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A B S T R A C T

A large number of studies have been reported in literature to analyse various parameters that influence the
Poisson’s ratios of multi-functional lattice materials. However, the major limitation in such lattices is that
once the lattice is manufactured, the Poisson’s ratios and other elastic properties become fixed corresponding
to the particular lattice configuration. This limits the application of such lattices in many advanced multi-
functional structures and systems, where on-demand active property modulations are warranted. This paper
proposes composite lattices comprising a substrate and piezoelectric materials, wherein it is possible to actively
modulate the Poisson’s ratios and other elastic properties as a function of voltage. Considering both axial
and transverse deformations of the cell walls along with a unit cell based approach, the exact closed-form
expressions of Poisson’s ratios and equivalent Young’s modulus are derived in an expanded design space for
the unimorph and bimorph configurations. The study reveals that a sign reversal of the Poisson’s ratios and
Young’s modulus can be achieved for specific combinations of cell angle and applied voltage. Contrary to the
conventional wisdom, such active sign reversal implies that re-entrant honeycomb lattices can exhibit positive
Poisson’s ratios and vice versa.
1. Introduction

Two-dimensional lattice-based materials can be constructed by re-
peating the unit cell periodically. In general, microstructural geometry
of the unit cells plays a vital role in determining the mechanical proper-
ties of the entire lattice. A large number of studies have been conducted
considering various shapes of lattice structures such as hexagonal,
square, Kagome, N- Kagome, triangular, star triangular honeycombs
and other tailor-made geometries [1–8]. Such studies convincingly
demonstrate that application-specific tailored unit cell geometries are
capable of obtaining unprecedented mechanical behaviour of these ar-
tificially engineered materials (often referred as metamaterials) includ-
ing multi-functional modulation of equivalent elastic moduli, vibration
and wave propagation behaviour, negative Poisson’s ratio, negative
Young’s modulus, direction-dependent stiffness, programmable shape
modulation etc. [9–11]. In particular, Poisson’s ratios of metamaterials
have received significant attention from the scientific community due
to its importance in far-field shape modulation and actuation appli-
cations along with other mechanical behaviour such as deformation,
vibration, impact and indentation. Based on the intuitive design of
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microstructural lattice geometries, it is possible to achieve positive,
negative and zero Poisson’s ratios including extreme values [12–18].
However, the major limitation in such lattices is that once the lattice is
manufactured, the Poisson’s ratios and other elastic properties become
fixed corresponding to the particular lattice configuration. This limits
the application of such lattices in many advanced multi-functional
structures and systems, where on-demand active property modulations
are warranted. In this article, we embark on overcoming this lacuna
with a focus on the Poisson’s ratios by introducing active materials in
the lattice configuration.

For planar 2D cellular materials, the closed-form analytical ex-
pressions (equivalent elastic moduli) have been presented extensively
in literature due to their computational efficiency and rich physical
insights [12,19–24]. The unusual negative values of longitudinal and
transverse Young’s modulus has been reported under dynamic con-
ditions by Adhikari et al. [25] whereas, Singh et al. [26] discussed
the occurrence of negative Young’s modulus under static conditions. A
general analytical approach to determine elastic properties considering
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Fig. 1. Piezoelectric lattice microstructures for active multi-physical Poisson’s ratio modulation. (a) Generic hexagonal honeycomb lattice microstructure representation in
X–Y plane (b) Unimorph unit cell highlighting the length of vertical cell wall (ℎ), inclined cell walls (𝐿) and cell angle (𝜃). Note that the substrate beam is shown in blue colour,
while the piezoelectric patches are indicated using red colour. (c) Bimorph unit cell highlighting the length of vertical cell wall (ℎ), inclined cell walls (𝐿) and cell angle (𝜃).
Note that the substrate beam is shown in blue colour, while the piezoelectric patches are indicated using red colour. In the proposed microstructures, the piezoelectric patches
are mounted over the inclined cell walls only. (d)–(h) Typical topologies of honeycomb lattices having different values of 𝛽 (i.e., ℎ

𝐿
ratio) and cell angle (𝜃). Note that all these

geometries can be readily analysed using the proposed analytical framework by considering corresponding geometric parameters. (i) Degrees of freedom for a single cell wall
(i.e. hybrid beam) having a piezoelectric patch. A local coordinate system (𝑥, 𝑧) has been taken to obtain the deformation of a single hybrid beam, where the direction 𝑥 is along
the beam length. Note that the effective displacement components of a unit cell under different loading and actuation conditions are obtained using the 6 × 6 stiffness matrix of
a single beam element with the unimorph and bimorph configurations. The stiffness matrix of the vertical cell walls are same as that of a normal beam without any piezoelectric
attachment. (j) A schematic representation of four different cases for which the Poisson’s ratios and Young’s moduli are analysed in the present study (refer to Fig. 2 for more
details).
both axial and transverse displacements under dynamic condition has
been studied by Adhikari et al. [27]. When only bending deformation
of the cell walls are considered for a hexagonal honeycomb unit cell,
it has been documented in the literature by Gibson and Ashby [19]
that 𝜈12 and 𝜈21 are independent of material property and depend only
on the microstructural geometry. Similar observation was reported in
an earlier study of piezoelectric lattices [26], wherein only bending
deformation of the cell walls was considered with the limitation of low
thickness and high axial rigidity. Singh et al. [26] showed that while
active voltage-dependent modulation of the in-plane Young’s moduli
is possible in such a hybrid hexagonal lattice, the Poisson’s ratio’s
cannot be modulated as a function of voltage. In the current paper,
we aim to include the effect of axial deformation of the cell walls in
2

addition to the bending deformation, wherein it will be showed that
the Poisson’s ratios become functions of the applied voltage in addition
to the microstructural geometry. This development will lead to on-
demand active modulation of Poisson’s ratios in piezoelectric lattice
materials.

