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A novel method for characterising and propagating system uncertainty in structures subjected to
dynamic actions is proposed, whereby modal shapes, frequencies and damping ratios constitute the ran-
dom quantities. The latter, defined in the modal subspace rather than the full geometrical space, reduce
the number of the random variables and the size of the dynamic problem. A numerical procedure is pre-
sented for their identification by calibrating their probabilistic definition in line with the geometrical
space. A high-order perturbation technique is proposed for the multi-fidelity response quantification
by means of an ad hoc extension of the conventional perturbation method. The approach involves a set
of auxiliary deterministic differential equations to be adaptively solved with the piecewise exact method,
and moment-cumulant relationships are employed to approximate high-order moments. Finally, a poly-
nomial chaos expansion approach is adopted to complement the second-moment analysis for spectral
quantification with the modal subspace reduction. Demonstrated on a multi-storey steel frame with
semi-rigid connections and a simply supported bridge subjected to a moving load, the proposed variants
exhibit improved performance with respect to the conventional second-order and improved perturba-
tion, as well as increased flexibility, enabling the analyst to decide, on-demand, the level of fidelity, bal-
ancing accuracy and computational effort.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic response of a structure subjected to earthquakes,
winds and ocean waves strongly depends on the mechanical prop-
erties of the load resisting systems. Uncertainties arise when mod-
elling the geometry, material and boundary conditions of the
structure, inducing random variations in the dynamic response.
Rational treatment of these uncertainties cannot be rigorously
addressed when following a conventional deterministic approach.
Therefore, stochastic analysis methods use knowledge of the input
random variables to characterise the probabilistic structure of the
response, often through first and second-order statistics, so to mit-
igate the unavoidable increase in computational effort.

Relevant contributions in the technical literature involve a
number of analytical methods for linear structures subjected to
static loads (e.g. [1–3]). For practical engineering applications,
however, recourse to a finite element (FE) model is often required.
Non-probabilistic uncertainty models in the context of FE analysis
include the Interval FE method and the Fuzzy FE method that
describe the uncertain parameters as interval variables and fuzzy
sets, respectively, and therefore do not require complete proba-
bilistic characterisation [4]. The stochastic finite element method
(SFEM) [5,6] is currently the most powerful probabilistic tool for
the solution of static and dynamic problems involving FEs with
random properties. Monte Carlo simulation (MCS) [7] is the sim-
plest and most versatile variant, where a deterministic problem
is repetitively solved and the response variability is characterised
statistically. However, as the number of degrees-of-freedom (DoFs)
and random variables increases, the computational effort may
become prohibitively expensive. For this reason, alternative SFEM
approaches have emerged, including the perturbation approach
[8], which is based on a Taylor series expansion of the stochastic
FE matrices and of the response vector, and the spectral stochastic
FE method, where the model is cast in a finite dimensional setting
through the Karhunen-Loève expansion [9], and the solution pro-
cess is based on a spectral representation in terms of polynomial
chaos (PC) decomposition [10].

Perturbation-based approaches are computationally the least
expensive methods [11], and have thus gained considerable inter-
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est over the years. A generalised stochastic perturbation technique
has been applied for solving a linear elastostatic problem with a
single input random variable [12]. A second-order approach has
been adopted in [13] for a dynamic problem, leading to satisfactory
results for small uncertainty levels of the input stochastic field. An
‘improved’ first-order perturbation approach that uses second-
order information for the solution of static [14] and dynamic [15]
problems has been found to be more accurate than the conven-
tional second-order perturbation. Falsone and Impollonia [16] have
proposed an ad hoc expansion of the displacement response with
respect to the basic random variables for the linear static analysis
of structures, capable of maintaining high level of accuracy at con-
siderable input uncertainty levels. The method has been gener-
alised to the geometrically nonlinear static [17] and linear
dynamic [18] analyses. A frequency adaptive basis function
approach was developed [19] for thesteady-state dynamic
response of linear systems. A Neumann expansion based approach
was proposed [20] for the transient response analysis of structural
dynamic systems with parametric uncertainty. Hua et al. [21] have
used an improved first-order perturbation method for the statisti-
cal identification of FE model parameters by using measured modal
parameters with randomness. More recently, a high-oder
perturbation-based stochastic isogeometric method has been pro-
posed for quantifying geometric uncertainty in shell structures
[22]. The main drawback of the vast majority of the existing per-
turbative approaches is that they are ‘‘intrusive”; in other words,
they rely on the particularisation and solution of the governing dif-
ferential equations. Furthermore, they are hindered by decaying
accuracy for relatively long integration times and they tend to
work well for limited cases, with loss of accuracy when the level
of system uncertainty increases. Finally, their suitability to accu-
rately estimate up-to second-order statistics of the response often
limits their applicability to Gaussian fields, which is scarcely the
case. In fact, the response can be strongly non-Gaussian, even for
linear systems, owing to the nonlinear relationship between the
dynamic response and the underlying input random variables.

PC expansions provide a functional approximation of the under-
lying system response by means of a spectral representation on a
suitably constructed basis of orthonormal polynomial functions.
Noteworthy intrusive PC approaches include Galerkin-based meth-
ods [23], such as the investigations of Jacquelin et al., who high-
lighted issues with the PC for the dynamic response around
resonant frequencies [24] and proposed an extended Padé
approach [25]. The authors recently extended their investigations
on the time-domain analysis of damped stochastic linear multi-
degree-of-freedom (MDoF) systems [26]. By contrast, ‘‘non-
intrusive” PC schemes do not require prior knowledge of the gov-
erning differential equations. The model is treated as a black-box
function and the aim is to obtain an approximation by means of
a reduced set of well-chosen evaluation calls. Well-known
approaches in this category include the stochastic collocation
method based on Lagrange interpolation of the model response
[27], projection-based approaches where the PC coefficients are
cast as a multi-dimensional integral evaluated by simulation or
quadrature procedures [28], and regression-based least-square
minimisation techniques [29]. Blatman et al. [30] proposed an
adaptive sparse PC approach based on the least angle regression
algorithm. Mai et al. [31] extended the approach and proposed a
stochastic time warping sparse PC for oscillatory systems. It has
long been recognised that, regardless of the method used, either
intrusive or non-intrusive, PC fail to represent long-term time-
dependent system responses owing to their inherent increasing
complexity [31]; furthermore, the required number of model eval-
uations increases with the size of the truncated expansion, which
in turn grows with the total polynomial degree retained and the
number of random variables. The overall computational burden
2

becomes prohibitive as the number of DoFs of the spatial discreti-
sation increases.

In this paper, the analysis of linear MDoF dynamical systems
with uncertain mechanical parameters under deterministic excita-
tion is addressed. An alternative formulation is presented, substan-
tiated by some preliminary investigations in [32–34], where
uncertainty is characterised in the reduced modal subspace, with
modal shapes, modal frequencies and modal damping ratios com-
prising the random quantities, thus drastically reducing the num-
ber of uncertain parameters and the size of the dynamic
problem. An identification procedure is presented for calibrating
the probabilistic definition of the proposed uncertainty model con-
sistently with the geometrical space. Conventional second-order
and improved perturbation variants are developed in line with this
model, and a novel high-order perturbation approach is proposed
for the multi-fidelity quantification of the evolutionary stochastic
response through an ad hoc extension of the conventional pertur-
bation approach. The proposed method involves a set of auxiliary
deterministic differential equations, to be solved with the piece-
wise exact method (PEM), and high-order moments arising are
approximated with lower ones through moment-cumulant rela-
tionships. Finally, a regression-based PC expansion is employed,
complementing the second-moment analysis for spectral quantifi-
cation with the modal subspace reduction. The performance of the
proposed variants is compared on the seismic analysis of a pulse-
driven steel frame with semi-rigid connections and a simply sup-
ported beam subjected to a moving load.

The paper is organised as follows: Section 2 briefly reviews
existing perturbative methods, as formulated in the geometrical
space. Section 3 presents the uncertainty model formulated in
the reduced modal subspace, along with the numerical procedure
for the identification of the underlyingmodel parameters. Section 4
details the second-order and improved perturbation variants, as
well as the high-order perturbation approach proposed. Section 5
addresses the spectral quantification with PC expansions. The pro-
posed methods are numerically assessed in Section 6, and a sum-
mary of the results and findings is presented in Section 7.
2. Uncertainty in the geometrical space

Let us consider a linear dynamical system ruled by the follow-
ing set of second-order differential equations, conveniently
arranged in a matrix form:

M að Þ€u tð Þ þ C að Þ _u tð Þ þ K að Þu tð Þ ¼ f tð Þ;
u 0ð Þ ¼ u0; _u 0ð Þ ¼ _u0;

�
ð1Þ

where u tð Þ ¼ u1 tð Þ . . .un tð Þf g> is the array collecting its n degrees of
freedom (DoFs); f tð Þ is the vector of the applied forces; the over-dot
denotes time derivative, and u0 and _u0 are the vectors of the initial
displacements and velocities, respectively. Furthermore, M;K and C
are random matrices of mass, elastic stiffness and viscous damping,
respectively, representing the only source of uncertainty of the
dynamical system and, without lack of generality, they are
expressed herein as functions of the vector a ¼ a1;a2; . . . ;aNf g>,
listing N zero-mean, E ai½ � ¼ 0, uncorrelated, E ar

ias
j

h i
¼ E ar

i

� �
E as

j

h i
random variables (with i– j and 8r; s), satisfying the condition
E a2

i

� � � 1;E �½ � denoting stochastic averaging operator. It is worth
mentioning here that the use of uncorrelated random variables is
not unduly restrictive as it is always possible to express correlated
random variables as functions of uncorrelated ones [35]. It is further
noted that M;K and C are not necessarily affected by the same sub-
sets of random variables ai.
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2.1. Conventional second-order perturbation

Following the formulation in Ref. [15], the second-order pertur-
bation approach is applied to Eq. (1), in the geometrical space, by
imposing Taylor series expansion on M;K and C:

M að Þ ffi M0 þMiai þMi;jaiaj;

K að Þ ffi K0 þ Kiai þ Ki;jaiaj;

C að Þ ffi C0 þ Ciai þ Ci;jaiaj;

ð2Þ

where index notation is used, defined as:

g0 ¼ g að Þja¼0;

gi ¼
@g að Þ
@ai

ja¼0;

gi;j ¼
1
2
@2g að Þ
@ai@aj

ja¼0;

ð3Þ

and where summation is implied, here and henceforth, for the sub-
scripted indices. Furthermore, M0;K0 and C0 are the matrices of
mass, stiffness and damping without fluctuations, i.e. the matrices
associated with the deterministic model of the structure.

