

n  

t  

a  

t  

m  

s  

s  

a  

t  

s  

t  

p  

t

 

w  

m  

(

M

w  

t  

t  

e(
T  

p  

b  

c  

c  

q  

𝐹  

𝑓

2

 

u  

c  

𝑘  

o  

c  

𝑣  

s  

F

𝑞

o

(
 

w  

K  

t  

u  

s  

b  

d  

p  

y  

i  

m  

f  

t  

t  

t  

b  

t  

w  
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t  
𝐴 ̈𝑤 𝑏,𝑝 + 𝐸𝐼𝑤 

′′′′
𝑏,𝑝 

+ 𝑘 2 ( 𝑤 𝑏,𝑝 − 𝑤 𝑎,𝑝 ) + 𝑘 1 ( 𝑤 𝑏,𝑝 − 𝑤 𝑎,𝑝 +1 ) = 𝑓 𝑏,𝑝 ( 𝑥, 𝑡 ) , (3) 

nd for the beams in the unit cells above the interface as 

𝐴 ̈𝑤 𝑎,𝑝 + 𝐸𝐼𝑤 

′′′′
𝑎,𝑝 

+ 𝑘 1 ( 𝑤 𝑎,𝑝 − 𝑤 𝑏,𝑝 ) + 𝑘 2 ( 𝑤 𝑎,𝑝 − 𝑤 𝑏,𝑝 −1 ) = 𝑓 𝑎,𝑝 ( 𝑥, 𝑡 ) , (4) 

𝐴 ̈𝑤 𝑏,𝑝 + 𝐸𝐼𝑤 

′′′′
𝑏,𝑝 

+ 𝑘 1 ( 𝑤 𝑏,𝑝 − 𝑤 𝑎,𝑝 ) + 𝑘 2 ( 𝑤 𝑏,𝑝 − 𝑤 𝑎,𝑝 +1 ) = 𝑓 𝑏,𝑝 ( 𝑥, 𝑡 ) . (5) 

or the beam array system with finite number of unit cells, the first and

he last equations in the system are different from others if the chain

dges are not connected to the fixed base. Moreover, due to the presence

f inerters, the equations for the beams bellow and above the interface

eam, respectively are given as 

𝐴 ̈𝑤 𝑏, −1 + 𝐸 𝐼𝑤 

′′′′
𝑏, −1 +𝑑 ( ̈𝑤 𝑏, −1 − �̈� 𝑎, 0 ) + 𝑘 2 ( 𝑤 𝑏, −1 − 𝑤 𝑎, −1 ) + 𝑘 1 ( 𝑤 𝑏, −1 − 𝑤 𝑎, 0 )

= 𝑓 𝑏, −1 ( 𝑥, 𝑡 ) , (6) 

𝐴 ̈𝑤 𝑏, 0 + 𝐸𝐼𝑤 

′′′′
𝑏, 0 + 𝑑( ̈𝑤 𝑏, 0 − �̈� 𝑎, 0 ) + 𝑘 1 ( 𝑤 𝑏, 0 − 𝑤 𝑎, 0 ) + 𝑘 2 ( 𝑤 𝑏, 0 − 𝑤 𝑎, 1 ) 

= 𝑓 𝑏, 0 ( 𝑥, 𝑡 ) . (7) 

or the beam array configuration presented in Fig. 1 b, one can adopt

dentical boundary conditions on all beams, which for the pinned-

inned (PP) beams are 𝑤 𝑢,𝑝 (0 , 𝑡 ) = 𝑤 

′′
𝑢,𝑝 
(0 , 𝑡 ) = 𝑤 𝑢,𝑝 ( 𝐿, 𝑡 ) = 𝑤 

′′
𝑢,𝑝 
( 𝐿, 𝑡 ) = 0 ,

 = 𝑎, 𝑏 . Similar to this, one can easily adopt other types of boundary

onditions such as clamped-clamped (CC) beam configuration, which

ould require only changes in the adopted mode shape functions in

he Galerkin approximation to calculate frequency responses and band

tructure of the system. 

In the case when one of the beams is having Ξ attached concentrated

asses, the overall mass of that beam is changed and it can be consid-

red as a defect mass in the chain. This yields a different governing

quation, which for some beam in the 𝑝 -th unit cell below the interface

s given as 

 𝜌𝐴 + 

Ξ∑
𝜉=1 

𝑚 𝜉𝛿( 𝑥 − 𝜎𝜉)) ̈𝑤 𝑎,𝑝 + 𝐸𝐼𝑤 

′′′′
𝑎,𝑝 

+ 𝑘 2 ( 𝑤 𝑎,𝑝 − 𝑤 𝑏,𝑝 ) + 𝑘 1 ( 𝑤 𝑎,𝑝 − 𝑤 𝑏,𝑝 −1 ) 

= 𝑓 𝑎,𝑝 ( 𝑥, 𝑡 ) , (8) 

r 

 𝜌𝐴 + 

Ξ∑
𝜉=1 

𝑚 𝜉𝛿( 𝑥 − 𝜎𝜉)) ̈𝑤 𝑏,𝑝 + 𝐸𝐼𝑤 

′′′′
𝑏,𝑝 

+ 𝑘 2 ( 𝑤 𝑏,𝑝 − 𝑤 𝑎,𝑝 ) + 𝑘 1 ( 𝑤 𝑏,𝑝 − 𝑤 𝑎,𝑝 +1 ) 

= 𝑓 𝑏,𝑝 ( 𝑥, 𝑡 ) , (9) 

here 𝜎𝜉 is the position of 𝜉-th mass on the beam and 𝛿 is the Dirac

unction. 

.2. The eigenvalue problem and frequency response function 

The first step is to discretize the motion equations of the unit cell

y using the Galerkin approximation. The solution is assumed in the

ollowing form 

 𝑢,𝑝 ( 𝑥, 𝑡 ) = 

𝑁 ∑
𝑟 =1 

𝑞 ( 𝑢,𝑝 ) 𝑟 ( 𝑡 ) 𝜙( 𝑢,𝑝 ) 𝑟 ( 𝑥 ) , 𝑢 = 𝑎, 𝑏, (10) 

here 𝑞 ( 𝑢,𝑝 ) 𝑟 and 𝜙( 𝑢,𝑝 ) 𝑟 are the generalized time functions and assumed

rial (mode shape) functions of the bare beam, respectively. 𝑁 is the

umber of adopted terms in the Galerkin approximation series. In struc-

ural dynamic problems, the mode shape functions satisfying the bound-

ry conditions are often used in the method of separation of variables

o solve the PDEs. If the beam array configuration without concentrated

asses is observed, applied mode shape functions of the bare beam also

atisfy the boundary conditions and the obtained solution can be con-

idered as the exact one for the finite number of adopted modes. The
4 
pplication of the Galerkin approximation comes into the effect when

he case with concentrated masses is observed, where the adopted mode

hape functions of the bare beam are not the exact functions satisfying

he boundary conditions. In that case, the accuracy of the obtained ap-

roximated solution can be increased by adopting the higher number of

erms in the Galerkin approximation. 