Most of the lattice structures exhibit positive Poisson’s ratios, while
there exist some lattice geometries that can exhibit negative Poisson’s
ratio [28,29]. Over the years, various forms of geometries (origami,
chiral, star-shaped and foam structures) and structural mechanisms
have been studied to obtain the negative Poisson’s ratio [30–35]. It
is well-established in the literature that Poisson’s ratio for hexagonal
honeycomb lattices is positive for positive cell angle (note that the
parameter 𝜃 in Fig. 1(b, c) is referred as the cell angle) and vice
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versa [36–38]. According to the general wisdom, it is not possible to
have Positive Poisson’s ratio in an auxetic (i.e. negative cell angle)
configuration, or negative Poisson’s ratio in a hexagonal lattice with
positive cell angle. In this study, we would decouple this relation and
extend the capability of active Poisson’s ratio modulation to an extent
where a sign reversal of Poisson’s ratios is possible as a function of
applied voltage.

As per the preceding discussions in this section, this paper aims to
develop an active modulation capability of Poisson’s ratios (including
on-demand sign-reversal) in piezoelectric honeycomb lattices. Hybrid
honeycomb lattice structures comprised of a substrate and piezoelectric
material Dwivedi et al. [39],Crawley and Anderson [40],Crawley and
de Luist [41] would be analysed considering both the unimorph and
bimorph configurations (refer to Fig. 1). As an integral part of this
study, the Young’s moduli of such lattices would also be investigated.
A bottom-up unit cell based analytical approach would be adopted to
obtain the closed-form expressions of Poisson’s ratios and the Young’s
moduli by taking into account both the axial and bending deformations
of the cell walls. The Section 2 of this paper provides critical insights
for the active modulation of Poisson’s ratios and the Young’s moduli
including numerical illustrations. Note that the detailed derivations are
provided in a separate supplementary document. The key highlights
along with concluding remarks are presented in Section 3.

2. Active modulation of Poisson’s ratios and other effective elastic
properties

We demonstrate the concept of active Poisson’s ratio modulation
by considering hexagonal lattices and their derivatives, as depicted in
Fig. 1. Such hexagonal lattices are made of substrate material (vertical
cell walls) and a combination of substrate and piezoelectric material
(inclined cell walls) as shown in Fig. 1(b–c). The unit cell comprises of
three cell walls assumed to be Euler–Bernoulli beams connected to each
other at specified cell angles, wherein a beam→unit cell→entire lattice
bottom-up approach is followed to derive the closed-form analytical
expressions for the Poisson’s ratios and Young’s moduli. To make the
study more generic, both axial and bending deformations of the cell
walls are considered [27]. Consideration of axial deformation, in turn,
makes the Poisson’s ratios voltage-dependent, leading to the capability
of active modulation. The slant members contribute through bending
and axial deformations while calculating both the in-plane Poisson’s
ratios. Note that the vertical members in the lattice structure can only
contribute by means of axial deformation when the required deforma-
tion direction and direction of loading are parallel. The lattices being
symmetric and periodic, there is no possibility of bending deformation
for the vertical members, as the loading is either perpendicular or
parallel to the axis of vertical members.

Note that the current tri-member unit cell has two types of beams;
the vertical beam is a simple beam element without any piezo patches,
while the slant beams are piezo embedded beams as described in Fig. 2.
The static stiffness matrix of a normal beam element is widely reported
in literature [27], while a detailed derivation of the voltage-dependent
stiffness matrix for piezo-embedded beam configurations is provided
in the supplementary material. The stiffness matrices are used in a unit
cell-based framework to obtain the voltage-dependent elastic properties
of the entire lattice. Here the in-plane elastic properties have been
derived by subjecting the unit cell under the combined loading of
externally applied mechanical stress and voltage. Hence, the strains
in X and Y direction are obtained by calculating the transverse and
axial displacements of the beam members of the unit cell, which can
be categorized into two parts: displacement due to externally applied
mechanical stress and displacement due to applied voltage (refer to the
supplementary material for detailed derivation). In the present study,
these displacements have been obtained in the form of stiffness matrix
elements (𝐾) in order to keep the formulation more general.
3

Table 1
Details of the parameters involved in the current analytical framework. Here 𝐾
represents the 6 × 6 stiffness matrix of a generalized single hybrid beam (refer to the
supplementary material) applicable to both unimorph and bimorph configurations. The
subscripts refer to the element of the matrix following general conventions. The detailed
derivation of the expressions for both unimorph and bimorph configurations has been
provided in the supplementary material. Here, 𝑌 , 𝑊 , 𝑇 , 𝑉 , 𝑉𝑡 and 𝑉𝑏 stands for Young’s
modulus, width, thickness, voltage, voltage in top and bottom piezoelectric material,
respectively. In the subscript, 𝑠 and 𝑝 stands for the substrate and the piezoelectric
material. Some non-dimensional ratios are defined in this work as, 𝛾 stands for substrate
layer thickness to inclined cell wall length

(

𝑇𝑠
𝐿

)

, 𝜅 is piezoelectric to substrate material

Young’s modulus ratio
(

𝑌𝑝
𝑌𝑠

)

, 𝛼 stands for piezoelectric to substrate beam thickness ratio
(

𝑇𝑝
𝑇𝑠

)

, 𝛽 is the ratio of vertical cell wall length to inclined cell wall length
(

ℎ
𝐿

)

.

