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A B S T R A C T

This paper conceptualises and analyses a new class of stepped hexagonal lattice achieved through modifying
the cross-section of the constituent beams in a controlled manner. The main idea lies in the redistribution of
the mass of the constituent beam to obtain a range of equivalent elastic properties, which is not possible
within the scope of regular hexagonal lattices. The mass of the stepped lattices is kept the same as the
regular hexagonal lattices with equivalent geometry. The in-plane mechanics of such mass-conserved hexagonal
lattices are investigated, considering stepped beams as constituent members. The mechanics of a unit cell is
exploited to derive the closed-form analytical expressions of equivalent elastic properties of the lattice. The
derivation utilises the stiffness elements of the constituent stepped beam members. The stiffness matrices are
obtained using two different approaches. They include a semi-analytical condensed stiffness matrix approach
based on static substructuring and an analytical method based Castigliano’s energy formulation. Both of
these approaches are general and can handle arbitrary geometry for the constituent beams. New closed-
form analytical expressions of equivalent elastic properties of the lattice are derived. The optimum geometric
parameters are obtained by formulating an analytical optimisation problem. It is shown that a unique solution
is possible by solving two simultaneous nonlinear equations. The general closed-form expressions of the
equivalent elastic properties can be considered benchmark solutions. In the particular case of the regular lattice,
they reduce to the well-known classical expressions. Numerical results show that the values of equivalent
elastic properties of the lattice can change significantly by redistributing the mass of the constituent beams.
It is demonstrated that up to a 37% increase in the equivalent elastic modulus can be achieved compared to
the regular lattice by optimally choosing a stepped profile of the constituent elements.
1. Introduction

Mechanical metamaterials are the artificially created engineering
structures to achieve the design-specific macro-scale properties [1].
Lattice-based mechanical metamaterials are formed by arranging the
periodic unit cell in some particular arrangement to obtain unprece-
dented effective material properties [2–4]. These cellular structures
have a variety of applications in different engineering industries due
to their deliverable high stiffness, toughness, energy absorption prop-
erties. These materials can be made stiff or flexible depending on
the design requirements. The macro-scale properties of the lattice
materials are defined by the microstructure of the unit cell and the
material properties of the constituent elements. The authors refer to
the works of Gibson and Ashby [5] and Fleck et al. [6] for un-
derstanding the concept of cellular materials. With the advancement
of additive manufacturing, innovative micro-structural design can be
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exploited [7–10] to explore the fascinating material properties which
are not available in nature. Most of the work in literature deals with
honeycomb lattices and their applications [11–13]. Researchers also
developed generalised homogenisation methods [14–16] to model the
mechanical behaviour of hexagonal and heterogeneous lattices [17–21]
with different geometries. In this work, we are interested in obtaining a
closed-form analytical solution of the mass-conserved hexagonal lattice
considering stepped geometry of the constituent beam to explore the
wide range of the equivalent elastic properties, which is not achievable
with conventional prismatic beam geometry.

Several researchers proposed designs for obtaining a novel class
of metamaterials with user-defined properties. The honeycomb mate-
rial is being studied in an extensive manner [22–29] and utilised to
manufacture structural members in the aerospace industry due to their
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high specific stiffness low relative density. The geometric flexibility
and manufacturing suitability of the hexagonal material is explored
extensively. Researches have been performed to obtain different shapes
for the unit cell, such as rectangular, rhombus, re-entrant from the
regular hexagonal material. There are studies on analytical prediction
of equivalent elastic moduli for regular as well as irregular hexagonal
lattices in literature [30–33]. The mechanical properties of the lattice
materials are dictated by the material, and geometric properties of the
periodic unit cell [34,35]. In this research, we are concerned about
the effect of the geometry of the constituent beam members on the
material properties of the hexagonal lattice so that a wide range of
the material properties can be covered only by redistributing the mass
of the constituent beam member. To obtain the material properties,
several methods have been explored in the literature. Among them
unit cell approach [36–39], energy-based approach [40–45] are well
known. All the present works in the literature to obtain the closed-form
solution deals with the straight beam members in the unit cell. In this
study, the closed-form expression for the hexagonal lattice with stepped
geometry for the constituent beam members keeping the mass constant
is obtained. To obtain the material properties, the static condensation-
based semi-analytical approach and Castigliano’s method, along with
the unit cell approach, are explored to get the closed-form expressions
for the material properties.

This work develops analytical closed-form expressions for the equiv-
alent elastic properties of hexagonal lattices with stepped constituent
beam members. The main motivation is to redistribute the mass of a
regular straight beam to obtain a large span of the equivalent elastic
properties for the lattice to exploit the user-defined design. Previ-
ous works deal with multi-material beams and curved beams as the
constituent members for the unit cell of the lattice to enhance the
design space [46,47] and pave the way for this present study. It
is observed that the tailoring of the equivalent material properties
can be improved by changing the microstructure of the lattice. Two
different methodologies, such as static condensation and Castigliano’s
method, are utilised to obtain the constituent beam’s stiffness matrix.
Two geometric parameters, the stepping length ratio (𝜂) and stepping
height ratio (𝛼2), are considered to observe the effect of geometry.
These expressions are more general, and the classical homogeneous
hexagonal lattice [5] can directly be obtained by considering the limit
on some geometric parameters. The formulation can also be utilised
for auxetic cases easily. This analysis also considers axial stretching of
the constituent elements along with bending. Both Euler–Bernoulli (EB)
and Timoshenko beam (TB) theories are considered for analysis. The
compact expressions for the beam stiffness where stiffness coefficients
are expressed as the same stiffness coefficients of both beam theories
multiplied with some geometric coefficients are obtained. One of the
major contributions of this study is to find the optimum values of the
geometric parameters to obtain the maximum value of the material
properties for the mass-conserved lattice. The optimum values are ob-
tained by solving two non-linear simultaneous equations numerically.
The results show expanded design space, and the equivalent elastic
properties can be varied with a subtle change in those geometric
parameters. This generalised approach can be utilised for hexagonal
lattice with any kind of geometry for the constituent beam member.

2. The geometry of stepped lattices

2.1. The stepped-up and stepped-down lattices

Fig. 1 shows two types of stepped lattices and their corresponding
unit cells. Fig. 1(a) proposes a stepped-up hexagonal lattice with a
thicker middle part as illustrated in the unit cell design in Fig. 1(b). On
the other hand, Fig. 1(c) proposes a stepped-down hexagonal lattice
with two thicker end parts as illustrated in the unit cell design in
Fig. 1(d). Such lattices can be fabricated, for example, using additive
manufacturing techniques [48,49].
2

c

A key aim here is on the derivation of closed-form expression of
the equivalent in-plane elastic properties of these two types of stepped
hexagonal lattices. The lattices are formed by redistributing the mass of
a conventional honeycomb lattice. Our objective is also to investigate
the effect of redistribution of mass to obtain a range of equivalent
elastic parameter values, which can be exploited for design purposes. In
this study, only the stepped configuration is considered. In future, other
geometric profile can also be explored in the similar way to obtain some
optimal profiles. Due to the mass constraint, the parameters must have
some physical limits. The geometry of the constituent beam member of
the equivalent regular hexagonal lattice, the stepped lattice and limits
on the parameters are described in the next subsection.

2.2. Parameters and their bounds

The parameters for the stepped beam and their bounds are obtained
in this section. For the same mass of both regular and stepped beams,
the following procedure is developed to obtain two independent pa-
rameters and their bounds. The key aim is to equate the mass of the
regular beam and the stepped beam. As the out of plane thickness is
assumed to be the same for both the beams, the equal-mass requirement
effectively translates to having equal surface area. It is assumed that the
contribution of material from the joints is negligibly small compared to
the overall beam. The values of different lengths and thicknesses in the
stepped beam are as follows:

𝐿2 = 𝜂𝐿 (1)

𝐿1 = (1 − 2𝜂)𝐿 (2)

𝑡1 = 𝛼1𝑡 (3)

and 𝑡2 = 𝛼2𝑡 (4)

The total length of the beam is 𝐿, and 𝑡 is the thickness of the
equivalent regular beam. For the vertical beam member, the lengths
of the different parts can be obtained by replacing 𝐿 with ℎ in Eqs.
(1) and (2). The quantity 𝜂 is called the stepping length ratio and the
quantities 𝛼1 and 𝛼2 are called stepping height ratios.

Considering the density of the material is 𝜌, by equating the mass
of the regular beam and the stepped beam, one has

𝐴𝜌 = 𝐿𝑡𝜌 = 2(𝛼2𝑡)𝜂𝐿𝜌 + 𝛼1𝑡(1 − 2𝜂)𝐿𝜌

2𝛼2𝜂 + 𝛼1(1 − 2𝜂) = 1 (5)

herefore, the value of 𝛼1 is obtained as

1 =
1 − 2𝛼2𝜂
1 − 2𝜂

(6)

From a physical point of view, it can be seen that 𝜂 can only take values
< 1

2 . There are two independent geometric parameters stepping height
atio 𝛼2 and stepping length ratio 𝜂. To visualise the feasible values of
1, a contour plot is shown in Fig. 2. It is clear from the plot that for
certain combination of 𝛼2 and 𝜂, the value of 𝛼1 becomes negative,
hich is not physical. Some combination also shows very large values
f 𝛼1. The range of values for the parameters should be selected
onsidering the practical feasibility of the geometric dimensions. For
hat, the values of 𝛼2 and 𝜂 are chosen in the range of 0.5 to 1.5 and
.15 to 0.3, respectively.

. Equivalent elastic properties of stepped lattices

The generalised expressions for the equivalent elastic properties of
he stepped lattice will be obtained by analysing the mechanics of a
nit cell. The representative example of hexagonal stepped lattices and
heir corresponding unit cells is shown in Fig. 1. Previous literature
howed that the equivalent elastic property of a lattice structure can
e obtained by exploiting the periodicity of a suitably selected unit

ell. The equivalent elastic property of a lattice structure is obtained
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Fig. 1. Schematic diagrams of two proposed stepped lattices and their corresponding unit cells. The key geometric parameters are indicated in the unit-cell of the lattices. The
beam has three segments. The length and thickness of the middle segment are 𝐿1 and 𝑡1, respectively. The length and thickness of the two end segments are 𝐿2 and 𝑡2 respectively.
The cell angle is denoted as 𝜃.
following the unit cell-based approach. To derive the closed-form ex-
pressions for the material properties the stiffness coefficients of the
constitutive beam elements were utilised in Ref. [50]. Considering the
axial contributions of the beam element, the general matrix expression
of the 6 × 6 symmetric stiffness matrix can be symbolically expressed
as

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾11 𝐾12 𝐾13 𝐾14 𝐾15 𝐾16
𝐾21 𝐾22 𝐾23 𝐾24 𝐾25 𝐾26
𝐾31 𝐾32 𝐾33 𝐾34 𝐾35 𝐾36
𝐾41 𝐾42 𝐾43 𝐾44 𝐾45 𝐾46
𝐾51 𝐾52 𝐾53 𝐾54 𝐾55 𝐾56
𝐾61 𝐾62 𝐾63 𝐾64 𝐾65 𝐾66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7)

The entries of the stiffness matrix corresponding to for 1 and 4 corre-
spond to the axial deformation and the entries for 2, 3, 5 and 6 corre-
spond to the bending deformation. In the next subsection, the closed-
form expressions are shown as a function of the stiffness coefficients
of Eq. (7). Depending upon the beam theory (e.g., Euler–Bernoulli
or Timoshenko) and the nature of internal stresses (e.g., tensile or
compressive stress), the expressions of the stiffness coefficients will
change [51].
3

3.1. General expressions of equivalent elastic properties

The 2D lattices considered in Fig. 1 in general behave as anisotropic
materials with equivalent elastic properties. The key interest of this
study is the in-plane elastic properties of the lattices. Five elastic
constants govern the homogeneous stress–strain relationship of the 2D
material. They include the longitudinal Young’s modulus 𝐸1, the trans-
verse Young’s modulus 𝐸2, the shear modulus 𝐺12, and the Poisson’s
ratios 𝜈12 and 𝜈21. Expressions of these quantities can be obtained
considering the mechanics of a unit cell [5]. Analytical expressions of
the equivalent elastic properties of 2D lattices were obtained [50] in
terms of the element of the stiffness matrix of the constituent beams
as given in Eq. (7). The generalised closed-form expressions of the
equivalent elastic properties of 2D hexagonal lattices are given as

𝐸1 =
𝐾55 cos 𝜃

𝑏(𝛽 + sin 𝜃)
[

sin2 𝜃 + 𝐾55
𝐾44

cos2 𝜃
] (8)

𝐸2 =
𝐾55(𝛽 + sin 𝜃)

𝑏 cos3 𝜃
[

1 + tan2 𝜃 𝐾55 + 2 sec2 𝜃 𝐾55
ℎ

] (9)
𝐾44 𝐾44
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Fig. 2. Contour plot of 𝛼1 as a function of the stepping height ratio 𝛼2 and the stepping
length ratio 𝜂.