Inserting Eq. (10) into the governing Eqs. (1) - (9) , multiplying them

ith the corresponding trial functions, integrating over the beam’s do-

ain and taking into account corresponding orthogonality conditions

see Appendix A) gives matrix equations of the form 

 ̈q + K q = f , (11) 

here M is the mass matrix and K is the stiffness matrix of the sys-

em, while f is the force vector. By introducing the harmonic solution of

he form q = q 𝑒 𝑗𝜔𝑡 , 𝑗 = 

√
−1 , and taking that f = 0 , yields the following

igenvalue problem 

K − 𝜔 

2 M 

)
q = 0 . (12) 

he elements of the stiffness K and mass matrix M are given in the Ap-

endix A. By solving the above eigenvalue problem for a finite num-

er of unit cells and adopted terms in the Galerkin approximation, one

an detect interface modes which are located within the band gaps. To

onfirm the existence of localized modes, we will determine the fre-

uency response function of the system by assuming the harmonic force

 0 𝑒 
𝑗Ω acting on the last beam 𝑤 ( 𝑏, − 𝑛 ) bellow the interface such that

 ̃( 𝑏, − 𝑛 ) 𝑘 = 𝐹 0 𝑒 
𝑗 ̂Ω ∫ 𝐿 

0 𝛿( 𝑥 − 𝜁 ) 𝜙( 𝑏, − 𝑛 ) 𝑘 ( 𝑥 ) 𝑑𝑥 = 𝐹 0 𝑒 
𝑗 ̂Ω𝜙( 𝑏, − 𝑛 ) 𝑘 ( 𝜁 ) . 

.3. Band inversion 

Let us assume that the infinite beam array system is composed of

nit cells with two identical beams coupled mutually and with adja-

ent unit cells through springs of different stiffnesses 𝑘 1 = 𝑘 (1 + 𝛾) and

 2 = 𝑘 (1 − 𝛾) . If we chose some 𝑝 -th unit cell described via equation

f the form as Eqs. (4) and (5) when 𝑓 ( 𝑎,𝑝 ) = 0 and 𝑓 ( 𝑏,𝑝 ) = 0 . The unit

ells can be identified by considering the following notation 𝑝 + 𝑣 , with

 = −1 , 0 , 1 denoting the previous, present, and subsequent unit cell, re-

pectively. Then, by taking the above Galerkin approximation and the

loquet-Bloch theorem for the plane wave solution of the form 

 ( 𝑢,𝑝 + 𝑣 ) 𝑟 = 𝑄 ( 𝑢 ) 𝑟 ( 𝜇) 𝑒 𝑗( 𝜔𝑡 + 𝜇𝑎 ( 𝑝 + 𝑣 )) , 𝑢 = 𝑎, 𝑏, (13) 

ne can obtain the matrix equation as 

K 𝑝 − 𝜔 

2 M 𝑝 

)
q̃ = 

( [ 

K 

𝑎,𝑝 

11 K 

𝑎,𝑝 

12 ( 𝜇) 
K 

𝑏,𝑝 

21 ( 𝜇) K 

𝑏,𝑝 

22 

] 

− 𝜔 

2 

[ 

M 

𝑎,𝑝 

1 0 

0 M 

𝑏,𝑝 

2 

] ) [ 

q 

𝑎,𝑝 

1 
q 

𝑏,𝑝 

2 

] 

= 0 ,

(14) 

here q̃ is the vector of wave amplitudes while elements of matrices

 𝑝 and M 𝑝 of dimension 2 𝑁 × 2 𝑁 are given in Appendix B. By solving

his inverse eigenvalue problem in Eq. (14) one can obtain 𝑚 eigenval-

es 𝜔 𝑚 and eigenvectors q̃ 𝑚 as functions of the wave propagation con-

tant 𝜇, which will yield corresponding dispersion relations. Moreover,

y investigating the eigenvectors of the beam array system one can ad-

itionally examine topological features of eigensolutions when stiffness

arameter 𝛾 is varied as a positive and negative value. This kind of anal-

sis can provide us with information on the existence of band inversion

n the beam array system. As explained in [34] , in a one-dimensional

ass-spring lattice system one can observe a change of eigenvectors

or varying wavenumber 𝜇 over the first Brillouin zone. According to

his, the transformation of stiffness parameter 𝛾 from positive to nega-

ive values can change the eigenvectors but not eigenvalues. The same

ransformation can be achieved by reversing the direction of the lattice

asis vector or through the translation of the unit cell by one mass in

he chain. These transformations are attributed to changes in the gauge,

hich then changes the eigenvectors and the topology of the vector bun-

le related to the solution of the corresponding eigenvalue problem. The

opology of this vector bundle can be evaluated by using the Zak phase
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or the bands, which is a special case of the Berry phase used to charac-

erize the band topology and band inversion in 1D periodic media. For

ome 𝑚 -th band, the Zak phase can be calculated as 

 = ∫
𝜋

− 𝜋

[
𝑗( ̃q 𝑚 ( 𝜇)) 𝐻 ⋅ 𝜕 𝜇q̃ 𝑚 ( 𝜇) 

]
𝑑𝜇 (15)

here ( ̃q 𝑚 ( 𝜇)) 𝐻 is the Hermitian of eigenvector ̃q 𝑚 ( 𝜇) . A more simplified

iscretized form of Eq. (15) can be used in numerical calculation of the

ak phase as 

𝑍𝑎𝑘 = − Im 

𝑃−1 ∑
𝑐=− 𝑃 

ln 
[
q̃ 

𝐻 

𝑚 

(
𝑐 

𝑃 
𝜋

)
⋅ q̃ 𝑚 

(
𝑐 + 1 

𝑃 
𝜋

)]
(16)

he Zak phase need to be calculated for each band and it usually take

alues Θ𝑍𝑎𝑘 = 0 and Θ𝑍𝑎𝑘 = 𝜋. Since the Zak phase is not gauge invari-

nt, the choice of coordinate reference and a unit cell must remain the

ame during computation. Therefore, the Zak phase can give us impor-

ant information about the geometric phases of the bulk band and the

xistence of interface modes in different PC configurations [29] . How-

ver, despite the fact that from Eq. (14) one can easily determine the

esulting eigenvalues and eigenvectors, above Eqs. (15) and (16) seem

o be inapplicable to the present problem since aforementioned values

f the Zak phase Θ𝑍𝑎𝑘 = 0 or Θ𝑍𝑎𝑘 = 𝜋 cannot be obtained for individual

ands. This will be elaborated additionally in the following section. 

One can also predict the generation of interface modes when there is

 mode transition frequency (band transition point) between the band

aps of topologically distinct PCs. More precisely, interface modes can

e induced by varying the symmetry of the band-edge states at both the

pper and lower edges of the band gap. It should be noted that for the

eam array system with inerters at the interface, the dispersion relations

annot be constructed via the classical Floquet-Bloch approach since it

equires that all unit cells in the system are identical. Either way, in

he following numerical analysis the bulk band of a beam array system

ith inerters will be computed to reveal the effect of inerters on band

nversion. This requires only minor changes in the mass matrix from

q. (14) to account for the effect of inerters in the representative unit

ell. 