Parameter Configuration

Unimorph Bimorph

𝐾44 𝑌𝑠𝑊𝑠𝛾 (1 + 𝜅𝛼) 𝑌𝑠𝑊𝑠𝛾 (1 + 2𝜅𝛼)

𝐾ℎ
44

𝑌𝑠𝑊𝑠𝛾 (1 + 𝜅𝛼)
𝛽

𝑌𝑠𝑊𝑠𝛾 (1 + 2𝜅𝛼)
𝛽

𝐾55 𝑌𝑠𝑊𝑠𝛾3
(

1 + 4𝜅
(

𝛼3 + 1.5𝛼2 + 0.75𝛼
))

𝑌𝑠𝑊𝑠𝛾3
(

1 + 8𝜅
(

𝛼3 + 1.5𝛼2 + 0.75𝛼
))

𝐾64 −0.5𝑌𝑝𝑊𝑝𝛾𝑇𝑠𝛼 (1 + 𝛼) 0
𝐵𝑝𝑉 𝑊𝑝𝑑31𝑌𝑝𝑉 𝑊𝑝𝑑31𝑌𝑝

(

𝑉𝑡 + 𝑉𝑏
)

𝐽𝑝𝑉 0.5𝑊𝑝𝑑31𝑌𝑝𝑇𝑠 (1 + 𝛼)𝑉 0.5𝑊𝑝𝑑31𝑌𝑝𝑇𝑠 (1 + 𝛼)
(

𝑉𝑡 − 𝑉𝑏
)

It is widely reported in the literature [12,19] that deformation be-
haviour influences the determination of the Poisson’s ratio (𝜈12 and 𝜈21)
and Young’s modulus (𝐸1 and 𝐸2). It has been studied by Singh et al.
[26], that if only the bending deformation of the cell walls is considered
or in other words cell walls are assumed to be axially rigid, then 𝜈12
and 𝜈21 come out to be independent of externally applied voltage and
stress, making the active control of Poisson’s ratios impossible. In this
article, the inclusion of axial deformation to obtain the effective elastic
moduli of honeycomb lattices has given rise to interesting insights
concerning the Poisson’s ratios. Due to the effect of axial deformation, it
possible to modulate (voltage-dependent) Poisson’s ratios (𝜈12 and 𝜈21)
on-demand, along with the Young’s modulus (𝐸1 and 𝐸2). The proposed
analytical framework in this article can be implemented for both tensile
and compressive loading as well as for both polarities of voltage. We
have discussed the voltage-dependent modulation of elastic moduli by
considering different cases as shown in Fig. 1(j).

2.1. Poisson’s ratio

As discussed in the preceding section, it is normally considered that
the Poisson’s ratios depend on the geometric properties of the periodic
structure under investigation [12,19,26]. For positive cell angles (𝜃),
Poisson’s ratios are positive and vice-versa. In the current analysis of
active piezoelectric lattices (including the physics of bending and axial
deformation of the connecting beam-like members), the Poisson’s ratios
also depend on the externally applied stress and voltage along with
geometric and material properties. In the subsequent numerical results,
we also demonstrate that the coupling in the sign of cell angle and
nature of Poisson’s ratios can be broken in the current multi-physical
regime. The derived analytical expressions for the Poisson’s ratios 𝜈12
and 𝜈21 (refer to the supplementary material for detailed derivation) are
presented in Eqs. (1) and (2). These expressions are independent of the
unimorph and bimorph configuration (i.e. the closed-form expressions
are presented in a general form). The parameters of these equations
that would change with the unimorph and bimorph configurations
have been mentioned in Table 1. Note here that 𝐵𝑝 relates the voltage
and extension coupling component, while 𝐽𝑝 couples the voltage and
curvature component. Here, 𝐾 refers to the 6 × 6 stiffness matrix of a
single-hybrid beam (inclined cell walls) and the subscripts of 𝐾 refer
to the element of the matrix.

