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A B S T R A C T

We propose an analytical framework to understand the mechanics and quantify the essential elastic properties
of two-dimensional hexagonal lattices with curved elements. Generalised closed-form expressions for the in-
plane Young’s moduli and Poisson’s ratios are obtained. It is of utmost importance to develop physics-based
efficient computational models for the design and analysis of cellular metamaterials. This paper develops
fundamental analytical approaches for obtaining generalised expressions to capture a large class of geometry.
The closed-form expressions are obtained utilising the stiffness coefficients of the constituent structural
members of the unit cell with curved beams. The new expressions for the equivalent in-plane properties are
then explored to investigate seven other unique unit cell geometries including two auxetic configurations.
Curved beam element as a constituent member of the unit cell has a significant effect in increasing the
flexibility of the lattice and it also expands the design space for lattice materials. The Poisson’s ratios also
vary in a controlled way and this favourable feature can be exploited for obtaining designer values for both
the regular and auxetic cases. The proposed analytical approach and the new closed-form expressions provide a
computationally efficient and physically intuitive framework for the analysis and parametric design of curved
lattice materials. The equivalent in-plane properties can be utilised as per the design requirements and the
expressions can be considered as benchmark results for future numerical and experimental investigations.
1. Introduction

Mechanical metamaterials are architectured materials comprised
of different length scales and developed by arranging unique micro-
structures to achieve unprecedented macro-scale properties which are
not available in nature [1–3]. Lattices are typical mechanical meta-
materials which are formed by tessellating a periodic unit cell. The
micro-structures effectively dictate the overall properties of the lat-
tice. Due to the advancement of additive manufacturing, the research
on lattice materials has increased substantially in recent times and
researchers are exploring different metamaterials to obtain tailored
properties. These artificially manufactured lattices are adopted from
nature and hexagonal lattices have been studied extensively in different
fields as they deliver high stiffness, toughness, and energy absorption
properties. To understand the concept of cellular materials we refer to
the work of Gibson and Ashby [4] and Fleck et al. [5]. Most of the
researches are focused on obtaining higher stiffness to weight ratio for
engineering applications and deals with straight constituent structural
members. Whereas, depending on the application of the structure, flex-
ibility is also an important objective to obtain the desired deformation.
In this work, we explore the flexibility of lattice material considering
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curved constituent members for the unit cell of the lattice and proposed
a novel class of 2D structural metamaterials.

The mechanical properties of the micro-architectured materials are
dependent on the material and geometric properties of the constituent
member of a periodic unit cell. In nature, we can find some mate-
rials with unintuitive material properties [5,6]. The recent advance-
ment of additive manufacturing has opened a window to develop
mechanical and structural metamaterials with unprecedented mechan-
ical properties and structural qualities. Cutting-edge researches have
been performed and are still being persuaded to obtain a novel class of
metamaterials with user-defined properties. The geometric properties
of constituent elements dictate the overall behaviour of the lattices
and consequently, this opens up a significant opportunity to explore
a wide range of geometric designs. The unit cell approach is a well
known and widely used approach to obtain the equivalent material
behaviour of the whole lattice [7–9]. It is mainly the honeycomb
material that is being studied extensively [10–15] and utilised to man-
ufacture structural members in the aerospace industry due to its high
specific stiffness low relative density. Several studies are available in
literature based on hexagonal lattice materials to predict the equivalent
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elastic moduli for regular as well as irregular hexagonal lattice [16–
21]. The metamaterials studied are with straight constituent elements
and the main objective has been to increase the stiffness of the struc-
ture [22,23]. Although high stiffness is desirable in many applications,
flexibility is also an important factor to satisfy the design requirements
for morphing structure which has become an important field of research
in the aerospace industry [24,25]. Flexibility is also crucial for a wide
range of engineering applications such as bio-engineering, stretchable
electronics, impact absorption and soft robots [26–31].

In this paper, we focus on hexagonal lattices with curved con-
stitutive elements. Some examples of curved 2D lattices conceived
and analysed in this paper are shown in Fig. 1. Four types of lat-
tices depicted are (a) the curved hexagonal lattice, (b) the curved
hexagonal auxetic lattice, (c) the curved rhombus lattice, and (d) the
curved rectangular lattice. Although these lattices are physically very
different, it will be shown that their mechanical behaviour can be
quantified using a unified analytical formulation. Current works on 2D
lattices are dominated by straight beam-element members to explore
the behaviour of regular as well as auxetic hexagonal lattices [32,33].
With the straight structural members, the design space of modifying
the equivalent Young’s moduli and Poisson’s ratio is limited. One
way this limitation is addressed here is by modifying the conven-
tional hexagonal geometry considering curved beam elements instead
of straight ones. Following this direction, we proposed a comprehen-
sive analytical approach that utilises the stiffness coefficients of the
curved member elements to obtain the closed-form expressions for
the equivalent material parameters. The formulation is performed for
curved 2D lattices. Curved structures are of great importance in differ-
ent engineering fields. Researchers explored the statics and dynamics
of the curved beam through the decades [34–37]. Several research
papers can be found on the development of finite element models
of curved beam [38–41] considering various types of displacement
functions [42,43]. Yamada and Ezawa [44] proposed an exact stiffness
matrix formulation for the curved beam. Tufekci et al. [45] derived
a two-noded curved beam finite element based on the exact solution
of the differential equation of the curved beam considering axial and
shear deformation. Lattice with curved geometry is used in literature to
obtain soft metamaterials for highly stretchable applications [46–49].
In these works, the authors obtained the expressions for the material
parameters using Castigliano’s method. Curved beam is used in this
work for the fact that it increases the flexibility of the element and
also, we can have a broad design space to tune the equivalent Young’s
modulus and Poisson’s ratio by varying the curvature angle along with
the cell angle, length, thickness and other geometric parameters. For
the case of straight beam element lattices, we do not have the option
of varying the curvature angle. Therefore, we cannot obtain different
material parameters by tuning the curvature angle. Depending on the
design demand we can have different material properties and the limits
of the material parameters are the ones with curvature angle zero i.e
the regular conventional hexagonal lattice. This is a key reason behind
exploring curved elements as a constituent member of the hexagonal
lattice.

We propose a method to derive closed-form expressions for the in-
plane elastic properties of the novel curved 2D lattice by exploiting the
stiffness components of the constituent members. These expressions are
general as one can obtain other geometries and conventional lattices di-
rectly from them as special cases. Analysis for both regular and auxetic
lattices are performed and the flexibility of the structures are studied
in great details. In the analysis, we also considered the axial stretching
contributions of the constituent elements along with bending. We can
see that the design space for this formulation is higher and one can
tune the properties based on their requirements. The formulation of the
closed-form expression is also simple and straight-forward where the
stiffness coefficients of the stiffness matrix of the constituent members
2

of the unit cell are directly utilised.
The paper is organised as follows. In Section 2, the unit cell ap-
proach is discussed and the stiffness matrices corresponding to the
constituent beam elements are also mentioned in detail. The equivalent
elastic properties for curved hexagonal lattice is derived in Section 3.
The numerical results for the curved hexagonal lattice are obtained
and discussed in Section 5. The Exact closed-form expressions for
the equivalent elastic properties of different geometries and special
cases are investigated which include auxetic curved hexagonal lattices,
curved rhombus-shaped lattices, curved rectangular lattices, regular
hexagonal lattice, auxetic hexagonal lattice and rectangular lattice in
Section 6. The results corresponding to the different cases and their
comparisons are discussed in Section 7 Finally, in Section 8 conclusions
are drawn based on the present work.

2. Overview of the unit cell approach for equivalent elastic mod-
uli

2.1. The unit cell model

The equivalent elastic property of a lattice material can be obtained
by considering a suitable periodic unit cell. For a two-dimensional
periodic lattice, the equivalent elastic properties are independent of the
choice of the unit cell as long as it tessellates and physically represents
the entire lattice. Therefore, to simplify the analysis it is customary to
choose a unit cell. In Fig. 2 we show a representative example of a
hexagonal curved lattice and its corresponding unit cell. Each of the cell
walls bends and stretches when subjected to in-plane stress. When the
applied stress is uniform along with the out of the plane, each element
of the unit cell (Fig. 2) can be modelled as a beam. We can see that there
are two types of beam components: 1. Curved beam and 2. straight
beam. In the next subsection, we will briefly discuss the finite element
analysis of these types of beams.

The equivalent elastic properties of a lattice material are important
for global stress–strain analysis. In this work, we are concerned about
the longitudinal Young’s modulus 𝐸1, the transverse Young’s modulus
𝐸2, and the Poisson’s ratios 𝜈12 and 𝜈21. There are two broad analytical
approaches to obtain these equivalent elastic properties. The first is
the direct force displacement-based method, pioneered by Gibson and
Ashby [4]. The second approach is based on the stiffness coefficients
of the constituent members of the unit cell [20]. Both approaches give
identical results. However, the method based on stiffness coefficients
is more general as it uses a finite element based approach. If the
stiffness matrix of the constituent members can be obtained exactly,
the equivalent elastic properties of the lattice can be expressed by exact
closed-form expressions [21]. For this reason, we adopted the stiffness
matrix based formulation considering the underlying physics of the
constituent members.

