
Supplementary material: The in-plane mechanical

properties of highly compressible and stretchable 2D

lattices
S. Adhikari1,*

1Future Manufacturing Research Institute, College of Engineering, Swansea University, Swansea, UK
*s.adhikari@swansea.ac.uk

ABSTRACT

The details of the derivation of the equivalent elastic properties of the hexagonal lattice are given.
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1 Introduction

Compressive and tensile behaviour of the overall lattice structure depends on the deformation characteristics of the

constituent individual beams. In Section 2 of the main paper, the stiffness matrix of a beam element was derived in

closed-form considering compressive and tensile axial forces within the beam. In this document, we express equivalent

in-plane elastic moduli of the lattice in terms of the stiffness matrix elements of the beams using the unit cell approach.

For the case of equivalent properties of the lattice without the axial force, we refer to well-known references [1, 2]. A

key focus in the derivation proposed below is the direct exploitation of the coefficients of the stiffness matrix derived

in the main paper. This will enable us to link the axial force-dependent deformation behaviour of an elemental beam

with the whole lattice. A beam element of length L is shown in Figure 1 with two nodes and three degrees of freedom

per node. The degrees of freedom in each node corresponds to the axial, transverse and rotational deformation. This

beam element can be represented by a 6×6 stiffness matrix.

2 Elastic moduli of compressed and stretched lattices

The elements of the 6-degree-of-freedom stiffness matrix are employed in the derivation of the equivalent elastic

properties of the lattice in this section. A generic notation Ki j is used here. It should be recalled from Section 3 of

the main paper that the stiffness coefficients are functions of the internal axial force parameter µ . This functional

dependence is omitted here for notational brevity.
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Figure 1. A beam element with six degrees of freedom and two nodes. The degrees of freedom in each node

corresponds to the axial, transverse and rotational deformation.

2.1 The longitudinal Young’s modulus E1

A uniform stress field σ1 is applied to the unit cell in direction-1 as shown in Figure 2 for deriving the expression

of the longitudinal Young’s modulus. This results in a force P being applied at point A (and B) on the unit cell. The

Figure 2. Internal forces and deformation patterns of the unit cell under the application of a stress field σ1 applied

in the 1-direction. This configuration is used for the derivation of the longitudinal Young’s modulus E1.

deformation of the unit cell is symmetric about the OC line. The magnitude of the force P acting on point A is given

by

P = σ1b(h+ l sinθ) (1)

Considering ηA and γA as deformations transverse and along the inclined member AO, we have

ηA =
Psinθ

K55

and γA =
Pcosθ

K44

(2)

Here K55 and K44 are elements of the stiffness matrix of the inclined member AO of length l. The total deflection in

the 1-direction is therefore

δ1 = ηA sinθ + γA cos θ = P

(
sin2 θ

K55

+
cos2 θ

K44

)

=
Psin2 θ

K55

(

1+ cot2 θ
K55

K44

) (3)

The strain the 1-direction is obtained as

ε1 =
δ1

l cosθ
=

σ1b(h/l + sinθ)sin2 θ

K55 cos θ

(

1+ cot2 θ
K55

K44

)

(4)
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Using this, the Young’s modulus in 1-direction is obtained in terms of the elements of the stiffness matrix as

E1 =
σ1

ε1

=
K55 cosθ

b(h/l + sinθ)sin2 θ
(

1+ cot2 θ K55

K44

) (5)

From equation (5), it can be observed that only two coefficients of the 6× 6 element stiffness matrix of the inclined

member, namely, K55 and K44, contribute towards the value of E1. The Poisson’s ratio corresponding to this stress

field, namely ν12, is derived in 2.2.