𝜈12 =
𝜆𝑃2 cos2 𝜃 (𝛽 + sin 𝜃) −

𝐵𝑝𝑉 𝜆𝐵𝑃 2
𝜎1𝐿𝑊𝑠

𝐾55
𝐾44

+
6𝐽𝑝𝑉 cos 𝜃𝜆𝐽𝑃2

𝜎1𝐿2𝑊𝑠

𝜆𝑃1 cos 𝜃 (𝛽 + sin 𝜃) +
𝐵𝑝𝑉 𝜆𝐵𝑃 1 𝐾55 +

6𝐽𝑝𝑉 𝜆𝐽𝑃1
(1)
𝜎1𝐿𝑊𝑠 𝐾44 𝜎1𝐿2𝑊𝑠
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Fig. 2. Mechanics of element-level piezoelectric composite beams. Different beam configurations showing the intermediate limit points from the neutral axis (assumed to lie at
the geometric centre of the substrate beam) are presented. Here we explain different possibilities of piezoelectric actuation as shown in Fig. 1(j). (a) Unimorph beam configuration
and electrical connections. This configuration would result in pure bending. (b) Electrical connections required for pure bending under a bimorph configuration. Here both top
and bottom piezoelectric materials are under the influence of opposite polarity, but the same magnitude of voltage, i.e., 𝑉𝑡 = −𝑉𝑏 (here, 𝑉𝑡 and 𝑉𝑏 stands for the voltage applied to
the top and bottom piezoelectric layer, respectively). Under this type of voltage arrangement, only the curvature component (𝐽𝑝) plays a role. (c) Electrical connections required
for the pure extension to occur in bimorph configuration. Here both the top and bottom piezoelectric materials are under the influence of the same polarity and magnitude of
voltage, i.e., 𝑉𝑡 = 𝑉𝑏. Under this type of voltage, only the extensional component (𝐵𝑝) plays a role. Note that one more scenario (hybrid actuation) is possible, wherein both top
and bottom piezoelectric materials are influenced by different magnitude of voltage irrespective of the polarity. Both curvature and extensional components play a role in the
deformation of such beams.
Fig. 3. Active modulation of 𝜈12. The Poisson’s ratio 𝜈12 has been plotted for all the different possible cases. (a) Unimorph configuration (b) Hybrid actuation in bimorph
configuration (c) Pure extension in bimorph configuration (d) Pure bending in bimorph configuration. Variation in 𝜈12 with cell angle and 𝑉

𝜎1
(for hybrid bimorph 𝑉𝑡

𝜎1
is varied and

𝑉𝑏

𝜎1
has been kept equal to −200; 𝑉𝑡 and 𝑉𝑏 stand for the voltage applied to the top and bottom piezoelectric layer, respectively) ratio are analysed at a fixed value of 𝛽 = 2.5.

A clear reversal of sign for Poisson’s ratio can be observed except for the case of pure bending and pure extension (bimorph). Note that the blue and red gradient in colour bar
represents the positive and negative values.
4
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𝜈21 =
𝜆𝑊 1 cos2 𝜃 −

𝐵𝑝𝑉 𝜆𝐵𝑊 1

𝜎2𝐿𝑊𝑠

𝐾55
𝐾44

+
6𝐽𝑝𝑉 𝜆𝐽𝑊 1

𝜎2𝐿2𝑊𝑠

𝜆𝑊 2 cos3 𝜃 +
𝐵𝑝𝑉 𝜆𝐵𝑊 2

𝜎2𝐿𝑊𝑠

𝐾55
𝐾44

+
6𝐽𝑝𝑉 cos 𝜃𝜆𝐽𝑊 2

𝜎2𝐿2𝑊𝑠

(2)

The quantities 𝜆𝑃1, 𝜆𝑃 2, 𝜆𝐵𝑃 1, 𝜆𝐵𝑃2, 𝜆𝐽𝑃1, 𝜆𝐽𝑃2, 𝜆𝑊 1, 𝜆𝑊 2, 𝜆𝐵𝑊 1,
𝜆𝐵𝑊 2, 𝜆𝐽𝑊 1 and 𝜆𝐽𝑊 2 are functions of cell angle (𝜃), length of in-
clined cell wall (𝐿) and elements of stiffness matrix [𝐾] (refer to
Appendix A for the closed-form expressions of these quantities). Note
that the expressions of the matrix elements are different for unimorph
and bimorph configurations as mentioned in Table 1 (refer to the
supplementary material for detailed derivation). We have preferred to
present the generic expressions of Poisson’s ratios here as the parame-
ters mentioned above help in making the formulation more general for
unimorph and bimorph configurations through a unified framework.
The subscripts of 𝜆, 𝑃 and 𝑊 stand for load generated due to appli-
cation of stress (𝜎) in direction 1 and 2 respectively, whereas 𝐵 and
𝐽 stand for the voltage to extensional component (𝐵𝑝) and voltage to
curvature component (𝐽𝑝). The 1 and 2 in the subscript of 𝜆 states the
strains in directions 1 and 2 respectively. The non-dimensional ratios
defined in the formulation are given as 𝛾 = 𝑇𝑠

𝐿 , 𝛽 = ℎ
𝐿 , 𝜅 = 𝑌𝑝

𝑌𝑠
and

= 𝑇𝑝
𝑇𝑠

. It can be observed from Eq. (1) and Eq. (2) that 𝜈12 and 𝜈21
depend on voltage (𝑉 ), material parameters (𝑌𝑝, 𝑌𝑠, 𝑑31), externally
applied stress (𝜎1, 𝜎2) and geometric parameters (𝜃, ℎ, 𝐿, 𝑇𝑠, 𝑇𝑝).

The elastic properties (Poisson’s ratios and Young’s moduli, as pre-
sented in Eqs. (1), (2), (7) and (8)) of the unit cell and the entire lattice
structure depend on the beam-level deformation mechanics under the
multi-physical stress conditions. A beam-level numerical validation
of the hybrid piezoelectric beams is provided in the supplementary
material (refer to Section 1.2). Moreover, the proposed 3D lattice has
been modelled in conventional finite element software COMSOL for
further lattice-level validation (refer to Section 2.4 of the supplemen-
tary material). The comparison between the results obtained from the
present formulation (using Eq. (1), (2), (7) and (8)) and the finite
element based numerical simulation has been presented in Fig. 7 of
the supplementary material. It can be observed that both the results lie
in close proximity, providing the necessary credence for the developed
analytical framework.