The dimensions of the dynamic problem may be reduced by
projecting the equations of motion onto a reduced modal subspace.
Accordingly, a solution to the real-valued eigenproblem:

K0U0 ¼ M0U0X
2
0 ð4Þ

can be sought, where U0 ¼ /1; . . . ;/m½ � is the (n�m) deterministic
modal matrix, normalised with respect to M0, whose columns are
themmodal shapes, andX0 ¼ diag x1; . . . ;xmf g is the deterministic
diagonal spectral matrix, listing the associated modal circular
frequencies.

The following transformation is then adopted:

u tð Þ ¼ U0q tð Þ; ð5Þ
where q tð Þ is the array collecting the m modal coordinates of the
structure which are retained in the analysis, and in general m � n.

Upon substitution of Eq. (5) in Eq. (1), premultiplication of the
result by U>

0 , and further manipulations, one obtains:

m að Þ€q tð Þ þ N að Þ _q tð Þ þX2 að Þq tð Þ ¼ F tð Þ; ð6Þ
where the explicit dependency of the vectors q tð Þ ¼ q t;að Þ;
_q tð Þ ¼ _q t;að Þ and €q tð Þ ¼ €q t;að Þ on the vector of random variables
a has been omitted for the sake of simplifying the notation, and
where the vectors of initial conditions and external forces are given
by:

q 0ð Þ ¼ U>
0 M0u0; _q 0ð Þ ¼ U>

0 M0 _u0; F tð Þ ¼ U>
0 f tð Þ; ð7Þ

the superscripted > being the transpose operator; furthermore, the
matrices m;X2 and N are defined as:

m að Þ ¼ Im þmiai þmi;jaiaj;

X2 að Þ ¼ X2
0 þX2

i ai þX2
i;jaiaj;

N að Þ ¼ N0 þ Niai þ Ni;jaiaj:

ð8Þ

and play the role of the matrices of mass, stiffness and damping in
the reduced modal subspace, respectively, with the following rela-
tionships arising:

Im ¼ U>
0M0U0; mi ¼ U>

0MiU0; mi;j ¼ U>
0Mi;jU0;

X2
0 ¼ U>

0K0U0; X2
i ¼ U>

0KiU0; X2
i;j ¼ U>

0Ki;jU0;

N0 ¼ U>
0 C0U0; Ni ¼ U>

0 CiU0; Ni;j ¼ U>
0 Ci;jU0;

ð9Þ

in which Im is the identity matrix of size m. It should be noted that,

whileX2
0 ¼ X0½ �2 is the actual second-power positive definite matrix

of the deterministic spectral matrixX0, the matrices X2
i and X2

i;j col-
3

lect the derivatives of the squared modal frequencies x2
1; . . . ;x2

m

with respect to the random variables ai and aj, meaning that in gen-

eral X2
i ¼ 2X0Xi – Xi½ �2;X2

i;j ¼ 2 XiXj þX0Xi;j
� �

– Xi;j
� �2 and they

are not necessarily positive definite.
Eq. (6) is cast in state-space form:

_z t;að Þ ¼ D að Þz t;að Þ þ V að ÞF tð Þ; ð10Þ
where z t;að Þ is the response state vector and D að Þ is the dynamic
matrix, given by:

z t;að Þ ¼ q tð Þ
_q tð Þ

� �
; z 0;að Þ ¼ q0

_q0

� �
;

D að Þ ¼ Om�m Im
�m�1 að ÞX2 að Þ �m�1 að ÞN að Þ

� �
;

V að Þ ¼ Om�m

m�1 að Þ

� �
;

ð11Þ

in which the symbol Or�s defines a zero matrix with r rows and s
columns.

Series expansion of Eq. (11) gives:

z t;að Þ ffi z0 tð Þ þ zi tð Þai þ zi;j tð Þaiaj;

D að Þ ffi D0 þ Di ai þ Di;j aiaj;

V að Þ ffi V0 þ Viai þ Vi;jaiaj;

ð12Þ

wherezi tð Þandzi;j tð Þplay the roleoffirst-order andsecond-order sen-
sitivity vectors of the state-space dynamic response of the structure
in the reduced modal space, and where the dynamic matrices D0;Di

and Di;j and the load vectors V0;Vi and Vi;j are provided in Ref. [15].
In expandingm�1 að Þ, partial derivatives are obtained by the use

of the rule for inverse matrix differentiation [36], as detailed in
Appendix A.1.

Importantly, the quantities appearing in the series expansion of
z t;að Þ can be expressed as a solution of the following set of
1þ N þ N2 deterministic equations governing the uncertainty
propagation (UP):

_z0 ¼ D0z0 þ V0F tð Þ; ð13aÞ
_zi ¼ D0zi þ Diz0 þ ViF tð Þ; i ¼ 1; . . . ;N; ð13bÞ
_zi;j ¼ D0zi;j þ Dizj þ Di;jz0 þ Vi;jF tð Þ; i; j ¼ 1; . . . ;N; ð13cÞ
in which, to simplify the notation, the time-dependency of the
2m� 1ð Þ vectors z0 ¼ z0 tð Þ; zi ¼ zi tð Þ and zi;j ¼ zi;j tð Þ has not been
shown explicitely.

The time-varying second-order statistics of the response in
terms of mean values and variances are finally obtained as:

E z tð Þ½ � ¼ z0 þ zi;j E aiaj
� � ¼ z0 þ zi;i E a2

i

� �
;

Var z tð Þ½ � ¼ E z tð Þ � z tð Þð Þ½ � � E z tð Þ½ � � E z tð Þ½ �ð Þ
¼ zi � zj

� 	
E aiaj

� �� zi;j � zk;l
� 	

E aiaj

� �
E akal½ �

þ zi � zj;k
� 	þ zi;j � zk

� 	
 �
E aiajak

� �þ zi;j � zk;l
� 	

E aiajakal

� �
:

ð14Þ

where the notation z� zð Þ denotes the Hadamard product [37].
It is emphasised here that statistical moments of the random

variables ai up to the fourth order are required to calculate the
variance of the dynamic response of the structure; if only the first
two statistical moments are available for the random variables ai,
then only the first term could be retained in the first of Eqs. (12),
leading to the following simplified expression:

Var z tð Þ½ � ffi zi � zj
� 	

E aiaj
� � ¼ zi � zið ÞE a2

i

� �
: ð15Þ
2.2. Improved perturbation

As an alternative to the conventional perturbation approach,
the so-called improved perturbation approach can be adopted, as
suggested for instance in Refs. [14,15].
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Stochastic averaging of Eq. (2) gives:

�M ¼ M0 þMi;i E a2
i

� �
;

�K ¼ K0 þ Ki;i E a2
i

� �
;

�C ¼ C0 þ Ci;i E a2
i

� �
;

ð16Þ

where the upper bar denotes mean value, which in general differs
from the respective deterministic value, designated with the sub-
scripted zero.

Neglecting second-order terms in Eq. (2), substitution of Eq.
(16) gives:

M að Þ ffi �Mþ dM að Þ;
K að Þ ffi �Kþ dK að Þ;
C að Þ ffi �Cþ dC að Þ;

ð17Þ

where d denotes deviation from the mean, given by:

dM að Þ ¼ Miai;

dK að Þ ¼ Kiai;

dC að Þ ¼ Ciai:

ð18Þ

The following modal coordinate transformation is used (similar to
Eq. (5)):

u tð Þ ¼ �Uq tð Þ; ð19Þ
where the modal matrix �U, normalised with respect to �M, satisfies
the real-valued eigenproblem (similar to Eq. (4)):

�K �U ¼ �M �U �X2 ð20Þ
involving the mean values of mass and stiffness matrix, and
�X is the associated spectral matrix. Importantly, in general,
E U að Þ½ �– �U – U0 and E X að Þ½ �– �X – X0.

Upon further manipulations, the equation of motion in the
reduced modal subspace retains the form of Eq. (6), with the fol-
lowing vectors of initial conditions and dynamic loads (similar to
Eqs. (7)):

q 0ð Þ ¼ �U> �Mu0; _q 0ð Þ ¼ �U> �M _u0; �F tð Þ ¼ �U> f tð Þ: ð21Þ
The following relationships then arise:

m að Þ ¼ Im þ �miai;

X2 að Þ ¼ �X2 þ �X2
i ai;

N að Þ ¼ �Nþ �Niai;

ð22Þ

where:

Im ¼ �U> �M �U; �mi ¼ �U>Mi
�U;

�X2 ¼ �U> �K �U; �X2
i ¼ �U>Ki

�U;

�N ¼ �U> �C �U; �Ni ¼ �U>Ci
�U:

ð23Þ

Importantly, even if the same notation has been used for the vectors
of modal coordinates q tð Þ and modal excitations F tð Þ in presenting
the conventional and improved perturbation approaches, these
quantities are in fact different as they are associated with different
pairs of eigenvectors and eigenvalues; namely, U0;X0f g for the con-
ventional perturbation and �U; �X


 �
for the improved perturbation.