. Numerical results 

In this section, the results for the frequency response function (FRF)

nd band structure will be given first to demonstrate the existence

f interface modes in the coupled multiple beam array system with-

ut inerters. Further, the influence of inerters in discrete mass-spring

nd multiple beam array systems will be investigated to reveal their

ffect on interface modes. The following values of parameters are

dopted in numerical simulations if not given differently: Young’s modu-

us 𝐸 = 3 . 2 ⋅ 10 9 [ Pa ] , cross-sectional moment of area 𝐼 = 4 . 5 ⋅ 10 −11 [ m 

4 ] ,
eams length 𝐿 = 0 . 8[ m ] , cross-sectional area 𝐴 = 6 ⋅ 10 −5 , density 𝜌 =
190[ kg ∕ m 

3 ] , and mean stiffness 𝑘 = 200[ N ∕ m 

2 ] related to stiffnesses

 1 = 𝑘 (1 + 𝛾) and 𝑘 2 = 𝑘 (1 − 𝛾) , with 𝛾 denoting the dimensionless stiff-

ess parameter. All given numerical examples of a beam array sys-

em without defect mass are calculated for adopted 𝑁 = 5 terms in the

alerkin approximation, which enables us to study all the important

nterface modes in the lower and higher frequency range. For the rea-

ons mentioned previously, the number of adopted terms in the Galerkin

pproximation is increased to 𝑁 = 10 for the configuration where the

o-called defect mass is introduced. When calculating the FRF, a beam

rray system with a finite number of 𝑛 = 10 units cells on each side of

he interface is considered, where beams at the two opposite ends of the

hain are free (not connected to the fixed base) and denoted as 𝑤 𝑏, −10 
nd 𝑤 𝑏, 10 . The whole system is having an odd number of beams such

hat the beam denoted as 𝑤 𝑏, 0 is in the center. Here, we will consider

s symmetric those modes where displacement of the interface beam is

qual to zero while adjacent beams are oscillating with the same am-

litude but opposite phase. This is not the case with the anti-symmetric
5 
odes, where beams adjacent to the interface are in phase and the in-

erface displacement is different from zero. Therefore, we measure the

requency response of the beam 𝑤 𝑏, 0 presuming that displacement of the

nterface beam displacement 𝑤 𝑎, 0 in symmetric modes is equal to zero.

t should be noted that in the FRF analysis, the harmonic force is acting

n the last beam 𝑤 𝑏, −10 at the point 𝜁 = 0 . 45 𝐿 [ 𝑚 ] , to move it away from

he central node (point with zero displacements in certain mode shapes

f the pinned-pinned beam). Steady-state responses are calculated based

n a methodology similar to those found in [71] , where convolution in-

egral solution is applied to determine the steady-state amplitudes. All

he responses are measured at the point 𝑥 = 0 . 55 𝐿 . 

.1. Beam array system without inerters 

First, we will show the example of a finite beam array system with-

ut inerters. This includes both, showing the eigenvalue analysis and

requency response function that are plotted for frequencies normal-

zed with the first natural frequency of the simply supported bare beam.

igure 2 shows eigenvalues (left) and FRF (right) of the beam array

ystem with an interface for adopted five modes in the Galerkin approx-

mation. It illustrates several narrow passbands and band gaps as well as

nterface modes at both lower and higher frequency ranges for the value

f stiffness parameter 𝛾 = 0 . 5 ( 𝑘 1 > 𝑘 2 ), where interface modes are local-

zed within the narrow band gaps, see Fig. 2 a. Figure 2 b shows eigen-

alues and FRF of the beam array system when 𝛾 = −0 . 5 is a negative

alue, i.e. in the case where the stiffness of layers below and above the

nterface beam is weak ( 𝑘 1 < 𝑘 2 ). Here, the majority of interface modes

igrate into the bulk indicating their trivial nature but certain interface

odes remain inside the band gaps. A similar effect can be viewed in

D phononic mass-spring chains [33] , when the unit cell configuration

ncludes two identical masses and two springs of different stiffness prop-

rties. In our case, one can notice the existence of multiple bands and

igher frequency interface modes since instead of discrete mass-springs,

ontinuous beam structures are used. It is well known that continuous

tructures are having an infinite number of degrees of freedom and mode

hapes. However, we depicted only the lower modes which can be en-

ompassed by the five-term Galerkin approximation. It is interesting to

ote that in all four sub-figures one can identify a band gap that starts

rom a zero frequency, with no interface modes detected inside it. Such

btained band gap is a specific feature of the proposed beam array sys-

em that was found earlier in [50] and explained with more details. 

Normalized steady-state displacement amplitudes (red asterisks) are

iven in Fig. 3 to demonstrate the existence of interface modes in space.

ormalization in this case is performed by dividing all amplitudes with

he maximal steady-state amplitude for the current beam array config-

ration. Here, the beam array system with 𝑛 = 15 unit cell on each side

f the interface and sixty one beams in the system is considered, where

armonic excitation is applied to the first beam below the interface de-

oted as 𝑤 𝑏, −15 . The beam array configuration with adjacent high stiff-

ess springs 𝛾 = 0 . 5 at the interface is considered as an example. Four

ifferent interface modes are presented for the cases when the harmonic

xcitation is near the resonant (interface) frequency. Modes are counted

s they appear in Fig. 2 a, starting from the lowest frequency interface

ode. It should be noted that frequencies given in figures are truncated

o four decimal places for convenience but the exact values should be

alculated for the repetition of the results. It can be noticed that all given

nterface modes except one can be characterized as symmetric since the

nterface beam is at rest while the neighboring beams are oscillating

ith the same amplitude (but opposite phase). The third given interface

ode (upper right sub-figure) can be considered as the anti-symmetric

ne since the amplitudes of the interface and adjacent beams are differ-

nt from zero (they are oscillating in phase). 

Fig. 4 shows dispersion curves and band inversion in the beam array

ystem at the limits 𝜇 = 𝜋 of the first Brillouin zone, which is obtained

y solving the eigenvalue problem from Eq. (14) . Fig. 4 a and c shows

everal branches and band gaps at lower and higher frequency ranges for
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Fig. 2. Natural frequencies and frequency response function of the elastically coupled beam array system given in two different configurations 𝑘 1 < 𝑘 2 and 𝑘 1 > 𝑘 2 . 
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he value of stiffness parameter 𝛾 = 0 . 5 and 𝛾 = −0 . 5 , respectively. It can

e noticed that the band structure does not change under transformation

→ − 𝛾, which means that eigenvalues are not changing, which is not

he case with eigenvectors. Narrow band gaps existing between some

ranches are vanishing for 𝛾 = 0 (the case with all identical springs),

here band gaps are closing at the edges of the first Brillouin zone.

s revealed in [72] for diatomic lattices, the transition between acous-

ic and optical frequencies from approaching to veering, a phenomenon

alled eigenvalue loci veering (avoided-crossing), occurs when the band

ap is closing i.e. it requires non-trivial topology. In other words, veer-

ng is a consequence of rapid variation in the eigenvectors, which can

hen cause band inversion or band localization. Similar behavior can be

oticed in our case but for several bands at lower as well as higher fre-

uency ranges. Whether certain edge (interface) modes are trivial or not

an be illustrated by calculating the invariants associated with separate

ands i.e. the topology of their vector bundles, which is usually char-

cterized through the Zak phase. However, as stated earlier in the text,

alculating the Zak phase of individual bands in a multi-band system

an be a difficult task. In our case, when using the Eq. (16) to calculate

he Zak phase for ten bands obtained from the eigenvalue problem in

q. (14) yields values of Zak phases which are different from the usual

 or 𝜋 but whose summation yields the integer multiple of 2 𝜋. As given

y [27] , such obtained value is not important from the perspective of

tandard discussion of the Zak phase and will not be elaborated further

n this study. Fig. 4 d demonstrates the existence of band inversion when

is varied from minus to plus values. Moreover, one can easily notice

ultiple band inversions at both, lower and higher frequencies, thus

ndicating the existence of localized modes. 