Considering only the bending deformation and ignoring any stretch-
ing/shortening deformations, the equivalent elastic moduli of hexago-
nal cellular materials with straight beams are obtained by Gibson and
Ashby [4] as

𝐸1𝐺𝐴
= 𝐸𝛼3 cos 𝜃

(𝜂 + sin 𝜃)
1

sin2 𝜃
(1)

𝐸2𝐺𝐴
= 𝐸𝛼3

(𝜂 + sin 𝜃)
cos3 𝜃

(2)

𝜈12𝐺𝐴
= cos2 𝜃

(𝜂 + sin 𝜃) sin 𝜃
(3)

and 𝜈21𝐺𝐴
=

(𝜂 + sin 𝜃) sin 𝜃
cos2 𝜃

(4)

In the above equations, the non-dimensional thickness ratio and the
non-dimensional height ratio are given by

𝛼 = 𝑡
𝐿

(5)

and 𝜂 = ℎ
𝐿

(6)
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Fig. 1. Family of curved 2D lattices conceived and analysed in this paper (a) The curved hexagonal lattice, (b) The curved hexagonal auxetic lattice, (c) The curved rhombus
lattice, and (d) The curved rectangular lattice.
Fig. 2. Typical representation of a hexagonal curved lattice, unit cell and its 3D view. ℎ=height of the straight beam element; 𝐿= Length of the curved beam element; 𝛽= Curvature
angle; 𝜃= Cell angle; 𝑏= width of the unit cell; 𝑡= thickness of the unit cell.
respectively. Here we are focused on the behaviour of the material in
the primary directions and we obtained the closed-form expression of
Young’s moduli and Poisson’s ratios for lattices with curved elements.
The aim is to generalise Gibson and Ashby’s expressions to the case of
curved lattices.

2.2. The classical straight beam element

For the straight beam, we consider the Euler–Bernoulli beam ele-
ment. The beam element with length 𝐿 and three degrees of freedom
3

(dof) per node is shown in Fig. 3(a). Considering the Euler–Bernoulli
beam theory (see for example [50]), the governing equations for the
transverse and axial deformations are given by

𝐸𝐼 𝜕
4𝑤
𝜕𝑥4

= 𝑓𝑏 (7)

and 𝐸𝐴 𝜕2𝑢
𝜕𝑥2

= 𝑓𝑎 (8)

Here 𝑤 ≡ 𝑤(𝑥) and 𝑓𝑏 ≡ 𝑓𝑏(𝑥) denote the transverse displacement
and applied transverse forcing on the beam and 𝑢 ≡ 𝑢(𝑥) and 𝑓 ≡
𝑥
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Fig. 3. Schematic diagram of a straight and curved beam element with three degrees
of freedom (axial, transverse and rotational) per node. In the above figures 𝑏= width
and 𝑡= thickness of the beam elements.

𝑓𝑎(𝑥) represent the axial displacement and applied axial forcing on
the beam. 𝐸 is Young’s modulus 𝐴 is the cross sectional area of the
beam and 𝐼 is the moment of inertia moment of the beam cross
section. Exact representation for the force–displacement relationship
of beam equations (Eqs. (7) and (8)) can be done using finite element
formulation considering cubic shape function for the bending and linear
shape function for the axial deformation.

In general the six-degree-of-freedom (DOF) stiffness matrix of a
beam comprising axial deformation, transverse deformation and rota-
tion can be expressed [50,51] as

𝐊 =
[

𝐊11 𝐊12
𝐊21 𝐊22

]

(9)

where 𝐊𝑖𝑗 , 𝑖, 𝑗 = 1, 2 are 3 × 3 sub-matrices. The degrees of freedom for
the beam element are shown in Fig. 3(a). The complete stiffness matrix
of the beam is given in closed-form as

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝐴
𝐿 0 0 −𝐸𝐴

𝐿 0 0
0 12𝐸𝐼

𝐿3
6𝐸𝐼
𝐿2 0 − 12𝐸𝐼

𝐿3
6𝐸𝐼
𝐿2

0 6𝐸𝐼
𝐿2

4𝐸𝐼
𝐿 0 − 6𝐸𝐼

𝐿2
2𝐸𝐼
𝐿

−𝐸𝐴
𝐿 0 0 𝐸𝐴

𝐿 0 0
0 − 12𝐸𝐼

𝐿3 − 6𝐸𝐼
𝐿2 0 12𝐸𝐼

𝐿3 − 6𝐸𝐼
𝐿2

0 6𝐸𝐼
𝐿2

2𝐸𝐼
𝐿 0 − 6𝐸𝐼

𝐿2
4𝐸𝐼
𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

The degrees of freedom 1 and 4 correspond to the axial displacements,
degrees of freedom 2 and 5 denotes the transverse displacements, and
3 and 6 correspond to the rotations of the cross sections.

2.3. The curved beam element

To model the curved beam, we have considered the exact stiffness
matrix formulation by Yamada and Ezawa [44]. Their formulation
account for the axial stretching along with the bending deformation.
Fig. 3(b) shows the schematic of the two noded curved beam element
with 3 degrees of freedom per node. Fig. 4 shows the curved beam
under equilibrium forces. The equilibrium equations considering a
section on the curved beam are as follows

𝑁 +𝑁C cos𝜙 −𝑄C sin𝜙 = 0 (11)

𝑄 +𝑁 sin𝜙 +𝑄 cos𝜙 = 0 (12)
4

C C
Fig. 4. Schematic diagram of a curved beam element in equilibrium. 𝑁 , 𝑀 and 𝑄
denote the axial force, moment and shear force respectively.

and 𝑀 +𝑀C −𝑁C𝑅(1 − cos𝜙) −𝑄C𝑅 sin𝜙 = 0 (13)

Where 𝑁 , 𝑀 and 𝑄 are the axial, moment and shear forces respectively.
The central section is denoted by subscript C and 𝑅 is the radius. Angle
𝛽 denotes the curvature angle and 𝜙 is the variable angle that specifies
the position of point P on the beam. The strain and the rotation are
given by

𝜀 = d𝑢t∕d𝑠 + 𝑢r∕𝑅 (14)

and 𝛿𝜙 = d𝑢r∕d𝑠 − 𝑢t∕𝑅 (15)

where 𝑠 = 𝑅𝜙 in Fig. 4 denotes the arch length. The quantities 𝑢𝑡 and 𝑢𝑟
are the tangential and radial displacements respectively. The curvature
is expressed as

𝜅 =
d𝛿𝜙
d𝑠

= 1
𝑅2

(

d2𝑢r
d𝜙2

−
d𝑢t
d𝜙

)

(16)

For elastic beam, the constitutive equations are as follows

𝜀 = 𝑁∕𝐸𝐴 (17)

and 𝜅 = d𝛿𝜙∕d𝑠 = 𝑀∕𝐸𝐼 (18)

where 𝐸𝐼 and 𝐸𝐴 are the bending stiffness and axial stiffness of the
beam respectively. 𝐼 and 𝐴 are the moment of inertia and area of
the cross-section of the beam. 𝐸 denote Young’s modulus of the beam
material. Considering the above equations we obtain the governing
equations for the tangential and radial displacements as

1
𝑅

(

d𝑢t
d𝜙

+ 𝑢r

)

= 1
𝐸𝐴

(

𝑄C sin𝜙 −𝑁C cos𝜙
)

(19)

and

1
𝑅2

(

d2𝑢r
d𝜙2

−
d𝑢t
d𝜙

)

= 1
𝐸𝐼

[

−𝑀C +𝑁C𝑅(1 − cos𝜙) +𝑄C𝑅 sin𝜙
]

(20)

Eqs. (19) and (20) are equivalent to the case of the straight beams in
Eq. (8) and Eq. (7) respectively. However, there is a distinct difference
between those equivalent equations. Unlike the straight beam equation
the curved beam equations are coupled. These two equations (Eqs. (19)
and (20)) are then used to obtain the tangential and radial displace-
ments followed by the flexibility and stiffness matrix for curved beam.
For further details we refer to [44].

Like the straight beam element, the curved beam element also has
six degrees of freedom. Therefore, the stiffness matrix of the curved
beam can be expressed in a manner similar to the straight beam given
in Eq. (9). While the physical meaning of the individual elements of the
stiffness matrix remains the same, the expressions themselves are more
complex. The exact closed-form expressions of the 3 × 3 sub-matrices,
𝐊 , 𝑖, 𝑗 = 1, 2 are given in Boxes I–III.
𝑖𝑗
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𝐷

a

𝐷

𝐊11 = 𝐷

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛽2−𝛽
(

cos2 𝛽−sin2 𝛽
)

sin 𝛽 cos 𝛽

− 2
1+𝜉 sin4 𝛽

𝑆𝑦𝑚.

2𝛽 sin2 𝛽 cos2 𝛽

− 2
1+𝜉 sin3 𝛽 cos 𝛽

𝛽2+𝛽
(

cos2 𝛽−sin2 𝛽
)

sin 𝛽 cos 𝛽

− 2
1+𝜉 sin2 𝛽 cos2 𝛽

𝛽2−2𝛽 cos3 𝛽 sin 𝛽

+
(

cos2 𝛽− 2
1+𝜉 sin2 𝛽

)

sin2 𝛽

𝛽
(

1+2 cos2 𝛽
)

sin2 𝛽

−
(

2
1+𝜉 +1

)

sin3 𝛽 cos 𝛽

𝛽2
[

1+ 1
2 (1+𝜉)

]

−𝛽
(

1+2 cos2 𝛽
)

sin 𝛽 cos 𝛽

+
{[

2− 1
2 (1+𝜉)

]

cos2 𝛽

− 2
1+𝜉 sin2 𝛽

}

sin2 𝛽

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)

Box I.
𝐊12 = 𝐷

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛽2
(

sin2 𝛽−cos2 𝛽
)

+𝛽 sin 𝛽 cos 𝛽

− 2
1+𝜉 sin4 𝛽

−2𝛽2 sin 𝛽 cos 𝛽

+ 2
1+𝜉 sin3 𝛽 cos 𝛽

𝛽2
(

sin2 𝛽−cos2 𝛽
)

+2𝛽 sin 𝛽 cos 𝛽

−
(

cos2 𝛽+ 2
1+𝜉 sin2 𝛽

)

sin2 𝛽

2𝛽2 sin 𝛽 cos 𝛽

− 2
1+𝜉 sin3 𝛽 cos 𝛽

𝛽2
(

sin2 𝛽−cos2 𝛽
)

−𝛽 sin 𝛽 cos 𝛽

+ 2
1+𝜉 sin2 𝛽 cos2 𝛽

.
2𝛽2 sin 𝛽 cos 𝛽

−𝛽 sin2 𝛽

−
(

2
1+𝜉 −1

)

sin3 𝛽 cos 𝛽

𝛽2
(

sin2 𝛽−cos2 𝛽
)