Eq. (10) still holds here, where the improved perturbation
approach procedure is successively employed on the expanded
underlying quantities, giving rise to:

z t;að Þ ffi �zþ dz t;að Þ ¼ �zþ ziai;

D að Þ ffi �Dþ dD að Þ ¼ �Dþ Diai;

V að Þ ffi �V þ dV að Þ ¼ �V þ Viai;

ð24Þ

where the vectors �z ¼ �z tð Þ and zi ¼ zi tð Þ are time-dependent and the
expressions for �D;Di; �V and Vican be found in [15].
4

Following manipulations, a system of 1þ N coupled UP equa-
tions is obtained:

_�z ¼ �D�zþ Di zi E a2
i

� �þ �VF tð Þ;
_zi ¼ �Dzi þ Di �zþ Vi F tð Þ; i ¼ 1; . . . ;N;

ð25Þ

which can be numerically solved.
The statistics of the response are finally obtained as:

E z tð Þ½ � ¼ �z;

Var z tð Þ½ � ¼ zi � zið ÞE a2
i

� �
:

ð26Þ

Notably, when compared to the conventional approach, there is an
improvement in the first term of the associated quantities being
expanded. This is due to the evaluation of the perturbation about
an improved approximation of the mean value rather than about
the deterministic one [14,15].

3. Uncertainty in the modal space

In the previous section, the conventional and improved pertur-
bation methods have been summarised for the analysis of linear
dynamical systems. In this section, an alternative formulation is
presented whereby the problem is conveniently cast in the reduced
modal subspace. The proposed model defines the underlying ran-
dom variables directly in terms of modal quantities. Accordingly,
their number can be reduced quite drastically with respect to the
geometrical space (N � N) and the resulting computational bur-
den is also reduced, thus forming the basis for the development
of the high-fidelity response quantification methods detailed in
subsequent sections.

3.1. Randomisation scheme

Considering random fluctuations in the modal shapes, circular
frequencies and viscous damping ratios, for m P 2 modes, the fol-
lowing definition of the stochastic m�mð Þ matrices can be
assumed:

U að Þ ¼ �U Im þ bð Þ ¼

1þ b1;1

� 	
�/
>
1 þ b2;1

�/
>
2 þ . . .þ bm;1

�/
>
m

b1;2
�/
>
1 þ 1þ b2;2

� 	
�/
>
2 þ . . .þ bm;2

�/
>
m

..

.

b1;m
�/
>
1 þ b2;m

�/
>
2 þ . . .þ 1þ bm;m

� 	
�/
>
m

2
66666664

3
77777775

>

;

X að Þ ¼ �X Im þ cð Þ ¼ diag �xi 1þ cið Þ½ �;
N að Þ ¼ 2f að ÞX að Þ; f að Þ ¼ �f Im þ hð Þ ¼ diag �fi 1þ hið Þ� �

;

ð27Þ
where b is in general a fully populated m�mð Þ random matrix,
in which the generic zero-mean random variable bi;j quantifies
the uncertainty in the jth mode projected onto the ith mode
of the ‘mean structure’, i.e. the structure with mean mass matrix
�M and mean elastic stiffness �K (see Eq. (20)), as schematically
represented in Fig. 1; c and h are diagonal random matrices of
size m, where the zero-mean random variables ci and hi are
associated with the ith circular frequency and viscous damping
ratio, respectively; and it is further assumed that the above ran-
dom variables are statistically uncorrelated, and that
jbi;jj; jcij; jhij � 1.

According to the proposed randomisation scheme, the random

vector a ¼ b1;1; b1;2; � � � ; bm;m; c1; � � � ; cm; h1 � � � ; hm

 �> concatenates

the non-zero elements of b; c and h, giving rise to a significantly
reduced set of up-to



Fig. 1. Uncertainty characterisation in the first mode of a simple three-storey planar frame.
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N ¼ m2 þ 2m ð28Þ
random variables, with N � N, fully characterising the probabilis-
tic definition of the structural system.

It is emphasised, that the random vector a only contains this
reduced set of random variables, and it therefore particularises
the one defined in §2.

3.2. Randomised mass, stiffness and damping matrices

The elements of the stochastic matrices b; c, and h can either be
quantified directly in the reducedmodal space through experimen-
tal observations i.e. operational modal analysis, for existing struc-
tures (e.g. Refs. [38–40]), or through numerical procedures, e.g. at
the design stage. In the latter case, relationships between uncer-
tainties in the modal and geometrical spaces need to be
established.

To achieve this, the random fluctuations about the mean values
of the the mass, stiffness and damping matrices in the geometrical
space can be conveniently expressed as (see Eqs. (17)):

dM að Þ ¼ M
	

að Þ �M
	
;

dK að Þ ¼ K
	
að Þ � K

	
;

dC að Þ ¼ C
	
að Þ � C

	
;

ð29Þ

where the application of inverse orthogonality relations gives:

M
	

að Þ ¼ �MU að ÞU> að Þ �M;

K
	
að Þ ¼ �MU að ÞX2 að ÞU> að Þ �M;

C
	
að Þ ¼ �MU að Þ2f að ÞX að ÞU> að Þ �M;

ð30Þ

and:

M
	
¼ �M �U �U> �M;

K
	
¼ �M �U �X2 �U> �M;

C
	
¼ �M �U2�f �X �U> �M;

ð31Þ

in which the over tilde indicates modal approximation. Importantly,
the fidelity of the model increases with the number of modes

retained in analysis; that is, for m ! n;M
	

að Þ ! M að Þ;K
	
að Þ ! K að Þ

and C
	
að Þ ! C að Þ.

If the modal transformation of Eq. (19) is adopted to project the
equations of motion onto the reduced modal subspace, the associ-
ated matrices of mass, stiffness and damping read:

m að Þ ¼ �U> �MU að ÞU> að Þ �M �U ¼ Im þ dm að Þ;
k að Þ ¼ �U> �MU að ÞX2 að ÞU> að Þ �M �U ¼ �X2 þ dk að Þ;
c að Þ ¼ �U> �MU að Þ2f að ÞX að ÞU> að Þ �M �U ¼ 2�f �Xþ dc að Þ:

ð32Þ
5

3.3. Identification of model parameters

A simple numerical procedure is next presented for calibrating
the random variables of the proposed uncertainty model, focussing
on the elements of the random matrices b and c that define the
assumed random fluctuations in the real-valued eigenvectors and
eigenvalues of the structure (see Eq. (27)). The purpose for this pro-
cedure is twofold. First, to develop a rational general methodology
that allows taking into account random variables associated with
physical characteristics of the structure in the geometrical space.
Second, to rank them in terms of their relative significance, thus
enabling to retain only the dominant ones, in line with the
sparsity-of-effects principle (e.g. Refs. [41,42]).

In doing this, Eq. (27) can be rearranged, leading to the follow-
ing inverse relationships, expressed in terms of the rth realisation
of a MCS:

b̂ rð Þ ¼ U>
0 M0U

rð Þ � Im; ð33aÞ
ĉ rð Þ ¼ X�1

0 X rð Þ � Im; ð33bÞ

where K rð ÞU rð Þ ¼ M rð ÞU rð Þ X rð Þ� �2
, with U rð Þ� �>

M rð ÞU rð Þ ¼ Im, while
M0;U0 and X0 are the deterministic matrices appearing in
Eq. (4); furthermore, the over-hat signifies that, in general,

E b̂
h i

¼ �b– Om�m and E ĉ½ � ¼ �c– Om�m. Importantly, no limiting

assumptions are required in the definition of the uncertainty in
the geometrical space.

Mean modal and spectral matrices can then be evaluated as:

�U ¼ U0 Im þ �b
� �

; ð34aÞ
�X ¼ X0 Im þ �c½ �; ð34bÞ
and the following relationships can be used to arrive to the sought
zero-mean random variables:

b rð Þ
i;j ¼ b̂ rð Þ

i;j
��bi;j

�bi;jþ1 ub̂ rð Þ
i;j � �bi;j; ð35aÞ

c rð Þ
i ¼ ĉ rð Þ

i
��ci

�ciþ1 uĉ rð Þ
i � �ci: ð35bÞ

in which b rð Þ
i;j and c rð Þ

i are the rth realisations of the elements of the
random matrices b and c. These realisations can finally be used to
empirically construct the marginal CDF (cumulative distribution
function), which in turn can be interpolated with quantile functions
described by piecewise splines or best-fitted with appropriate ana-
lytical models, e.g. Gaussian, log-normal, type-C Gram-Charlier ser-
ies expansion [43], etcetera. The latter can be used to evaluate the
statistics of interest, e.g. the ‘th statistical moment of the kth ran-
dom variable ak can be evaluated as:

E a‘
k

� � ¼ Z þ1

�1
a‘dFak að Þ; ð36Þ

where Fak að Þ is the marginal CDF constructed for the generic ran-
dom variable ak ¼ bi;j; ci or hi.
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4. Perturbative methods in the modal space

4.1. Second-order perturbation

In line with the uncertainty model detailed in the previous sec-
tion, a second-order perturbation approach, formulated in the
reduced modal subspace, is presented herein.