.2. The effect of defect mass 

As given by Eqs. (8) and (9) , the concentrated mass attached to

he random beam in the system changes the mass matrix of the system.

he beam with changed mass compared to other beams in the system

an be considered as a defect mass in the chain. Here, we investigate

hether this defect may cause changes in the interface modes of the

dopted beam array configuration. It is well known that the main prop-

rty of the topologically protected interface modes is their robustness to

efects and disorders. Defect mass is represented by the single concen-

rated mass 𝑚 1 = 𝑚𝜌𝐴𝐿 attached at the mid-span 𝜎1 = 0 . 5 𝐿 of the beam

enoted as 𝑤 𝑎, −10 . For this purpose, a case with 𝑛 = 20 unit cells on each
6 
ide of the interface is adopted as well as 𝑁 = 10 terms in the Galerkin

pproximation. 

In Fig. 5 we depicted four different cases of the value of concentrated

ass attached at the beam denoted as 𝑤 𝑎, −10 . One can observe that all of

he interface modes (red dashed lines) that exist in the system without

efect mass remain the same in the system with the defect mass. How-

ver, some new defect modes emerge inside the frequency band gaps

y gradually increasing the value of the attached mass (see black dash-

otted lines in Fig. 5 ). More precisely, only two additional defect modes

merge in higher frequency band gaps for the lower values of mass (sec-

nd sub-figure from the left side) while four and five additional defect

odes are present in both lower and higher frequency band gaps for

he higher values of attached mass (third and fourth sub-figure from the

eft side). The obtained frequencies of the defect modes mismatch with

he frequencies of the interface modes and are localized in the chain at

he place of the defect mass i.e. in the beam with attached concentrated

ass denoted as 𝑤 𝑎, −10 . Interface modes of the beam array system with-

ut and with the defect mass remain the same in all four configurations

nd are not affected by changes and different mass distribution in the

ystem. Therefore, interface modes are immune to the presence of de-

ect mass in the system. Moreover, an increase in the number of terms

n the Galerkin approximation also does not affect interface modes due

o previously mentioned reasons. It should be noted that the numbers of

nit cells and terms in the Galerkin approximation are increased mostly

o contribute to more precise determination of newly emerged defect

odes. Since these modes are affected by changes of the mass, the case

ith 𝑁 = 10 terms in the Galerkin approximation is used to achieve

igher accuracy. 

.3. Mass-spring-inerter system 

For the sake of simplicity and more clear insight into the effect of

nerters on interface modes, we first show the frequency response func-

ion of the discrete mass-spring-inerter chain system with the interface,

hich is composed of unit cells with two identical masses having dis-

lacements denoted as 𝑦 ( 𝑎,𝑝 ) and 𝑦 ( 𝑏,𝑝 ) , with 𝑝 denoting the unit cell num-

er. The corresponding equations are derived in Appendix C. Masses and

nit cells are mutually connected through springs with stiffness proper-

ies 𝑘 𝑠 1 = 𝜅(1 + 𝛾) , 𝑘 𝑠 2 = 𝜅(1 − 𝛾) with 𝜅 being the mean stiffness and 𝛾

enoting the dimensionless stiffness parameter. Parameters are nondi-

ensionalized (see Appendix C) such that stiffness related parameters
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Fig. 3. Normalized steady-state displacement amplitudes of the beam array system with 𝑛 = 15 unit cells on each side of the interface and the first beam 𝑤 𝑏, −15 
excited near the interface frequency. 
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ecome ̃𝑘 𝑠 1 = 1 + 𝛾 and ̃𝑘 𝑠 2 = 1 − 𝛾 while inertance is characterized by the

imensionless inertia parameter denoted as 𝑑 . The case of the mass-

pring-inerter chain with 𝑛 = 30 unit cells on each side of the interface

s adopted, with the interface mass denoted as 𝑦 ( 𝑎, 0) and end masses

iven as 𝑦 ( 𝑏, −30) and 𝑦 ( 𝑏, 30) . The value of dimensionless stiffness param-

ter 𝛾 = 0 . 4 is adopted in both cases. We assume that the left end of

he chain is fixed and the other is free, and we compute the frequency

esponse function assuming that 𝑦 ( 𝑏, −30) = 𝐹 0 𝑒 
𝑖 Ω𝑡 , 𝐹 0 = 1 for the mass at

he left boundary. Fig. 6 shows the case when 𝑑 = 0 , i.e. when the pure

ass-spring chain is considered, while the second case belongs to the

ass-spring-inerter chain system with the value of inerter parameter

 ̃= 0 . 1 . FRF is measured for the central mass 𝑦 ( 𝑏, 0) in the chain (not the

nterface mass 𝑦 ( 𝑎, 0) ). In the pure mass-spring chain one can observe in-

erface modes at the frequency Ω = 

√
2 for symmetric and Ω > 2 for the

nti-symmetric mode as revealed in [34] , Fig. 6 a. By introducing the in-

rter, one can notice an obvious shifting of interface mode frequencies

owards lower values for both symmetric and anti-symmetric modes.
7 
owever, this shifting is more pronounced at the higher frequency in-

erface mode than for the lower one located inside the band gap. 

The effect of inerters on interface modes in the mass-spring-inerter

ystem can be seen more clearly in Fig. 7 . The eigenvalues are calculated

or the mass-spring and mass-spring-inerter system with 𝑛 = 30 unit cells

n each side of the interface. Corresponding interface mode frequencies

rom Fig. 6 are detected and plotted for varying stiffness parameter 𝛾.

he first, lower frequency interface mode, is given in Fig. 7 a for the pure

ass-spring and two different cases of the mass-spring-inerter system.

he second, higher frequency interface mode, is given in Fig. 7 b for the

ame values of parameters. In the case of the pure mass-spring system

 ̃𝑑 = 0 ) and the first interface mode one can notice that the frequency is

hanging for 𝛾 < 0 while it is constant for 𝛾 > 0 . As explained in [34] , this

ehavior is attributed to the property of symmetric modes that chang-

ng the stiffness of springs on both sides of the interface does not change

he dynamics of the interface mass. Also, this interface mode is consid-

red to be symmetric only for 𝛾 > 0 and it is independent of 𝛾. In the
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Fig. 4. Dispersion curves and band inversion of the elastically coupled beam array system without inerters. 
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t  
ase of the second interface mode ( Fig. 7 b), which is considered to be

nti-symmetric and trivial defect mode (it vanish for 𝛾 < 0 ), it emerges

rom the bulk, and its frequency increases for positive and increasing

alue of stiffness parameter 𝛾. The main effect of the inerter parameter

hat can be observed from this analysis reflects in a decrease of the fre-

uency of interface modes in both, varying and the constant part of the

ine. Therefore, in the mass-spring-inerter system, the interface mode

requency can be shifted towards lower frequencies by varying the in-

rter parameter while preserving the main properties and nature of these

odes. 

.4. Beam array system with inerters 

Fig. 8 displays band inversion of the elastic beam array system for

he representative unit cell with inerters. The results are given for the

imits of the band gap ( 𝜇 = 𝜋) and variations of the parameter 𝛾. By

omputing the bulk band of a beam array system with inerters, we can
8 
dditionally investigate the effect of inerters on band inversion. If we

ompare band inversion plots of the beam array system in two different

ases, with lower 𝑑 = 0 . 0001 and higher 𝑑 = 0 . 001 values of the inerter

arameter, one can notice an obvious shifting of band inversion points

owards positive values of 𝛾 and lower frequencies. The shift of the de-

eneracy point is more clear at higher frequencies. More precisely, band

nversion points in a beam array without inerters are all located at 𝛾 = 0
 Fig. 4 d) while by introducing the inerters one can notice that the bulk

and degeneracies shift towards positive values of 𝛾 with decreasing fre-

uency, even for small values of the inerter parameter 𝑑. The obtained

esults indicate that the system is very sensitive to changes of the inerter

arameter, and therefore interface states will be significantly distinct

rom those of the system without them, especially for higher frequency

nterface modes. 