2.2 The Poisson’s ratio ν12

To obtain the Poisson’s ratio ν12, we need to obtain the strain in the direction 2 for applied stress in the 1-direction

from Figure 2. Using the expressions of the deformations in equation (2), we obtain total deflection in the 2-direction

as

−δ2 = ηA cosθ − γA sinθ = P

(
sinθ cosθ

K55

−
sinθ cosθ

K44

)

=
Psin θ cosθ

K55

(

1−
K55

K44

)

(6)

The total strain in the 2-direction is

− ε2 =
δ2

h+ l sinθ
=

σ1bsin θ cosθ

K55

(

1−
K55

K44

)

(7)

Using the expressions of the strains in directions 1 and 2 given by Eqs. (4) and (7), we obtain the Poisson’s ratio ν12

ν12 =−
ε2

ε1

=
cos2 θ

(

1− K55

K44

)

(h/l + sinθ)sin θ
(

1+ cot2 θ K55

K44

) (8)

From equation (8), it can be observed that only two coefficients of the 6× 6 element stiffness matrix of the inclined

member, namely, K55 and K44, contribute towards the value of ν12.

2.3 The transverse Young’s modulus E2

For deriving the expression of transverse Young’s modulus, a uniform stress field σ2 is applied to the unit cell

in direction-2 as shown in Figure 3. From the free-body diagram depicting the equilibrium, we deduce that the the

deformation of the unit cell is symmetric about the OC line. It addition, the point O has no deflection in the 1-direction.

Therefore, it is sufficient to consider the deflection of point A or B with respect to point C under the applied stress.

Considering point A, the stress results in a vertical force W . The magnitude of this vertical force is given by

W = σ2bl cos θ (9)

Considering ηA and γA as deformations transverse and along the inclined member AO, we have

ηA =
W cosθ

K55

and γA =
W sinθ

K44

(10)

Here K55 and K44 are elements of the stiffness matrix of the member AO. The deflection in the 2-direction is therefore

δ2AO
= ηA cosθ + γA sinθ =W

(
cos2 θ

K55

+
sin2 θ

K44

)

=
W cos2 θ

K55

(

1+ tan2 θ
K55

K44

) (11)
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Figure 3. Internal forces and deformation patterns of the unit cell under application of a stress field σ2 applied in

the 2-direction. This configuration is used for the derivation of the transverse Young’s modulus E2.

The total force acting in the 2-direction at point O is 2W . Therefore, the displacement of point O in the 2-direction

arising from the axial deformation of the vertical member OC is

δ2O
=

2W

K
(h)
44

(12)

Here (•)(h) corresponds to the properties arising from the vertical member OC of length h. The total deflection in the

2-direction is therefore

δ2 = δ2AO
+δ2O

=
W cos2 θ

K55

(

1+ tan2 θ
K55

K44

+2sec2 θ
K55

K
(h)
44

)

(13)

The strain the 2-direction is obtained as

ε2 =
δ2

h+ l sinθ
=

σ2bcos3 θ

K55(h/l + sinθ)

(

1+ tan2 θ
K55

K44

+2sec2 θ
K55

K
(h)
44

)

(14)

Using this, the Young’s modulus in 1-direction is obtained in terms of the elements of the stiffness matrix as

E2 =
σ2

ε2

=
K55(h/l + sinθ)

bcos3 θ

(

1+ tan2 θ K55

K44
+2sec2 θ K55

K
(h)
44

) (15)

From equation (15), it can be observed that only two coefficients of the 6×6 element stiffness matrix of the inclined

member and one coefficients of the 6× 6 element stiffness matrix of vertical member, namely, K55, K44 and K
(h)
44 ,

contribute towards the value of E2. The Poisson’s ratio corresponding to this stress field, namely ν21, is derived in 2.4.
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2.4 The Poisson’s ratio ν21

To obtain the Poisson’s ratio ν21, we need to obtain the strain in the direction 1 due to the applied stress in the

2-direction from Figure 3. Using the expressions of the deformations in equation (10), we obtain total deflection in

the 1-direction as

δ1 = γA cosθ −ηA sin θ =−W

(
sin θ cosθ

K55

−
sin θ cosθ

K44

)

=−
W sinθ cosθ

K55

(

1−
K55

K44

) (16)

The total strain in the 1-direction is

ε1 =
δ1

l cos θ
=−

σ2bsin θ

lK55

(

1−
K55

K44

)

(17)

Using the expressions of the strains in directions 1 and 2 given by Eqs. (4) and (7), we obtain the Poisson’s ratio ν21