It is worthy to mention here that on substituting 𝑉 = 0 and 𝛼 =
0 in the general expressions of Poisson’s ratios and Young’s moduli
(i.e. Eq. (1), (2), (7) and (8)), we obtain the same expressions as given
by Adhikari et al. [27] for passive lattices (refer to the supplementary
material for further details), where the elastic moduli depend on the
geometry of the unit cell and intrinsic material properties of the cell
walls only. Note that the formulation of Adhikari et al. [27] considers
the effects of bending and axial deformations of the cell walls. The
current expressions can be further reduced to the classical formulas
of Gibson and Ashby [19] (for the case of passive hexagonal lattices
accounting only the bending deformation of the cell walls) by substitut-
ing the values of 𝛼, 𝑉 and 𝜅 equals to zero (refer to the supplementary
material for further details). In case of active lattices, considering
the cell walls to be axially rigid, the obtained expressions reduce to
the expressions obtained by Singh et al. [26]. The above discussion
shows that the current formulation leading to the modulation of active
Poisson’s ratios and Young’s moduli in a closed-form framework is
analytically validated in an exact manner with published literature. The
beam-level numerical validation along with exact analytical validation
at the lattice level provide adequate confidence for exploring the aspect
of active modulation and sign reversal of elastic properties in lattice
materials based on the derived formulation. In the current investiga-
tion, 𝑇𝑡𝑜𝑡𝑎𝑙∕𝐿 (𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑇𝑝+𝑇𝑠, where 𝑛=1, 2 for unimorph and bimorph
configuration respectively) has been kept to be ∼10−2 along with 𝛼 =
0.5 (𝛼 = 𝑇𝑝

𝑇𝑠
) and 𝑇𝑠 = 0.68 mm. TPU and M2814-P2 have been selected

for substrate beam and piezoelectric material having 𝑌𝑠 and 𝑌𝑝 as 9.4
5

MPa and 30.3 Gpa, respectively [42].
The active modulation of Poisson’s ratios are numerically demon-
strated in Figs. 3 and 4 as a function of applied voltage, mechanical
stress and the microstructural geometry. The figures reveal that there
exists specific 𝑉

𝜎1
and 𝑉

𝜎2
values for every cell angle where the sign

reversal of 𝜈12 and 𝜈21 can be observed depending on the piezoelectric
onfiguration and actuation condition. The results indicate that it is
ossible to have negative Poisson’s ratio in a geometrically non-auxetic
attice and vice-versa. The analytical conditions for such phenomenon
an be obtained by substituting the numerator and the denominator
f the respective closed-form expressions of the Poisson’s ratios to less
han equal to zero separately. There exists two conditions mentioned in
q. (3) and (4) for which the reversal of 𝜈12 would occur, as deduced
rom Eq. (1). Similarly, for 𝜈21, Eqs. (5) and (6) gives the conditions
equired for the sign reversal, as obtained from Eq. (2). From these
air of conditions mentioned here, only one should be satisfied at an
nstant to obtain the desired effect.

ondition 1 for the sign reversal of 𝜈12 (for both unimorph and bimorph
onfigurations):

𝑉
𝜎1

>
𝑊𝑠𝐿2 cos2 𝜃 (𝛽 + sin 𝜃) 𝜆𝑃 2

𝐵𝑝𝐿𝜆𝐵𝑃 2
𝐾55
𝐾44

− 6𝐽𝑝 cos 𝜃𝜆𝐽𝑃 2
(3)

Condition 2 for the sign reversal of 𝜈12 (for both unimorph and bimorph
configuration):

𝑉
𝜎1

<
−𝑊𝑠𝐿2 cos 𝜃 (𝛽 + sin 𝜃) 𝜆𝑃1

𝐵𝑝𝐿𝜆𝐵𝑃1
𝐾55
𝐾44

+ 6𝐽𝑝𝜆𝐽𝑃1
(4)

ondition 1 for the sign reversal of 𝜈21 (for both unimorph and bimorph
onfiguration):

𝑉
𝜎2

>
𝑊𝑠𝐿2 cos2 𝜃𝜆𝑊 1

𝐵𝑝𝐿𝜆𝐵𝑊 1
𝐾55
𝐾44

− 6𝐽𝑝𝜆𝐽𝑊 1

(5)

Condition 2 for the sign reversal of 𝜈21 (for both unimorph and bimorph
configuration):

𝑉
𝜎2

<
−𝑊𝑠𝐿2 cos3 𝜃𝜆𝑊 2

𝐵𝑝𝐿𝜆𝐵𝑊 2
𝐾55
𝐾44

+ 6𝐽𝑝 cos 𝜃𝜆𝐽𝑊 2

(6)

Note that, there could be only one actuation scenario for the unimorph
configuration as shown in Fig. 2 (refer to the subsequent numerical
results presented in Figs. 3(a) and 4(a)), while multiple cases are
possible for the bimorph configurations. The unimorph configurations
allow us to modulate the Poisson’s ratios depending on voltage, along
with the sign reversal of Poisson’s ratios. Note that, for any elastic
modulus, we say an active modulation/ sign reversal is possible, only
when the colour of the plots can be changed along a vertical line for
any value of the cell angle (the blue and red gradient in colour bar
represent the positive and negative values of the corresponding elastic
modulus). In the following paragraphs, we discuss the results further for
the bimorph configuration considering different actuation scenarios as
discussed in Fig. 1(j) and Fig. 2. The geometry of the bimorph structure
is symmetric, consisting of one piezoelectric material at the top and
the other at the bottom; this gives us the value of 𝐾64 equals to zero
(as derived in the supplementary material). For bimorph configuration,
cases have been divided into three categories mentioned below.