Similar to the discrete mass-spring-inerter chain, we can now study

he interface modes in the beam array system with inerters at the in-
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Fig. 5. Interface (red dashed lines) and defect (black dash-dotted lines) modes of the beam array system with and without defect mass for 𝑛 = 20 unit cells on each 

side of the interface and 𝑁 = 10 terms in the Galerkin approximation. 

Fig. 6. Natural frequencies and frequency response function of the mass-spring and mass-spring-inerter system for 𝛾 = 0 . 4 and 𝑛 = 30 unit cells on each side of the 

interface. 
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F  
erface (see Fig. 1 b). To investigate this, we show the eigenvalues and

RF of the proposed configuration for the value of dimensionless stiff-

ess parameter 𝛾 = 0 . 5 and two different values of inerter parameter

 = 0 . 001 and 𝑑 = 0 . 01 , Fig. 9 . It demonstrates the existence of interface

odes in both lower and higher frequency band gaps. By introducing

nd increasing the inertia parameter, one can notice a slight shifting

f existing interface modes towards lower frequencies. However, when

peaking about lower frequency interface modes, one can notice that

hey remain within the same band gaps while those at higher frequen-

ies migrate into the bulk or towards lower frequency band gaps. More

recisely, in the configuration without inerters ( Fig. 2 ) the higher fre-

uency interface modes are located within the narrow band gaps while

n the inerter case they appear in the wide band gaps below them. 

Here, similar to the trivial case in Fig. 2 b, we intend to investigate

he behavior of interface modes of the beam array with inerters in the

onfiguration 𝛾 = −0 . 5 i.e. when 𝑘 1 < 𝑘 2 . Fig. 10 shows FRF of the beam
9 
rray system for two different values of the inerter parameter 𝑑 = 0 . 001
nd 𝑑 = 0 . 01 . One can notice only fewer interface modes in the config-

ration without inerters ( Fig. 2 b) or even fewer number of them in the

onfiguration with inerters but with a low value of inerter parameter

 = 0 . 001 , see Fig. 10 a. This means that the remaining modes migrate

nto the bulk due to the decreased frequencies caused by the presence of

nerters at the interface. By increasing the inerter parameter in Fig. 10 b,

ne can observe the emergence of several interface modes localized in

he higher frequency band gaps. This agrees well with the previous find-

ngs for the bulk band that the presence of inerters mostly affects higher

requency bands. Even though the nature of the effect of the inerter on

igher frequency interface modes cannot be clearly explained, it is ob-

ious that it only slightly changes the lower frequency interface modes.

To demonstrate the interface modes in space for the beam array sys-

em with inerters, normalized steady-state displacements are plotted in

igs. 11 and 12 for two different values of inerter parameter. In both
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Fig. 7. Interface mode frequencies of the mass-spring and mass-spring-inerter system for varying 𝛾 and and different values of dimensionless inerter parameter 𝑑 . 

Fig. 8. Band inversion of the elastically coupled beam array system with inerters and different values of the inerter parameter 𝑑. 
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i  
ases, only the first and the third interface frequencies (see Fig. 9 for

etails) is given when the harmonic excitation is near the resonant fre-

uency. It can be noticed that the first interface mode is the symmetric

ne since the interface beam is at rest while the adjacent ones oscil-

ate with the same amplitude (but opposite phase). On the other side,

he third interface mode is the anti-symmetric one since the amplitudes

f the interface and adjacent beams are different from zero (they are

scillating in phase). It should be noted that the discrepancy between

he second and third modes in Fig. 9 a is very small and can be viewed

nly by zooming that particular frequency range. However, based on
10 
resented results one can notice that the first interface mode given in

ig. 12 a appears at a lower frequency for an increase of the value of

he inerter parameter. On the other side, the third interface mode (see

ig. 9 b) given in Fig. 12 b occurs at a higher frequency. This interface

ode is newly emerged and it does not correspond to the third mode

rom Figs. 9 a and 11 b, since that mode now becomes the second one

nd it almost migrates into the bulk (see Fig. 9 b for details). This can be

hecked by gradually increasing the value of the inerter parameter. 

Finally, to show the tuning potential of the inerter on interface modes

n the beam array system, we investigate the behavior of particular in-
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Fig. 9. Natural frequencies and frequency response function of the elastically coupled beam array system with inerters and given in the configuration 𝑘 1 > 𝑘 2 . 

Fig. 10. Natural frequencies and frequency response function of the elastically coupled beam array system with inerters and given in the configuration 𝑘 1 < 𝑘 2 . 
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erface modes for varying stiffness parameter 𝛾 and for three different

alues of the inerter parameter. In that regard, we chose two interface

odes from Fig. 2 a, the first at the lowest frequency (the first red dashed

ine) and the next one at the higher frequency (the fifth red dashed line).

ig. 13 a shows the lower frequency interface mode for varying stiffness

arameter 𝛾 and three different values of the inerter parameter 𝑑. One

an notice that for the case without inerter 𝑑 = 0 , the interface mode fre-

uency is increasing while 𝛾 is negative, which then becomes constant

or positive values of 𝛾. Similar behavior can be noticed in Fig. 13 b for

he higher frequency interface mode when 𝑑 = 0 . This behavior at cer-

ain interface modes is similar to the behavior of symmetric interface

odes in the simple mass-spring model given in Fig. 7 a. By introducing

he inerters, this behavior is affected and the frequency starts to decrease

or 𝛾 > 0 . This effect is even more pronounced in the higher frequency

nterface mode in Fig. 13 b. However, this is different from the results

btained for the mass-spring-inerter system, where the frequency of the
11 
nterface mode decreases for both 𝛾 > 0 and 𝛾 < 0 while the symme-

ry properties are preserved. In the case of a beam array system with

nerters, the frequencies of interface modes decrease due to the mass

mplification effect of inerters. However, one can notice that observed

nterface modes are independent of the inerter parameter when 𝛾 < 0 ,
hich can be attributed to the fact that inerters are introduced only at

he interface and the weak interface coupling ( 𝑘 1 < 𝑘 2 ) localized modes

re not affected by changes of the inertance. 

. Conclusion 

This work demonstrates how localized modes can be induced at the

nterface of a one-dimensional beam array system with beams mutu-

lly connected through elastic layers with two alternating stiffnesses.

overning equations are discretized and matrices for the corresponding

igenvalue problem obtained to calculate the eigenvalues, frequency re-
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Fig. 11. Normalized steady-state displacement amplitudes of the beam array system with 𝑛 = 15 unit cells on each side of the interface and the first beam 𝑤 𝑏, −15 
excited near the interface frequency for the values of parameters 𝛾 = 0 . 5 , 𝑑 = 0 . 001 . 