𝜈12 =
cos2 𝜃(1 − 𝐾55

𝐾44
)

(𝛽 + sin 𝜃) sin 𝜃(1 + cot2 𝜃 𝐾55
𝐾44

)
(10)

21 =
(𝛽 + sin 𝜃) sin 𝜃(1 − 𝐾55

𝐾44
)

[

1 + tan2 𝜃 𝐾55
𝐾44

+ 2 sec2 𝜃 𝐾55

𝐾ℎ
44

]

cos2 𝜃
(11)

and

𝐺12 = 1

𝑏 cos 𝜃
(𝛽 + sin 𝜃)

⎛

⎜

⎜

⎜

⎜

⎝

− ℎ2

2𝑙𝐾65
+

4𝐾 (ℎ∕2)
66

(

𝐾 (ℎ∕2)
55 𝐾 (ℎ∕2)

66 −
(

𝐾 (ℎ∕2)
56

)2
)

⎞

⎟

⎟

⎟

⎟

⎠

+ 𝑏 cos 𝜃
(𝛽 + sin 𝜃)𝐾44

(

cos2 𝜃 + (𝛽 + 2 sin 𝜃) sin 𝜃
)

+ 𝑏 sin 𝜃
4 cos 𝜃𝐾44

(

4 cos2 𝜃 + 2(𝛽 + 2 sin 𝜃) sin 𝜃
)

(12)

In the above equations, 𝑏 is the out-of-plane thickness of the constituent
beams and the height ratio

𝛽 = ℎ
𝐿

(13)

The above expressions consider the axial compressing and stretching
effect of the beams in addition to the bending effect. The general
expressions are valid for any type of constituent beams and any values
of 𝜃. When the value of 𝜃 is negative, the lattice can show auxetic
behaviour (that is, with negative equivalent Poisson’s ratios). The
equivalent elastic properties require the stiffness coefficients (𝐾𝑖𝑗) of
he constituent beam members. This, in turn, requires the stiffness
atrix of the constituent stepped beam elements. The stiffness term
ith superscript ℎ as (⋅)ℎ belongs to the stiffness term of the vertical
ember of the unit cell of the lattice.

The stiffness matrix of the constituent stepped beam elements will
e obtained considering two different approaches. Once the stiffness
oefficients of the constituent beam members are obtained, they will
e substituted in the generalised formula to obtain the equivalent
lastic properties of the stepped lattices. In the following subsections,
he two approaches are described and the stiffness matrix for both
uler–Bernoulli and Timoshenko beams are derived.

.2. A semi-analytical sub-structuring based approach

The analytical expressions in Eqs. (8)–(12) are applicable to pris-
4

atic beam elements as constituent members of the lattice [24,50].
The same expressions can be utilised for a beam with variable cross-
sections or composite cross-sections as the formulae are general. To
obtain a more general approach with arbitrary geometries, the idea
of static condensation for obtaining the stiffness coefficients of the
constituent beam member is utilised. In this approach, the stiffness
element components corresponding to only the end degrees of freedom
are needed to be considered. This essentially paves the way to utilise
the analytical expressions for the effective elastic properties of the
entire lattice obtained in [50]. In this work, we are concentrated
on stepped constituent beam members, but the idea is valid for any
complex beam geometry. The static condensation in the context of
the stepped beam is explicitly formulated here. The static equilibrium
equation corresponding to the beam element in Fig. 3 can be expressed
as

�̄�𝐮 = 𝐟 (14)

where �̄�, 𝐟 and 𝐮 are the stiffness matrix, force vector and the dis-
placement vector, respectively. Note that �̄� is a 12 × 12 matrix and
𝐟 and 𝐮 are 12 × 1 vectors as each node of the beam has three degrees
of freedom. Depending on the beam theories the coefficients of the
stiffness matrix will change.

Eq. (14) can be partitioned into internal and boundary degrees of
freedom. The static equilibrium equation is expressed as
[

𝐊𝑎𝑎 𝐊𝑎𝑖
𝐊𝑖𝑎 𝐊𝑖𝑖

]{

𝐮𝑎
𝐮𝑖

}

=
{

𝐟𝑎
𝟎

}

(15)

In the above equation, subscript 𝑖 and 𝑎 denote the internal and bound-
ary degrees of freedom, respectively. For the stepped beam mentioned
in Fig. 3 there are three elements and four nodes and 12 degrees of
freedom. the internal degrees of freedom are 4–9 and the boundary
degrees of freedom are 1, 2, 3, 10, 11, and 12. The condensed equation
of equilibrium can be obtained by eliminating the internal degrees of
freedom as
(

𝐊𝑎𝑎 −𝐊𝑎𝑖𝐊−1
𝑖𝑖 𝐊𝑖𝑎

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐊

𝐮𝑎 = 𝐟𝑎 (16)

The above equation is expressed in terms of the boundary degrees of
freedom and is equivalent to the original equilibrium equation. The
condensed stiffness matrix 𝐊 in Eq. (16) has a dimension of 6 × 6,
as in Eq. (7). The elements of the condensed stiffness matrix can be
utilised in the analytical expressions for obtaining the equivalent elastic
moduli and Poisson’s ratio of the lattices with general constituent beam
elements. Further, the above approach can account for the effect of spa-
tially varying geometric and material properties within the constituent
beam element. This approach is termed semi-analytical because the
closed-form expressions obtained by symbolic operations are large, and
complex beam geometries can further complicate the expressions. In
this work, we consider three beam elements as described in Fig. 3(a).
The flexibility of this approach lies in the exploitation of the finite
element method to obtain the condensed stiffness matrix and then
utilisation of the required stiffness terms for calculating the equivalent
elastic properties of the lattice. In effect, this is a multi-scale approach
where microscopic finite element analysis is unified with macroscopic
homogenised equivalent elastic properties. In the next section, we
propose the Castigliano based approach to obtain the stiffness matrix
of the constituent beam member. Subsequently, the stiffness terms are
used to obtain the closed-form expressions for the equivalent elastic
moduli of the entire lattice material.

3.3. The Castigliano’s approach

In this section, the procedure to obtain the stiffness matrix of the
constituent stepped beam member is proposed. Castigliano’s method
is utilised to derive the exact stiffness matrix [52,53]. To explain the
essential equations of Castigliano’s approach, the generalised force and

displacements are shown in Fig. 4. To obtain the stiffness matrix,
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Fig. 3. Finite element modelling of a stepped beam. There are three beam elements and four nodes. Each node has three degrees of freedom. This results into a 12 degrees of
freedom model for the analysis.
Fig. 4. Schematic diagram of a general two-noded beam member with a variable cross-section. The quantities 𝑉1, 𝑀1 and 𝑁1 are the shear force, bending moments and axial
forces, respectively at node 1. The quantities 𝑉2, 𝑀2 and 𝑁2 are the shear force, bending moments and axial forces, respectively at node 2.
a flexibility-based approach is considered. The matrix form of the
force–displacement relation for a general beam can be expressed as

𝐯𝑏 = 𝐊𝑏𝐮𝑏 (17)

Here 𝐯𝑏 and 𝐮𝑏 are the generalised force and displacement vectors of
the following form

𝐯𝑏 = {𝑉1,𝑀1, 𝑉2,𝑀2}𝑇 (18)

and 𝐮𝑏 = {𝑤1, 𝜃1, 𝑤2, 𝜃2}𝑇 (19)

and 𝐊𝑏 is the 4 × 4 stiffness matrix. The superscript 𝑏 stands for the
contribution from the bending part of the beam. 𝑤𝑖 and 𝜃𝑖 (𝑖 = 1, 2)
are the nodal bending displacements and rotations of the beam cross-
section, respectively. To obtain the stiffness coefficients, the flexibility
approach is considered followed by the equilibrium conditions. To
derive the force–displacement relationship for node 1, node 2 is kept
fixed (all three degrees of freedom are restrained) and generalised
forces 𝑁1, 𝑉1 and 𝑀1 are applied on node 1.

Both axial and bending deflections are considered in the formula-
tion. So, the strain energy has both axial and bending contributions as
follows

𝑈 = 1
2 ∫

𝐿

0

𝑀2

𝐸𝐼(𝑥)
𝑑𝑥 + 1

2 ∫

𝐿

0

𝑁2

𝐸𝐴(𝑥)
𝑑𝑥 (20)

The flexibility matrix of the axial and bending part are determined
separately. The internal moment and forces are 𝑀 = 𝑉1𝑥−𝑀1 and 𝑁 =

1. The flexibility relationship of the beam considering the bending
art is given by

{

𝑤1
𝜃1

}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑈
𝜕𝑉1

𝜕𝑈
𝜕𝑀1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
[

𝑄3 −𝑄2
−𝑄2 𝑄1

]{

𝑉1
𝑀1

}

(21)

The coefficients 𝑄𝑖s are defined as

𝑄𝑖 =
𝐿 𝑥(𝑖−1) 𝑑𝑥, 𝑖 = 1, 2, 3 (22)
5

∫0 𝐸𝐼(𝑥)
The stiffness relationship can be found by inverting the flexibility Eq.
(21) as
{

𝑉1
𝑀1

}

= 1
𝐷1

[

𝑄1 𝑄2
𝑄2 𝑄3

]{

𝑤1
𝜃1

}

(23)

where, 𝐷1 = 𝑄1𝑄3 − 𝑄2
2. In a similar way, the direct flexibility matrix

for point 2 can be obtained. For that, we have to fix point 1 and apply
Castigliano’s 2nd theorem after putting the internal moment equation
𝑀 = 𝑉2(𝐿 − 𝑥) −𝑀2 in Eq. (20)

{

𝑤2
𝜃2

}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑈
𝜕𝑉1

𝜕𝑈
𝜕𝑀1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
[

𝑅3 −𝑅2
−𝑅2 𝑅1

]{

𝑉2
𝑀2

}

(24)

Here 𝑅𝑖s are given by

𝑅𝑖 = ∫

𝐿

0

(𝐿 − 𝑥)(𝑖−1)

𝐸𝐼(𝑥)
𝑑𝑥, 𝑖 = 1, 2, 3 (25)

The stiffness relationship for node 2 can be found by inverting the
flexibility relation Eq. (24) as
{