Series expansion of the stochastic modal matrices about
ai ¼ 0; i ¼ 1; . . . ;N and retaining up-to second-order terms gives:

U að Þ ffi U0 þUiai þUi;jaiaj ¼ �UþUiai;

X að Þ ffi X0 þXiai þXi;jaiaj ¼ �XþXiai;

f að Þ ffi f0 þ fiai þ fi;jaiaj ¼ �fþ fiai;

ð37Þ

where U0 ¼U að Þja¼0N ¼ �U;X0 ¼X að Þja¼0N ¼ �X and f0 ¼ f að Þja¼0N ¼
�f;0N ¼ ON�1 being a N -dimensional zero vector and summation
is once again implied. It is noted that the terms Ui;j;Xi;j and fi;j

vanish, unless second-order terms are included in Eq. (27).
Substitution of Eq. (37) in Eq. (32) then gives:

m að Þ ¼ Im þU>
i
�M �Uai þ �U> �MUi ai þ �U> �MUiU

>
j
�M �Uaiaj;

k að Þ ¼ �X2 þ �X2U>
i
�M �Uai þ �XXiai þXi

�Xai

þ �U> �MUi
�X2ai þ �XXiU

>
j
�M �Uaiaj

þXi
�XU>

j
�M �Uaiaj þXiXjaiaj

þ �U> �MUi
�X2U>

j
�M �Uaiaj þ �U> �MUi

�XXj aiaj

þ �U> �MUiXj
�Xaiaj;

c að Þ ¼ �Nþ �NU>
i
�M �Uai

þ 2�fXiai þ 2fi �Xai þ �U> �MUi
�Nai

þ 2�fXiU
>
j
�M �Uaiaj þ 2fi �XU>

j
�M �Uaiaj

þ 2fiXjaiaj þ �U> �MUi
�NU>

j
�M �Uaiaj

þ �U> �MUi2�fXjaiaj þ �U> �MUi2fj �Xaiaj;

ð38Þ

where, in line with the conventional perturbation approach, high-
order terms arising from products have been neglected.

Eq. (6), (7) and (10) still hold here. Series expansion of the dynamic
matrix, and load and response vectors in Eq. (12), then gives:

D0 ¼
Om�m Im

� �X2 ��N

" #
; Di ¼

Om�m Om�m

dk
i dc

i

" #
;

Di;j ¼
Om�m Om�m

dk
i;j dc

i;j

" #
;V0 ¼

Om�m

Im

" #
; Vi ¼

Om�m

li

" #
;

Vi;j ¼
Om�m

li;j

" #
:

ð39Þ

The associated first-order terms read:

dk
i ¼ � �X2U>

i
�M �U� �XXi �Xi

�X� �U> �MUi
�X2 � li

�X2;

dc
i ¼ ��NU>

i
�M �U� 2�fXi � 2fi �X� �U> �MUi

�N� li
�N;

li ¼ �mi;

ð40Þ

where mi ¼ U>
i
�M �Uþ �U> �MUi represents the first-order partial

derivative of the reduced mass matrix.
Second-order terms take the following form:
6

dk
i;j ¼ � �XXiU

>
j
�M �U�Xi

�XU>
j
�M �U�XiXj � �U> �MUi

�X2U>
j
�M �U

� �U> �MUi
�XXj � �U> �MUiXj

�X� li
�X2U>

j
�M �U� li

�XXj

� liXj
�X� li

�U> �MUj
�X2 � li;j

�X2;

dc
i;j ¼ �2�fXiU

>
j
�M �U� 2fi �XU>

j
�M �U� 2fiXj

� �U> �MUi
�NU>

j
�M �U� 2 �U> �MUi

�fXj

� 2 �U> �MUifj
�X� li

�NU>
j
�M �U� 2li

�fXj

� 2lifj
�X� li

�U> �MUj
�N� li;j

�N;

li;j ¼
1
2

mimj þmjmi �mi;j
� 	

; ð41Þ

where mi;j ¼ �U> �M UiU
>
j þUjU

>
i

� 
�M �U.

A reduced system of 1þN þN 2 deterministic UP equations in
state-space form is finally obtained, similarly to Eq. (13), where N

is used in place of N, whose numerical solution with the piecewise
exact method (PEM) [15,44] can be calculated as:

z0 tkþ1ð Þ ¼ H Dtð Þz0 tkð Þ þ C0 Dtð ÞV0 F tkð Þ þ C1 Dtð ÞV0 F tkþ1ð Þ;
ð42aÞ

zi tkþ1ð Þ ¼ H Dtð Þzi tkð Þ þ C0 Dtð Þ Di z0 tkð Þ þ Vi F tkð Þ½ �
þC1 Dtð Þ Di z0 tkþ1ð Þ þ Vi F tkþ1ð Þ½ �; ð42bÞ

zi;j tkþ1ð Þ ¼ H Dtð Þzi;j tkð Þ þ C0 Dtð Þ Di zj tkð Þ þ Di;j z0 tkð Þ þ Vi;j F tkð Þ� �
þC1 Dtð Þ Di zj tkþ1ð Þ þ Di;j z0 tkþ1ð Þ þ Vi;j F tkþ1ð Þ� �

;

ð42cÞ
where Dt is the time step used to discretise the numerical solution,
tk ¼ kDt, with k P 0, is the kth discrete time instant,
H Dtð Þ ¼ exp D0Dt½ � is the m�mð Þ transition matrix in the reduced
modal space, exp �½ � denoting the matrix exponential function, and
C0 and C1 are m�mð Þ load matrices, as defined in Appendix A.2.

Once the deterministic time histories of the state-space vectors
z0 tkð Þ; zi tkð Þ and zi;j tkð Þ have been calculated, the statistics of the
structural response can be expressed as in Eqs. (14) and (15). It
is worth stressing here that Eqs. (42) are particularly appealing
from a computational point of view as the numerical calculation
of the N first-order sensitivity vectors zi tkð Þ and the N 2 second-
order sensitivity vectors zi;j tkð Þ can be easily parallelised.

4.2. Improved perturbation variant

In this subsection, the formulation of the improved variant for
the proposed uncertainty model is detailed. Similarly to Eqs.
(16)–(18) in the geometrical space, the stochastic matrices for
the problem in hand can be expressed as follows:

U að Þ ffi U0 þUi;j E aiaj
� �þUiai ¼ �UþUiai;

X að Þ ffi X0 þXi;j E aiaj
� �þXiai ¼ �XþXiai;

f að Þ ffi f0 þ fi;j E aiaj
� �þ fiai ¼ �fþ fiai;

ð43Þ

where, owing to the linearity of the proposed randomisation
scheme (see Eq. (27)), second-order terms vanish; therefore, the
expansions of Eqs. (43) coincide with those of Eq. (37), leading to
Eqs. (38).

Casting in state-space form, Eqs. (10) and (24) still hold here,
with:

�D ¼ Om�m Im
�dk �dc

� �
; Di ¼

Om�m Om�m

d̂k
i d̂c

i

� �
; �V ¼ Om�m

�l

� �
; ð44Þ

where:
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�dk ¼ ��l �X2� �l �XXiU
>
j
�M �Uþ �lXi

�XU>
j
�M �Uþ �lXiXjþ �l �U> �MUi

�X2U>
j
�M �Uþ �l �U> �MUi

�XXj

�
þ�l �U> �MUiXj

�Xþli
�X2U>

j
�M �Uþli

�XXjþliXj
�Xþli

�U> �MUj
�X2


E aiaj
� �

;

�dc ¼ ��l�N� �l2�fXiU
>
j
�M �Uþ �l2fi �XU>

j
�M �Uþ �l2fiXjþ �l �U> �MUi

�NU>
j
�M �Uþ �l �U> �MUi2�fXj

�
þ�l �U> �MUi2fj �Xþli

�NU>
j
�M �Uþli2�fXjþli2fj �Xþli

�U> �MUj
�N

E aiaj
� �

;

�l¼ Imþli;jE aiaj
� �

;

ð45Þ
and

d̂k
i ¼ ��l �X2U>

i
�M �U� �l �XXi � �lXi

�X� l̂ �U> �MUi
�X2 � li

�X2;

�dc
i ¼ ��l �NU>

i
�M �U� 2 �l�fXi � 2 �lfi

�X� �l �U> �MUi
�N� li

�N;

ð46Þ
and where Vi satisfies Eq. (39).