Case 1: Hybrid actuation. In this scenario, the top and the bottom
piezoelectric material are under the influence of different voltages,
i.e., 𝑉𝑡 and 𝑉𝑏 are different. The voltages can be of any polarity,
and this condition will prevail until the magnitudes of the applied
voltage are different. The other necessary parameters for analysing the
Poisson’s ratios under hybrid actuation can be obtained from Table 1.
For obtaining the numerical results, 𝑉𝑏 has been kept equal to −200,
𝜎1
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Fig. 4. Active modulation of 𝜈21. The Poisson’s ratio 𝜈21 has been plotted for all the different possible cases. (a) Unimorph configuration (b) Hybrid actuation in bimorph
configuration (c) Pure extension in bimorph configuration (d) Pure bending in bimorph configuration. Variation in 𝜈21 with cell angle and 𝑉

𝜎1
(for hybrid bimorph 𝑉𝑡

𝜎1
is varied and

𝑉𝑏

𝜎1
has been kept equal to −200; 𝑉𝑡 and 𝑉𝑏 stand for the voltage applied to the top and bottom piezoelectric layer, respectively) ratio are analysed at a fixed value of 𝛽 = 2.5. A

clear reversal of sign for Poisson’s ratio can be observed in the case of hybrid actuation (bimorph). Note that the blue and red gradient in colour bar represents the positive and
negative values.
whereas 𝑉𝑡
𝜎1

has been varied from −500 to 500. Along with prospective
on-demand modulation, the sign reversal of the Poisson’s ratios can be
noted for a small range in Figs. 3(b) and 4(b).

Case 2: Pure extension. In this scenario, the voltage is applied in
such a manner that the piezoelectric material contributes to axial
displacement only as shown in Fig. 2(b), i.e., both the piezoelectric
materials are under the influence of voltage having the same magnitude
and polarity, i.e., 𝑉𝑡 = 𝑉𝑏. Under the above mentioned conditions we
get 𝐵𝑝𝑉 equals to 2𝑊𝑝𝑑31𝑌𝑝𝑉 and 𝐽𝑝𝑉 equals to zero as shown in
Table 1. Here, the switching of the Poisson’s ratio is observed as shown
in Figs. 3(c) and 4(c). Further, the voltage-dependent active modulation
is also possible.

Case 3: Pure bending. In this scenario, the voltage is applied in such a
manner that piezoelectric material contributes to pure bending (and no
extension) as shown in Fig. 2(c), i.e., both the piezoelectric materials
are under the influence of voltage having the same magnitude but
opposite polarity, i.e., 𝑉𝑡=-𝑉𝑏. Under the above mentioned conditions,
we get 𝐵𝑝𝑉 equals to zero as shown in Table 1, whereas the value
of 𝐽𝑝𝑉 is 𝑊𝑝𝑑31𝑌𝑝𝑇𝑠 (1 + 𝛼)𝑉 . In this case, the on-demand modulation
and the switching of the Poisson’s ratios are not possible as shown in
Fig. 3(d) and Fig. 4(d).

2.2. Young’s modulus

Even though the main focus of this paper is active Poisson’s ratio
modulation, we have investigated the Young’s moduli of such lattices
as an integral part of this investigation following the current analytical
framework of accounting both the axial and bending deformations of
the cell walls. In this section we will discuss the voltage dependency
of longitudinal/transverse Young’s modulus (�̄� = 𝐸1 × 107 and �̄� =
6

1 𝑌𝑠 2
𝐸2
𝑌𝑠

× 107) along with all the critical values at which the sign reversal
of �̄�1 and �̄�2 takes place. The closed-form expressions for the effective
Young’s moduli can be given as Eqs. (7) and (8) (refer to the supple-
mentary material for derivation). These general expressions are valid
for both unimorph and bimorph configurations.

𝐸1 =
𝐾55

𝑊𝑠 (𝛽 + sin 𝜃) cos 𝜃𝜆𝑃1 +
𝐵𝑝𝑉 𝜆𝐵𝑃1

𝜎1𝐿
𝐾55
𝐾44

+
6𝐽𝑝𝑉 𝜆𝐽𝑃 1

𝜎1𝐿2

(7)

𝐸2 =
𝐾55

𝑊𝑠 cos3 𝜃𝜆𝑊 2 +
𝐵𝑝𝑉 𝜆𝐵𝑊 2

𝜎2𝐿
𝐾55
𝐾44

+
6𝐽𝑝𝑉 cos 𝜃𝜆𝐽𝑊 2

𝜎2𝐿2

(8)

In Figs. 5(a), 5(b), 5(c) and 5(d), the variation in the Young’s
modulus (�̄�1) with the cell angle and 𝑉

𝜎1
ratio has been plotted for all

the different cases (refer to Fig. 1(j)). Here, the blue gradient represents
the positive Young’s modulus, whereas the red gradient stands for the
negative Young’s modulus. For hybrid actuation, unequal voltage is
applied to the top (𝑉𝑡) and bottom (𝑉𝑏) piezoelectric layers. The sign
reversal phenomenon of Young’s modulus (�̄�1) is observed with the
change in the cell angle and 𝑉

𝜎1
ratio for all the four cases of unimorph

and bimorph configurations. From Eq. (7) it can be observed that �̄�1
would be negative when the value of the denominator is less than zero.
The critical values of 𝑉

𝜎1
at which �̄�1 becomes negative, can be obtained

from Eq. (9). It can be observed from (9) and 5(a), 5(b) and 5(d) that
the sign of cell angle is playing a major role in determining the sign of
�̄�1. However, �̄�1 for pure extension bimorph configuration comes out
to be independent of the sign of cell angle for negative values of 𝑉
𝜎1
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Fig. 5. Active modulation of �̄�1. The Young’s modulus �̄�1 has been plotted for all the different possible cases. (a) Unimorph configuration (b) Hybrid actuation in bimorph
configuration (c) Pure extension in bimorph configuration (d) Pure bending in bimorph configuration. Variation in �̄�1 with cell angle and 𝑉

𝜎1
(for hybrid bimorph 𝑉𝑡

𝜎1
is varied and

𝑉𝑏

𝜎1
has been kept equal to −200; 𝑉𝑡 and 𝑉𝑏 stand for the voltage applied to the top and bottom piezoelectric layer, respectively) ratio are analysed at a fixed value of 𝛽 = 2.5. A

clear reversal of sign for �̄�1 can be observed in all the cases. Note that the blue and red gradient in colour bar represents the positive and negative values.
ratio.