Fig. 12. Normalized steady-state displacement amplitudes of the beam array system with 𝑛 = 15 unit cells on each side of the interface and the first beam 𝑤 𝑏, −15 
excited near the interface frequency for the values of parameters 𝛾 = 0 . 5 , 𝑑 = 0 . 01 . 
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fi  
ponse function, and steady-state response amplitudes in space. Suitable

umerical examples are given to illustrate the band inversion effect and

he existence of interface modes in the proposed system. In this paper,

e have made the following main contributions: 

• In the beam array system without inerters we demonstrated the ex-

istence of multiple bands and interface modes mostly located within

the narrow band gaps and localized at the interface between two

sub-lattices. 
• We examined the effect of defect mass introduced into the elastic

beam array system and showed that existing interface mode frequen-

cies are not affected by such changes. However, new defect modes

localized at the place of defect mass emerge within the higher fre-

quency band gaps for lower values of the defect mass and at both
12 
lower and higher frequency band gaps for the higher values of that

mass. 
• For the simple mass-spring-inerter chain we illustrated that the exist-

ing localized interface modes in the mass-spring chain can be shifted

toward lower frequencies when introducing the inerters, while their

symmetric properties are preserved. 
• We revealed that multiple interface states in a beam array system

with inerters at the interface can be tuned at both lower and higher

frequency ranges by changing the inertance. More precisely, an in-

crease of inertance leads to a decrease of lower interface frequen-

cies while higher interface frequencies can migrate into bulk or even

emerge at lower frequency band gaps. 

This work shows how exploiting the inerters and their mass ampli-

cation effect can lead to tunable periodic mechanical structures ex-
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Fig. 13. Interface frequencies of the beam array system with and without inerters for variations of 𝛾 and different values of inerter parameter 𝑑
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ibiting localized modes at interfaces and showing high potential for

pplication in future tunable engineering systems and devices. 
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ppendix A. Mode shape functions and matrix coefficients 

In the Galerkin weighted residual method, the trial functions are

onsidered as the weighting functions that need to satisfy the accord-

ng boundary and orthogonality conditions. These requirements can be

et by several types of functions, and in our case, the mode shape func-

ions of a simply supported bare beam will be employed. Using this
13 
pproximation method is especially important for the beams with at-

ached concentrated masses since the exact mode shape function satis-

ying boundary conditions cannot be derived straightforwardly. If beams

n the proposed beam array system are identical and have the same edge

onditions, they can be approximated by the same trial functions. The

ode shape functions of a bare simply supported beam can be expressed

s 

( 𝑢,𝑝 ) 𝑟 = 𝜙𝑟 = 

√ 

2 
𝜌𝐴𝐿 

sin 𝛽𝑟 𝑥 , 𝛽𝑟 = 

𝑟𝜋

𝐿 

. 

bove given function depends on a number of mode 𝑟 while the relation

etween the bare beam natural frequency 𝜔 𝑟 and dimensionless eigen-

alue 𝛽𝑟 is given as 𝜔 

2 
𝑟 
= 𝛽4 

𝑟 

𝐸𝐼 

𝜌𝐴 
. The constant 

√ 

2 
𝜌𝐴𝐿 

is chosen such that

t makes the trial functions mutually orthogonal and mass normalized,

hile the eigenvalue 𝛽𝑟 is obtained as a solution of the well-known fre-

uency equation of the simply supported beam. 

To make the trial functions orthonormal with respect to the beam

ass, the following orthogonality conditions are used 

𝐿 

0 
𝜌𝐴𝜙𝑟 ( 𝑥 ) 𝜙𝑠 ( 𝑥 ) 𝑑𝑥 = 𝛿𝑟𝑠 , 

𝐿 

0 
𝐸 𝐼𝜙𝑟 ( 𝑥 ) 𝜙𝑠 ( 𝑥 ) 𝑑 𝑥 = 𝜔 

2 
𝑟 
𝛿𝑘𝑠 , 𝑟, 𝑠 = 1 , 2 , ..., 𝑁. 

here 𝛿𝑟𝑠 is the Kronecker delta. 

Mass 𝐌 and stiffness 𝐊 of dimension (4 𝑛 + 1) 𝑁 × (4 𝑛 + 1) 𝑁 are given

s follows 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

M 

𝑏, − 𝑛 
1 0 ... 0 0 0 0 0 0 0 

0 M 

𝑎, − 𝑛 +1 
2 ... 0 0 0 0 0 0 0 

... ... ... 0 0 0 0 0 0 0 

0 0 0 M 

𝑏, −1 
2 𝑛 −1 M 

𝑎, 0 
( 𝑑) 0 0 0 0 0 

0 0 0 M 

𝑏, −1 
( 𝑑) M 

𝑎, 0 
2 𝑛 M 

𝑏, 0 
( 𝑑) 0 0 0 0 

0 0 0 0 M 

𝑎, 0 
( 𝑑) M 

𝑏, 0 
2 𝑛 +1 0 0 0 0 

0 0 0 0 0 0 M 

𝑎, 1 
2 𝑛 +2 0 0 0 

0 0 0 0 0 0 0 ... ... ... 

0 0 0 0 0 0 0 ... M 

𝑎,𝑛 

4 𝑛 0 

0 0 0 0 0 0 0 ... 0 M 

𝑏,𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
4 𝑛 +1 

https://doi.org/10.13039/501100007601
https://doi.org/10.13039/501100000781
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 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

K 

𝑏, − 𝑛 
1 K 

𝑎, − 𝑛 +1 
( 𝑘 1 ) 

... 0 0 0 0 0 0 0 

K 

𝑏, − 𝑛 
( 𝑘 1 ) 

K 

𝑎, − 𝑛 +1 
2 ... 0 0 0 0 0 0 0 

... ... ... K 

𝑏, −1 
( 𝑘 2 ) 

0 0 0 0 0 0 

0 0 K 

𝑎, −1 
( 𝑘 2 ) 

K 

𝑏, −1 
2 𝑛 −1 K 

𝑎, 0 
( 𝑘 1 ) 

0 0 0 0 0 

0 0 0 K 

𝑏, −1 
( 𝑘 1 ) 

K 

𝑎, 0 
2 𝑛 K 

𝑏, 0 
( 𝑘 1 ) 

0 0 0 0 

0 0 0 0 K 

𝑎, 0 
( 𝑘 1 ) 

K 

𝑏, 0 
2 𝑛 +1 K 

𝑎, 1 
( 𝑘 2 ) 

0 0 0 

0 0 0 0 0 K 

𝑏, 0 
( 𝑘 2 ) 

K 

𝑎, 1 
2 𝑛 +2 K 

𝑏, 1 
( 𝑘 1 ) 

0 0 

0 0 0 0 0 0 K 

𝑎, 1 
( 𝑘 1 ) 

... ... ... 

0 0 0 0 0 0 0 ... K 

𝑎,𝑛 

4 𝑛 K 

𝑏,𝑛 

( 𝑘 1 ) 
0 0 0 0 0 0 0 ... K 

𝑎,𝑛 

( 𝑘 1 ) 
K 

𝑏,𝑛 

4 𝑛 +1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

hile vector 𝐪 is given as 

 = 

[
q 

𝑏, − 𝑛 
1 q 

𝑏, − 𝑛 +1 
2 ... q 

𝑏, −1 
2 𝑛 −1 q 

𝑎, 0 
2 𝑛 q 

𝑏, 0 
2 𝑛 +1 q 

𝑎, 1 
2 𝑛 +2 ... q 

𝑎,𝑛 

4 𝑛 q 

𝑏,𝑛 

4 𝑛 +1 

]𝑇 
. 

y taking into account adopted mode shapes and orthogonality condi-

ions, one can determine the coefficients of the above global mass matrix

y defining the 𝑁 ×𝑁 diagonal submatrices calculated as 

 

𝑢,𝑝 

( 𝑖 ) 𝑟𝑠 = 𝜌𝐴 ∫
𝐿 

0 
𝜙𝑟 𝜙𝑠 𝑑𝑥 = 

{ 

1 , for 𝑟 = 𝑠 , 

0 , for 𝑟 ≠ 𝑠 , 
𝑖 = 1 , 2 , ..., 4 𝑛 + 1 . 