Following manipulations, the resulting system of 1þN cou-
pled UP equations in Eq. (25) is solved with the PEM. The discre-
tised solution then takes the form [15]:

�z tkþ1ð Þ ¼ �H Dtð Þ�z tkð Þ þ �C0 Dtð Þ E aiaj
� �

Di zj tkð Þ þ �VF tkð Þ� �
þ�C1 Dtð Þ E aiaj

� �
Di zj tkþ1ð Þ þ �VF tkþ1ð Þ� �

;
ð47aÞ

zi tkþ1ð Þ ¼ �H Dtð Þzi tkð Þ þ �C0 Dtð Þ Di �z tkð Þ þ Vi F tkð Þ½ �
þ�C1 Dtð Þ Di �z tkþ1ð Þ þ Vi F tkþ1ð Þ½ �: ð47bÞ

Substitution of Eq. (47b) into (47a), and following manipulations,
one obtains:

�z tkþ1ð Þ ¼ �H
 Dtð Þ�z tkð Þ þ Ai Dtð ÞE aiaj
� �

zj tkð Þ þ �C

0 Dtð ÞF tkð Þ

þ �C

1 Dtð ÞF tkþ1ð Þ; ð48Þ

where:

�H
 Dtð Þ ¼ G Dtð Þ�1 �H Dtð Þ þ �C1 Dtð ÞDi
�C0 Dtð ÞDj E aiaj

� �� �
; ð49aÞ

Ai Dtð Þ ¼ G Dtð Þ�1 �C0 Dtð ÞDi þ �C1 Dtð ÞDi
�H Dtð Þ� �

; ð49bÞ
�C

0 Dtð Þ ¼ G Dtð Þ�1 �C0 Dtð Þ �V þ �C1 Dtð ÞDi

�C0 Dtð ÞVj E aiaj
� �� �

; ð49cÞ
�C

1 Dtð Þ ¼ G Dtð Þ�1 �C1 Dtð Þ Di

�C1 Dtð ÞVjE aiaj
� �þ �V

� �
; ð49dÞ

G Dtð Þ ¼ I2m � �C1 Dtð ÞDi
�C1 Dtð ÞDj E aiaj

� �
; ð49eÞ

and where �H Dtð Þ ¼ exp �DDt
� �

, and �C0 and �C1 are calculated from �H

and �D as per Appendix A.2. Eq. (47b) and (48) are numerically
solved and the response statistics are finally obtained through
Eqs. (26).

4.3. High-order perturbation

Aimed at enhancing the accuracy of the random vibration pre-
dictions, a high-order perturbation variant is presented in what fol-
lows through an ad hoc extension of the second-order perturbation
method. Let us consider the kth-order series expansion of the
stochastic modal matrices in the proposed uncertainty model
(with k P 3):

U að Þ ffi U0 þUiai þUi;jaiaj þ . . .þUi;j;...qaiaj . . .aq;

X að Þ ffi X0 þXiai þXi;jaiaj þ . . .þXi;j;...;qaiaj . . .aq;

f að Þ ffi f0 þ fiai þ fi;j aiaj þ . . .þ fi;j;...;q aiaj . . .aq;

ð50Þ

where i; j; . . . ;qf g denotes the set of of k indexes associated with
the kth-order perturbation.

Following the procedure described in §4.1, the deviation matri-
ces in Eq. (29), as well as themass, spectral and dampingmatrices in
Eq. (38), are constructed taking into account Eq. (50). Series expan-
sion of the underlying terms in the state-space Eq. (10), then gives:

z t;að Þ ffi z0 tð Þ þ zi tð Þai þ zi;j tð Þaiaj þ . . .þ zi;j;...;q tð Þaiaj . . .aq;

D að Þ ffi D0 þ Diai þ Di;jaiaj þ . . .þ Di;j;...;qaiaj . . .aq;

V að Þ ffi V0 þ Viai þ Vi;j aiaj þ . . .þ Vi;j;...;qaiaj . . .aq;

ð51Þ

7

where first- and second-order dynamic matrices and load vectors
satisfy Eq. (39), while the high-order ones, whose details are
lengthy, are computed by means of an algorithmic procedure.

4.3.1. Quantification of response statistics
Upon substitution of Eq. (51) into Eq. (10) and following manip-

ulations, a set of n kð Þ ¼ Pk
j¼0N

j deterministic UP equations in
state-space form is obtained. For instance, if m ¼ 5 modes of vibra-
tion are retained in the dynamic analysis, there are up-to N ¼ 35
random variables (see Eq. (28)), meaning that for k ¼ 2, i.e. second-
order perturbation, there are up-to n 2ð Þ ¼ 1;261 state-space equa-
tions; they become up-to n 3ð Þ ¼ 44;136 for k ¼ 3 and up-to
n 4ð Þ ¼ 1;544;761 for k ¼ 4. It is noteworthy here that: iÞ the
actual number of ‘dominant’ random variables can be significantly
less; iiÞ parallelisation and domain decomposition methods [45,46]
can be used to simultaneously solve multiple UP equations, which
in turn can drastically reduce the computational time.

For the kth order perturbation, the set of n kð Þ UP equations can
be broken down in kþ 1 subsets, of increasing number; that is, the
jth subset, with 0 6 j 6 k, consists of Nj UP equations. The first
three subsets, for j 6 2, are the same as in Eqs. (13); the higher-
order subsets, for j P 3 can be written in the following generalised
form:

_zi; j; . . . ;p;q|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
j 6kð Þ indexes

¼ D0 zi;j;...;p;q þ Di zj;...;p;q þ . . .þ Di;j;...;pzq

þ Di;j;...;p;q z0 þ Vi;j;...;p;q F tð Þ; ð52Þ
where, once again, time dependency is not explicitly shown in any
of the z vectors and j is the number of indices i; j; . . . ;p;q


 �
appear-

ing in the subset of UP equations; it is worth stressing here that
each of these indices takes combinatorially the values 1; . . . ;N
and that for the particular case j ¼ 3 the expressions in Eq. (52)
should be interpreted such as j � p.

Solution to Eq. (52) with the PEM is given as:

zi;j;...;p;q tkþ1ð Þ ¼ H Dtð Þzi;j...;p;q tkð Þ
þC0 Dtð Þ Di zj;...;p;q tkð Þ þ . . .þDi;j;...;p zq tkð Þ þDi;j;...;p;q z0 tkð Þ þ Vi;j;...;p;q F tkð Þ
 �
þC1 Dtð Þ Di zj;...;p;q tkþ1ð Þ þ . . .þDi;j;...;p zq tkþ1ð Þ þ Di;j;...;p;q z0 tkþ1ð Þ þ Vi;j;...;p;q F tkþ1ð Þ
 �

;

ð53Þ

which extends the PEM solutions detailed as Eqs. (42).
Response statistics are finally computed as:

E z½ � ¼ z0 þ zi;i E a2
i

� �þ . . .þ zi;j;...;q E aiaj . . .aq

� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
kth�order moment

; ð54aÞ

Var z½ � ¼ E z� z½ � � E z½ � � E z½ �
¼ zi � zif gE a2

i

� �þ . . .þ zi;j;...;q � zI;J;...;Q
� 	

E aiaj . . .aqaIaJ . . .aQ

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2kð Þth�order moment

;

ð54bÞ

where Eq. (54b) is expanded following substitution of Eq. (51) and
Kronecker algebra is used; the conditions E ai½ � ¼ 0 and E aiaj

� � ¼ 0
for i ¼ j (zero-mean, statistically independent random variables)
have also been used.

In the approach presented in this subsection, k� 2 subsets of
auxiliary deterministic differential equations, associated with
high-order probabilistic information, are used to obtain an
improved approximation of the dynamic response of the uncertain
structure. Notably, in the special case where k ¼ 2, the second-
order perturbation approach in modal space, presented in Sec-
tion 4.1, is recovered. An unfortunate feature of the high-order per-
turbation variant is the susceptibility to the curse of
dimensionality, with the number of equations dramatically
increasing with the underlying random variables. Nevertheless,
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owing to the uncertainty formulation proposed in Section 3,
N � N, and therefore the number of additional UP equations can
be kept reasonably low. Furthermore, the model does not necessar-
ily require a fixed value of k, as each set of auxiliary equations can
be adaptively used, on-demand, on the basis of convergence crite-
ria assessed throughout computations, to either increase the level
of fidelity, or resort to a lower-order scheme, thus providing flexi-
bility to the analyst, balancing accuracy with the additional com-
putational effort.

4.3.2. Cumulant-neglect moment approximation
A notorious difficulty is that the proposed method requires

knowledge of high-order input statistical moments, which may,
in general, be unavailable. Specifically, the kth-order perturbation
depends on statistical moments of up-to order 2k. It must be fur-
ther noted that the full set of Nj statistical moments of the jth-
order can be prohibitively expensive to compute and operate with,
and therefore a set of

N þ j� 1
j

� �
¼ N þ j� 1

� 	
!

j! N � 1ð Þ! ð55Þ

unique function evaluations can be used in practice,which are subse-
quently manipulated and stored, by means of a compressed format
through their associated descriptor mapping. This can dramatically
mitigate the computational burden of the procedure; for instance,
for the case of m ¼ 5 modes of vibration considered above (see Sub-
section 4.3.1), the number of independent UP equations that need
to be solved reduces to up-ton	 2ð Þ ¼ 666 for the second-order pertur-
bation (i.e. 47:2% less), n	 3ð Þ ¼ 8;436 for k ¼ 3 (i.e. 80:9% less) and
n
	 4ð Þ ¼ 82;251 for k ¼ 4 (i.e. 94:7% less UP equations).

Rather than neglecting moments of order greater than k, as is
often the case with perturbative approaches, a cumulant-neglect-
based technique can be used to approximate the probability distri-
bution of the random variables ai. Specifically, it is possible to
express the statistical moments in terms of cumulants, denoted
herein with j �ð Þ. The following relationships are indicatively pro-
vided in compact form for up-to fourth-order [47–50]:

E ai½ � ¼ j aið Þ;
E aiaj
� � ¼ j ai;aj

� 	� j aið Þj aj
� 	

;

E aiajap

� � ¼ j ai;aj;ap

� 	þ 3 j aið Þj aj;ap

� 	
 �
S þ j aið Þj aj

� 	
j ap

� 	
;

E aiajapaq

� � ¼ j ai;aj;ap;aq

� 	þ 3 j ai;aj
� 	

j ap;aq

� 	
 �
S

þ 4 j aið Þj aj;ap;aq

� 	
 �
S þ 6 j aið Þj aj

� 	
j ap;aq

� 	
 �
S

þ j aið Þj aj
� 	

j ap

� 	
j aq

� 	
; ð56Þ

where i; j;p and q are integers in the interval 1;N½ �, denoting the
elements of a, and �f gS indicates a symmetrising operation, that
is, taking the arithmetic mean of all different permuted terms with
respect to the underlying arguments.