𝑉2
𝑀2

}

= 1
𝐷2

[

𝑅1 𝑅2
𝑅2 𝑅3

]{

𝑤2
𝜃2

}

(26)

where, 𝐷2 = 𝑅1𝑅3 − 𝑅2
2. The stiffness terms corresponding to the

coupling between nodes 1 and 2 can be found considering the moment
and force equilibrium. For the force equilibrium one obtains 𝑉1 = −𝑉2
and for the moment equilibrium we have 𝑀1 + 𝑀2 + 𝑉2𝐿 = 0. These
two equilibrium conditions eventually give

𝐊𝑏
1𝑖 = −𝐊𝑏

3𝑖, 𝑖 = 1,… , 4 (27)

and 𝐊𝑏
24 = −(𝐊𝑏

44 +𝐊𝑏
34𝐿) (28)

The complete bending stiffness matrix is obtained by substituting Eqs.
(23), (26), (27), and (28) into Eq. (17). After some simplifications, the
4 × 4 bending stiffness matrix can be expressed considering the three
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w

𝑆

w

Fig. 5. Schematic diagram of a stepped beam with geometric details. The beam has three parts. The length, thickness and area of middle segment are 𝐿1, 𝑡1, and 𝐴1 respectively.
The length, thickness and area of the two end segments are 𝐿2, 𝑡2, and 𝐴2 respectively. The width of the beam is 𝑏.
𝑑

𝑑

independent coefficients in Eq. (22) as

𝐊𝑏 =

1
𝐷1

⎡

⎢

⎢

⎢

⎢

⎣

𝑄1 𝑄2 −𝑄1 (𝑄1𝐿 −𝑄2)
𝑄2 𝑄3 −𝑄3 (𝑄2𝐿 −𝑄3)
−𝑄1 −𝑄2 𝑄1 −(𝑄1𝐿 −𝑄2)

(𝑄1𝐿 −𝑄2) (𝑄2𝐿 −𝑄3) −(𝑄1𝐿 −𝑄2) (𝑄1𝐿2 − 2𝑄2𝐿 +𝑄3)

⎤

⎥

⎥

⎥

⎥

⎦

(29)

Now we turn our attention to the stiffness matrix corresponding to
the axial deformation. Following a similar procedure, the 2 × 2 axial
stiffness matrix is given by

𝐊𝑎 = 1
𝑆

[

1 −1
−1 1

]

(30)

here the integral

= ∫

𝐿

0

1
𝐸𝐴(𝑥)

𝑑𝑥 (31)

The expressions of the bending and axial stiffness matrices are
general and involve the evaluations of respective integrals. The full
6 × 6 stiffness matrix can be obtained by using the elements of these
matrices in the respective degrees of freedom as shown in Fig. 4. Next,
two special cases for the application of this general formulation is
considered.

3.3.1. Considering Euler–Bernoulli beam assumption
We consider a stepped beam and the domain is divided into three

parts as shown in Fig. 5. The variable bending stiffness 𝐸𝐼(𝑥), therefore,
takes the form of

𝐸𝐼(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝐸𝐼2 0 ≤ 𝑥 < 𝐿2

𝐸𝐼1 𝐿2 ≤ 𝑥 < 𝐿2 + 𝐿1

𝐸𝐼2 𝐿2 + 𝐿1 ≤ 𝑥 < 𝐿

(32)

where 𝐼1 = 𝑏𝑡31∕12 and 𝐼2 = 𝑏𝑡32∕12. For the derivation of the axial
stiffness matrix, it is noted that

𝐸𝐴(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝐸𝐴2 0 ≤ 𝑥 < 𝐿2

𝐸𝐴1 𝐿2 ≤ 𝑥 < 𝐿2 + 𝐿1

𝐸𝐴2 𝐿2 + 𝐿1 ≤ 𝑥 < 𝐿

(33)

here 𝐴1 = 𝑏𝑡1 and 𝐴2 = 𝑏𝑡2.
Using these expressions of 𝐸𝐼(𝑥) and 𝐸𝐴(𝑥), the equation for the

strain energy becomes

𝑈 = 1
2 ∫

𝐿2

0

𝑀2

𝐸𝐼2
𝑑𝑥 + 1

2 ∫

𝐿2

0

𝑁2

𝐸𝐴2
𝑑𝑥 + 1

2 ∫

𝐿1+𝐿2

𝐿1

𝑀2

𝐸𝐼1
𝑑𝑥

+ 1 𝐿1+𝐿2 𝑁2
𝑑𝑥
6

2 ∫𝐿1
𝐸𝐴1
+ 1
2 ∫

𝐿

𝐿1+𝐿2

𝑀2

𝐸𝐼2
𝑑𝑥 + 1

2 ∫

𝐿

𝐿1+𝐿2

𝑁2

𝐸𝐴2
𝑑𝑥 (34)

The coefficients 𝑄𝑖s for the stepped beam are defined as

𝑄𝑖 = ∫

𝐿2

0

𝑥(𝑖−1)

𝐸𝐼2
𝑑𝑥 + ∫

𝐿1+𝐿2

𝐿2

𝑥(𝑖−1)

𝐸𝐼1
𝑑𝑥 + ∫

𝐿

𝐿1+𝐿2

𝑥(𝑖−1)

𝐸𝐼2
𝑑𝑥, 𝑖 = 1, 2, 3

(35)

For the axial stiffness matrix we have

𝑆 = ∫

𝐿1

0

1
𝐸𝐴2

𝑑𝑥 + ∫

𝐿1+𝐿2

𝐿1

1
𝐸𝐴1

𝑑𝑥 + ∫

𝐿

𝐿1+𝐿2

1
𝐸𝐴2

𝑑𝑥 (36)

The stiffness contributions for the bending and axial parts are obtained
separately. After performing the symbolic operations and algebraic
simplifications we obtained the stiffness matrix for the constituent
stepped Euler–Bernoulli beam as

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎1
𝐸𝐴
𝐿

0 0 −𝑎1
𝐸𝐴
𝐿

0 0

0 𝑑1
12𝐸𝐼
𝐿3

𝑑2
6𝐸𝐼
𝐿2

0 −𝑑1
12𝐸𝐼
𝐿3

𝑑2
6𝐸𝐼
𝐿2

0 𝑑2
6𝐸𝐼
𝐿2

𝑑3
4𝐸𝐼
𝐿

0 −𝑑2
6𝐸𝐼
𝐿2

𝑑4
2𝐸𝐼
𝐿

−𝑎1
𝐸𝐴
𝐿

0 0 𝑎1
𝐸𝐴
𝐿

0 0

0 −𝑑1
12𝐸𝐼
𝐿3

−𝑑2
6𝐸𝐼
𝐿2

0 𝑑1
12𝐸𝐼
𝐿3

−𝑑2
6𝐸𝐼
𝐿2

0 𝑑2
6𝐸𝐼
𝐿2

𝑑4
2𝐸𝐼
𝐿

0 −𝑑2
6𝐸𝐼
𝐿2

𝑑3
4𝐸𝐼
𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(37)

Here 𝐴 and 𝐼 are the cross-sectional area and moment of inertia of the
regular beam with same mass as the stepped beam, that is

𝐼 = 1
12

𝑏𝑡3 and 𝐴 = 𝑏𝑡 (38)

The scalar coefficients appearing in Eq. (37) are derived as

𝑎1 =
1

𝛼21 − 2𝜂(𝛼21 − 𝛼22 )
(39)

1 =
𝛼31𝛼

3
2

(𝛼31 − 𝛼32 )
(

(2𝜂 − 1)3 + 1
)

+ 𝛼32
(40)

2 = 𝑑1 (41)

𝑑3 =
𝛼31𝛼

3
2
(

(𝛼31 − 𝛼32 )((𝜂 − 1)3 + 1 + 𝜂3) + 𝛼32
)

(

2𝜂(𝛼31 − 𝛼32 ) + 𝛼32
) (

(𝛼31 − 𝛼32 )
(

(2𝜂 − 1)3 + 1
)

+ 𝛼32
)

(42)

and 𝑑4 =
𝛼31𝛼

3
2
(

𝛼32 − (𝛼31 − 𝛼32 )(4𝜂
3 − 6𝜂2)

)

(

2𝜂(𝛼31 − 𝛼32 ) + 𝛼32
) (

(𝛼31 − 𝛼32 )
(

(2𝜂 − 1)3 + 1
)

+ 𝛼32
)

(43)

These coefficients are highly nonlinear functions of only the geometric
parameters (stepping length ratio and stepping height ratios) of the
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stepped beam. Eq. (37), along with the definition of these coefficients
gives the exact stiffness matrix of the stepped beam in Fig. 4 in
closed-form using the Euler–Bernoulli beam assumption.

The case of a conventional regular prismatic beam appears when we
take the limits lim𝛼1→1,𝛼2→1 in the expressions derived in Eqs. (39)–(43).

aking the mathematical limits, the coefficients 𝑎1 and 𝑑𝑖 become

lim
𝛼1→1,𝛼2→1

𝑎1 = lim
𝛼1→1,𝛼2→1

1
𝛼21 − 2𝜂(𝛼21 − 𝛼22 )

= 1 (44)

lim
𝛼1→1,𝛼2→1

𝑑1 = lim
𝛼1→1,𝛼2→1

𝛼31𝛼
3
2

(𝛼31 − 𝛼32 )
(

(2𝜂 − 1)3 + 1
)

+ 𝛼32
= 1 (45)

𝑑2 = 1 (46)
lim

𝛼1→1,𝛼2→1
𝑑3 = lim

𝛼1→1,𝛼2→1

𝛼31𝛼
3
2
(

(𝛼31 − 𝛼32 )((𝜂 − 1)3 + 1 + 𝜂3) + 𝛼32
)

(

2𝜂(𝛼31 − 𝛼32 ) + 𝛼32
) (

(𝛼31 − 𝛼32 )
(

(2𝜂 − 1)3 + 1
)

+ 𝛼32
)
= 1 (47)

lim
𝛼1→1,𝛼2→1

𝑑4 = lim
𝛼1→1,𝛼2→1

𝛼31𝛼
3
2
(

𝛼32 − (𝛼31 − 𝛼32 )(4𝜂
3 − 6𝜂2)

)

(

2𝜂(𝛼31 − 𝛼32 ) + 𝛼32
) (

(𝛼31 − 𝛼32 )
(

(2𝜂 − 1)3 + 1
)

+ 𝛼32
)
= 1 (48)

onsidering these limiting values, we get the stiffness matrix for the
egular Euler–Bernoulli beam as

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝐴
𝐿

0 0 −𝐸𝐴
𝐿

0 0

0 12𝐸𝐼
𝐿3

6𝐸𝐼
𝐿2

0 −12𝐸𝐼
𝐿3

6𝐸𝐼
𝐿2

0 6𝐸𝐼
𝐿2

4𝐸𝐼
𝐿

0 −6𝐸𝐼
𝐿2

2𝐸𝐼
𝐿

−𝐸𝐴
𝐿

0 0 𝐸𝐴
𝐿

0 0

0 −12𝐸𝐼
𝐿3

−6𝐸𝐼
𝐿2

0 12𝐸𝐼
𝐿3

−6𝐸𝐼
𝐿2

0 6𝐸𝐼
𝐿2

2𝐸𝐼
𝐿

0 −6𝐸𝐼
𝐿2

4𝐸𝐼
𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(49)

This expression match exactly with the well known expression for
Euler–Bernoulli beam [54]. This analysis shows that the expressions
derived in Eq. (37) are the generalisation of the classical expression
of the regular beam to the stepped beam.