+2𝛽 sin 𝛽 cos 𝛽

−
(

cos2 𝛽+ 2
1+𝜉 sin2 𝛽

)

sin2 𝛽

−2𝛽2 sin 𝛽 cos 𝛽

+𝛽 sin2 𝛽

+
(

2
1+𝜉 −1

)

sin3 𝛽 cos 𝛽

𝛽2
[

sin2 𝛽−cos2 𝛽− 1
2 (1+𝜉)

]

+3𝛽 sin 𝛽 cos 𝛽

−
{[

2− 1
2 (1+𝜉)

]

cos2 𝛽

+ 2
1+𝜉 sin2 𝛽

}

sin2 𝛽

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐊𝑇
21 (22)

Box II.
𝐊22 = 𝐷

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛽2−𝛽
(

cos2 𝛽−sin2 𝛽
)

sin 𝛽 cos 𝛽

− 2
1+𝜉 sin4 𝛽

𝑆𝑦𝑚

−2𝛽 sin2 𝛽 cos2 𝛽

+ 2
1+𝜉 sin3 𝛽 cos 𝛽

𝛽2+𝛽
(

cos2 𝛽−sin2 𝛽
)

sin 𝛽 cos 𝛽

− 2
1+𝜉 sin2 𝛽 cos2 𝛽

𝛽2−2𝛽 cos3 𝛽 sin 𝛽

+
(

cos2 𝛽− 2
1+𝜉 sin2 𝛽

)

sin2 𝛽

−𝛽
(

1+2 cos2 𝛽
)

sin2 𝛽

+
(

2
1+𝜉 +1

)

sin3 𝛽 cos 𝛽

𝛽2
[

1+ 1
2 (1+𝜉)

]

−𝛽
(

1+2 cos2 𝛽
)

sin 𝛽 cos 𝛽

+
{[

2− 1
2 (1+𝜉)

]

cos2 𝛽

− 2
1+𝜉 sin2 𝛽

}

sin2 𝛽

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(23)

Box III.
T
In the above matrix equations

= 𝐸𝐼
𝑅3

𝐷̄ =
𝐸𝐼∕𝑅3

(1 + 𝜉)𝛽
(

𝛽2 − sin2 𝛽 cos2 𝛽
)

− 2(𝛽 − sin 𝛽 cos 𝛽) sin2 𝛽
(24)

nd the non-dimensional quantities

̄ = 1
(1 + 𝜉)𝛽

(

𝛽2 − sin2 𝛽 cos2 𝛽
)

− 2(𝛽 − sin 𝛽 cos 𝛽) sin2 𝛽
(25)

and

𝜉 = 𝐼
𝐴𝑅2

= 1
12

𝑏𝑡3

(𝑏𝑡)𝑅2
= 1

12

( 𝑡
𝑅

)2
= 1

3
𝛼2 sin2 𝛽 (26)
5

he preceding relationship arises from the fact that 𝑅 = 𝐿∕(2 sin 𝛽)

(see Fig. 5 for the geometric details). In this work, it turns out that

the stiffness coefficients within the block 𝐊11 are mainly necessary for

further derivation. They are represented as below for convenience

𝐊11 = 𝐷
⎡

⎢

⎢

⎣

𝑘11 𝑘12 𝑘13
𝑘12 𝑘22 𝑘23
𝑘13 𝑘23 𝑘33

⎤

⎥

⎥

⎦

= 𝐸𝐼
𝑅3

𝐷̄
⎡

⎢

⎢

⎣

𝑘11 𝑘12 𝑘13
𝑘12 𝑘22 𝑘23
𝑘13 𝑘23 𝑘33

⎤

⎥

⎥

⎦

= 2
3
𝐸𝑏𝛼3𝐷̄ sin3 𝛽

⎡

⎢

⎢

𝑘11 𝑘12 𝑘13
𝑘12 𝑘22 𝑘23

⎤

⎥

⎥

⎣ 𝑘13 𝑘23 𝑘33 ⎦
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𝑃

T
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U
e

𝐸

I
(

𝜖

= 2
3
𝐸𝑏𝛼3

⎡

⎢

⎢

⎣

𝑘̄11 𝑘̄12 𝑘̄13
𝑘̄12 𝑘̄22 𝑘̄23
𝑘̄13 𝑘̄23 𝑘̄33

⎤

⎥

⎥

⎦

= 𝐷𝐿

⎡

⎢

⎢

⎣

𝑘̄11 𝑘̄12 𝑘̄13
𝑘̄12 𝑘̄22 𝑘̄23
𝑘̄13 𝑘̄23 𝑘̄33

⎤

⎥

⎥

⎦

(27)

here 𝐷𝐿 = 2
3𝐸𝑏𝛼3. It can be seen that the components of 𝐊11

re functions of the curvature angle 𝛽. If we take the lim𝛽→0 of 𝐊11
t becomes the stiffness components of the Euler–Bernoulli beam as
hown below

lim
→0

𝐊11 = lim
𝛽→0

𝐷
⎡

⎢

⎢

⎣

𝑘11 𝑘12 𝑘13
𝑘12 𝑘22 𝑘23
𝑘13 𝑘23 𝑘33

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑘𝐸𝐵
11 𝑘𝐸𝐵

12 𝑘𝐸𝐵
13

𝑘𝐸𝐵
12 𝑘𝐸𝐵

22 𝑘𝐸𝐵
23

𝑘𝐸𝐵
13 𝑘𝐸𝐵

23 𝑘𝐸𝐵
33

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐸𝐴
𝐿 0 0
0 12𝐸𝐼

𝐿3
6𝐸𝐼
𝐿2

0 6𝐸𝐼
𝐿2

4𝐸𝐼
𝐿

⎤

⎥

⎥

⎥

⎦

(28)

he components of the stiffness matrix from Eq. (27) and Eq. are
sed in next section to derive the equivalent elastic coefficients of the
eneral curved 2D lattice.

. The general derivation of in-plane elastic moduli

The elastic behaviour of the overall lattice material depends on the
eformation characteristics of the constituent individual beams. In the
revious section, the stiffness matrices of a curved beam and a straight
eam element are discussed. The objective of this section is to express
quivalent in-plane elastic moduli of the lattice in terms of the stiffness
atrix elements of the curved beams using the unit cell approach. For

he case of equivalent static properties of the straight-beam lattices, we
efer to well-known references by Gibson and Ashby [4] and Masters
nd Evans [7]. For the sake of generality, we consider the equilibrium
f the unit cell under different stress conditions.

.1. The longitudinal Young’s modulus 𝐸1 and the Poisson’s ratio 𝜈12

To obtain the expression of longitudinal elastic modulus, uniform
tress is applied to the unit cell in the 1-direction. The boundary
onditions of the unit cell are chosen in such a way that it can capture
he physics of the hexagonal lattice material under in-plane loading
onditions. The main motivation is to utilise the stiffness components of
he constituent beam members directly into the formulation to obtain
he equivalent material properties of the lattice. The employment of the
tiffness matrix coefficients ensures that the forces and moments arising
rom the deformations of the adjacent cells due to the application of the
lobal stress fields are taken into account in a mechanically consistent
anner. This is equivalent to the direct force method considered by
ibson and Ashby [4] and Masters and Evans [7].

Therefore, we choose a single cell and the equivalent material prop-
rties are obtained by prescribing appropriate boundary conditions.
he entire lattice is formed by tessellating the unit cell in the 𝑥 and
directions. The boundary conditions imposed are as follows:

• Point C is fixed.
• The rotational degrees of freedom are restrained in points A and

B.

he deformation of the unit cell is symmetric about the member OC.
he resultant force 𝑃 is the consequence of the applied stress which is
cting on points 𝐴 and 𝐵 of the unit cell (Fig. 5). The effect of rotation
f the adjacent cells at points A and B will be equal and opposite
nd therefore, in this unit cell, the rotational dof are constrained. At
oint O, there will also act equal and opposite forces and moments
nd consequently there will be no net deformation of the point. Also,
he vertical member will not experience any displacements, so the
oint C is kept fixed. These boundary conditions along with the above
eformation patterns ensure the periodicity of the unit cell when the
6

verall deformation of the entire lattice is considered in both directions.
The expression of the force 𝑃 is obtained by multiplying the stress
ith the effective area as

= 𝜎1𝑏(ℎ + 𝐿 sin 𝜃) (29)

he components of 𝑃 in the tangential and radial direction of the
urved beam are respectively 𝑃𝑡 = 𝑃 cos 𝜃 and 𝑃𝑟 = 𝑃 sin 𝜃. The local

coordinate systems for a curved beam, as well as for the unit cell, are
shown in Fig. 6.