For Gaussian random variables, cumulants of order greater than
two are zero, and it thus follows that high-order moments can be
approximated in terms of lower ones by neglecting cumulants
above a certain order l, with 2 6 l 6 k. The approximation is exact
for Gaussian input variables and admissible to other cases, pro-
vided that the probability distribution of the input variables is
not strongly non-Gaussian. In practice, results can be obtained
through a second-order approximation, setting l ¼ 2, but an
improvement in accuracy can be achieved by resorting to a higher
level of cumulant approximation.

4.3.3. Adaptive solution implementation procedure
To apply the high-order perturbation approach presented

above, an algorithmic procedure is suggested, which can be sum-
marised as follows:
8

1. DECIDE the number of modes m to be retained in the analysis,
the time step Dt, the number N of random variables (up to
m2 þ 2m), the number k of the perturbation order (also consid-
ering the computational resources available) and the level l of
cumulant-neglect closure, if required.

2. DEFINE all the matrices D and V appearing in Eqs. (13) and (52),
up to the kth order.

3. CALCULATE the integration operators H Dtð Þ;C0 Dtð Þ and C1 Dtð Þ
appearing in Eq. (53); they have to be calculated only once for
all subsets of UP equations (see point 4 below).

4. For j ¼ 1; . . . ;k, SOLVE the jth subset of UP equations, with all
the required combinations of the j indexes in Eq. (53);

5. If required, APPROXIMATE the jth statistical moment of the ith

input variable, E aj
i

h i
, with j P l P 3, using the cumulant-

neglect closure.
6. CALCULATE the second-order response statistics via Eqs. (54).
7. REPEAT points 1 to 6 until, convergence is reached.

In practice, convergence can be measured, over the whole dura-
tion of the motion of the structure, in terms of an appropriate norm
of the variance of its dynamic response.
5. Spectral quantification in the modal space with polynomial
chaos expansions

The perturbative-based variants presented in the previous sec-
tion are suited to the second-moment response analysis for moder-
ate levels of uncertainty in the dynamic system. They are intrusive,
requiring reformulation of the governing differential equations,
and the approximation error tends to cumulate over time. To alle-
viate some of these drawbacks and complement our investigations,
a spectral, non-intrusive approach based on the polynomial chaos
(PC) expansion is next employed in combination with the modal
uncertainty model presented above.

Consider the mechanical system of Section 3 characterised by
the reduced random matrices in Eq. (32). Let us define an interface
to the model through an N -dimensional standard normal random
input vector u ¼ u1; . . . ;uNf g> 2 RN , so obtained by means of a
suitable probabilistic transformation to the random vector a.

The state response zk, at the kth time instant tk, then admits the
following representation on a finite-dimensional basis by a trun-
cated PC [23]:

zk �
X
i2A

yiwi uð Þ; ð57Þ

where wi uð Þ ¼ QN
j¼1Pij uj

� 	
are multivariate Hermite polynomials,

orthonormal with respect to f u, the joint probability density func-
tion of u, and Pij denotes a univariate polynomial of degree ij; fur-

thermore, i ¼ i1; . . . ; iNf g 2 A is a multi-index, where ij j ¼ PN
j¼1ij

is the degree of the polynomial wi;A  NN being a truncated set;
and yi 2 R are coefficients to be identified.

In calculating the N þ pð Þ!= N !p!ð Þ coefficients, p ¼ k� 1 denot-
ing the maximal degree of the retained polynomials, projection- or
regression-based methods may be employed by choosing a suit-
able experimental design, comprising a set of full-model evalua-
tions, and processing the associated responses [51]. For
projection-based methods, the experimental design size is deter-
mined from the quadrature scheme and p. Standard multivariate
quadrature, for instance, requires a set of pþ 1ð ÞN model evalua-
tions, while the computational cost with Smolyak’s sparse quadra-
ture scheme [52] grows polynomially with N , which can be
regarded as reasonable for medium-sized dimensional problems,
but becomes intractable for large values of N . Conversely,
regression-based approaches result in a fixed experimental design
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size and are thus employed herein in conjunction with the pro-
posed reduced modal subspace model for the system uncertainty.

Specifically, the highly-efficient least angle regression (LAR)
algorithm [53,30] is adopted with a finite number of nPC model
evaluations and with samples generated by the Latin Hypercube
sampling strategy. To arrive to a predictive meta-model of the
response time history, a time-dependent strategy is adopted,
namely, a sparse PC is constructed at a number of discrete time
instants from these nPC runs, with a resolution step DtPC P Dt.

Owing to the orthonormality of the polynomial basis, the first
two statistical moments of the response are readily available from
the expansion coefficients:

E zk½ � ¼ y0;

Var zk½ � ¼
X
a2A
a–0

y2a; ð58Þ

where y0 denotes the coefficient associated with the constant basis
term w0 ¼ 1, and where the summation is carried out on the non-
constant basis elements. Finally, to extract further information on
the model response, such as the full probabilistic structure, the
polynomial series expansion may be sampled using Monte Carlo
simulation, at reasonable computational cost.

To this end, the resulting PC representation, facilitated by the
reduced set of underlying random variables in the modal subspace,
treats the computational model as ‘‘black box”, with independent
components at discrete time instants, preventing the accumulation
of errors for relatively long integration times. Nevertheless, such
representation is costly and may become increasingly difficult at
late time instants due to the enhanced complexity in input-
output relationships.
6. Numerical applications

The analysis of linear dynamical structures affected by uncer-
tainties has been addressed in the preceding sections, and methods
formulated in the reduced modal subspace have been presented for
this purpose. In this section, for validation and comparison pur-
poses, the proposed formulations have been numerically
investigated.

6.1. Multi-storey steel frame with semi-rigid connections

In the first numerical application, the seismic response of a steel
frame with uncertain flexibility in the semi-rigid beam-to-column
Fig. 2. Beam element with rotational springs (adapte
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connections has been investigated. Linear rotational springs (an
acceptable approximation for the so-called damage limitation
requirement) are used to model the connection stiffness at the
beams’ ends, as depicted in Fig. 2(a), where N;Q and M denote
the axial force, shear force and bending moment at the generic
node, respectively, while u;w and h are the associated displace-
ments and rotations.

The stiffness matrix for the Euler-Bernoulli beam element with
rotational springs is a function of the rotational stiffness k, defined
as [54]:

k vð Þ ¼ 3EI
l

v
1� v ; ð59Þ

where E; I and l are the Young’s modulus, moment of inertia and
length of the beam, respectively, and v is the dimensionless fixity
factor at the generic beam’s end, within the range 0;1½ �. The two
limiting cases, i.e. k 0ð Þ ¼ 0 and limv!1k vð Þ ¼ þ1 represent a pinned
connection (permitting free rotation, with no bending moment
being transferred at the beam’s end) or a rigid one (restraining rota-
tion), respectively; in actual steel construction, however, the fixity
factors take intermediate values, random in nature, and can signif-
icantly affect the dynamic response of semi-rigid steel frames (e.g.
Refs. [55–57]).

Fig. 2(b) shows the case-study model, taken from Ref. [58], con-
sisting of a 10-storey single-bay planar frame, with uniform inter-
storey heights h ¼ 4m and bay’s span b ¼ 8m. The Young’s modu-
lus is E ¼ 210GPa and the geometrical parameters of the structural
elements are reported in Table 1.

A FE model has been constructed with the commercial struc-
tural analysis software SAP2000 [59]. Having discretised each
beam into two FEs of equal length l ¼ b=2 ¼ 4m, masses
Mtop ¼ 3Mg have been lumped at the three nodes of the top storey
and masses M ¼ 4Mg at the nodes of each other storey, respec-
tively, with a frame’s total mass Mtot ¼ 156Mg. For the reference
configuration with v ¼ 0:5, the fundamental period of vibration
is T1 ¼ 1:348s (76% of modal mass participation); furthermore,
the total number of DoFs is n ¼ 90 and m ¼ 5 modes were retained
in the analysis, so that 96% of the modal mass participates in the
direction of interest x.

The structure is subjected to a ground acceleration €ug tð Þ consist-
ing of an idealised, full-cycle sinusoidal pulse such that
€ug tð Þ ¼ Ag sin xg t

� 	
if 0 6 t 6 Tg ¼ 2p=xg and €ug tð Þ ¼ 0 otherwise,

where Ag and xg are the amplitude and the frequency of the pulse,
respectively. This type of excitation has been extensively consid-
d from [54]) (a) and structural frame model (b).



Table 1
Geometrical parameters of the structural elements in the first numerical application.

Area, A 10�3m2
h i

Moment of inertia, I 10�6m4
h i

Beams 306 2569

Columns 27 1710
21:8 798:9
14:9 251:7
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ered in the literature to quantify the effects of near-fault ground
motions (e.g. [60,44,61]).
6.1.1. Model calibration
As a first step towards the application of the proposed approach,

the random matrices b and c have been characterised by means of
numerical analyses using the relationships presented in Section 3.2.
Specifically, the values of the rotational stiffness at the beam-to-
column connections have been modelled with a set of N ¼ 20 sta-
tistically independent random variables, which represent the only
source of uncertainty for this example.