f we consider that concentrated masses are attaches to beam denoted

ith 𝑏 in the 𝑝 -th unit cell, then the corresponding diagonal submatrix

s given as 

 

𝑢,𝑝 

( 𝑖 ) 𝑟𝑠 = ∫
𝐿 

0 
( 𝜌𝐴 + 

Ξ∑
𝜉=1 

𝑚 𝜉𝛿( 𝑥 − 𝜎𝜉 )) 𝜙𝑟 𝜙𝑠 𝑑𝑥 = 

{ 

1 + 

∑Ξ
𝜉=1 𝑚 𝜉𝜙

2 
𝑟 
( 𝜎𝜉 ) , for 𝑟 = 𝑠 , 

0 , for 𝑟 ≠ 𝑠 . 

urther, diagonal submatrices related to the interface beam connected

ith adjacent beams through inerters and springs are given as 

 

𝑏, −1 
( 𝑖 ) 𝑟𝑠 = 𝑀 

𝑏, 0 
( 𝑖 ) 𝑟𝑠 = ( 𝜌𝐴 + 𝑑 ) ∫

𝐿 

0 
𝜙𝑟 𝜙𝑠 𝑑 𝑥 = 

{ 

1 + 𝑑 

𝜌𝐴 
, for 𝑟 = 𝑠 , 

0 , for 𝑟 ≠ 𝑠 , 
𝑖 = 2 𝑛 − 1 , 2 𝑛 + 1

 

𝑎, 0 
( 𝑖 ) 𝑟𝑠 = ( 𝜌𝐴 + 2 𝑑 ) ∫

𝐿 

0 
𝜙𝑟 𝜙𝑠 𝑑 𝑥 = 

{ 

1 + 

2 𝑑 
𝜌𝐴 

, for 𝑟 = 𝑠 , 

0 , for 𝑟 ≠ 𝑠 , 
𝑖 = 2 𝑛, 

nd super and sub diagonal submatricies given as 

 

𝑎, 0 
( 𝑑) 𝑟𝑠 = 𝑀 

𝑏, 0 
( 𝑑) 𝑟𝑠 = 𝑀 

𝑏, −1 
( 𝑑) 𝑟𝑠 = − 𝑑 ∫

𝐿 

0 
𝜙𝑟 𝜙𝑠 𝑑𝑥 = 

{ 

− 

𝑑 

𝜌𝐴 
, for 𝑟 = 𝑠 , 

0 , for 𝑟 ≠ 𝑠 , 
. 

imilarly, diagonal submatricies of the global stiffness matrix can be

alculated as 

 

𝑢,𝑝 

( 𝑖 ) 𝑟𝑠 = 𝐸 𝐼 ∫ 𝐿 

0 𝜙
′′′′
( 𝑢,𝑝 ) 𝑟 𝜙( 𝑢,𝑝 ) 𝑠 𝑑 𝑥 + ( 𝑘 1 + 𝑘 2 ) ∫ 𝐿 

0 𝜙( 𝑢,𝑝 ) 𝑟 𝜙( 𝑢,𝑝 ) 𝑠 𝑑𝑥 

= 

{ 

�̃� 

2 
𝑟 
+ 

𝑘 1 + 𝑘 2 
𝜌𝐴 

, for 𝑟 = 𝑠 , 

0 , for 𝑟 ≠ 𝑠 , 
𝑖 = 1 , 2 , ..., 4 𝑛 + 1 . 

nd super and sub diagonal submatricies as 

 

𝑢,𝑝 

( 𝑘 1 ) 𝑟𝑠 
= − 𝑘 1 ∫

𝐿 

0 
𝜙( 𝑢,𝑝 ) 𝑟 𝜙( 𝑢,𝑝 ) 𝑠 𝑑𝑥 = 

{ 

− 

𝑘 1 
𝜌𝐴 

, for 𝑟 = 𝑠 . 

0 , for 𝑟 ≠ 𝑠 . 

 

𝑢,𝑝 

( 𝑘 2 ) 𝑟𝑠 
= − 𝑘 2 ∫

𝐿 

0 
𝜙( 𝑢,𝑝 ) 𝑟 𝜙( 𝑢,𝑝 ) 𝑠 𝑑𝑥 = 

{ 

− 

𝑘 2 
𝜌𝐴 

, for 𝑟 = 𝑠 . 

0 , for 𝑟 ≠ 𝑠 . 

ppendix B. Matrix coefficients for the band structure 

Dimension of mass 𝐌 𝑝 and stiffness 𝐊 𝑝 matrices in Eq. (13) is 2 𝑁 ×
 𝑁 , which depends on the number of adopted terms in the Galerkin ap-

roximation. Following the same procedure as above, and adopting the

orresponding mode shapes and orthogonality conditions, the elements

f the mass and stiffness matrix are determined as 

 

𝑎,𝑝 

(1) 𝑟𝑠 = 𝑀 

𝑏,𝑝 

(2) 𝑘𝑠 = 𝜌𝐴 ∫
𝐿 

0 
𝜙( 𝑢,𝑝 ) 𝑟 𝜙( 𝑢,𝑝 ) 𝑠 𝑑𝑥 = 

{ 

1 , for 𝑟 = 𝑠 . 

0 , for 𝑟 ≠ 𝑠 . 
, 
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𝑎,𝑝 

(11) 𝑟𝑠 = 𝐾 

𝑏,𝑝 

(22) 𝑟𝑠 = 𝐸 𝐼 ∫ 𝐿 

0 𝜙′′′′
( 𝑢,𝑝 ) 𝑟 𝜙( 𝑢,𝑝 ) 𝑠 𝑑 𝑥 + ( 𝑘 1 + 𝑘 2 ) ∫ 𝐿 

0 𝜙( 𝑢,𝑝 ) 𝑟 𝜙( 𝑢,𝑝 ) 𝑠 𝑑𝑥 

= 

{ 

�̃� 

2 
𝑟 
+ 

𝑘 1 + 𝑘 2 
𝜌𝐴 

, for 𝑟 = 𝑠 . 

0 , for 𝑟 ≠ 𝑠 . 

 

𝑎,𝑝 

(12) 𝑟𝑠 = −( 𝑘 1 + 𝑘 2 𝑒 
− 𝑗𝜇𝑎 ) ∫

𝐿 

0 
𝜙( 𝑢,𝑝 ) 𝑟 𝜙( 𝑢,𝑝 ) 𝑠 𝑑𝑥 = 

{ 

− 𝑘 1 − 𝑘 2 𝑒 − 𝑗𝜇𝑎 

𝜌𝐴 
, for 𝑟 = 𝑠 . 

0 , for 𝑟 ≠ 𝑠 . 

 

𝑎,𝑝 

(21) 𝑟𝑠 = −( 𝑘 1 + 𝑘 2 𝑒 
𝑗𝜇𝑎 ) ∫

𝐿 

0 
𝜙( 𝑢,𝑝 ) 𝑟 𝜙( 𝑢,𝑝 ) 𝑠 𝑑𝑥 = 

{ 

− 𝑘 1 − 𝑘 2 𝑒 𝑗𝜇𝑎 

𝜌𝐴 
, for 𝑟 = 𝑠 . 