Now, considering the force–displacement relationship of a curved
beam we get

𝑃𝑡 = 𝑘11𝑢𝑡 + 𝑘12𝑢𝑟 (30)
and 𝑃𝑟 = 𝑘21𝑢𝑡 + 𝑘22𝑢𝑟 (31)

Here the terms 𝑘𝑖𝑗 (𝑖, 𝑗 = 1, 2) in the above equations are to be obtained
from form Eq. (27) corresponding to the 𝐊11 block of the overall
stiffness matrix. Solving the above equations the values of 𝑢𝑡 and 𝑢𝑟
can be obtained as

𝑢𝑡 =
𝑘22𝑃𝑡 − 𝑘12𝑃𝑟

𝑘11𝑘22 − 𝑘212
=

𝑘22𝑃𝑡 − 𝑘12𝑃𝑟
𝛥

(32)

and 𝑢𝑟 =
𝑘11𝑃𝑟 − 𝑘12𝑃𝑡

𝑘11𝑘22 − 𝑘212
=

𝑘11𝑃𝑟 − 𝑘12𝑃𝑡
𝛥

(33)

where

𝛥 = 𝑘11𝑘22 − 𝑘212 = 𝐷2
𝐿
[

𝑘̄11𝑘̄22 − 𝑘̄212
]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝛥

= 𝐷2
𝐿𝛥 (34)

𝑘̄𝑖𝑗s are defined in Eq. (27). The displacements along the global co-
ordinate system of the curved beam are

𝑢′1 = 𝑢𝑡 cos 𝛽 − 𝑢𝑟 sin 𝛽 (35)

and 𝑢′2 = 𝑢𝑡 sin 𝛽 + 𝑢𝑟 cos 𝛽 (36)

The displacements of point A with respect to the global co-ordinate
system of the unit cell is

𝑢1 = 𝑢′1 cos 𝜃 − 𝑢′2 sin 𝜃 (37)

and 𝑢2 = 𝑢′1 sin 𝜃 + 𝑢′2 cos 𝜃 (38)

Putting the values of 𝑢′1 and 𝑢′2 in the above equations we obtain the
expressions for the global displacements as

𝑢1 = 𝑢𝑡 cos(𝛽 + 𝜃) − 𝑢𝑟 sin(𝛽 + 𝜃) = 𝑢𝑡 cos 𝜃′ − 𝑢𝑟 sin 𝜃′ (39)
and 𝑢2 = 𝑢𝑡 sin(𝛽 + 𝜃) + 𝑢𝑟 cos(𝛽 + 𝜃) = 𝑢𝑡 sin 𝜃′ + 𝑢𝑟 cos 𝜃′ (40)

In the above equation it is considered that

𝜃′ = 𝜃 + 𝛽 (41)

for notational convenience. Recalling that the unit cell is symmetric,
the displacements at points A and B will be the same as the forcing is
also symmetric. Therefore, the strain in the 1-direction can be obtained
from the ratio of 𝑢1 to the half-length of the unit cell as

𝜖1 =
𝑢1

𝐿 cos 𝜃
= 𝑃

𝛥𝐿 cos 𝜃
[

𝑘11 sin
2 𝜃′ + 𝑘22 cos2 𝜃′ + 𝑘12 sin 2𝜃′

]

(42)

sing this, we obtain Young’s modulus in 1-direction in terms of the
lements of the stiffness matrix

1 =
𝜎1
𝜖1

= 𝛥 cos 𝜃
𝑏(𝜂 + sin 𝜃)

[

𝑘11 sin
2 𝜃′ + 𝑘22 cos2 𝜃′ + 𝑘12 sin 2𝜃′

]

=
𝐷𝐿𝛥 cos 𝜃

𝑏(𝜂 + sin 𝜃)
[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]

= 2
3
𝐸𝛼3 𝛥 cos 𝜃

(𝜂 + sin 𝜃)
[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]
(43)

n the above, 𝑘̄𝑖𝑗s are mentioned in Eq. (27) and 𝛥 is defined in Eq.
34). The strain in the 2-direction is obtained as

=
𝑢2 = 𝑃 (𝑘 cos 2𝜃′ + 0.5(𝑘 − 𝑘 ) sin 2𝜃′)
2 ℎ + 𝐿 sin 𝜃 𝛥 12 11 22
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Fig. 5. The unit cell under the application of a stress field 𝜎1 is applied in the 1-direction. This configuration is used for the derivation of the longitudinal Young’s modulus 𝐸1
and the Poisson’s ratio 𝜈12.
Fig. 6. The coordinate system of a curved beam and the unit cell. r and t denotes the radial and tangent co-ordinate of a curved beam; 1′ and 2′ denotes the global co-ordinate
of a curved beam and 1 and 2 denotes the global co-ordinate system for the unit cell.
=
𝜎1𝑏
𝛥

(𝑘12 cos 2𝜃′ + 0.5(𝑘11 − 𝑘22) sin 2𝜃′) (44)

Using the strains 𝜖2 and 𝜖1, it is now possible to obtain the Poisson’s
ratio 𝜈12 as

𝜈12 = −
𝜖2
𝜖1

= cos 𝜃
(𝜂 + sin 𝜃)

[

𝑘̄12 cos 2𝜃′ + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝜃′
]

[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]
(45)

From the expressions derived here, we can observe that not only the
diagonal terms but also the coupling terms contribute towards the value
of 𝐸1 and 𝜈12. This shows that the effect of the bending and stretching
and their coupling is going to influence the material properties. This is
a striking difference from the case of lattices with straight beams only.
We will see the impact of this coupling in the results and discussion
sections later in the paper.

3.2. The transverse Young’s modulus 𝐸2 and the Poisson’s ratio 𝜈21

We derive the expression of transverse Young’s modulus (𝐸2) and
Poisson’s ratio (𝜈21) considering an uniform stress 𝜎2 in the global
direction 2 (see Fig. 7). The components of 𝑊 in the tangential and
radial direction of the curved beam are respectively 𝑃 = 𝑊 sin 𝜃 and
7

𝑡

𝑃𝑟 = 𝑊 cos 𝜃. The deformation is symmetric about line OC and the point

O has deflection only in 2-direction. Following the similar procedure in

Section 3.1 the global displacements are obtained as

𝑢1 = 𝑢𝑡 cos(𝛽 + 𝜃) − 𝑢𝑟 sin(𝛽 + 𝜃) = 𝑢𝑡 cos 𝜃′ − 𝑢𝑟 sin 𝜃′ (46)
and 𝑢2 = 𝑢𝑡 sin(𝛽 + 𝜃) + 𝑢𝑟 cos(𝛽 + 𝜃) = 𝑢𝑡 sin 𝜃′ + 𝑢𝑟 cos 𝜃′ (47)

Putting the values of 𝑢𝑡 and 𝑢𝑟 in the above equation and performing

some algebraic simplifications, the displacements are obtained followed

by Young’s modulus and Poisson’s ratio. The strain the 1-direction is

obtained as

𝜖1 =
𝑢1

𝐿 cos 𝜃
= 𝑊

𝛥𝐿 cos 𝜃
(𝑘̄12 cos 2𝜃′ + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝜃′) (48)

The total displacement along the 2-direction is

𝛿2 = 𝑢2 + 𝛿𝑜 = 𝑢2 +
2𝑊
𝐸𝐴
ℎ

(49)

Where 𝑢2 is the displacement of point A relative to point O and 𝛿0 is the

displacement of point O in the 2-direction due to the axial deformation
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Table 1
Details of the geometric parameters of the unit cell and the entire lattice considered for the finite element analysis.
Length (mm) Thickness (mm) Width (mm) 𝐿𝑥 (mm) 𝐿𝑦 (mm) Cell angle (𝜃)

𝑙 = ℎ = 20.866 𝑡=1.50 𝑏=1.50 724.32 480.78 300
Fig. 7. The unit cell under the application of a stress field 𝜎2 is applied in the 2-
direction. This configuration is used for the derivation of the longitudinal Young’s
modulus 𝐸2 and the Poisson’s ratio 𝜈21.

of the vertical member OC. The strain the 2-direction is therefore

𝜖2 =
𝛿2

ℎ + 𝐿 sin 𝜃
= 𝑊

𝛥

[

(𝑘11 cos2 𝜃′ + 𝑘22 sin
2 𝜃′ − 𝑘12 sin 2𝜃′) − 2𝛥

𝐾ℎ
44

]

(ℎ + 𝐿 sin 𝜃)

(50)

From the expression of the strain, Young’s modulus for the 2-direction
can be obtained as

𝐸2 =
𝜎2
𝜖2

=
𝛥(𝜂 + sin 𝜃)

𝑏
[

(𝑘11 cos2 𝜃′ + 𝑘22 sin
2 𝜃′ − 𝑘12 sin 2𝜃′) − 2𝛥

𝐾ℎ
44

]

cos 𝜃

= 2
3
𝐸𝛼3

𝛥(𝜂 + sin 𝜃)
[

(𝑘̄11 cos2 𝜃′ + 𝑘̄22 sin
2 𝜃′ − 𝑘̄12 sin 2𝜃′) − 4

3 𝜂𝛼
2
]

cos 𝜃
(51)

In the above equation, 𝐾ℎ
44 is the stiffness component of the vertical

straight beam, 𝑘̄𝑖𝑗s are defined in Eq. (27) and 𝛥 is defined in Eq. (34).
The Poisson’s ratio is obtained in terms of the elements of the stiffness
matrix as

𝜈21 = −
𝜖1
𝜖2

=
(𝜂 + sin 𝜃)(𝑘̄12 cos 2𝜃′ + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝜃′)

[

(𝑘̄11 cos2 𝜃′ + 𝑘̄22 sin
2 𝜃′ − 𝑘̄12 sin 2𝜃′) − 4

3 𝜂𝛼
2
]

cos 𝜃
(52)

The proposed expressions of the general equivalent material parameters
conform the reciprocal theorem

𝐸1𝜈21 = 𝐸2𝜈12 =
2
3
𝐸𝛼3

×
𝛥(𝑘̄12 cos 2𝜃′ + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝜃′)

[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]

[

(𝑘̄11 cos2 𝜃′ + 𝑘̄22 sin
2 𝜃′ − 𝑘̄12 sin 2𝜃′) − 4

3
𝜂𝛼2

]

(53)

The expressions derived here and in the previous subsection can be
viewed as the generalisation of the classical results by Gibson and
8

Table 2
Elastic properties used for finite element simulation.
Material Young’s Modulus

(GPa)
Poisson’s
ratio

Steel (ASTM-A36) 200 0.30

Ashby [4] for lattices with straight beam elements to lattices with
curved beam elements. These analytical expressions actually converge
to the formula obtained by Adhikari et al. [20] in the limiting case
shown in Section 6.4 (Eqs. (76)–(79)). Also, Fig. 8 in Section 4 shows
the convergence of the equivalent elastic properties to the Gibson and
Ashby’s expressions (Eqs. (1)–(4)) for small values of the curvature
angle. This convergence verifies the closed-form expressions derived
here.