Each rotational stiffness k is uniformly distributed within
the interval kmin ¼ k mminð Þ; kmax ¼ k mmaxð Þ½ �, whose extreme values
correspond to mmin ¼ 0:21 and mmax ¼ 0:79, respectively; accord-
ingly, the resulting rotational stiffness has mean value �k ¼
kmin þ kmaxð Þ=2 ¼ k m0ð Þ, with m0 ¼ 0:67, and coefficient of variation
CoV k½ � ¼ 0:50.

Following the procedure detailed in Section 3.3, a MCS has been
carried out with 50,000 realisations to construct the randomised
mass and stiffness matrices of the semi-rigid frame in the geomet-
rical space. The associated eigenvalue problem has been solved for
each case, so obtaining randomised modal shapes and modal fre-
quencies. This has been efficiently done by exploiting the open
application programming interface (OAPI) of SAP2000 in conjunc-
tion with MATLAB [62], following the procedure delineated in
Ref. [63], which automates the construction and analysis of the
structural model as well as the customised retrieval of the required
results.

In a subsequent stage, Eqs. (33)–(35) have been used to empir-
ically construct the marginal CDFs and correlation matrix for the
random variables in b and c, associated with the modal shapes
and modal circular frequencies, while uniformly distributed ran-
dom variables were used for the elements of the random vector
h, based on mean value �f ¼ 0:05, for all modes, and CoV f½ � ¼ 0:2.

It is worth noting here that the total number of random vari-
ables in the reduced modal space is N ¼ 52 þ 2� 5 ¼ 35, meaning
that N > N for this first numerical example; indeed, for simplic-
ity’s sake, other sources of uncertainty have been neglected in this
application, e.g. the magnitude of the masses at each storey. A case
Fig. 3. Randomised first three modal shapes due to uncertainty characterised in the ful
modal subspace by means of 25 calibrated uncorrelated random variables simulated fro
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where N � N , as expected in real-life applications, is covered in
the second numerical example.

Next, a suite of 100;000 realisations of N uncorrelated stan-
dard normal random variables were simulated and used to gener-
ate realisations of the dimensionless random variables in
a> ¼ b>; c>; h>


 �
, through the probabilistic transformation

a rð Þ
i ¼ F�1

i u
rð Þ
i

� 
, where Fi aið Þ is the identified CDF of the ith random

variable in the reduced modal space and the superscripted rð Þ
denotes its rth realisation. For each case, the randomised modal
matrix, spectral matrix, and matrix of modal damping ratios were
constructed on the basis of Eqs. (27).

Fig. 3 compares the randomised modal shapes due to uncertain-
ties in the geometrical space (Fig. 3(a)) with the ones from the cal-
ibrated proposed uncertainty model (Fig. 3(b)). The black lines
represent mean modal shapes, which coincide with the determin-
istic ones for the reference configuration, i.e. with all fixity factors
assumed to be m ¼ 0:5, and the light red ones refer to the envelope
of realisations. The results visually confirm that both the proposed
randomisation scheme (i.e. Eqs. (27)) and the identification proce-
dure employed for the random variables ai are satisfactory. It is
further noted that the mean and standard deviation values of the
simulated circular frequencies show percentage differences that
fall within 0:05% and 1% of the target ones, respectively.
6.1.2. Analysis
The identified model parameters have been used to numerically

investigate the performance of the proposed second-order,
improved, and high-order perturbation variants as well as the PC
approach, the latter carried out with nPC ¼ 500 model evaluations,
on the evolutionary displacement response at roof level. In this
numerical application, only the case of k ¼ 3 has been considered
for the high-order perturbation and PC solution, corresponding to a
third-order truncation, as higher orders were found to result in
only marginal improvements in the response statistics.

Figs 4(a)-4(c) show the time varying mean of the response for
three different values of the normalised frequency parameter
b ¼ xg=x1, namely 0:5;1 and 1:5, respectively, while the amplitude
of the ground acceleration, Ag ¼ 1:0m=s2, is the same in the three
cases. The variants are compared against pertinent MCS, where
the light red colour represents the envelope of 100,000 realisations.
The results show distinct behaviour in the response; as expected, an
increase in the amplitude of oscillations is exhibited for the tuned
system with b ¼ 1, leading to an increase in the uncertainty propa-
gated in the time history of the response. Overall, the mean
dynamic response is satisfactorily predicted by all the four variants.

By contrast, the numerical analyses reveal different levels of
accuracy in the prediction of the evolutionary variance of the
dynamic response, plotted in Figs. 4(d)-4(f); the associated time-
l geometrical space (a); and due to the proposed uncertainty model in the reduced
m empirical distributions (b).



Fig. 4. Displacement at roof level due to uncertainty in the reduced modal subspace for a pulse-type ground excitation of b ¼ 0:5 (left column); b ¼ 1 (central column); and
b ¼ 1:5 (right column): evolutionary mean (top row: a, b, c); evolutionary variance (middle row: d, e, f); and cumulative errors in the response variance (bottom row: g, h, i).
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varying percentage errors, quantified with respect to the MCS, are
shown in Figs. 4(g)-4(i), in which:
e tð Þ %½ � ¼ 100� Var x tð Þ½ � � Var x tð Þ½ �MCS

�� ��
Var x tð Þ½ �MCS

�� �� ; ð60Þ
where x tð Þ denotes the response quantity of interest (i.e. the dis-
placement at roof level in this case), the subscript MCS marks the
reference value of the variance calculated through Monte Carlo sim-
ulation, and the symbol �j j denotes the peak absolute value of the
quantity within the vertical lines.

A cumulant-neglect second-order (l ¼ 2) closure has been used
to approximate moments of up-to sixth order arising in the third-
order (k ¼ 3) perturbation variant. To assess the effectiveness of
this approximation, the third-order perturbation response with
truncated high-order moments has been superimposed in
Figs. 4(g)-44(i) (depicted with dotted lines).

The results show relatively large discrepancies for the conven-
tional and improved perturbation approaches, particularly for
t > 2:5s, for Figs. 4(d)-4(f). The proposed high-order perturbation
variant and PC solution exhibit better performance, closely resem-
bling the MCS solution. Specifically, they appear to satisfactorily
predict the second-order response statistics in all the considered
cases. This observation is further supported in Figs. 4(g)-4(i) with
the cumulative errors consistently being kept below 10%. Notably,
while the performance of the perturbative methods tends to dete-
riorate as time increases, this is not the case for the PC variant,
which consistently shows good performance. This is due to the
11
non-intrusive nature of the adopted PC, which prevents the cumu-
lation of the error [31].

6.2. Simply supported bridge subjected to a moving load

The second numerical application considers the transient vibra-
tion of a simply supported beam of length L, subjected to a moving
load. The problem is ruled by the following second-order partial
differential equation [64]:

qA €u x; tð Þ þ D x; tð Þ þ EIu
0000

x; tð Þ ¼ Pd x� V tð Þ; ð61Þ
where u x; tð Þ is the transverse displacement at point x and time t
and the superscripted prime denotes spatial derivative with respect
to the abscissa x;qA is the mass density per unit length of the beam
and EI is its flexural stiffness; D x; tð Þ is the function representing the
damping force in the geometrical space; P is the intensity of the
moving load, arriving at time t ¼ 0, and travelling at a constant
velocity V; and d �ð Þ is the Dirac’s delta function. The moving load
is thus acting on the beam during the time interval 0; tL½ �; tL ¼ L=v
being the loading time.

The modal shapes and modal frequencies are given in closed
form by:

ui xð Þ ¼
ffiffiffiffiffiffiffiffiffi
2
qAL

s
sin

ipx
L

� �
;

xi ¼ ip
L

� �2
ffiffiffiffiffiffiffi
EI
qA

s
; ð62Þ
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where u is normalised with respect to qA.
The modal equations of motion can be obtained by adopting the

following transformation of coordinates (similar to Eq. (5)):

u x; tð Þ ¼ u>
0 xð Þq tð Þ; ð63Þ

where u0 xð Þ ¼ u1 xð Þ; u2 xð Þ . . . um xð Þf g> is the m� 1ð Þ modal vec-
tor, collecting the first m modal shapes of the homogeneous beam,
and q tð Þ ¼ q1 tð Þ; q2 tð Þ . . . qm tð Þf g> is the m� 1ð Þ vector of the asso-
ciated modal coordinates.

Upon substitution of Eq. (63) in Eq. (61), and following manip-
ulations, one obtains (equivalent to the deterministic version of Eq.
(6), in which the presence of the random variables ai is neglected
in Eqs. (8)):

Im €q tð Þ þ N0 _q tð Þ þX2
0 q tð Þ ¼ F tð Þ; ð64Þ

where the loading vector in the reduced modal space is given by
F tð Þ ¼ PG tð Þ, being:

G tð Þ ¼ u>
0 V tð Þ ¼

ffiffiffiffiffiffiffiffiffi
2

qAL

s sin pV t=Lð Þ
sin 2pV t=Lð Þ
..
.

sin mpV t=Lð Þ

8>>>><
>>>>:

9>>>>=
>>>>;
: ð65Þ

In line with the numerical example reported in Ref. [65], the follow-
ing mechanical parameters have been selected for the beam:
L ¼ 27:5m;qA ¼ 2:385Mg=m, and EI ¼ 12:425� 106 kNm2; P ¼
96:53kN is the magnitude of the moving load. Furthermore,
m ¼ 3 modes of vibration have been retained in analysis; under
the reference configuration, when no random fluctuations are pre-
sent, the modal circular frequencies are x1 ¼ 29:8;x2 ¼ 119:2
and x3 ¼ 268:1rad=s.