ν21 =−
ε1

ε2

=
(h/l + sinθ)sin θ

(

1− K55

K44

)

cos2 θ

(

1+ tan2 θ K55

K44
+2sec2 θ K55

K
(h)
44

) (18)

The proposed expressions of the elastic moduli and Poisson’s ratio conform to the reciprocal theorem

E1ν21 = E2ν12 =

K55

bsin θ
(

1+ cot2 θ K55

K44

)

(

1− K55

K44

)

cosθ

(

1+ tan2 θ K55

K44
+2sec2 θ K55

K
(h)
44

)
(19)

From Eq. (8), it can be observed that only two coefficients of the 6× 6 element stiffness matrix of the inclined

member and one coefficients of the 6× 6 element stiffness matrix of vertical member, namely, K55, K44 and K
(h)
44 ,

contribute towards the value ν21.

2.5 The shear modulus G21

The derivation of the shear modulus G12 requires the superpositions strain contributions arising from bending and

axial deformations. In Figure 4, the consideration of both the cases is depicted. For deriving the bending contributions,

considering the deformation of the adjacent cells, it can be deduced that the midpoint of the vertical member will only

have a deformation in the 1-direction due to shear. Therefore, in Figure 4(a) we consider the unit cell with the vertical

member with length h/2 and a slant member with the usual length l. The points A and O will not have any relative

movement due to the symmetrical structure. The shear deflection γD due to bending consists of two components,

namely, bending deflection of the member OD and its deflection due to rotation of joint O arising from the bending of

the slant members.

It can be noted here that the elements of the stiffness matrix (refer to equation (40) for example) will be different for

the vertical member and the slant member due to their different lengths. Using the stiffness elements of the stiffness

matrix with length h/2, the bending deformation of point D with respect to point O in direction the 1 can be obtained

as

ηD =
F1

(

K
(h/2)
55 −

K
(h/2)
56 K

(h/2)
65

K
(h/2)
66

) =
F1K

(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
) (20)
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(a) Shear strain due to bending (b) Shear strain due to axial defornation

Figure 4. Internal forces and deformation patterns of the unit cell under the application of the shear stress field τ .

These configurations are used for the derivation of the shear modulus G12.

Here

F1 = 2τ lbcos θ (21)

and we make use of the symmetry of the elements of the stiffness matrix. Here (•)(h/2) corresponds to the properties

arising from the vertical member OD of length h/2 as shown in Figure 4(a).

From the diagram in Figure 4(a), the moment acting on point O is obtained as

M =
F1

2
×

h

2
=

F1h

4
(22)

On the basis of the degrees of freedom as denoted in Figure 1, deflection of the end O with respect to the end A due

to application of moment M at the end O is given as

δr =
M

−K65

(23)

Here K65 is the stiffness element corresponding to the slant member and the negative arise due to the direction of the

rotation as given in Figure 1. Thus the rotation of joint O can be expressed as

φ =
δr

l

=−
F1h

4lK65

(24)

Shear deformation in the 1-direction due to bending at point D under the application of shear stress τ can be expressed

as

δ1D
= 2

(

φ
h

2
+ηD

)

=−
F1h2

4lK65

+
2F1K

(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
)

(25)
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The factor 2 in the above expression arises due to the consideration of two units shown in Figure 4(a) to capture the

total shear deformation by representing a complete unit cell that can create the entire lattice structure on tessellation.

To obtain the shear deformation due to axial stretching deformation, we consider the forcing F2 in the 2-direction

as

F2 = τb(h+ l sinθ) (26)

Due to the symmetry of the unit cell as depicted in Figure 4(b), the deformation in the 1-direction of member AO and

BO will be the same. On the other hand, the amplitude of the deformation in the 2-direction of member AO and BO

will be the same, but in the opposite direction. There is no axial deformation in the vertical member OC. It is therefore

sufficient to consider only one inclined element in our calculation. The lengths of the unit cell in Figure 4(b) in the 1

and 2 directions are given by

L1 = 2l cosθ (27)

and L2 = (h+ l sinθ) (28)