4. Validation of the closed-form solutions

4.1. Validation with respect to the classical analytical results

We first perform a comparison between our proposed closed-form
expressions, Gibson and Ashby’s expressions, and Masters and Evans
solutions. Fig. 8 presents the values of 𝐸 and 𝜈 for the regular and the
auxetic case considering our formula, Gibson and Ashby’s [4] formula
and Masters and Evans’s [7] formula. It is observed that for small values
of 𝛽, our results converge to the Masters and Evans’s formula.

The trend of the curves for Young’s moduli is similar for both regular
and auxetic cases. Whereas, the Poisson’s ratio are opposite in sign as
expected. The figure demonstrates that the expressions for the curved
lattice are more general as the expressions for different geometry and
classical cases can be obtained by limiting some parameters which
already explained in Section 6.

4.2. Validation with respect to commercial finite element results

The finite element (FE) validation of the closed-form expressions
for the regular hexagonal lattice with a straight constituent beam is
also conducted in this section. Fig. 9(a) also shows the lattice material,
boundary condition, and loading condition applied to the lattice to
perform the finite element simulation. To perform the finite element
analysis commercial software NASTRAN has been used. The unit cell
of the lattice is shown in Fig. 12(e). The analytical expressions for the
equivalent elastic moduli of regular hexagonal lattice are obtained in
Section 6.4. For finite element validation we consider the longitudinal
elastic modulus 𝐸1 and to obtain the analytical value (76) is considered.
The details of the geometric parameters of the unit cell and the whole
lattice used for the finite element analysis are shown in Table 1. For
material, Steel (ASTM-A36) is used for analysis. Elastic properties of
these five materials are given in Table 2.

Solid elements with 1057332 nodes and 516475 elements are se-
lected. The boundary conditions for the finite element model are con-
sidered in such a way that it can capture the deformation of the
lattice as a ‘material’. In this regard, the left faces of the lattice are
allowed to move in the 𝑦-direction, but all other degrees of freedom
are restricted. To avoid the rigid body displacements, the mid node
is restricted to move in the 𝑦-direction, whereas all other degrees of
freedom are released, which also supports the symmetry of the lattice
structure. To obtain the equivalent longitudinal Young’s modulus, the
average displacements of all the nodes at the right edge of the lattice
(where the load is applied). This average displacement is then divided
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Fig. 8. Normalised equivalent elastic moduli and Poisson’s ratio obtained for regular and auxetic case considering curved lattice (curvature angle 𝛽 = 3◦), Masters and Evans and
Gibson and Ashby formula for cell angle 𝜃 < 0, height ratio 𝜂 = ℎ
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Table 3
Comparison of the normalised longitudinal Young’s modulus
(𝐸1∕(𝐸𝛼3)) for the regular hexagonal lattices obtained from
closed-form solution and finite element analysis. For 𝐸, the
value of Young’s modulus of Steel is considered.
Material Analytical FE % error

Steel (ASTM-A36) 2.2741 2.2789 0.21

by the length of the lattice (𝐿𝑥) to obtain the strain. The total force is
ivided with the surface area of the edge to derive the effective stress.
inally, to obtain the equivalent Young’s modulus, the stress is divided
ith the effective strain. The typical deformation pattern of the lattice
aterial under the application of a uniformly distributed load is shown

n Fig. 9(b).
Table 3 shows the comparison between the analytical results are

ith finite element simulation. The value of 𝛼 = 𝑡∕𝑙 ≈ 0.072 in
our analysis. The result shows a quite good match between the finite
element and the analytical one.

5. Numerical results: curved hexagonal lattices

This section deals with the numerical analysis of the curved hexag-
onal lattice. The results are obtained by varying the curvature angle
(𝛽) and cell angle (𝜃) values. In Fig. 10 Young’s modulus and Poisson’s
ratios are compared with the classical case.

For this plot, we kept the height ratio 𝜂 = 1 and the material
parameters are obtained as functions of the cell angle 𝜃 for different
curvature angles (𝛽). To analytically comprehend the difference be-
tween the classical results for straight lattices and curved lattices, we
9

i

obtain the following explicit ratios

𝐸1
𝐸1𝐺𝐴

= 2
3

(

𝑘̄11𝑘̄22 − 𝑘̄212
)

[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]
(54)

𝐸2
𝐸2𝐺𝐴

= 2
3

cos2 𝜃(𝑘̄11𝑘̄22 − 𝑘̄212)
[

(𝑘̄11 cos2 𝜃′ + 𝑘̄22 sin
2 𝜃′ − 𝑘̄12 sin 2𝜃′) − 4

3 𝜂𝛼
2
] (55)

𝜈12
𝜈12𝐺𝐴

=
tan 𝜃

(

𝑘̄12 cos 2𝜃′ + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝜃′
)

[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]
(56)

and
𝜈21
𝜈21𝐺𝐴

=
cot 𝜃(𝑘̄12 cos 2𝜃′ + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝜃′)

[

(𝑘̄11 cos2 𝜃′ + 𝑘̄22 sin
2 𝜃′ − 𝑘̄12 sin 2𝜃′) − 4

3 𝜂𝛼
2
] (57)

In the special case of a straight lattice made of thin beam elements, that
is, 𝛽 → 0 and 𝛼2 ≪ 1, it can be proved that these four ratios become
xactly 1. This implies that the ratios given in Eqs. (54)–(57) directly
uantify the impact of curved lattices in relation to the straight lattices.

From Fig. 10 it is observed that the normalised values of 𝐸1 and 𝜈12
re quite less from the classical case for lower values of 𝜃, whereas the
ifferences increase for 𝐸2 and 𝜈21 for higher values of 𝜃. The values
f 𝐸1 and 𝜈12 are much controlled than the classical case as the values
ncrease rapidly for lower values of 𝜃 for the classical case. It is noticed
hat the effect of 𝛽 on the material parameters is significant and the
attice become more flexible as the 𝛽 takes a higher value. This tells
s that a more flexible lattice can be obtained by introducing a curved
eam and can exploit flexibility for a particular value of 𝜃 wherever
eeded. By varying the curvature angle 𝛽 value the material properties
an be tuned to the extent which is not possible within the scope of
lassical straight-beam lattices.

To get an overall vision of how the material parameters are getting
nfluenced by the crucial latices parameters, a 3D plot is shown in
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Fig. 9. Figure showing (a) Finite element model of the entire lattice with boundary conditions (fixed left side, uniformly distributed load is the right side) (b) deformed shape
of the lattice due to the application of load in the 𝑥-direction.
Fig. 10. Comparison of normalised equivalent elastic moduli and Poisson’s ratio obtained for curved hexagonal lattices and regular hexagonal lattices considering Gibson and
Ashby’s formula. The results are plotted as functions of cell angle 𝜃 for a value of height ratio 𝜂 = ℎ

𝐿
= 1 and different values of curvature angle (𝛽).
Fig. 11. This describes the nature of the variability of the equivalent
elastic properties of the lattices as functions of the cell angle 𝜃 and the
curvature angle 𝛽.

Later we will see that when the axial deformations are included,
the values of the equivalent elastic moduli and Poisson’s ratio of the
lattice are reduced and the lattice system will become more flexible
for the curved geometry. This shows the larger design space of the
curved lattices in comparison to the straight lattice. In the case of the
curved lattice, there is one additional parameter, the curvature angle
10
(𝛽) and combinations of 𝜃, 𝛽 and 𝜂 can be utilised to tune the equivalent
properties as per the design requirements.

6. Generalisation to further geometries and special cases

In Section 3, we obtained the analytical expressions for the Young’s
modulus and Poisson’s ratios (Eqs. (43), (45), (51) and (52)) for the
curved hexagonal lattice. The formulation is very general and it can be
applied to various other lattice patterns and geometry of the constituent
members. Seven special cases of various patterns which include curved
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Fig. 11. Normalised equivalent elastic moduli and Poisson’s ratio obtained for hexagonal curved lattice; The results are plotted as functions of cell angle 𝜃 and curvature angle
𝛽 for a value of height ratio 𝜂 = ℎ

𝐿
= 1.
auxetic hexagonal lattice (𝜃 = −𝜃), curved rhombus lattice (ℎ = 0),
curved rectangular lattice (𝜃 = 0), regular hexagonal lattice (𝛽 = 0),
regular auxetic hexagonal lattice (𝜃 = −𝜃, 𝛽 = 0), regular rhombus
lattice (ℎ = 0, 𝛽 = 0), and regular rectangular lattice (𝜃 = 0, 𝛽 = 0)
are shown in Fig. 12.

The unit cells for those lattices are also highlighted in Fig. 12.
In this section, we derive and discuss the equivalent in-plane elastic
moduli and Poisson’s ratios for all these cases considering the general
expressions Eqs. (43), (45), (51) and (52) in separate subsections.