3.3.2. Considering Timoshenko beam assumption
In this section, the stiffness matrix for the stepped beam is obtained

considering the Timoshenko beam assumption. In the case of the Tim-
oshenko beam, there is one extra term in the strain energy from the
shear contribution. The strain energy of the beam becomes

𝑈 = 1
2 ∫

𝐿

0

𝑀2

𝐸𝐼(𝑥)
𝑑𝑥 + 1

2 ∫

𝐿

0

𝑉 2

𝑘𝐺𝐴(𝑥)
𝑑𝑥 + 1

2 ∫

𝐿

0

𝑁2

𝐸𝐴(𝑥)
𝑑𝑥 (50)

The bending stiffness 𝐸𝐼(𝑥) and the axial stiffness 𝐸𝐴(𝑥) for three parts
of the beam are already mentioned in Eqs. (32) and (33), respectively.
Similarly, the shear stiffness is expressed as

𝑘𝐺𝐴(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑘𝐺𝐴2 0 ≤ 𝑥 < 𝐿2

𝑘𝐺𝐴1 𝐿2 ≤ 𝑥 < 𝐿2 + 𝐿1

𝑘𝐺𝐴2 𝐿2 + 𝐿1 ≤ 𝑥 < 𝐿

(51)

In the above equation, 𝑘 is the shear coefficient snd 𝐺 is the shear
modulus of the beam material. The total strain energy is

𝑈 = 1
2 ∫

𝐿2

0

𝑀2

𝐸𝐼2
𝑑𝑥 + 1

2 ∫

𝐿2

0

𝑁2

𝐸𝐴2
𝑑𝑥 + 1

2 ∫

𝐿2

0

𝑉 2

𝑘𝐺𝐴2
𝑑𝑥

+ 1
2 ∫

𝐿1+𝐿2

𝐿1

𝑀2

𝐸𝐼1
𝑑𝑥 + 1

2 ∫

𝐿1+𝐿2

𝐿1

𝑁2

𝐸𝐴1
𝑑𝑥 + 1

2 ∫

𝐿1+𝐿2

𝐿1

𝑉 2

𝑘𝐺𝐴1
𝑑𝑥

+ 1
2 ∫

𝐿

𝐿1+𝐿2

𝑀2

𝐸𝐼2
𝑑𝑥 + 1

2 ∫

𝐿

𝐿1+𝐿2

𝑁2

𝐸𝐴2
𝑑𝑥 + 1

2 ∫

𝐿

𝐿1+𝐿2

𝑉 2

𝑘𝐺𝐴2
𝑑𝑥 (52)
7

The internal moment, shear and forces are 𝑀 = 𝑉1𝑥 −𝑀1, 𝑉 = 𝑉1 and
𝑁 = 𝑁1. The expressions for the flexibility relation, stiffness relation of
he beam are same as Eq. (21) and Eq. (23). Whereas, the coefficients
𝑖s are as follows

𝑖 = ∫

𝐿2

0

𝑥(𝑖−1)

𝐸𝐼2
𝑑𝑥+ ∫

𝐿1+𝐿2

𝐿2

𝑥(𝑖−1)

𝐸𝐼1
𝑑𝑥+ ∫

𝐿

𝐿1+𝐿2

𝑥(𝑖−1)

𝐸𝐼2
𝑑𝑥, 𝑖 = 1, 2

(53)

and

𝑄3 = ∫

𝐿2

0

𝑥2

𝐸𝐼2
𝑑𝑥 + ∫

𝐿2

0

1
𝑘𝐺𝐴2

𝑑𝑥 + ∫

𝐿1+𝐿2

𝐿2

𝑥2

𝐸𝐼1
𝑑𝑥 (54)

+ ∫

𝐿1+𝐿2

𝐿2

1
𝑘𝐺𝐴1

𝑑𝑥 + ∫

𝐿

𝐿1+𝐿2

𝑥2

𝐸𝐼2
𝑑𝑥 + ∫

𝐿

𝐿1+𝐿2

1
𝑘𝐺𝐴2

𝑑𝑥 (55)

The axial stiffness matrix components will be the same as Eq. (37)
as it is not affected by the Timoshenko beam assumption. The stiffness
contributions for the bending and axial parts are obtained separately.
After performing the symbolic operations and algebraic simplifications
we obtained the stiffness matrix for the constituent Timoshenko beam
as

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎1
𝐸𝐴
𝐿

0 0 −𝑎1
𝐸𝐴
𝐿

0 0

0 𝑑1
12𝐸𝐼
𝐿3

𝑑2
6𝐸𝐼
𝐿2

0 −𝑑1
12𝐸𝐼
𝐿3

𝑑2
6𝐸𝐼
𝐿2

0 𝑑2
6𝐸𝐼
𝐿2

𝑑3
4𝐸𝐼
𝐿

0 −𝑑2
6𝐸𝐼
𝐿2

𝑑4
2𝐸𝐼
𝐿

−𝑎1
𝐸𝐴
𝐿

0 0 𝑎1
𝐸𝐴
𝐿

0 0

0 −𝑑1
12𝐸𝐼
𝐿3

−𝑑2
6𝐸𝐼
𝐿2

0 𝑑1
12𝐸𝐼
𝐿3

−𝑑2
6𝐸𝐼
𝐿2

0 𝑑2
6𝐸𝐼
𝐿2

𝑑4
2𝐸𝐼
𝐿

0 −𝑑2
6𝐸𝐼
𝐿2

𝑑3
4𝐸𝐼
𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(56)

with

𝑎1 =
1

𝛼2
1 − 2𝜂(𝛼2

1 − 𝛼2
2 )

(57)

𝑑1 =
𝛼3
1𝛼

3
2 (2𝜂𝛼

3
1 − 2𝜂𝛼3

2 + 𝛼3
2 )

�̄�1
(58)

𝑑2 = 𝑑1 (59)

3̄ =
𝛼3
1𝛼

3
2

(

𝛼3
2 (4 +𝛷𝛼2

1 ) + 4(𝛼3
1 − 𝛼3

2 )(2𝜂
3 − 3𝜂2 + 3𝜂) + 2𝜂𝛷𝛼2

1𝛼
2
2 (𝛼1 − 𝛼2)

)

�̄�1
(60)

𝑑4 =

𝛼3
1𝛼

3
2 (6(𝛼

3
2 + 2𝜂(𝛼3

1 − 𝛼3
2 )) − 4(𝛼3

2 + (𝛼3
1 − 𝛼3

2 )(2𝜂
3 − 3𝜂2 + 3𝜂))) −𝛷𝛼5

1𝛼
5
2 (2𝜂(𝛼1 − 𝛼2) + 𝛼2)

�̄�1

(61)

and

�̄�1 = (𝛼32+2𝜂(𝛼
3
1−𝛼

3
2 ))(𝛼

3
1+𝛷𝛼21𝛼

2
2 (𝛼2+2𝜂(𝛼1−𝛼2))−(1−2𝜂)

3(𝛼31−𝛼
3
2 )) (62)

If we take the limit lim𝛼1→1,𝛼2→1 (the case of a regular beam), then
the coefficients 𝑎1 and 𝑑𝑖 become

lim
𝛼1→1,𝛼2→1

𝑎1 = lim
𝛼1→1,𝛼2→1

1
𝛼2
1 − 2𝜂(𝛼2

1 − 𝛼2
2 )

= 1 (63)

lim
1→1,𝛼2→1

𝑑1 = lim
𝛼1→1,𝛼2→1

𝛼3
1𝛼

3
2 (2𝜂𝛼

3
1 − 2𝜂𝛼3

2 + 𝛼3
2 )

�̄�1
= 1

1 +𝛷
(64)

𝑑2 = 𝑑1 (65)
lim

𝛼1→1,𝛼2→1
𝑑3 = lim

𝛼1→1,𝛼2→1

𝛼3
1𝛼

3
2

(

𝛼3
2 (4 +𝛷𝛼2

1 ) + 4(𝛼3
1 − 𝛼3

2 )(2𝜂
3 − 3𝜂2 + 3𝜂) + 2𝜂𝛷𝛼2

1𝛼
2
2 (𝛼1 − 𝛼2)

)

�̄�1

= 4 +𝛷
1 +𝛷

(66)
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lim
𝛼1→1,𝛼2→1

𝑑4 = lim
𝛼1→1,𝛼2→1

𝛼31𝛼
3
2 (6(𝛼

3
2 + 2𝜂(𝛼31 − 𝛼32 )) − 4(𝛼32 + (𝛼31 − 𝛼32 )(2𝜂

3 − 3𝜂2 + 3𝜂)))

�̄�1

−
𝛷𝛼51𝛼

5
2 (2𝜂(𝛼1 − 𝛼2) + 𝛼2)

�̄�1
= 2 −𝛷

1 +𝛷
(67)

onsidering these limiting values in Eq. (56), one obtains the stiffness
atrix for the regular Timoshenko beam as

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝐴
𝐿

0 0 −𝐸𝐴
𝐿

0 0

0 12 𝐸𝐼
(1 +𝛷)𝐿3

6 𝐸𝐼
(1 +𝛷)𝐿2

0 −12 𝐸𝐼
(1 +𝛷)𝐿3

6 𝐸𝐼
(1 +𝛷)𝐿2

0 6 𝐸𝐼
(1 +𝛷)𝐿2

(4 +𝛷)𝐸𝐼
(1 +𝛷)𝐿

0 −6 𝐸𝐼
(1 +𝛷)𝐿2

(2 −𝛷)𝐸𝐼
(1 +𝛷)𝐿

−𝐸𝐴
𝐿

0 0 𝐸𝐴
𝐿

0 0

0 12 𝐸𝐼
(1 +𝛷)𝐿3

−6 𝐸𝐼
(1 +𝛷)𝐿2

0 12 𝐸𝐼
(1 +𝛷)𝐿3

−6 𝐸𝐼
(1 +𝛷)𝐿2

0 6 𝐸𝐼
(1 +𝛷)𝐿2

(2 −𝛷)𝐸𝐼
(1 +𝛷)𝐿

0 −6 𝐸𝐼
(1 +𝛷)𝐿2

(4 +𝛷)𝐸𝐼
(1 +𝛷)𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(68)

The expression of the stiffness matrix for the Timoshenko beam in
Eq. (68) matches exactly will the well-known expression [54]. The
expressions derived in Eq. (56) is the generalisation of the classical
expression of the regular beam to the stepped beam.

The term 𝛷 gives the relative importance of the shear deformations
to the bending deformations. For the equivalent rectangular cross-
section

𝛷 = 12𝐸𝐼
𝑘𝐴𝐺𝐿2

=
2(1 + 𝜈)

𝑘

( 𝑡
𝐿

)2
(69)

ere is 𝜈 is the Poisson’s ratio of the beam material, 𝐼 = 𝑏𝑡3∕12, 𝐴 = 𝑏𝑡.
e have used the relationships

= 𝐸
2(1 + 𝜈)

(70)

The generalised expression of the stepped Timoshenko beam given in
Eq. (56) reduces to stiffness matrix for the stepped Euler–Bernoulli
beam in (37) for 𝛷 = 0. Consequently, the expression of the regular
Timoshenko beam stiffness matrix in (68) reduces to the classical Euler–
Bernoulli case in Eq. (49) for 𝛷 = 0. The expression of the stiffness
matrix in Eq. (56) is, therefore, the most general expression derived in
this paper.

3.4. Closed-form expressions of equivalent elastic moduli

In this subsection, the analytical expressions derived before are
utilised to develop explicit closed-form expressions of equivalent elastic
moduli of the stepped lattice.