Total force acting in the axial direction of AO is given by

FAO = F1/2cos θ +F2 sinθ = τ lb
(
cos2 θ +(h/l + sinθ)sin θ

)
(29)

The axial deformation of point A is therefore

γA =
FAO

K44

(30)

Using this, the deformation in the 1 and 2 directions are obtained as

δ1A
= γA cosθ =

τ lb

K44

(
cos2 θ +(h/l + sinθ)sin θ

)
cosθ (31)

δ2A
= γA sinθ =

τ lb

K44

(
cos2 θ +(h/l + sinθ)sin θ

)
sinθ (32)

The total shear strain arising due to bending and axial deformation is given by

γ =
δ1A

+δ1D

L2

+
2δ2A

L1

=
δ1A

+δ1D

h+ l sinθ
+

2δ2A

2l cos θ
(33)

=
δ1D

h+ l sinθ
︸ ︷︷ ︸

γb

+
δ1A

h+ l sinθ
+

δ2A

l cosθ
︸ ︷︷ ︸

γs

(34)

Here γb and γs are respectively the bending and stretching components of the total shear strain. Using Eq. (25) we
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obtain the bending component of the shear strain as

γb =
δ1D

(h+ l sinθ)

=
F1

(h+ l sinθ)






−

h2

4lK65

+
2K

(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
)







=
2τ lbcosθ

(h+ l sinθ)






−

h2

4lK65

+
2K

(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
)







=
τbcosθ

(h/l + sinθ)






−

h2

2lK65

+
4K

(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
)







(35)

The stretching component of the shear strain can be simplified as

γs =
δ1A

h+ l sinθ
+

δ2A

l cosθ
(36)

=
τ lb

K44

(
cos2 θ +(h/l + sinθ)sin θ

)
(

cosθ

h+ l sinθ
+

sinθ

l cosθ

)

(37)

=
τb

K44

(
cos2 θ +(h/l + sinθ)sin θ

)2

cos θ(h/l + sinθ)
(38)

Substituting the expressions of both the shear strains, the modulus can be obtained as

G12 =
τ

γ
=

τ

γb + γs

=
1

bcosθ
(h/l+sinθ )



− h2

2lK65
+

4K
(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
)



+ b
K44

(cos2 θ+(h/l+sinθ )sinθ )2

cosθ (h/l+sinθ )

=
(h/l + sinθ)

bcos θ

1


− h2

2lK65
+

4K
(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
) + (cosθ+(h/l+sinθ ) tanθ )2

K44





(39)

From equation (39) it can be observed that in total five elements of two different stiffness matrices contribute to the

shear modulus. They include two coefficients of the 6× 6 element stiffness matrix of the inclined member, namely,

K65, K44. Additionally three elements of the stiffness matrix of the vertical member with half the length, namely,

K
(h/2)
55 , K

(h/2)
56 and K

(h/2)
66 contribute to the shear modulus.

3 The special case of small deformation

In the previous section, the expressions of five quantities characterising the effective in-plane elastic properties

of 2D cellular materials have been derived in terms of the stiffness element of a beam. The stiffness matrix of an
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Euler-Bernoulli beam element [3, 4] is expressed by

K =













EA
L

0 0 −EA
L

0 0

0 12EI
L3

6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 − 6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0

0 − 12EI
L3 − 6EI

L2 0 12EI
L3 − 6EI

L2

0 6EI
L2

2EI
L

0 − 6EI
L2

4EI
L













(40)

We are considering beam elements with rectangular cross section as shown in Figure 1 of the main paper. The moment

of inertia and the cross section area appearing in the stiffness matrix in equation (40) are therefore given by

I =
1

12
bt3 and A = bt (41)

For notational convenience, the following non-dimensional geometric coefficients are defined

α =
t

l
and β =

h

l
(42)