𝑉
𝜎1

<
−𝑊𝑠𝐿2 cos 𝜃(𝛽 + sin 𝜃)𝜆𝑃 1

𝐵𝑝𝐿𝜆𝐵𝑃 1
𝐾55
𝐾44

+ 6𝐽𝑝𝜆𝐽𝑃1
(9)

Based on Eq. (8), the critical values of 𝑉
𝜎2

at which the sign reversal
of �̄�2 occurs can be obtained as given in Eq. (10). Fig. 6 shows the
variation in �̄�2 with cell angle and 𝑉

𝜎2
ratio, wherein both the aspects

of active modulation and sign reversal can be observed for all the four
cases.

𝑉
𝜎2

<
−𝑊𝑠𝐿2 cos2 𝜃𝜆𝑊 2

𝐵𝑝𝐿𝜆𝐵𝑊 2
𝐾55
𝐾44

+ 6𝐽𝑝 cos 𝜃𝜆𝐽𝑊 2

(10)

2.3. Summary

The physics-based analytical framework for voltage-dependent on-
demand Poisson’s ratio modulation, as presented in this article, pro-
vides necessary physical insights and background for potential practical
applications in various futuristic multi-functional structural systems
and devices. The major outcomes and observations of the current
investigation are summarized below.

∙ The current framework of piezoelectric lattices allows active on-
demand modulation of Poisson’s ratios and Young’s moduli as a func-
tion of applied voltage and mechanical stress along with the coupled
effect of conventional microstructural material and geometric parame-
ters. Such active multi-physical modulation of the elastic properties are
achievable for all the unimorph and bimorph configurations.

∙ For the bimorph configurations, sign reversal in both the in-plane
Poisson’s ratios can be achieved in the hybrid actuation and pure
7

extension cases. For the unimorph configuration, 𝜈12 and 𝜈21 both shows
such capability.

∙ The active sign reversal capability for the two Young’s mod-
uli can be achieved in all the four cases of unimorph and bimorph
configurations.

∙ The theoretical conditions of sign reveal and active property
modulations have been derived in closed-form for all the Poisson’s
ratios and Young’s moduli.

3. Conclusions and perspective

This article proposes hybrid lattice microstructures comprised of
a substrate and piezoelectric material to demonstrate the capability
of active property modulation along with on-demand sign reversal. A
bottom-up analytical framework has been adopted, based on which
the closed-form expressions of the Poisson’s ratios and Young’s mod-
uli along with the respective theoretical conditions for sign reversal
have been derived. Usually, the elastic properties depend on the mi-
crostructural geometric and material properties, i.e. altering the elastic
properties is impossible once the lattice is manufactured (passive lat-
tices). This limits the application of such lattices in many advanced
multi-functional structures and systems, where on-demand active prop-
erty modulations are warranted. The current study proposes voltage-
dependent closed-form expressions for the elastic properties of lattice
materials; hence, active control is possible even after manufacturing
the lattices. Here a general formulation has been presented that can be
implemented for unimorph and bimorph configurations. Special cases
in bimorph configuration such as pure bending, pure extension and
hybrid actuation have been discussed in detail. Note that a beam-
level numerical validation is provided first for the hybrid piezoelectric
beams, followed by exact analytical validation and finite element based
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Fig. 6. Active modulation of �̄�2. The Young’s modulus �̄�2 has been plotted for all the different possible cases. (a) Unimorph configuration (b) Hybrid actuation in bimorph
configuration (c) Pure extension in bimorph configuration (d) Pure bending in bimorph configuration. Variation in �̄�2 with cell angle and 𝑉

𝜎1
(for hybrid bimorph 𝑉𝑡

𝜎1
is varied and

𝑉𝑏

𝜎1
has been kept equal to −200; 𝑉𝑡 and 𝑉𝑏 stand for the voltage applied to the top and bottom piezoelectric layer, respectively) ratio are analysed at a fixed value of 𝛽 = 2.5. A

clear reversal of sign for �̄�2 can be observed in all the cases. Note that the blue and red gradient in colour bar represents the positive and negative values.
validation at the lattice-level to garner adequate confidence in the
derived formulation. This article attempts for the first instance to derive
voltage-dependent closed-form expressions including the effects of axial
and bending deformation of the connecting beam-like elements, which
resulted in achieving the active modulation capability of Poisson’s
ratios. Moreover, in a static condition, negative values for longitudinal
and transverse Young’s modulus have also been achieved. Note that,
while the notion of negative Young’s moduli is well-established in
the dynamic regime, the published literature has scarce references of
having negative Young’s moduli in a static condition.