0 , for 𝑟 ≠ 𝑠 . 

ppendix C. Mass-spring-inerter chain 

Let us consider the mass-spring-inerter system with a unit cell com-

osed of identical masses connected through springs with stiffnesses

 

𝑠 
1 = 𝜅(1 + 𝛾) and 𝑘 𝑠 1 = 𝜅(1 − 𝛾) and inerters with the same inertia ampli-

cation property 𝑑 𝐼 . If this mass-spring-inerter chain contains two sub-

attices of unit cells that are inverted copies of each other (see Fig. C.14 ),

he governing equation for the free vibration of the interface mass 𝑦 𝑎, 0 
s given as 

 ̈𝑦 𝑎, 0 + 2 𝑑 𝐼 ̈𝑦 𝑎, 0 + 2 𝑘 𝑠 1 𝑦 𝑎, 0 − 𝑘 𝑠 1 𝑦 𝑏, 0 − 𝑘 𝑠 1 𝑦 𝑏, −1 − 𝑑 𝐼 ̈𝑦 𝑏, 0 − 𝑑 𝐼 ̈𝑦 𝑏, −1 = 0 , 

n the similar manner, one can obtain the equations for a unit cell 𝑝 of

he sub-lattice I on the left side of the interface as 

 ̈𝑦 𝑎,𝑝 + 𝑑 𝐼 ( ̈𝑦 𝑎,𝑝 − �̈� 𝑏,𝑝 ) + 𝑑 𝐼 ( ̈𝑦 𝑎,𝑝 − �̈� 𝑏,𝑝 −1 ) + 𝑘 𝑠 2 ( 𝑦 𝑎,𝑝 − 𝑦 𝑏,𝑝 ) + 𝑘 𝑠 1 ( 𝑦 𝑎,𝑝 − 𝑦 𝑏,𝑝 −1 ) = 0 , 

 ̈𝑦 𝑏,𝑝 + 𝑑 𝐼 ( 𝑦 𝑏,𝑝 − 𝑦 𝑎,𝑝 ) + 𝑑 𝐼 ( 𝑦 𝑏,𝑝 − 𝑦 𝑎,𝑝 +1 ) + 𝑘 𝑠 2 ( 𝑦 𝑏,𝑝 − 𝑦 𝑎,𝑝 ) + 𝑘 𝑠 1 ( 𝑦 𝑏,𝑝 − 𝑦 𝑎,𝑝 +1 ) = 0 , 

nd for the sub-lattice II on the right side of the interface as 

 ̈𝑦 𝑎,𝑝 + 𝑑 𝐼 ( ̈𝑦 𝑎,𝑝 − �̈� 𝑏,𝑝 ) + 𝑑 𝐼 ( ̈𝑦 𝑎,𝑝 − �̈� 𝑏,𝑝 −1 ) + 𝑘 𝑠 1 ( 𝑦 𝑎,𝑝 − 𝑦 𝑏,𝑝 ) + 𝑘 𝑠 2 ( 𝑦 𝑎,𝑝 − 𝑦 𝑏,𝑝 −1 ) = 0 , 

 ̈𝑦 𝑏,𝑝 + 𝑑 𝐼 ( ̈𝑦 𝑏,𝑝 − �̈� 𝑎,𝑝 ) + 𝑑 𝐼 ( ̈𝑦 𝑏,𝑝 − �̈� 𝑎,𝑝 +1 ) + 𝑘 𝑠 1 ( 𝑦 𝑏,𝑝 − 𝑦 𝑎,𝑝 ) + 𝑘 𝑠 2 ( 𝑦 𝑏,𝑝 − 𝑦 𝑎,𝑝 +1 ) = 0 . 

f we introduce the non-dimensional time scale 𝜏 = ( 
√

𝜅∕ 𝑚 ) 𝑡 , then the

imensionless parameters related to the inertance and stiffness are given

s 𝑑 = 𝑑 𝐼 ∕ 𝑚 and �̃� 𝑠 1 = 1 + 𝛾, �̃� 𝑠 2 = 1 − 𝛾, respectively. For the chain with

 finite number of unit cells and forced response of the mass-spring-

nerter system one can write the above equations in matrix form as

 

𝐼 ÿ ( 𝜏) + K 

𝑠 y ( 𝜏) = f ( 𝜏) , where f ( 𝜏) = f 𝑠 𝑒 𝑗Ω𝜏 , with Ω is denoting the fre-

uency normalized with the reference frequency 
√

𝜅∕ 𝑚 . By imposing

he solution of the form y ( 𝜏) = y 𝑒 𝑗Ω𝜏 , the governing equation reduces

o 

K 

𝑠 − Ω2 M 

𝐼 
)
y = f . 

y taking that f = 0 , one obtains the eigenvalue problem whose solution

ives natural frequencies Ω of the proposed mass-spring-inerter chain

ystem. For the finite number of 𝑛 unit cells on each side of the interface

nd fixed-free chain, where the first mass on the left side 𝑦 𝑏, − 𝑛 is fixed

o the base, the elements of the mass matrix M 

𝐼 and stiffness K 

𝑠 matrix

f dimension (4 𝑛 + 1) × (4 𝑛 + 1) are given as 

 

𝐼 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 + 2 ̃𝑑 − ̃𝑑 ... 0 0 0 0 0 0 0 
− ̃𝑑 1 + 2 ̃𝑑 ... 0 0 0 0 0 0 0 
... ... ... − ̃𝑑 0 0 0 0 0 0 
0 0 − ̃𝑑 1 + 2 ̃𝑑 − ̃𝑑 0 0 0 0 0 
0 0 0 − ̃𝑑 1 + 2 ̃𝑑 − ̃𝑑 0 0 0 0 
0 0 0 0 − ̃𝑑 1 + 2 ̃𝑑 − ̃𝑑 0 0 0 
0 0 0 0 0 − ̃𝑑 1 + 2 ̃𝑑 − ̃𝑑 0 0 
0 0 0 0 0 0 − ̃𝑑 ... ... ... 

0 0 0 0 0 0 0 ... 1 + 2 ̃𝑑 − ̃𝑑 

0 0 0 0 0 0 0 ... − ̃𝑑 1 + 𝑑 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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Fig. C.14. Illustration of the mass-spring-inerter chain 

system. 
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𝑠 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�̃� 𝑠 1 + ̃𝑘 𝑠 2 − ̃𝑘 𝑠 1 ... 0 0 0 0 0 0 0 
− ̃𝑘 𝑠 1 �̃� 𝑠 1 + ̃𝑘 𝑠 2 ... 0 0 0 0 0 0 0 
... ... ... − ̃𝑘 𝑠 2 0 0 0 0 0 0 
0 0 − ̃𝑘 𝑠 2 �̃� 

𝑠 

1 + ̃𝑘 𝑠 2 − ̃𝑘 𝑠 1 0 0 0 0 0 
0 0 0 − ̃𝑘 𝑠 1 2 ̃𝑘 𝑠 1 − ̃𝑘 𝑠 1 0 0 0 0 
0 0 0 0 − ̃𝑘 𝑠 1 �̃� 

𝑠 

1 + ̃𝑘 𝑠 2 − ̃𝑘 𝑠 2 0 0 0 
0 0 0 0 0 − ̃𝑘 𝑠 2 �̃� 𝑠 1 + ̃𝑘 𝑠 2 − ̃𝑘 𝑠 1 0 0 
0 0 0 0 0 0 − ̃𝑘 𝑠 1 ... ... ... 

0 0 0 0 0 0 0 ... �̃� 𝑠 1 + ̃𝑘 𝑠 2 − ̃𝑘 𝑠 1 
0 0 0 0 0 0 0 ... − ̃𝑘 𝑠 1 �̃� 𝑠 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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