From the derivations in subsection 2.1 and subsection 2.3, it can be observed that two coefficients of the 6×6 element

stiffness matrix of the inclined member and one coefficients of the 6×6 element stiffness matrix of vertical member,

namely, K55, K44 and K
(h)
44 , are necessary to obtain E1, E2 ν12 and ν21. Using the expressions of moment of inertia and

the cross-sectional area in Eq. (41), the stiffness coefficients are given by

K55 =
12EI

l3
= Ebα3,K44 =

EA

l
= Ebα and K

(h)
44 =

EA

h
=

Ebt

h
=

Ebα

β
(43)

Using these, we obtain the ratios
K55

K44

= α2 and
K55

K
(h)
44

= α2β (44)

When the Euler-Bernoulli beam stiffness elements are used, from Eqs. (5), (15), (8) and (18) we have

E1 =
K55 cos θ

b(β + sinθ)sin2 θ
(

1+ cot2 θ K55

K44

) =
Eα3 cos θ

(β + sinθ)
(
sin2 θ +α2 cos2 θ

) (45)

E2 =
K55(β + sinθ)

bcos3 θ

(

1+ tan2 θ K55

K44
+2sec2 θ K55

K
(h)
44

) =
Eα3(β + sinθ)

(1−α2)cos3 θ +α2(2β +1)cos θ
(46)

ν12 =
cos2 θ

(

1− K55

K44

)

(β + sinθ)sin θ
(

1+ cot2 θ K55

K44

) =
cos2 θ

(
1−α2

)

(β + sinθ)sin θ (1+α2 cot2 θ)
(47)

ν21 =
(β + sinθ)sin θ

(

1− K55

K44

)

cos2 θ

(

1+ tan2 θ K55

K44
+2sec2 θ K55

K
(h)
44

) =
(β + sinθ)sin θ

(
1−α2

)

(1−α2)cos2 θ +α2(2β +1)
(48)

For the shear modulus, five elements from two different stiffness matrices are necessary. They are two coefficients

of the 6× 6 element stiffness matrix of the inclined member, namely, K65, K44 as in Eq. (43) with K65 = −6EI
l2 =

−1/2 Ebt3

l2 . We also need three elements of the stiffness matrix of the vertical member with half the length given by

K
(h/2)
55 =

12EI

(h/2)3
=

8Ebt3

h3
,K

(h/2)
56 =−

6EI

(h/2)2
=−

2Ebt3

h2
and K

(h/2)
66 =

4EI

(h/2)
=

2Ebt3

3h
(49)
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Using these expressions we obtain

G12 =
(β + sinθ)

bcosθ

1


− h2

2lK65
+

4K
(h/2)
66(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
) + (cosθ+(β+sinθ ) tanθ )2

K44





=
Eα3(β + sinθ)

(

β 2(1+2β )+α2 (cosθ +(β + sinθ) tan θ)2
)

cos θ

(50)

Substituting α2 = 0, the equations derived here exactly reduce to the corresponding classical expressions [1] (i.e., the

case of considering only the bending deformation and ignoring the axial stretching/shortening of the beams).

For a regular lattice θ = π
6

and β = h
l
= 1. Substituting these in Eqs. (45)–(48) and (50) we have

E1 =
4Eα3

√
3(3α2 +1)

,E2 =
4Eα3

√
3(3α2 +1)

,ν12 =
1−α2

3α2 +1
,ν21 =

1−α2

3α2 +1
(51)

and G12 =
Eα3

√
3(α2 +1)

(52)

References

1. Gibson, L. & Ashby, M. F. Cellular Solids Structure and Properties (Cambridge University Press, Cambridge, UK,

1999).

2. Masters, I. & Evans, K. Models for the elastic deformation of honeycombs. Compos. Struct. 35, 403–422 (1996).

3. Dawe, D. Matrix and Finite Element Displacement Analysis of Structures (Oxford University Press, Oxford, UK,

1984).

4. Petyt, M. Introduction to Finite Element Vibration Analysis (Cambridge University Press, Cambridge, UK, 1990).

10/10


	Introduction
	Elastic moduli of compressed and stretched lattices
	The longitudinal Young's modulus E1
	The Poisson's ratio 12
	The transverse Young's modulus E2
	The Poisson's ratio 21
	The shear modulus G21 

	The special case of small deformation