6.1. The curved auxetic hexagonal lattice: 𝛽 ≠ 0, 𝜃 = −𝜃 and 𝜂 ≠ 0

This is a novel class of re-entrant lattice introduced in this paper.
The schematic diagram of the lattice is shown Fig. 12(b). A more
realistic 3D representation of this lattice can be seen in Fig. 1(b). The
expressions for the equivalent elastic moduli and Poisson’s ratios are
obtained from the expressions of curved hexagonal lattice derived in
Section 3 considering 𝜃 = −𝜃. The explicit expressions of the equivalent
elastic properties are given by

𝐸1 =
𝜎1
𝜖1

= 𝛥 cos 𝜃
𝑏(𝜂 − sin 𝜃)

[

𝑘11 sin
2 𝜃′ + 𝑘22 cos2 𝜃′ + 𝑘12 sin 2𝜃′

]

=
𝐷𝐿𝛥 cos 𝜃

𝑏(𝜂 − sin 𝜃)
[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]

= 2
3
𝐸𝛼3 𝛥 cos 𝜃

(𝜂 − sin 𝜃)
[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]
(58)

𝜈12 = −
𝜖2
𝜖1

= cos 𝜃
(𝜂 − sin 𝜃)

[

𝑘̄12 cos 2𝜃′ + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝜃′
]

[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]
(59)

𝐸2 =
𝜎2
𝜖2

=
𝛥(𝜂 − sin 𝜃)

𝑏
[

(𝑘11 cos2 𝜃′ + 𝑘22 sin
2 𝜃′ − 𝑘12 sin 2𝜃′) − 2𝛥

ℎ

]

cos 𝜃
11

𝐾44
= 2
3
𝐸𝛼3

𝛥(𝜂 − sin 𝜃)
[

(𝑘̄11 cos2 𝜃′ + 𝑘̄22 sin
2 𝜃′ − 𝑘̄12 sin 2𝜃′) − 4

3 𝜂𝛼
2
]

cos 𝜃
(60)

and

𝜈21 = −
𝜖1
𝜖2

=
(𝜂 − sin 𝜃)(𝑘̄12 cos 2𝜃′ + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝜃′)

[

(𝑘̄11 cos2 𝜃′ + 𝑘̄22 sin
2 𝜃′ − 𝑘̄12 sin 2𝜃′) − 4

3 𝜂𝛼
2
]

cos 𝜃
(61)

For the auxetic lattice, we consider 𝜃 = 𝛽 = 𝜋
6 and 𝜂 = 2 to perform the

numerical calculations.
Fig. 13 shows the equivalent elastic moduli and Poisson’s ratios as a

function of cell angle (𝜃) for different values of curvature angle (𝛽). In
this plot, we compare our results with the classical Gibson and Ashby’s
case and also observed 𝛽 has a significant effect on the flexibility of
the structure for the lower value of 𝜃 for 𝐸1 and 𝜈12. Whereas, for 𝐸2
and 𝜈21 the influence is not that much and the difference increases for
higher 𝜃 values. By varying the 𝛽 value the flexibility can be exploited
as per the design requirements. We can play with the negative 𝜈12 by
varying the 𝛽. Fig. 14 reveals how the equivalent material parameters
are varying with 𝜃 and 𝛽. From Fig. 15 we can observe that the 𝛽 has
a significant effect on values of 𝐸1, 𝐸2 and 𝜈12.

For a particular value of 𝜂, the value of 𝐸1 for the auxetic lattice
is higher than the regular lattice. Whereas, it is reverse for the 𝐸2. In
general, the flexibility is much higher for the curved lattices than the
classical ones. The values of the Poisson’s ratio 𝜈12 is also controlled
in comparison with the classical auxetic case. Also, the flexibility and
Poisson’s ratio can be adjusted as per our requirements for the auxetic
curved lattice. The analytical expressions are used here to obtain these
plots.

6.2. The curved rhombus lattice: 𝛽 ≠ 0, 𝜃 ≠ 0 and 𝜂 = 0

The schematic diagram of this novel class of the lattice is shown
Fig. 12(c) along with the shape of the unit cell used for the analysis. A
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Fig. 12. Geometry of various lattices and corresponding unit cells. The family of lattices is created by considering special values of the cell angle (𝜃), curvature angle (𝛽) and
height ratio (𝜂). The specific lattices are (a) curved hexagonal lattice (𝛽 ≠ 0, 𝜃 ≠ 0, 𝜂 ≠ 0), (b) curved auxetic hexagonal lattice (𝛽 ≠ 0, 𝜃 = −𝜃, 𝜂 ≠ 0), (c) curved rhombus lattice
(𝛽 ≠ 0, 𝜃 ≠ 0, 𝜂 = 0), (d) curved rectangular lattice (𝛽 ≠ 0, 𝜃 = 0, 𝜂 ≠ 0), (e) regular hexagonal lattice (𝛽 = 0, 𝜃 ≠ 0, 𝜂 ≠ 0), (f) regular auxetic hexagonal lattice (𝛽 = 0, 𝜃 = −𝜃, 𝜂 ≠ 0),
(g) regular rhombus lattice (𝛽 = 0, 𝜃 ≠ 0, 𝜂 = 0), (h) regular rectangular lattice (𝛽 = 0, 𝜃 = 0, 𝜂 ≠ 0). The special cases of straight lattices (e - h) are obtained from the corresponding
curved hexagonal lattice (a - d) when 𝛽 = 0.
3D representation of this lattice can be seen in Fig. 1(c). In this special
case, the vertical straight beam is not present. This results in a lattice
material consisting of only curved beam elements. This lattice is called
a ‘rhombus lattice’ because its straight counterpart (in Fig. 12(g)) has
rhombus-shaped unit cells.

The expressions for the equivalent Young’s modulus and Poisson’s
ratios are obtained from the general curved lattice considering 𝜂 =
ℎ
𝐿 = 0. After some simplifications, the equivalent elastic properties are
expressed by the following closed-form expressions

𝐸1 =
𝜎1
𝜖1

= 𝛥 cos 𝜃
𝑏 sin 𝜃

[

𝑘11 sin
2 𝜃′ + 𝑘22 cos2 𝜃′ + 𝑘12 sin 2𝜃′

]

=
𝐷𝐿𝛥 cos 𝜃

𝑏 sin 𝜃
[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]

= 2
3
𝐸𝛼3 𝛥 cos 𝜃

sin 𝜃
[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]
(62)

𝜈12 = −
𝜖2
𝜖1

= cos 𝜃
sin 𝜃

[

𝑘̄12 cos 2𝜃′ + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝜃′
]

[

𝑘̄11 sin
2 𝜃′ + 𝑘̄22 cos2 𝜃′ + 𝑘̄12 sin 2𝜃′

]
(63)

𝐸2 =
𝜎2
𝜖2

= 𝛥 sin 𝜃

𝑏
[

(𝑘11 cos2 𝜃′ + 𝑘22 sin
2 𝜃′ − 𝑘12 sin 2𝜃′) − 2𝛥

𝐾ℎ
44

]

cos 𝜃

= 2
3
𝐸𝛼3 𝛥 sin 𝜃

[

(𝑘̄11 cos2 𝜃′ + 𝑘̄22 sin
2 𝜃′ − 𝑘̄12 sin 2𝜃′) − 4

3 𝜂𝛼
2
]

cos 𝜃
(64)
12
and

𝜈21 = −
𝜖1
𝜖2

=
sin 𝜃(𝑘̄12 cos 2𝜃′ + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝜃′)

[

(𝑘̄11 cos2 𝜃′ + 𝑘̄22 sin
2 𝜃′ − 𝑘̄12 sin 2𝜃′) − 4

3 𝜂𝛼
2
]

cos 𝜃
(65)

In the next subsection, we explore another geometry for curved lattice
considering cell angle 𝜃 = 0.

6.3. The curved rectangular lattice: 𝛽 ≠ 0, 𝜃 = 0 and 𝜂 ≠ 0

This is another class of novel lattice with curved elements proposed
in the paper. The schematic diagram of this lattice is shown Fig. 12(d)
along with the shape of the unit cell used for the analysis. A more
realistic 3D representation of this lattice can be seen in Fig. 1(d). In this
special case, the inclined beams in the unit cell become horizontal as
the cell angle 𝜃 = 0. This lattice is called a ‘rectangular lattice’ because
its straight counterpart (in Fig. 12(h)) has rectangular shaped unit cells.

The expressions for the equivalent Young’s modulus and Poisson’s
ratios are obtained from the general curved lattice considering 𝜃 =
0. After some simplifications, the equivalent elastic properties are
expressed by the following closed-form expressions

𝐸1 =
𝛥

𝑏𝜂
[

𝑘11 sin
2 𝛽 + 𝑘22 cos2 𝛽 + 𝑘12 sin 2𝛽

]

= 2
3
𝐸𝛼3 𝛥

sin 𝛽
[

𝑘̄11 sin
2 𝜃 + 𝑘̄22 cos2 𝛽 + 𝑘̄12 sin 2𝛽

]
(66)

𝜈12 =

[

𝑘̄12 cos 2𝛽 + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝛽
]

𝜂
[

𝑘̄11 sin
2 𝛽+𝑘̄22 cos2 𝛽 + 𝑘̄12 sin 2𝛽

]
(67)
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Fig. 13. Comparison of normalised equivalent elastic moduli and Poisson’s ratios obtained for curved auxetic hexagonal lattice and regular hexagonal lattice. The results are
plotted as functions of cell angle 𝜃 for a value of height ratio 𝜂 = ℎ

𝐿
= 2 and different values of curvature angle (𝛽).
C
g

𝐸2 =
𝛥𝜂

𝑏
[

(𝑘11 cos2 𝛽 + 𝑘22 sin
2 𝛽 − 𝑘12 sin 2𝛽) − 2𝛥

𝐾ℎ
44

]

= 2
3
𝐸𝛼3

𝛥𝜂
[

(𝑘̄11 cos2 𝛽 + 𝑘̄22 sin
2 𝛽 − 𝑘̄12 sin 2𝛽) − 4

3 𝜂𝛼
2
] (68)

and 𝜈21 =
𝜂(𝑘̄12 cos 2𝛽 + 0.5(𝑘̄11 − 𝑘̄22) sin 2𝛽)

[

(𝑘̄11 cos2 𝛽 + 𝑘̄22 sin
2 𝛽 − 𝑘̄12 sin 2𝛽) − 4

3 𝜂𝛼
2
] (69)

The next subsections deal with the regular cases corresponding to
their curved cases described before. In the next lattice, generalised
expressions for the regular hexagonal lattice are derived.

6.4. The regular hexagonal lattice: 𝛽 = 0, 𝜃 ≠ 0 and 𝜂 ≠ 0

The regular hexagonal lattice often referred to as the honeycomb, is
he classical 2D lattice as shown in Fig. 12(e). This has been extensively
nvestigated in literature and the equivalent elastic properties are given
n Gibson and Ashby [4]. Here we explicitly demonstrate the classical
ne as a special case of the general expressions of the curved lattices
erived here.