3.4.1. Equivalent elastic moduli with Euler–Bernoulli beam theory
We consider the stiffness coefficients from Eq. (37) and define the

thickness ratio as

𝛼 = 𝑡
𝐿

(71)

Here 𝑡 is the thickness of the regular straight beam. From the expres-
sions (8)–(12), it can be observed that two coefficients of the 6 × 6
element stiffness matrix of the inclined member and one coefficients
of the 6 × 6 element stiffness matrix of vertical member, namely, 𝐾55,
𝐾44 and 𝐾 (ℎ)

44 , are necessary to obtain the equivalent elastic properties
f the lattice. Using the expressions of the moment of inertia and the
ross-sectional area, the stiffness coefficients are given by

55 = 𝑑1
12𝐸𝐼
𝐿3

= 𝑑1𝐸𝑏𝛼3, 𝐾44 = 𝑎1
𝐸𝐴
𝐿

= 𝑎1𝐸𝑏𝛼

and 𝐾 (ℎ)
44 = 𝑎1

𝐸𝐴
ℎ

= 𝑎1
𝐸𝑏𝛼
𝛽

(72)
8
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lso,
𝐾55
𝐾44

= 𝛼2
𝑑1
𝑎1

and
𝐾55

𝐾ℎ
44

= 𝛼2𝛽
𝑑1
𝑎1

(73)

Here, 𝐼 is the moment of inertia for the equivalent regular beam.
The generalised expressions for the stepped lattice are explicitly

obtained as

𝐸1 =
𝑑1𝐸𝛼3 cos 𝜃

(𝛽 + sin 𝜃)
(

sin2 𝜃 + 𝛼2
𝑑1
𝑎1

cos2 𝜃
) (74)

𝐸2 =
𝑑1𝐸𝛼3(𝛽 + sin 𝜃)

cos3 𝜃
(

1 + 𝛼2
𝑑1
𝑎1

tan2 𝜃 + 2𝛼2𝛽
𝑑1
𝑎1

sec2 𝜃
) (75)

𝜈12 =

(

1 − 𝛼2
𝑑1
𝑎1

)

sin 𝜃 cos2 𝜃

(𝛽 + sin 𝜃)
(

sin2 𝜃 + 𝛼2
𝑑1
𝑎1

cos2 𝜃
) (76)

and 𝜈21 =
(1 − 𝛼2

𝑑1
𝑎1

) sin 𝜃(𝛽 + sin 𝜃)
(

1 + 𝛼2
𝑑1
𝑎1

tan2 𝜃 + 2𝛼2𝛽
𝑑1
𝑎1

sec2 𝜃
)

cos2 𝜃
(77)

The generalised expression of the shear modulus (Eq. (12)) consists
of five stiffness coefficients from the two constituent beam members.
There are the two coefficients, 𝐾65 = −6𝐸𝐼𝑑2∕𝐿2 and 𝐾44 = 𝐸𝐴𝑎1∕𝐿
from the inclined members and three coefficients from the verticle
member. The coefficients from the vertical member are

𝐾ℎ∕2
55 = 12𝐸𝐼

(ℎ∕2)3
𝑑1ℎ (78)

𝐾ℎ∕2
56 = − 6𝐸𝐼

(ℎ∕2)2
𝑑2ℎ (79)

and 𝐾ℎ∕2
66 = 4𝐸𝐼

(ℎ∕2)
𝑑3ℎ (80)

he closed-form equation for the shear modulus is obtained by substi-
uting the expressions of the stiffness coefficients in Eq. (12) as

12 =
𝐸𝛼3 cos 𝜃 (𝛽 + sin 𝜃) 𝑎1𝑑2

(

4𝑑1ℎ𝑑3ℎ − 3𝑑2ℎ2
)

(

2𝑎1𝑑2𝛽 +
(

𝑎1 − 𝛼2𝑑2
) (

4𝑑1ℎ𝑑3ℎ − 3𝑑2ℎ2
))

𝛽2 cos2 𝜃

+ 𝑑2𝛼
2 (1 + 2𝛽 sin 𝜃 + 𝛽2

) (

4𝑑1ℎ𝑑3ℎ − 3𝑑2ℎ2
)

(81)

here,

1ℎ =
𝛼31𝛼

3
2 (2𝜂(𝛼

3
1 − 𝛼32 ) + 𝛼32 )

𝐷ℎ
𝐸𝐵

(82)

𝑑2ℎ =
((𝛼31 − 𝛼32 )(4𝜂

2 − 4𝜂) − 𝛼32 )𝛼
3
1𝛼

3
2

𝐷ℎ
𝐸𝐵

(83)

𝑑3ℎ =
((𝛼31 − 𝛼32 )(8𝜂

3 − 12𝜂2 + 6𝜂) + 𝛼32 )𝛼
3
1𝛼

3
2

𝐷ℎ
𝐸𝐵

(84)

and

𝐷ℎ
𝐸𝐵 = 16((𝜂 − 1∕2)4 𝛼26 − 2 𝜂 𝛼13 (𝜂 − 1∕2)

(

𝜂2 − 𝜂∕2 + 1∕2
)

𝛼2
3 + 𝛼1

6𝜂4)

(85)

Eqs. (74)–(77) and (81) can be directly used to calculate equivalent
n-plane elastic properties of general stepped lattices. The expressions
re applicable to both the stepped-up and stepped-down lattices shown
n Fig. 1. As a special case, when the lattice is uniform, considering
he limiting values shown in Eqs. (44)–(48), it is easy to demonstrate
hat Eqs. (74)–(77) and (81) reduce to the corresponding equations
erived in Ref. [50]. Further, ignoring the axial stretching effect (that
s 𝑎1 → ∞, more on this is available in the Section 5), it can be easily
hown that the new general expressions derived here reduce to the
lassical equivalent expressions by Gibson and Ashby [5] as a further

pecial case.
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Eqs. (74)–(77) and (81) derived here considering a hexagonal lattice
configuration as depicted in Fig. 1. However, these expressions are
general and they can be used for other type of lattices for specific
geometric parameters. In the Section 5, exact closed-form expressions
of the equivalent elastic properties are derived for stepped auxetic
hexagonal lattices (𝜃 = −𝜃), stepped rhombus lattices (𝛽 = 0) and
tepped rectangular lattices (𝜃 = 0).

.4.2. Equivalent elastic moduli with Timoshenko beam theory
In this section, the closed-form expressions for stepped lattice are

btained considering thick beam assumptions for the constituent beam
embers. The shear deformation effects are significant for beams with
length-to-depth ratio of less than 5. Timoshenko beam theory, which

onsiders the shear contribution [54], is more suitable for such beams.
onsidering the stiffness coefficients form Eq. (56), the generalised
xpressions for the equivalent elastic properties for the mass conserved
exagonal stepped lattice are derived in closed-form as

1 =
𝑑1𝐸𝛼3 cos 𝜃

(𝛽 + sin 𝜃)
(

sin2 𝜃 + 𝛼2
𝑑1
𝑎1

cos2 𝜃
)

(86)

2 =
𝑑1𝐸𝛼3(𝛽 + sin 𝜃)

cos3 𝜃
(

1 + 𝛼2
𝑑1
𝑎1

tan2 𝜃 + 2𝛼2𝛽
𝑑1
𝑎1

sec2 𝜃
)

(87)

𝜈12 =

(

1 − 𝛼2
𝑑1
𝑎1

)

sin 𝜃 cos2 𝜃

(𝛽 + sin 𝜃)
(

sin2 𝜃 + 𝛼2
𝑑1
𝑎1

cos2 𝜃
)

(88)

and 𝜈21 =
(1 − 𝛼2

𝑑1
𝑎1

) sin 𝜃(𝛽 + sin 𝜃)
(

1 + 𝛼2
𝑑1
𝑎1

tan2 𝜃 + 2𝛼2𝛽
𝑑1
𝑎1

sec2 𝜃
)

cos2 𝜃
(89)

The generalised expression of the shear modulus (Eq. (12)) consists
of five stiffness coefficients from the two constituent beam members.
There are the two coefficients, 𝐾65 = −6𝐸𝐼𝑑2∕𝐿2 and 𝐾44 = 𝐸𝐴𝑎1∕𝐿
from the inclined members and three coefficients from the verticle
member. The coefficients from the vertical member are given by

𝐾ℎ∕2
55 = 12𝐸𝐼

(ℎ∕2)3
𝑑1ℎ (90)

𝐾ℎ∕2
56 = − 6𝐸𝐼

(ℎ∕2)2
𝑑2ℎ (91)

and 𝐾ℎ∕2
66 = 4𝐸𝐼

(ℎ∕2)
𝑑3ℎ (92)

The closed-form equation for the shear modulus is then obtained by
substituting the expressions of the stiffness coefficients in Eq. (12),
resulting

𝐺12 =
𝐸𝛼3 cos 𝜃 (𝛽 + sin 𝜃) 𝑎1𝑑2

(

4𝑑1ℎ𝑑3ℎ − 3𝑑22ℎ
)

(

2𝑎1𝑑2𝛽 +
(

𝑎1 − 𝛼2𝑑2
) (

4𝑑1ℎ𝑑3ℎ − 3𝑑22ℎ
))

𝛽2 cos2 𝜃

+ 𝑑2𝛼
2 (1 + 2𝛽 sin 𝜃 + 𝛽2

) (

4𝑑1ℎ𝑑3ℎ − 3𝑑22ℎ
)

(93)

In the above

𝑑1ℎ =
𝛼31𝛼

3
2 (2𝜂(𝛼

3
1 − 𝛼32 ) + 𝛼32 )

𝐷ℎ
𝑇𝐵

(94)

2ℎ =
((𝛼31 − 𝛼32 )(4𝜂

2 − 4𝜂) − 𝛼32 )𝛼
3
1𝛼

3
2

𝐷ℎ
𝑇𝐵

(95)

𝑑3ℎ =
(((𝛼31 − 𝛼32 )(8𝜂

3 − 12𝜂2 + 6𝜂) + 𝛼32 ) +𝛷𝛼21𝛼
2
2 (2𝜂(𝛼1 − 𝛼2) + 𝛼2))𝛼31𝛼

3
2

𝐷ℎ
𝑇𝐵

(96)

and

𝐷ℎ = 4
((

𝛷𝛼 2 + 4 𝜂2 − 4 𝜂 + 1
)

𝜂 − 1∕2 2 𝛼 6 − 𝜂 𝜂 − 1∕2 𝛷𝛼 3𝛼 5
9

𝑇𝐵 1 ( ) 2 ( ) 1 2
−𝜂
(

𝛷𝛼1
2 + 8 𝜂2 − 4 𝜂 + 4

)

(𝜂 − 1∕2) 𝛼13𝛼23

+𝛷𝛼1
6𝛼2

2𝜂2 + 4 𝛼16𝜂4
)

(97)

Eqs. (86)–(89) and (93) can be directly used to calculate equivalent
in-plane elastic properties of general stepped lattices. The expressions
are applicable to both the stepped-up and stepped-down lattices shown
in Fig. 1. As a special case, when the lattice is uniform, considering
the limiting values shown in Eqs. (63)–(67), it is easy to demonstrate
that Eqs. (86)–(89) and (93) reduce to the corresponding equations
derived in Ref. [50]. Again, the expressions for regular case reduce to
closed form expressions corresponding to the Euler–Bernoulli case in for
𝛷 = 0. Further, ignoring the axial stretching effect (that is, 𝑎1 → ∞),
it can be easily shown that the new general expressions derived here
reduce to the classical equivalent expressions by Gibson and Ashby [5]
as a further special case.

Eqs. (86)–(89) and (93) are derived considering the hexagonal lat-
tice configuration as in Fig. 1. However, these expressions are general
and they can be used for other type of lattices for specific geometric
parameters. Following the procedure in the Section 5, exact closed-
form expressions of the equivalent elastic properties can be derived for
stepped auxetic hexagonal lattices (𝜃 = −𝜃), stepped rhombus lattices
(𝛽 = 0) and stepped rectangular lattice (𝜃 = 0) with Timoshenko beam
theory.