6.2.1. Model calibration
To calibrate the probabilistic definition of the random variables

in the reduced modal space, an auxiliary FE model was con-
structed, comprising of a total of 200 Euler-Bernoulli beam ele-
ments and a total of N ¼ 400, independent, uniformly distributed
random variables, representing uncertainty in the geometrical
space, namely, in the mass density and bending stiffness of each
FE, based on a coefficient of variation of 0:14 and 0:3, respectively.

A MCS was carried out with 50;000 realisations, and ran-
domised modal shapes and spectral matrices were obtained. The
marginal CDFs of the random variables in b and cwere constructed
through the use of Eqs. (33)–(35). Furthermore, uniformly dis-
tributed random variables were assumed for the marginal CDFs
of the random variables in h, based on a mean value of �f ¼ 0:02,
for all modes, and CoV ¼ 0:4, giving rise to a total of
Fig. 5. Randomised first three modal shapes due to uncertainty characterised in the fu
uncertainty model in the reduced modal subspace by means of 9 calibrated uncorrelate
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N ¼ m2 þ 2m ¼ 15 random variables, fully characterising the
uncertainty model in the reduced modal space.

A suite of 100;000 realisations of b; c and h were next simu-
lated, and randomised modal matrices, spectral matrices and
modal matrices of damping ratios were constructed using Eqs.
(27).

The randomised modal shapes due to uncertainties in the geo-
metrical space are shown in Fig. 5(a), and are compared with the
ones from the proposed model in Fig. 5(b). The comparison is sat-
isfactory, as the corresponding envelopes of realisations (light red
lines) around the mean modal shapes (black lines) closely match-
ing each other; uncertainty only appears to be slightly underesti-
mated in the third modal shape, in the range L=4 < x < 3L=4.
This is due to the fact that the proposed uncertainty model
expresses spatial fluctuations in the modal shapes as linear combi-
nations of the firstm modes of vibration of the deterministic struc-
ture (see the first of Eqs. (27)), meaning that spatial patterns
requiring wavelengths shorter than km ¼ 2L=m are filtered out.

It is also noted that the mean and standard deviation values of
the first three modal circular frequencies show percentage differ-
ences that fall within 0:01% and 0:3% of the target ones,
respectively.
6.2.2. Analysis
The performance of the second-order, improved, third- (k ¼ 3)

and fourth-order (k ¼ 4) perturbation, as well as the PC
(k ¼ 3;nPC ¼ 500) variant, have been numerically investigated
with reference to the random process u L=2; tð Þ, representing the
evolutionary displacement response of the simply supported beam
at midpsan.

The time varying mean of the response is shown in Figs. 6(a)-
6(c), when a moving load travelling at constant velocities of
V ¼ 25;80 and 135m=s is respectively considered, compared
against pertinent MCS with 100;000 realisations (light red colour);
the corresponding loading times are tL ¼ 1:100;0:344 and 0:204s.
The results show an increase in the amplitude of oscillations exhib-
ited at higher moving load velocities; the uncertainty propagated
in the time history of the response also increases. All the variants
accurately predict the mean response, with the exception of the
improved perturbation, whose performance deteriorates after 5
cycles (i.e. t > 1s) for the case of V ¼ 135m=s (Fig. 6(c)).

The evolutionary variance of the response is plotted in
Figs. 6(d)-6(f) and cumulative percentage errors, with respect to
the MCS, are presented in Figs. 6(g)-6(i). Moments of up-to sixth
and eighth order arising in the third and fourth order perturbation
variants have been approximated by a cumulant-neglect second-
order (n ¼ 2) approximation. To assess the effectiveness of the
approximation, the third and fourth order perturbation responses
ll geometrical space with N ¼ 400 random variables (a); and due to the proposed
d random variables simulated from empirical distributions (b).



Fig. 6. Midspan deflection due to uncertainty in the reduced modal subspace for a moving load travelling at a constant speed of v ¼ 25m=s (left column); v ¼ 80m=s (central
column); and v ¼ 135m=s (right column): evolutionary mean (top row: a, b, c); evolutionary variance (middle row: d, e, f); and cumulative errors in the response variance
(bottom row: g, h, i).
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with truncated high-order moments arising are shown with dotted
lines.

Large discrepancies are shown for the conventional and
improved perturbations, propagating in the time histories of the
response, most evident at t > 1s, for Figs. 6(d) and 6(f), with the
proposed high-order perturbation and PC variants exhibiting
improved performance, closely resembling the reference MCS.
More specifically, the fourth-order perturbation and the PC solu-
tion are shown to accurately predict second-order response statis-
tics for all cases considered. Indeed, this observation is also
supported in Figs. 6(g)-6(i) with the respective cumulative errors
being kept below 5%. Moreover, the validity of the high-order sta-
tistical moment approximation is confirmed with the solid and
dotted lines closely resembling each other early in the time history
of the response.

Overall, the results indicate that, compared to low-order classi-
cal perturbation variants, the proposed high-order perturbation
can provide a viable alternative for the second-moment response
analysis of dynamical structures, with significant improvements
at moderate to high levels of system uncertainty. The increase in
computational effort, in practice, may be justified by means of a
priori assessment of the expected gains in terms of accuracy.
Sparse regression-based PC, facilitated by the modal subspace
reduction, are well-suited for the spectral response quantification.
Even though such representation is costly, its non-intrusive nature
enables high-fidelity asynchronous examination of distinct regions
in the response. Although quantification of the full probabilistic
structure of the response falls beyond the scope of this work, it is
13
noted that the numerical investigations presented exhibit non-
Gaussian responses. It is finally noted that further investigations
on a range of configurations, including other moving load veloci-
ties, levels of uncertainty, and input marginal distributions, have
revealed that the proposed variants consistently maintain good
performance.
7. Summary and conclusions

The linear dynamic analysis of structures with uncertain
mechanical parameters subjected to deterministic excitation, has
been addressed. In this study:

1. A model has been presented whereby system uncertainty is
conveniently characterised in the reduced modal subspace
rather than in the full geometrical space, with modal shapes,
frequencies and damping ratios constituting the random quan-
tities, dramatically reducing the number of underlying random
variables and the size of the dynamic problem.

2. A numerical procedure has been suggested for calibrating a set
of uncorrelated random variables, fully defining the proposed
uncertainty model, by means of marginal distributions identi-
fied through analysis in the geometrical space and suitable
probabilistic transformations; as an alternative, the random
variables in the reduced modal space can be directly assumed
based on the outcomes of experimental campaigns on existing
structures.
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3. Formulated in the reduced modal subspace, conventional
second-order as well as improved perturbation variants have
been presented.

4. A high-order perturbation variant has been proposed, in-line
with modern computing paradigms for on-demand computa-
tions. Based on an ad hoc extension of the second-order pertur-
bation approach, the proposed method involves a set of
auxiliary differential equations to be solved with the piecewise
exact method (PEM). It further uses moment-cumulant rela-
tionships to approximate the high-order statistical moments
of the input variable, that often might be unavailable.

5. A regression-based, non-intrusive, polynomial chaos (PC)
expansion approach has been employed to complement the
second-moment analysis for spectral quantification in line with
the proposed modal subspace reduction.

6. Numerical investigations on a multi-storey steel frame with
semi-rigid connections and a simply supported beam subjected
to a moving load have confirmed the validity of the second-
order, improved, high-order perturbation variants as well as
the spectral approach.
� The high-order perturbation variant has been found to out-

perform the conventional and improved variants in terms
of accuracy, providing increased flexibility, enabling the ana-
lyst to adaptively decide the level of fidelity, thus balancing
accuracy and computational cost.

� The spectral approach has been proven effective in terms of
accuracy and computational cost, allowing high-fidelity
asynchronous examination of distinct regions in the
response, preventing the cumulation of errors at late time
instants.

Future works will consider joint eigenvalue and eigenvector
statistics, i.e. accounting for the effects of cross-correlations
between the random variables in the reduced modal space, as well
as reliability analyses associated with extreme responses and dam-
age cumulation.
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Appendix A

A.1. Inverse matrix differentiation

Let matrix G be a function of ai and aj. Expressing GG�1 ¼ I and
making use of product rule, the first and second partial derivatives
of its inverse can be expressed as follows:

@G�1

@ai
¼ �G�1 @G

@ai
G�1;

@2G�1

@ai@aj
¼ G�1 @G

@ai
G�1 @G

@aj
G�1 � G�1 @2G

@ai@aj
G�1 þ G�1 @G

@aj
G�1 @G

@ai
G�1:

ð66Þ
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Notably, expressions for higher derivatives can be readily obtained
by means of the same process.

A.2. Piecewise exact method

Consider a linear second-order differential equation of the form
of Eq. (6), when no fluctuations are present i.e. ai ¼ 0. The state-
space form is given by Eq. (13a) and the associated integral form
reads [34]:

z0 ¼ H t � t0ð Þz0 t0ð Þ þ
Z t

t0
H t � sð ÞV0 F sð Þds: ð67Þ

The discretised solution is given by Eq. (42a), where the transition
matrix H Dtð Þ ¼ exp D0Dt½ �, only depends on Dt, tacitly assumed suf-
ficiently small, so that the interpolation of the forcing is satisfactory.

Furthermore, the load operators C0 and C1 are given by:

C0 Dtð Þ ¼ H Dtð Þ � L Dtð Þ½ �D�1
0 ;

C1 Dtð Þ ¼ L Dtð Þ � I2m½ �D�1
0 ;

ð68Þ

in which

L Dtð Þ ¼ 1
Dt

H Dtð Þ � I2m½ �D�1
0 : ð69Þ

It is noted that the systems in Eq. (13b) and Eq. (13c) can be solved
in a similar manner.
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