The expressions of the equivalent Young’s modulus and Poisson’s
atios for the regular hexagonal lattice can be obtained considering
im𝛽→0 to the expressions of curved hexagonal lattice (Section 3; (Eqs.
43), (45), (51) and (52))). The resulting expressions are obtained as
elow

1 = lim
𝛽→0

𝛥 cos 𝜃
𝑏(𝜂 + sin 𝜃)

[

𝑘11 sin
2 𝜃′ + 𝑘22 cos2 𝜃′ + 𝑘12 sin 2𝜃′

]
(70)

The limiting values of the stiffness terms of the curved beam are the
stiffness terms of the Euler–Bernoulli beam as shown in Eq. . For the
13
sake of clarity let us consider the stiffness terms and explicitly take the
limit lim𝛽→0

𝑘𝐸𝐵
11 = lim

𝛽→0
𝑘11 = lim

𝛽→0
𝐷
[

𝛽2 − 𝛽
(

cos2 𝛽 − sin2 𝛽
)

sin 𝛽 cos 𝛽 − 2
1 + 𝜉

sin4 𝛽
]

= 𝐸𝐴
𝐿

(71)

𝑘𝐸𝐵
22 = lim

𝛽→0
𝑘22

= lim
𝛽→0

𝐷
[

𝛽2 + 𝛽
(

cos2 𝛽 − sin2 𝛽
)

sin 𝛽 cos 𝛽 − 2
1 + 𝜉

sin2 𝛽 cos2 𝛽
]

= 12𝐸𝐼
𝐿3

(72)

𝑘𝐸𝐵
12 = lim

𝛽→0
𝑘12 = lim

𝛽→0
𝐷
[

2𝛽 sin2 𝛽 cos2 𝛽 − 2
1 + 𝜉

sin3 𝛽 cos 𝛽
]

= 0 (73)

lim
𝛽→0

𝛥 = lim
𝛽→0

[

𝑘11𝑘22 − 𝑘212
]

= 12𝐸2𝐼𝐴
𝐿4

(74)

and lim
𝛽→0

𝜃′ = lim
𝛽→0

(𝜃 + 𝛽) = 𝜃 (75)

onsidering the limits and performing some algebraic operations we
et the equivalent elastic properties as

𝐸1 =
12𝐸2𝐴𝐼 cos 𝜃

𝑏𝐿4(𝜂 + sin 𝜃)
[

sin2 𝜃 𝐸𝐴
𝐿 + 12𝐸𝐼

𝐿3 cos2 𝜃
]

=
12𝐸𝐼
𝐿3 cos 𝜃

𝑏(𝜂 + sin 𝜃)

[

sin2 𝜃 +
12𝐸𝐼
𝑙3
𝐸𝐴 cos2 𝜃

]

𝐿



Composite Structures 280 (2022) 114859S. Mukherjee and S. Adhikari
Fig. 14. Normalised equivalent elastic moduli and Poisson’s ratios obtained for auxetic hexagonal curved lattice. The results are plotted as functions of cell angle 𝜃 and curvature
angle 𝛽 for a value of height ratio 𝜂 = ℎ

𝐿
= 2.
=
𝑘𝐸𝐵
22 cos 𝜃

𝑏(𝜂 + sin 𝜃)
[

sin2 𝜃 +
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

cos2 𝜃
] = 𝐸𝛼3 cos 𝜃

(𝜂 + sin 𝜃)
(

sin2 𝜃 + 𝛼2 cos2 𝜃
)

(76)

𝐸2 = lim
𝛽→0

Δ(𝜂 + sin 𝜃)

𝑏
[

(𝑘11 cos2 𝜃′ + 𝑘22 sin
2 𝜃′ − 𝑘12 sin 2𝜃′) − 2Δ

𝐾ℎ
44

]

cos 𝜃

=
𝑘𝐸𝐵
22 (𝜂 + sin 𝜃)

𝑏 cos 𝜃3
[

1 + tan2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

+ 2 sec2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵ℎ
11

]

=
𝐸𝛼3(𝜂 + sin 𝜃)

(1 − 𝛼2) cos3 𝜃 + 𝛼2(2𝜂 + 1) cos 𝜃
(77)

𝜈12 = lim
𝛽→0

cos 𝜃
(𝜂 + sin 𝜃)

[

𝑘12 cos 2𝜃′ + 0.5(𝑘11 − 𝑘22) sin 2𝜃′
]

[

𝑘11 sin
2 𝜃′ + 𝑘22 cos2 𝜃′ + 𝑘12 sin 2𝜃′

]

=
cos2 𝜃(1 −

𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

)

(𝜂 + sin 𝜃) sin 𝜃(1 + cot2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

)
=

(1 − 𝛼2) cos2 𝜃
(𝜂 + sin 𝜃) sin 𝜃

(

1 + 𝛼2 cot2 𝜃
)

(78)

and

𝜈21 = lim
𝛽→0

(𝜂 + sin 𝜃)(𝑘12 cos 2𝜃′ + 0.5(𝑘11 − 𝑘22) sin 2𝜃′)
[

(𝑘 cos2 𝜃′ + 𝑘 sin2 𝜃′ − 𝑘 sin 2𝜃′) − 4 𝜂𝛼2
]

cos 𝜃
14

11 22 12 3
=
(𝜂 + sin 𝜃) sin 𝜃(1 − 𝑘𝐸𝐵

22

𝑘𝐸𝐵
11
)

[

1 + tan2 𝜃 𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

+ 2 sec2 𝜃 𝑘𝐸𝐵
22

𝑘𝐸𝐵ℎ
11

]

cos2 𝜃
=

(1 − 𝛼2) sin 𝜃(𝜂 + sin 𝜃)
(1 − 𝛼2) cos2 𝜃 + 𝛼2(2𝜂 + 1)

(79)

The above expressions consider the axial compressing and stretching
effect of the straight beams. This was ignored (assumed to be infinitely
stiff) in the original expressions in Gibson and Ashby [4]. For a thin
beam, the thickness ratio 𝛼 ≪ 1. Using this in the above expressions
(that is, substituting 𝛼2 = 0), it can be seen that they exactly reduce to
the equivalent expressions in Gibson and Ashby [4] for a regular hexag-
onal lattice. This demonstrates the general nature of the analytical
expressions derived here.

6.5. The regular auxetic hexagonal lattice: 𝛽 = 0, 𝜃 = −𝜃 and 𝜂 ≠ 0

This is the conventional re-entrant lattice, as shown in Fig. 12(f).
A key difference between a re-entrant (auxetic) hexagonal lattice and
a regular hexagonal lattice discussed in the previous subsection is that
the Poisson’s ratios are negative valued for the auxetic lattice.

The expressions for the equivalent elastic properties of a regular
auxetic hexagonal lattice are obtained by considering 𝜃 = −𝜃 and
𝛽 = 0 to the expressions of general curved hexagonal lattice derived in
Section 3. Performing these mathematical substitutions, the resulting
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𝐸

Fig. 15. Comparison of normalised equivalent elastic moduli and Poisson’s ratios obtained for regular and auxetic case considering curved lattice and Gibson and Ashby formula.
The results are plotted as function of height ratio 𝜂 = ℎ

𝐿
for a value of cell angle 𝜃 = 15◦ and curvature angle 𝛽 = 45◦.
expressions are as follows

𝐸1 =
𝑘𝐸𝐵
22 cos 𝜃

𝑏(𝜂 − sin 𝜃)
[

sin2 𝜃 +
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

cos2 𝜃
] = 𝐸𝛼3 cos 𝜃

(𝜂 − sin 𝜃)
(

sin2 𝜃 + 𝛼2 cos2 𝜃
)

(80)

2 =
𝑘𝐸𝐵
22 (𝜂 − sin 𝜃)

𝑏 cos3 𝜃
[

1 + tan2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

+ 2 sec2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵ℎ
11

]

=
𝐸𝛼3(𝜂 − sin 𝜃)

(1 − 𝛼2) cos3 𝜃 + 𝛼2(2𝜂 + 1) cos 𝜃
(81)

𝜈12 = −
cos2 𝜃(1 −

𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

)

(𝜂 − sin 𝜃) sin 𝜃(1 + cot2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

)
= −

(1 − 𝛼2) cos2 𝜃
(𝜂 − sin 𝜃) sin 𝜃

(

1 + 𝛼2 cot2 𝜃
)

(82)

and 𝜈21 = −
(𝜂 − sin 𝜃) sin 𝜃(1 −

𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

)
[

1 + tan2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

+ 2 sec2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵ℎ
11

]

cos2 𝜃

= −
(1 − 𝛼2) sin 𝜃(𝜂 − sin 𝜃)

(1 − 𝛼2) cos2 𝜃 + 𝛼2(2𝜂 + 1)
(83)
15
Like the case of regular hexagonal lattice in the previous section,
the classical expressions in Gibson and Ashby [4] are obtained by
substituting 𝛼2 = 0 in these formulae. The next section deals with the
regular rhombus lattice, obtained by considering the curvature angle
𝛽 = 0.