4. Numerical results and discussions

Numerical results obtained for the stepped lattice are investigated
in detail. The distribution of the material of the constituent beam
member is considered in such a way that it maintains the same mass
as the regular lattice. Considering the redistribution of the mass, some
insightful results are obtained which are described in the following
subsections.

4.1. Comparison between the two proposed approaches

We explore the possibility of different values of the equivalent
elastic properties of stepped lattices obtained using two different ap-
proaches developed in the paper. These approaches are (1) the static
condensation based method prosed in Section 3.2, and (2) the Cas-
tigliano’s method based formulation in Section 3.3. Fig. 6 represents the
comparison between two approaches considering the normalised values
of 𝐸1 and 𝜈12. Eqs. (74) and (76) are utilised to obtain the analytical
curves for 𝐸1 and 𝜈12, respectively. They show that the results are
close to each other. Through the static condensation-based approach,
one can exploit the power of the finite element method for complex
geometries. For such cases, the analytical Castigliano based approach
may result in longer expressions in the closed-form equations. On the
other hand, the Castigliano based approach is straightforward for most
of the geometries, and a closed-form solution can be obtained. It can
also be observed that by varying the value of 𝛼2, a huge range of values
for Young’s modulus can be obtained while keeping the overall mass of
the lattice almost the same. This is a significant advantage compared
to the classical regular lattice.

4.2. Comparison between Euler–Bernoulli and Timoshenko beam theory

The equivalent elastic properties obtained considering both Euler–
Bernoulli beam theory and Timoshenko beam theory are compared.
The closed-form expressions to perform the comparative study were
derived in Sections 3.4.1 and 3.4.2. We can observe from Fig. 7 that
there are minor differences in the values when different theories are
considered. It is noticed that the Euler–Bernoulli assumption shows
a slightly higher value for the value of equivalent Young’s modulus.
This is expected because it neglects the shear contribution in the
deformation, which results in a smaller value of displacements followed
by a higher 𝐸 value. It is observed that for higher values of 𝛼 , the
1 2
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Fig. 6. Comparison between analytical (Castigliano based approach) and semi analytical (static condensation) results for stepped lattice considering Euler–Bernoulli beam theory
for the constituent beam member. Numerical values used are: the stepping length ratio 𝜂 = 0.25, the cell angle 𝜃 = 30◦ and the height ratio 𝛽 = ℎ∕𝐿 = 1.
Fig. 7. Comparison of results for stepped lattices considering Euler–Bernoulli and Timoshenko beam theory for constituent beam members considering the stepping length ratio
= 0.25, the cell angle 𝜃 = 30◦ and the height ratio 𝛽 = ℎ∕𝐿 = 1.
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ifference between the two approaches are more. This is because higher
alues of 𝛼2 represent a thicker beam at a certain part of the section
nd consequently higher impact of the shear deformation. Based on
his analysis, it is recommended that analytical expressions based on
imoshenko beam theory given in Section 3.4.2 should be used when
2 > 1.

.3. Effect of geometric parameters on the equivalent elastic properties

A novel aspect of the stepped lattices compared to a regular lattice
s the impact of the different geometric parameters on the equivalent
aterial properties of the lattice. The physical nature of the plots

onsidering Euler–Bernoulli and Timoshenko beam theory is similar.
herefore, results using the case of Euler–Bernoulli theory is shown.
ig. 8 shows the normalised equivalent elastic moduli and Poisson’s
atios obtained for the regular stepped hexagonal lattice considering
ifferent 𝛼2 values and 𝜂 = 0.30. The values of the stepping height ratio
etermine if the lattice is stepped-up or stepped-down. The stepped-
own lattice is identified by 𝛼2 > 1 and 𝛼2 < 1 denotes a stepped-up
attice. The curves of 𝛼2 = 1, which corresponds to the regular lattice,
ie between other cases. It is evident from the plots that the stepping
eight ratio has a significant effect on the equivalent elastic properties
10

o

f the lattice with different cell angles, and various values can be
btained depending upon the design requirements. Also, it is evident
rom the results that higher values for the elastic properties cannot
e obtained by simply increasing the 𝛼2 values. There should be a
articular value for that the elastic properties could be the maximum.

Fig. 9 shows the effect of stepping length ratio (𝜂) on the elastic
roperties keeping 𝛼2 = 1.30. It is observed that the effect of 𝜂 is
ot that significant for lattices with different cell angles. To visualise
f the effect of different 𝛼2 values on the lattice with different 𝜃
alues a 3D plot Fig. 10 is obtained. From the plot, it is evident that
or a particular 𝛼2 value, we are getting maximum values of Young’s
odulus for every cell angle. The 𝛼2 has much influence on every elastic
roperty. Whereas, Fig. 11 shows that 𝜂 has similar kinds of effects
or each elastic property. Also, for 𝜂 = 0.30, the values of Young’s
odulus are reaching maximum values for all cell angles. The effect

f the geometric parameters 𝛼2 and 𝜂 are also explored for 𝐺12 and
ig. 12 shows that. Figure Fig. 12(a) shows the normalised 𝐺12 as a
unction of cell angle 𝜃 for 𝜂 = 0.3 considering various 𝛼2 values.
igure Fig. 12(b) shows normalised 𝐺12 as a function of cell angle 𝜃
or 𝛼2 = 1.3 considering various 𝜂 values. The plots show that the
ature of the curves are different from the same plots of 𝐸1. The value
f 𝐺 is getting higher for lower 𝜂 values unlike 𝐸 . From Fig. 12(a)
12 1
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Fig. 8. Normalised equivalent elastic moduli and Poisson’s ratio obtained for stepped hexagonal lattice as a function of cell angle (𝜃) considering various stepping height ratio
(𝛼2) values. The height ratio is 𝛽 = ℎ∕𝐿 = 1 and the stepping length ratio is 𝜂 = 0.30.
it is not quite clear for what values of 𝛼2 the value of 𝐺12 is reaching
towards maximum as we only obtained that plot for a particular 𝜂 = 0.3.
To get the clear picture 3D plots are obtained (see figures Fig. 12(c)
and (d)). The 3D plot for 𝐺12 as a function of 𝛼2 and 𝜃 is similar
to 𝐸1 but not exactly the same. One can notice that here also for a
particular value of 𝛼2 the 𝐺12 is obtaining maximum value for all 𝜃
values. The region of 𝛼2 for which 𝐺12 is geting maximum is also close
to the same as 𝐸1. Whereas, The plot of 𝐺12 as a function of 𝜂 and

is qite different from the same plot of 𝐸1 and here its the reverse.
he 𝐺12 is obtaining higher values for 𝜂 values in the lower region
or all 𝜃. To investigate the effect of the redistribution of mass of the
onstituent beam members keeping the total mass almost the same for
he whole lattice, a 3D plot Fig. 13 is obtained as a function of 𝜂 and 𝛼2.
t is noticed that by redistributing the mass of the beam user-defined
aterial properties can be achieved for the lattice. The trend for the
1 and 𝐸2 are the same. Whereas, the nature of 𝐺12 is a bit different.
t first the normalised values of 𝐸1 and 𝜈12 are shown followed by

he plot of 𝐺12 (see Fig. 14). The normalisation is performed dividing
1, 𝜈12 and 𝐺12 obtained from Eqs. (74), (76) and (81) respectively by

heir corresponding values considering a regular lattice with prismatic
eam as constituent members. The equivalent elastic properties for
he regular lattice are termed as 𝐸𝑟𝑒𝑔

1 , 𝜈𝑟𝑒𝑔12 and 𝐺𝑟𝑒𝑔
12 . The closed-form

expressions for the equivalent regular lattice are obtained considering
11
the Eqs. (8) and (10) as

𝐸reg
1 = 𝐸𝛼3 cos 𝜃

(𝛽 + sin 𝜃)
(

sin2 𝜃 + 𝛼2 cos2 𝜃
)

(98)

𝜈reg12 =

(

1 − 𝛼2
)

sin 𝜃 cos2 𝜃

(𝛽 + sin 𝜃)
(

sin2 𝜃 + 𝛼2 cos2 𝜃
)

(99)

and 𝐺reg
12 =

𝐸𝛼3(𝛽 + sin 𝜃)
(𝛽2(1 + 2𝛽) + 𝛼2(cos 𝜃 + (𝛽 + sin 𝜃) tan 𝜃)2) cos 𝜃

(100)

The characteristics of Poisson’s ratios are also the same. The trend of the
plots shows that for a particular value of 𝜂 and 𝛼2, the elastic properties
can obtain maximum values. Also, the range of the values is quite large,
which are obtained by redistributing the mass of the constituent beam
member of a regular hexagonal lattice. In this research, the effect of the
joints is neglected. This means the masses of the lattices for different 𝜂
and 𝛼2 values may not be the same but quite close. Results show a larger
design space of the stepped lattice in comparison to the conventional
regular hexagonal lattice.

Fig. 15(a) and (b) shows the normalised 𝐸1 and 𝐺12 for a lattice with
cell angle 30◦ as a function of stepping height ratio 𝛼2 for different 𝜂
values. It shows that for a particular 𝛼2 value, the material property is
going to have maximum value for each 𝜂. A very low value of 𝜂 and 𝛼2
will inhibit the manufacturing constraint. So, the range of 𝜂 and 𝛼2 are
fixed according to manufacturing feasibility. The feasible region of the
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Fig. 9. Normalised equivalent elastic moduli and Poisson’s ratio obtained for stepped hexagonal lattice as a function of cell angle (𝜃) considering various stepping length ratio (𝜂)
values. The height ratio is 𝛽 = ℎ∕𝐿 = 1 and the stepping height ratio is 𝛼2 = 1.30.
geometric parameters has already been discussed in Section 2.2. The
value of the material property increases with 𝛼2 at the beginning, but
it is not monotonic. It decreases after certain values of 𝛼2. The nature
of the curve also depends upon the 𝜂 value. This study shows that there
should be a particular value of 𝜂 and 𝛼2 for that maximum value can
be reached. It is also observed that for lower 𝜂 values the sensitivity
of both 𝐸1 and 𝐺12 decreases with 𝛼2. The curves become more flat
with decreasing 𝜂 values. The difference between the characteristics of
𝐸1 and 𝐺12 is that for larger 𝜂 values the 𝐸1 is approaching towards

axima whereas, for 𝐺12 it is the reverse. Let us consider the curve
orresponding to 𝜂 = 0.3 from 15(a) and (c). It can be observed that
hile the value of 𝐸1 is reaching to its maximum near 𝛼2 = 1.2 the

value of 𝐺12 obtain about 30% lesser value from the regular lattice.
It is also noticed that in some cases, there are two design values of
𝛼2, which give the same elastic modulus. This implies that two very
different geometric designs can give the same equivalent elastic moduli.
This is a special feature of stepped lattices, which is very different from
regular lattices. Fig. 15(b) and (d) show the variation of normalised 𝐸1
and 𝐺12 respectively, with 𝜂 for different values of 𝛼2. It show that for
𝛼2 = 1 there is no variation for the values of 𝐸1 and 𝐺12 with 𝜂. For 𝐺12,
the nature of the curves corresponding to 𝛼2 = 1.2 and 1.3 are different
from the same plot of 𝐸1. In both cases (𝐸1 and 𝐺12) the maxima seems
to occur for 𝛼2 close to 1.2. One can observe that for 𝛼2 = 1.2 and
1.3 we are getting almost 20% and 30% higher value of 𝐸1 than the
regular case, respectively. While the value of 𝐺12 is getting lower by
12
60% and 25% for the corresponding vlues of 𝛼2. This indicates that a
structure with low shear moduls can be formed by redistributing the
mass while maximising the Young’s modulus (2D pentamode type of
structures). It can be observed that the possibilities are huge to obtain
large variation in the equivalent material properties. The values can be
a very low value to a very high one. The additional parameters, 𝛼2 and
𝜂 along with 𝜃 can be utilised to tune the equivalent properties as per
the user-defined design.