Lattice microstructures have gained considerable attention from
the researchers over past few years in the field of novel functional
material development. The modulation of Poisson’s ratios and other
elastic properties has been investigated primarily as a function of the
microstructural configurations. The major contribution of the current
work is developing active lattice microstructures, capable of on-demand
property modulation including some of the extreme features such as
sign reversal. Contrary to the conventional wisdom, such active sign
reversal implies that re-entrant honeycomb lattices can exhibit positive
Poisson’s ratios and vice versa. In essence, this study gives a critical
insight into bridging the auxetic and non-auxetic nature of honeycombs
irrespective of their geometry. The proposed formulation is generic in
nature and it can be immediately extended to the other derivatives
of hexagonal shapes (such as rectangular and rhombic) along with
different other lattice structures by considering appropriate unit cells.
This investigation will open up a whole new field of applications across
different length scales, concerning the active modulation and control of
elastic moduli and shapes of multi-functional lattice microstructures.
8
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Appendix A. The values of parameter 𝝀

The parameter (𝜆) used in the analytical formulation helps in mak-
ing the proposed expressions more general. The value of (𝜆) is different
for different configurations (unimorph and bimorph). The values of 𝐾44,
𝐾64 and 𝐾55 have been mentioned in Table 1 for both unimorph and
bimorph configurations. It is known that in bimorph configuration, the
structure is symmetric, which makes 𝐾64 equals to zero (see the detailed
derivation in supplementary material). There are six parameters for
each type of loading, i.e., longitudinal (having suffix 𝑃 ) and transverse
(having suffix 𝑊 ). 𝐵 and 𝐽 refers to the extensional and curvature
component whereas, 1, 2 in the suffix stands for the strains in the
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e

𝜆

𝜆

𝜆

𝜆

𝜆

respective directions 1 and 2. The different parameters mentioned in
the above formulation have been labelled as 𝜆𝑃1, 𝜆𝑃 2, 𝜆𝐵𝑃 1, 𝜆𝐵𝑃 2, 𝜆𝐽𝑃 1,
𝜆𝐽𝑃 2, 𝜆𝑊 1, 𝜆𝑊 2, 𝜆𝐵𝑊 1, 𝜆𝐵𝑊 2, 𝜆𝐽𝑊 1 and 𝜆𝐽𝑊 2 and their closed-form
xpressions are given as

𝑃 1 =
tan2 𝜃 +

𝐾55
𝐾44

−
6 tan 𝜃𝐾64
𝐿𝐾44

−
12 tan2 𝜃𝐾2

64

𝐿2𝐾44𝐾55

1 −
12𝐾2

64

𝐿2𝐾44𝐾55

,

𝐽𝑃 1 =
tan 𝜃 −

2𝐾64
𝐿𝐾44

1 −
12𝐾2

64

𝐿2𝐾44𝐾55

, 𝜆𝐵𝑃 1 =
1 −

6𝐾64 tan 𝜃
𝐿𝐾55

1 −
12𝐾2

64

𝐿2𝐾44𝐾55

,

𝜆𝐵𝑃 2 =
sin 𝜃 + 6 cos 𝜃

𝐾64
𝐿𝐾55

(𝛽 + sin 𝜃)

(

1 − 12
𝐾2

64

𝐿2𝐾44𝐾55

) ,

𝐽𝑃 2 =
1 + 2

𝐾64
𝐿𝐾44

(𝛽 + sin 𝜃)

(

1 − 12
𝐾2

64

𝐿2𝐾44𝐾55

) ,

𝜆𝑃 2 =
tan 𝜃

(

1 −
𝐾55
𝐾44

)

− 6
𝐾64
𝐿𝐾44

− 12 tan 𝜃
𝐾2

64

𝐿2𝐾44𝐾55

(𝛽 + sin 𝜃)

(

1 − 12
𝐾2

64

𝐿2𝐾44𝐾55

) ,

𝜆𝐵𝑊 1 =
1 + 6 tan 𝜃

𝐾64
𝐿𝐾55

(

1 − 12
𝐾2

64

𝐿2𝐾44𝐾55

) ,

𝑊 1 =
tan 𝜃

(

1 −
𝐾55

𝐾44

)

+ 6
𝐾64

𝐿𝐾44
− 12 tan 𝜃

𝐾2
64

𝐿2𝐾44𝐾55
− 6 sec2 𝜃

𝐾64

𝐿𝐾44
(

1 − 12
𝐾2

64

𝐿2𝐾44𝐾55

) ,

𝜆𝐽𝑊 1 =
tan 𝜃 + 2

𝐾64

𝐿𝐾44
(

1 − 12
𝐾2

64

𝐿2𝐾44𝐾55

) ,

𝜆𝑊 2 =

1 + tan2 𝜃
𝐾55

𝐾44
+ 2 sec2 𝜃

𝐾55

𝐾ℎ
44

− 6 tan 𝜃
𝐾64

𝐿𝐾44
− 12

𝐾2
64

𝐿2𝐾44𝐾55
− 24

𝐾2
64

𝐿2𝐾44𝐾ℎ
44

(𝛽 + sin 𝜃)

(

1 − 12
𝐾2

64

𝐿2𝐾44𝐾55

) ,

𝜆𝐽𝑊 2 =
1 − 2 tan 𝜃

𝐾64

𝐿𝐾44

(𝛽 + sin 𝜃)

(

1 − 12
𝐾2

64

𝐿2𝐾44𝐾55

) ,

𝐵𝑊 2 =
sin 𝜃 − 6 cos 𝜃

𝐾64

𝐿𝐾55

(𝛽 + sin 𝜃)

(

1 − 12
𝐾2

64

𝐿2𝐾44𝐾55

)

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compstruct.2021.114857.
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