6.6. The regular rhombus lattice: 𝛽 = 0, 𝜃 ≠ 0 and 𝜂 = 0

The rhombus lattice is obtained when ℎ = 0 (that is 𝜂 = 0). This
implies the absence of the vertical member in the unit cell as shown
in Fig. 12(g). The expressions of the equivalent elastic properties for
the regular rhombus lattice are obtained considering lim𝜂→0 to the
expressions of curved hexagonal lattice derived in Section 3. The new
expressions are given below as

𝐸1 = lim
𝜂→0

12𝐸2𝐴𝐼 cos 𝜃

𝑏𝐿4(𝜂 + sin 𝜃)
[

sin2 𝜃 𝐸𝐴
𝐿 + 12𝐸𝐼

𝐿3 cos2 𝜃
]

=
𝑘𝐸𝐵
22 cos 𝜃

𝑏 sin 𝜃
[

sin2 𝜃 +
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

cos2 𝜃
]

= 𝐸𝛼3
( 2 2 2

)
(84)
sin 𝜃 sin 𝜃 + 𝛼 cos 𝜃
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𝜈

Fig. 16. Comparison of equivalent elastic moduli and Poisson’s ratio obtained for curved hexagonal lattice and regular hexagonal lattice. The results are plotted as a function of
hickness ratio 𝛼 = 𝑡

𝐿
for cell angle 𝜃 = 30◦ and height ratio 𝜂 = ℎ

𝐿
= 1.
T
s

6

𝐸2 = lim
𝜂→0

𝛥(𝜂 + sin 𝜃)

𝑏
[

(𝑘11 cos2 𝜃′ + 𝑘22 sin
2 𝜃′ − 𝑘12 sin 2𝜃′) − 2𝛥

𝐾ℎ
44

]

cos 𝜃

=
𝑘𝐸𝐵
22 sin 𝜃

𝑏 cos3 𝜃
[

1 + tan2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

] = 𝐸𝛼3 sin 𝜃
cos 𝜃

(

cos2 𝜃 + 𝛼2 sin2 𝜃
)

(85)

12 = lim
𝜂→0

cos 𝜃
(𝜂 + sin 𝜃)

[

𝑘12 cos 2𝜃′ + 0.5(𝑘11 − 𝑘22) sin 2𝜃′
]

[

𝑘11 sin
2 𝜃′ + 𝑘22 cos2 𝜃′ + 𝑘12 sin 2𝜃′

]

=
cos2 𝜃(1 −

𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

)

sin2 𝜃(1 + cot2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

)

=
cos2 𝜃(1 − 𝛼2)

sin2 𝜃(1 + 𝛼2 cot2 𝜃)
(86)

and

𝜈21 = lim
𝜂→0

(𝜂 + sin 𝜃)(𝑘12 cos 2𝜃′ + 0.5(𝑘11 − 𝑘22) sin 2𝜃′)
[

(𝑘11 cos2 𝜃′ + 𝑘22 sin
2 𝜃′ − 𝑘12 sin 2𝜃′) − 4

3 𝜂𝛼
2
]

cos 𝜃

=
sin2 𝜃(1 −

𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

)
[

1 + tan2 𝜃
𝑘𝐸𝐵
22
𝐸𝐵

]

cos2 𝜃
=

sin2 𝜃(1 − 𝛼2)
cos2 𝜃

(

1 + 𝛼2 tan2 𝜃
) (87)
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𝑘11
he last subsection describes the regular rectangular lattice which is a
pecial case of the curved rectangular lattice.

.7. The regular rectangular lattice: 𝛽 = 0, 𝜃 = 0 and 𝜂 ≠ 0

The regular rectangular lattice is obtained when 𝜃 = 𝛽 = 0 and is
shown in Fig. 12(h). The expressions of the equivalent elastic properties
for the regular rectangular lattice are obtained considering lim𝜃→0 to the
expressions of curved hexagonal lattice Section 3.

𝐸1 = lim
𝜃→0

𝑘𝐸𝐵
22 cos 𝜃

𝑏(𝜂 + sin 𝜃)
[

sin2 𝜃 +
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

cos2 𝜃
] = 𝐸𝐴

𝑏ℎ
= 𝐸𝛼

𝜂
(88)

𝐸2 = lim
𝜃→0

𝑘𝐸𝐵
22 (𝜂 + sin 𝜃)

𝑏 cos3 𝜃
[

1 + tan2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

+ 2 sec2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵ℎ
11

] = 𝐸𝛼3
[

1 + 2𝜂𝛼2
] (89)

𝜈12 = lim
𝜃→0

cos2 𝜃(1 −
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

)

(𝜂 − sin 𝜃) sin 𝜃(1 + cot2 𝜃
𝑘𝐸𝐵
22
𝐸𝐵 )

= 0 (90)
𝑘11
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a

Fig. 17. Comparison of equivalent elastic moduli and Poisson’s ratio obtained for curved auxetic hexagonal lattice and regular auxetic hexagonal lattice. The results are plotted
s a function of thickness ratio 𝛼 = 𝑡

𝐿
for cell angle 𝜃 = 30◦ and height ratio 𝜂 = ℎ

𝐿
= 2.
and 𝜈21 = lim
𝜃→0

(𝜂 + sin 𝜃) sin 𝜃(1 −
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

)
[

1 + tan2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵
11

+ 2 sec2 𝜃
𝑘𝐸𝐵
22

𝑘𝐸𝐵ℎ
11

]

cos2 𝜃
= 0 (91)

Note that both Poisson’s ratios are zero for the regular rectangular
lattice, which was not obvious for the case of the curved rectangular
lattice discussed before. The following section deals with the numerical
analysis considering the above mentioned curved geometries and their
regular versions.

7. Numerical results: Comparison between two distinct group of
lattices

A numerical comparison between two distinct groups of lattices
mentioned in Fig. 12, namely the curved and the straight ones are con-
ducted. Fig. 16 displays a comparison between the material properties
obtained for the curved hexagonal and regular hexagonal lattice case.

The material properties are plotted as a function of thickness ratio
(𝛼 = 𝑡

𝐿 ). The equivalent Young’s moduli are normalised by Young’s
modulus of the Aluminum. The incorporation of a curved beam adds
more flexibility to the lattice and as the 𝛽 values go small the results
from the curved case converge to the regular hexagonal case. For
Poisson’s ratios the effect of 𝛽 is more for lower 𝛼 values and we can
control the 𝐸1 and 𝜈12 by varying the 𝛽 value.

Curved auxetic and the regular auxetic cases are compared in
Fig. 17.

Here also, we can make a similar observation like Fig. 16 that
curved beam add more flexibility to the lattice and as the 𝛽 values
17

go small the results from the curved case converge to the regular
hexagonal case and the effect of 𝛽 is more for lower 𝛼 values for
Poisson’s ratios.

Figs. 18 and 19 represent the comparison of the curved rhombus
lattice (Fig. 12(c)) and its regular version (Fig. 12(g)) and curved
rectangular (Fig. 12(d)) and regular rectangular version (Fig. 12(h))
respectively.

From the expressions of Young’s modulus and Poisson’s ratios for
the special cases, the presence of a stretching term (Eq. (76)–(91))
can be observed. To visualise the effect of axial stretching and curved
beam we plotted them and compare them with the classical Gibson and
Ashby’s [4] formula (Figs. 16–19). It is evident that the axial stretching
has a significant effect on the flexibility of the material parameters and
the flexibility can further be increased by incorporating curved beam
elements as a constituent member of the unit cell. With the help of
a curved beam element, we can tune the flexibility of the material
by considering different values for the curvature angle (𝛽) as per our
requirements.

8. Conclusions

A novel class of 2D lattices comprised of curved elements is con-
ceptualised, theoretically investigated and numerically validated in
this paper. A bottom-up, general and rigorous analytical framework
is developed to obtain closed-form expressions of Young’s moduli and
Poisson’s ratios of such lattices and they are summarised in Fig. 20.

The developed generalised expressions are then utilised to obtain
the equivalent elastic moduli and Poisson’s ratios for several other phys-
ically realistic unique geometries. The usefulness of curved constituent

elements in the unit cell to exploit the flexibility of the structure is
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o

Fig. 18. Comparison of equivalent elastic moduli and Poisson’s ratio obtained for curved rhombus lattice and regular rhombus lattice. The results are plotted as a function of
thickness ratio 𝛼 = 𝑡

𝐿
for cell angle 𝜃 = 30◦ and height ratio 𝜂 = ℎ

𝐿
= 1.
Fig. 19. Comparison of equivalent elastic moduli and Poisson’s ratio obtained for curved rectangular lattice and regular rectangular lattice; The results are plotted as a function
f thickness ratio 𝛼 = 𝑡

𝐿
for cell angle 𝜃 = 30◦ and height ratio 𝜂 = ℎ

𝐿
= 1.
18
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Fig. 20. Summary of the closed-form expressions of the equivalent in-plane elastic properties (𝐸1, 𝐸2, 𝜈12 and 𝜈21) of the novel hexagonal curved lattice introduced in the paper.
The geometric parameters relevant to the equivalent elastic properties are shown in the unit cell diagram. The four parameters which completely control the elastic properties are:
the thickness ratio 𝛼 = 𝑡∕𝐿, the height ratio 𝜂 = ℎ∕𝐿, the cell angle 𝜃 and the curvature angle 𝛽.
explored. The use of curved beams increases the design space com-
pared to the lattices with straight constituent beam elements only. The
curvature angle turns out to play an important role in altering and
tailoring the equivalent elastic properties of these novel class of lattices.
Unlike a conventional straight-beam lattice, the combined effect of
the cell angle and the curvature angle can be utilised simultaneously
in curved lattices. The combination of these two angles, along with
the other geometric parameters such as thickness ratio and the height
ratio give the widest possible family of 2D lattices to be considered
in a unified manner. The proposed formulas incorporate the stretching
effect of the individual members of the unit cell. It was explicitly shown
that the expressions converge to the well-known classical formula for
conventional hexagonal lattices as a special case. Major contributions
to the state-of-the-art include:

• A new methodology to obtain closed-form expressions for equiv-
alent in-plane elastic properties of hexagonal curved lattices us-
ing the coefficients of the stiffness matrix of constituent curved
beams.

• The most general analytical expressions for equivalent elastic
properties of 2D lattices, from which other geometries and special
cases can be derived in a straightforward manner considering
various mathematical limiting cases.

• The framework of an enriched design space and enhanced flex-
ibility of the structure due to the inclusion of curved beam
elements.

• The idea of the ‘family of lattices’, where different lattices appear
physically distinct but are related to each other through a simple,
and yet, a generalised underlying unified theoretical foundation.

The general analytical expressions of the equivalent elastic properties
are exploited to study seven special cases of interest. They include,
19
the curved auxetic hexagonal lattice, the curved rhombus lattice, the
curved rectangular lattice, the regular hexagonal lattice, the regular
auxetic hexagonal lattice, the regular rhombus lattice, and finally the
regular rectangular lattice.

The expressions and the results obtained can be considered bench-
mark results for future research. It may be directly used for the design
of flexible hexagonal lattices and other geometries. Future research
directions will include exploring highly stretchable soft curved lattices
with geometric nonlinearity and dynamic analysis.
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