5. Special cases of the general expressions

The analytical expressions of the equivalent elastic properties for the
stepped hexagonal are derived in Section 3. The generalised expressions
from the Euler–Bernoulli case mentioned in Section 3.4.1 are utilised.
The respective Eqs. are (74), (75), (76), (77) and (81). The generalised
formulation is applied to various other lattice patterns and geometry of
the constituent members. The closed-form expressions of the equivalent
elastic properties for four special cases are obtained by limiting the
geometric parameters. Geometries of three specific lattices are shown
in Fig. 16. They include: the stepped auxetic hexagonal lattice (𝜃 =
−𝜃), the stepped rhombus lattice (𝛽 = 0) and the stepped rectangular
lattice (𝜃 = 0). The lattices shown in Fig. 16 are stepped-up lattices.
Equivalent stepped-down lattices can be obtained following similar
geometric designs. The closed-form expressions derived below are for
mass-conserved lattices, valid for both stepped-up and stepped-down
cases.
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Fig. 10. Normalised equivalent elastic moduli and Poisson’s ratio obtained for hexagonal mass conserved stepped lattice. The results are plotted as functions of stepping height
ratio (𝛼2) and cell angle (𝜃) for a value of height ratio 𝛽 = ℎ∕𝐿 = 1 and 𝜂 = 0.30.
5.1. Axially rigid stepped lattices

The closed-form expressions of axially rigid stepped lattice are
obtained considering 𝑎1 → ∞. Imposing this limiting case, from Eqs.
(74)–(77) and (81) one obtains

𝐸1 =𝐸𝛼3 cos 𝜃
(𝛽 + sin 𝜃) sin2 𝜃

𝑑1 (101)

𝐸2 =𝐸𝛼3
(𝛽 + sin 𝜃)
cos3 𝜃

𝑑1 (102)

𝜈12 =
cos2 𝜃

(𝛽 + sin 𝜃) sin 𝜃
(103)

𝜈21 =
(𝛽 + sin 𝜃) sin 𝜃

cos2 𝜃
(104)

and

𝐺12 =
𝐸𝛼3 (𝛽 + sin 𝜃)

𝛽2 cos 𝜃
𝑑2

(

4 𝑑1ℎ 𝑑3ℎ − 3 𝑑2ℎ2
)

(

2 𝛽 𝑑2 + 4 𝑑1ℎ 𝑑3ℎ − 3 𝑑2ℎ2
)

(105)

Numerical results show that these simple formulae give acceptable
accuracy for 𝛼 ≤ 0.2. These expressions match with the classical Gibson
and Ashby [5] formulas for a regular hexagonal lattice (𝑑1 = 1, 𝑑2 = 1).
This illustrates the general nature of the analytical expressions derived
in this present study.

5.2. Auxetic stepped lattices: 𝜃 < 0

The closed-form expressions for the equivalent elastic properties
of stepped re-entrant lattice (Fig. 16(a)) are obtained by considering
13
𝜃 = −𝜃 to the expressions derived in Section 3.4.1. The closed-form
expressions of auxetic stepped hexagonal lattice are

𝐸1 =
𝑑1𝐸𝛼3 cos 𝜃

(𝛽 − sin 𝜃)
(

sin2 𝜃 + 𝛼2
𝑑1
𝑎1

cos2 𝜃
) (106)

𝐸2 =
𝑑1𝐸𝛼3(𝛽 − sin 𝜃)

cos3 𝜃
(

1 + 𝛼2
𝑑1
𝑎1

tan2 𝜃 + 2𝛼2𝛽
𝑑1
𝑎1

sec2 𝜃
) (107)

𝜈12 = −

(

1 − 𝛼2
𝑑1
𝑎1

)

sin 𝜃 cos2 𝜃

(𝛽 − sin 𝜃)
(

sin2 𝜃 + 𝛼2
𝑑1
𝑎1

cos2 𝜃
) (108)

𝜈21 = −

(

1 − 𝛼2
𝑑1
𝑎1

)

sin 𝜃 (𝛽 − sin 𝜃)
(

1 + 𝛼2
𝑑1
𝑎1

tan2 𝜃 + 2𝛼2𝛽
𝑑1
𝑎1

sec2 𝜃
) (109)

and

𝐺12 =
𝐸𝛼3 cos 𝜃 (𝛽 − sin 𝜃) 𝑎1𝑑2

(

4𝑑1ℎ𝑑3ℎ − 3𝑑2ℎ2
)

(

2𝑎1𝑑2𝛽 +
(

𝑎1 − 𝛼2𝑑2
) (

4𝑑1ℎ𝑑3ℎ − 3𝑑2ℎ2
))

𝛽2 cos2 𝜃

+ 𝑑2𝛼
2 (1 − 2𝛽 sin 𝜃 + 𝛽2

) (

4𝑑1ℎ𝑑3ℎ − 3𝑑2ℎ2
)

(110)

The expressions for the regular hexagonal auxetic lattice can be ob-
tained considering the limiting case when 𝑑 = 𝑎 = 1.
1 1
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Fig. 11. Normalised equivalent elastic moduli and Poisson’s ratio obtained for hexagonal mass conserved stepped lattice. The results are plotted as functions of stepping length
ratio (𝜂) and cell angle (𝜃) for a value of height ratio 𝛽 = ℎ∕𝐿 = 1 and 𝛼2 = 1.30.
5.3. Rombus stepped lattices: 𝛽 = 0

The rhombus stepped lattice, shown in Fig. 16(b) is obtained by
removing the vertical member from the unit cell. Mathematically the
expressions of the equivalent elastic properties for the regular rhombus
lattice are obtained considering lim𝛽→0 to the expressions derived in
Section 3.4.1. The closed-form expressions are given by

𝐸1 =
𝑑1𝐸𝛼3 cos 𝜃

sin 𝜃
(

sin2 𝜃 + 𝛼2
𝑑1
𝑎1

cos2 𝜃
) (111)

𝐸2 =
𝑑1𝐸𝛼3(sin 𝜃)

cos3 𝜃
(

1 + 𝛼2
𝑑1
𝑎1

tan2 𝜃 + 2𝛼2𝛽
𝑑1
𝑎1

sec2 𝜃
) (112)

𝜈12 =

(

1 − 𝛼2
𝑑1
𝑎1

)

cos2 𝜃

sin2 𝜃 + 𝛼2
𝑑1
𝑎1

cos2 𝜃
(113)

𝜈21 =

(

1 − 𝛼2
𝑑1
𝑎1

)

sin2 𝜃

1 + 𝛼2
𝑑1
𝑎1

tan2 𝜃 + 2𝛼2𝛽
𝑑1
𝑎1

sec2 𝜃
(114)

and

𝐺 = 𝐸𝛼𝑎 sin 𝜃 cos 𝜃 (115)
14

12 1
The expressions for the regular rhombus lattice can be obtained by
substituting 𝑑1 = 𝑎1 = 1.

5.4. Rectangular stepped lattices: 𝜃 = 0

The stepped rectangular lattice is formed when 𝜃 = 0 and is shown
in Fig. 16(c). The expressions of the equivalent elastic properties for
the stepped rectangular lattice are obtained by considering lim𝜃→0 to
the expressions derived in Section 3.4.1. After some simplifications, one
obtains

𝐸1 =
𝐸𝛼
𝛽

𝑎1 (116)

𝐸2 =
𝐸𝛼3𝛽

1 + 2𝛼2𝛽
𝑑1
𝑎1

𝑑1 (117)

𝜈12 =0, 𝜈21 = 0 (118)

and

𝐺12 =
𝐸𝛼3 (𝛽) 𝑎1𝑑2

(

4𝑑1ℎ𝑑3ℎ − 3𝑑2ℎ2
)

(

2𝑎1𝑑2𝛽 +
(

𝑎1 − 𝛼2𝑑2
) (

4𝑑1ℎ𝑑3ℎ − 3𝑑2ℎ2
))

𝛽2

+ 𝑑2𝛼
2 (1 + 𝛽2

) (

4𝑑1ℎ𝑑3ℎ − 3𝑑2ℎ2
)

(119)

The expressions for the regular rectangular lattice are obtained when
𝑑 = 𝑎 = 1.
1 1
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Fig. 12. Normalised equivalent shear modulus obtained for stepped hexagonal lattice as a function of (a) cell angle (𝜃) considering various stepping height ratio (𝛼2) values
keeping 𝜂 = 0.30, (b) cell angle (𝜃) considering various stepping length ratio (𝜂) values keeping 𝛼2 = 1.30, (c) cell angle (𝜃) and stepping height ratio (𝛼2) and (d) cell angle (𝜃)
and stepping length ratio (𝜂). The height ratio is 𝛽 = ℎ∕𝐿 = 1.

Fig. 13. Normalised equivalent elastic modulus and Poisson’s ratio obtained for hexagonal mass conserved stepped lattice. The results are plotted as functions of stepping length
ratio 𝜂 and stepping height ratio 𝛼2 for a value of height ratio 𝛽 = ℎ∕𝐿 = 1. The value of cell angle 𝜃 = 30◦.
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Fig. 14. Normalised equivalent shear modulus (𝐺12) obtained for hexagonal mass
conserved stepped lattice. The results are plotted as functions of stepping length ratio
𝜂 and stepping height ratio 𝛼2 for a value of height ratio 𝛽 = ℎ∕𝐿 = 1. The value of
cell angle 𝜃 = 30◦.

A similar approach can also be followed to obtain the closed-form
expressions for the different cases considering the Timoshenko beam
theory mentioned in Section 3.4.2.

6. Optimal lattice geometry

In this section, the optimum values of the geometric parameters are
obtained followed by the normalised maximum value of the material
parameter 𝐸1. To obtain the values of the geometric parameters the
Eq. (120) is used. The contributions from the axial part are excluded
for simplifications (see Section 5.1 for the relevant expressions). The
closed-form expression of 𝐸1 becomes

𝐸1 =
𝐸𝛼3 cos 𝜃

(𝛽 + sin 𝜃) sin2 𝜃
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐸GA
1

𝑑1 (120)

where 𝐸GA
1 denotes the equivalent elastic modulus of a regular hexago-

nal lattice ignoring axial deformation of the constituent beams as given
by Gibson and Ashby [5]. The Eq. (40) shows that 𝑑1 is a function of 𝜂
and 𝛼2 so as 𝐸1. For a regular hexagonal lattice, 𝑑1 = 1. Therefore, any
value of 𝑑1 more than 1 represents an increase in the stiffness of the
stepped lattice compared to a regular lattice. To obtain the maximum
value of 𝐸1 analytically we consider the following procedure. The
critical points are obtained by solving the following two simultaneous
equations

𝜕𝐸1
𝜕𝛼2

= 0 (121)

and
𝜕𝐸1
𝜕𝜂

= 0 (122)

The optimum values of the geometric parameters can be obtained by
checking the sign of the determinant of the Hessian matrix for the
critical points. The expression for the Hessian matrix is given by

𝐇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕2𝐸1

𝜕𝛼22

𝜕2𝐸1
𝜕𝜂𝜕𝛼2

𝜕2𝐸1
𝜕𝛼2𝜕𝜂

𝜕2𝐸1

𝜕𝜂2

⎤

⎥

⎥

⎥

⎥

⎦

(123)

The set of critical points for which the determinant of the Hessian
matrix (mentioned in Eq. (123)) is < 0 ensures the criteria for the
maximum [55]. The set of two simultaneous equations as a function
of the geometric parameters can be obtained by substituting Eq. (120)
into Eq.s (121) and (122). Then the simultaneous equations become

𝜕𝐸1 =
𝜕𝐸1 𝜕𝑑1 = 𝐸𝛼3 cos 𝜃 𝜕
16

𝜕𝛼2 𝜕𝑑1 𝜕𝛼2 (𝛽 + sin 𝜃) sin2 𝜃 𝜕𝛼2
(

𝛼31𝛼
3
2

(𝛼31 − 𝛼32 )
(

(2𝜂 − 1)3 + 1
)

+ 𝛼32

)

= 0 (124)

and
𝜕𝐸1
𝜕𝜂

=
𝜕𝐸1
𝜕𝑑1

𝜕𝑑1
𝜕𝜂

= 𝐸𝛼3 cos 𝜃
(𝛽 + sin 𝜃) sin2 𝜃

𝜕
𝜕𝜂

(

𝛼31𝛼
3
2

(𝛼31 − 𝛼32 )
(

(2𝜂 − 1)3 + 1
)

+ 𝛼32

)

= 0 (125)

After performing some algebraic simplifications, the above two equa-
tions reduce to two simultaneous nonlinear equations

(

96 𝜂5 − 192 𝜂4 + 160 𝜂3 − 60 𝜂2 + 12 𝜂 − 1
)

𝛼2
4

+
(

−128 𝜂5 + 192 𝜂4 − 96 𝜂3
)

𝛼2
3+

(

96 𝜂4 − 144 𝜂3 + 72 𝜂2
)

𝛼2
2 +

(

−32 𝜂3 + 48 𝜂2 − 24 𝜂
)

𝛼2

+ 4 𝜂2 − 6 𝜂 + 3 = 0 (126)
and

(

16 𝜂3 − 4 𝜂 + 1
)

𝛼2
3 +

(

−24 𝜂2 + 8 𝜂 − 1
)

𝛼2
2

+ (8 𝜂 − 1) 𝛼2 − 1 = 0 (127)

These two equations are solved numerically and the optimal parameter
values are calculated as

(

𝛼2
)

opt = 1.1972 (128)

and (𝜂)opt = 0.3195 (129)

For these values, 𝑑1 reach a maximum value as

(

𝑑1
)

max = 1.3776 or
(

𝐸1
)

max = 1.3776 𝐸𝛼3 cos 𝜃
(𝛽 + sin 𝜃) sin2 𝜃

= 1.3776𝐸GA
1

(130)

In this derivation, the effect of axial deformation is not considered for
simplicity. However, applying the same set of optimum values in Eq.
(74) the maximum value of 𝐸1 is obtained as

(

𝐸1
)

max as 1.3668𝐸reg
1 .

Here 𝐸reg
1 considers the axial contribution and is defined in Eq. (98).

This is very close to what was obtained ignoring the axial contributions.
As the optimal value of 𝛼2 is more than one in Eq. (128), the optimal
lattice design for a maximum equivalent 𝐸1 is a stepped-down design.

The same approach is followed for obtaining the optimum values of
𝛼2 and 𝜂 in case of shear modulus 𝐺12. The closed-form expression of
𝐺12 without the axial contribution can be written as

𝐺12 =
𝐸𝛼3(𝛽 + sin 𝜃)𝑑2(4𝑑1ℎ𝑑3ℎ − 3𝑑22ℎ)

𝛽2 cos 𝜃(2𝛽𝑑2 + (4𝑑1ℎ𝑑3ℎ − 3𝑑22ℎ))

=
𝐸𝛼3(𝛽 + sin 𝜃)𝑑2𝐷2

ℎ(4𝑑1ℎ𝑑3ℎ − 3𝑑22ℎ)

𝛽2 cos 𝜃(2𝛽𝑑2𝐷2
ℎ +𝐷2

ℎ(4𝑑1ℎ𝑑3ℎ − 3𝑑22ℎ))

=
𝐸𝛼3(𝛽 + sin 𝜃)𝑑2�̄�

𝛽2 cos 𝜃(2𝛽𝑑2𝐷2
ℎ + �̄�)

=
𝐸𝛼3(𝛽 + sin 𝜃)𝑑2�̄�

𝛽2 cos 𝜃�̄�

=
𝐸𝛼3(𝛽 + sin 𝜃)

𝛽2 cos 𝜃
𝑑2�̄�
�̄�

(131)

Where, 𝐷ℎ = 𝐷ℎ
𝐸𝐵 . 𝑑2 and �̄� are functions of 𝛼2 and 𝜂. While �̄� is

function of 𝛼2, 𝜂 and 𝛽.
The critical points are obtained by numerically solving the following

two simultaneous equations

𝜕𝐺12
𝜕𝛼2

=
𝐸𝛼3(𝛽 + sin 𝜃)

𝛽2 cos 𝜃

�̄� 𝜕
𝜕𝛼2

(𝑑2�̄�) − (𝑑2�̄�) 𝜕�̄�𝜕𝛼2
�̄�2

= 0 (132)

and
𝜕𝐺12
𝜕𝜂

=
𝐸𝛼3(𝛽 + sin 𝜃)

𝛽2 cos 𝜃

�̄� 𝜕
𝜕𝜂 (𝑑2�̄�) − (𝑑2�̄�) 𝜕�̄�𝜕𝜂

�̄�2
= 0 (133)

The expressions of the two nonlinear equations from (132) and (133)
are very lengthy to be produced in the manuscript. The optimal param-
eter values are calculated for 𝛽 = 1 as

(

𝛼2
)

opt = 1.1679 (134)

and 𝜂 = 0.1318 (135)
( )opt
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Fig. 15. Normalised (a) 𝐸1 as a function of stepping height ratio (𝛼2), (b) 𝐸1 as a function of stepping length ratio (𝜂), (c) 𝐺12 as a function of stepping height ratio (𝛼2) and (d)
𝐺12 as a function of stepping length ratio (𝜂) for stepped lattice. The value of cell angle 𝜃 = 30◦ and the value of height ratio 𝛽 = ℎ∕𝐿 = 1.

Fig. 16. The geometry of various stepped-up lattices and their corresponding unit cells (equivalent stepped-down lattices can be obtained following similar geometric designs).
The family of lattices is created by considering special values of the cell angle (𝜃) and the height ratio (𝛽). The specific lattices are: (a) the stepped auxetic hexagonal lattice
(𝜃 = −𝜃), (b) the stepped rhombus lattice (𝛽 = 0) and (c) the stepped rectangular lattice (𝜃 = 0). Unit cells of the stepped lattices are highlighted in the figures.
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Fig. 17. Normalised (a) 𝐸1 for different values of the stepping height ratio 𝛼2. The optimum stepping length ratio is 𝜂 = 0.3195 and (b) 𝐺12 for different values of the stepping
height ratio 𝛼2. The optimum stepping length ratio is 𝜂 = 0.1318. The geometry of the corresponding unit cells are also shown for different regions. The red dots (a stepped-down
lattice) shows the maximum value of normalised 𝐸1 and 𝐺12 corresponding to the optimal value of 𝛼2 in Eq. (128) and (134), respectively. The blue circle denotes the value
corresponding to the regular lattice. The green square (a stepped-up lattice) denotes 80% lesser value of the normalised 𝐸1 and 𝐺12 from the regular lattice. The height ratio is
𝛽 = ℎ∕𝐿 = 1 and the cell angle is 𝜃 = 30◦.
For these values the 𝐺12 will obtain maximum value which is almost
8% higher than the regular case.

This study shows that there is a unique value of 𝛼2 and 𝜂 which gives
the maximum value for 𝐸1 and 𝐸2. For 𝐺12 the values are different. We
can observe that the optimum values of 𝛼2 are close for both the cases
but the 𝜂 values differs a lot. It also shows that the material properties
are sensitive to those geometric parameters. A small change in the
thickness can substantially alter the property values. Results shown in
Eq. (130) demonstrate that the equivalent elastic properties (𝐸1 and
𝐸2) of an optimally designed hexagonal lattice are increased by almost
37% just by redistributing the mass of the constituent beam members
through the geometric parameters given by Eqs. (128) and (129). The
main focus in this present work consider the in-plane properties of the
lattice. Apart from that, the hexagonal lattices are also used as a core
material to increase the bending stiffness of sandwich structures. On
the other hand, buckling of lattice metamaterials is an engaging topic
and quite an open problem. There is a huge scope in this direction.
The out of plane characteristics of lattice and analytical exploration
considering buckling and large deformation are going to be investigated
in our future works.

7. Conclusions

A generalised analytical framework to obtain the equivalent elastic
properties of two-dimensional hexagonal lattices with arbitrary cross-
sectional properties of the constituent beam members is proposed.
Explicit closed-form expressions for the equivalent elastic properties of
the stepped lattice are obtained. The stepped lattice is formed by redis-
tributing the mass of the regular hexagonal lattice. This redistribution
of mass results in increasing the design space compared to the lattices
with regular constituent beam elements with a single cross-section.
Unlike a conventional straight-beam lattice, the combined effect of the
stepping length ratio (𝜂) and the stepping height ratio (𝛼2) can be
utilised simultaneously to tailor the required values of the equivalent
elastic properties. The overall picture of the mass distribution, its
effect on the equivalent Young’s modulus and shear modulus and the
corresponding shape of the unit cell (not to scale) is shown in Fig. 17.
The plots are obtained for different values of stepping height ratio (𝛼2)
and fixing the stepping length ratio to their optimum value, those are
𝜂 = 0.3195 for the case of 𝐸1 and 𝜂 = 0.1318 for the case of 𝐺12.
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Some of the key novel features of this paper include:
• Two new types of hexagonal lattices, namely, stepped-up and
stepped-down lattices, have been proposed. They are charac-
terised by geometric parameters and have the same mass as the
regular hexagonal lattice.

• Two approaches are combined with the unit cell method to obtain
closed-form expressions for equivalent in-plane elastic properties
of hexagonal lattices using the coefficients of the stiffness matrix
of constituent stepped beams.

• Static condensation and the Castigliano method, along with the
unit cell-based approach, are employed to obtain the equivalent
elastic properties of the lattice. The static condensation-based
approach can be utilised for constituent beam members with
complex geometries. It is a semi-analytical method. Whereas,
Castigliano method results in exact closed-form expressions for
the elastic properties.

• Results show that by redistributing the mass of the constituent
beam members of the lattice, both the stiffness and the flexibility
can be enriched and altered in a prescribed manner. An optimum
dimension for the constituent beam is also obtained to maximise
the elastic moduli of the mass-conserved lattice. A vast range of
equivalent material properties is demonstrated in this study which
describes the enhanced design space.

• The optimised values of the parameters 𝛼2 and 𝜂 are different for
Young’s and Shear modulus. The value of 𝛼2 is quite nearby for
both the cases while 𝜂 values are very much different. This shows
a huge possibility of tuning, and tailoring of individual material
parameters.

• A stepped-down lattice has a higher stiffness, whereas a stepped-
up lattice has higher flexibility compared to an equivalent regular
hexagonal lattice. An optimally designed stepped-down lattice
can be up to 37% stiffer while keeping the mass almost the
same as a regular lattice. For shear modulus the increasement is
about 8.1%. This will lead to significant savings in materials and
consequently reduced cost.

A closed-form solution for other lattices, such as auxetic, rhombus
and rectangular geometries, have been explicitly derived as special
cases of the general expressions proposed in the paper. The analytical
expressions and the results obtained are benchmark results and can
be directly used for the design of hexagonal lattices and other geome-
tries. Future research directions will include exploring different mass

conserved geometries and their non-linear dynamic analyses.
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