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A B S T R A C T

The increasing significance of digital twin technology across engineering and industrial domains, such as
aerospace, infrastructure, and automotive, is undeniable. However, the lack of detailed application-specific
information poses challenges to its seamless implementation in practical systems. Data-driven models play a
crucial role in digital twins, enabling real-time updates and predictions by leveraging data and computational
models. Nonetheless, the fidelity of available data and the scarcity of accurate sensor data often hinder the
efficient learning of surrogate models, which serve as the connection between physical systems and digital twin
models. To address this challenge, we propose a novel framework that begins by developing a robust multi-
fidelity surrogate model, subsequently applied for tracking digital twin systems. Our framework integrates
polynomial correlated function expansion (PCFE) with the Gaussian process (GP) to create an effective
surrogate model called H-PCFE. Going a step further, we introduce deep-HPCFE, a cascading arrangement
of models with different fidelities, utilizing nonlinear auto-regression schemes. These auto-regressive schemes
effectively address the issue of erroneous predictions from low-fidelity models by incorporating space-
dependent cross-correlations among the models. To validate the efficacy of the multi-fidelity framework, we
first assess its performance in uncertainty quantification using benchmark numerical examples. Subsequently,
we demonstrate its applicability in the context of digital twin systems.
1. Introduction

A digital twin (DT) is described as a cloud-based digital counterpart
of a physical system that communicates with the original system via
the Internet of Things (IoT). The digital twin technique differs from
the other computational models owing to the fact that the digital twin
model is updated continuously in order to achieve synchronization with
the actual system as it evolves. The synchronization is achieved through
a data acquisition system, machine learning modules, and the Internet
of Things associated with the digital twin. The notion of the digital
twin is so broad and has a wide range of industrial applications, includ-
ing smart manufacturing, mechanical and aerospace industries, smart
cities, and urban planning. Rather than adopting a unified approach,
the implementation of digital twins might differ in their approach to
the specifics of the application. All digital twin models start as nominal
models; however, with the advancement in time, it is essential to track
the evolution of the physical systems and to make key decisions at
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a point in time in the future. For that, the digital twin is trained to
synchronize with the actual physical systems.

Considering the history of digital twins, the concept of a digital twin
has been discussed in numerous works over the past two decades. A
general mathematical foundation for digital twins is introduced in [1].
Ensuing noteworthy studies that have contributed to the development
of the digital twin include the investigation of the digital twin for
prognostics and health monitoring [1–3], manufacturing [4–6], and
automotive and aerospace engineering [7–9]. While the definition of
a digital twin is widely accepted, there is almost no formal method
for developing one for a specific system. A physics-driven digital twin
is one of the plausible approaches [10]; nonetheless, which is liable
to some significant drawbacks. One of the fundamental challenges is
that it can provide only state estimates at discrete time steps. Secondly,
such digital twin fails to yield accurate results when the measured data
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contains complex noises. This motivates researchers to consider sur-
rogate modeling-based approaches [11–16] as an efficient alternative
approach to modeling digital twins.

A surrogate model can be defined as a substitute for an actual
high-fidelity model, which is often a time-consuming computational
model or an expensive experimental model. While there are several
surrogate-based approaches available in the literature, the popular
representative ones include polynomial regression surface (PRS) [17–
19], artificial neural networks (ANN) [20–22], radial basis function
(RBF) [23,24], Gaussian process (GP) [25–27], and support vector
regression (SVR) [28,29]. More extensive studies and comparisons of
these approaches are presented in [30]. In general, the success of the
surrogate models is recognized by the requirement of the volume of
data to train the model efficiently. While on the one hand, smaller data
leads to inefficient training, on the other hand, a larger data set results
in a greater computational cost. Consequently, the trade-off between
accuracy and cost is always challenging for the data-driven surrogate
models trained with high-fidelity data samples. One obvious approach
is to rely on both high-fidelity data/multi-fidelity data, along with low-
fidelity data, where the low-fidelity data is obtained through relatively
simpler procedures. However, in that case, training with data samples
having multiple fidelity data becomes the major hurdle for most of the
surrogate-based approaches.

Researchers have considered the multi-fidelity modeling approach
as a viable approach that can circumvent the aforementioned disad-
vantages associated with surrogate models. While there are several
multi-fidelity modeling approaches available in the literature [31–34],
many of these multi-fidelity approaches are devised as a combination
of the linear auto-regressive information fusion scheme [35,36] and the
Gaussian process (GP) regression [37,38]. These seminal multi-fidelity
modeling approaches employ a linear mapping between the fidelities
by utilizing the cross-correlation of data having different fidelity levels
within the surrogate model. However, these methods fail to achieve
the desired performance when the fidelity of the data exhibits a more
complex nonlinear relationship. To that end, we propose a multi-
fidelity surrogate modeling approach that can efficiently model the
digital twin reliant on multi-fidelity measurements.

The proposed framework is named deep Hybrid Polynomial Corre-
lation Function Expansion (Deep H-PCFE) as the model results from
the composition of individual H-PCFE corresponding to the different
fidelities. As a regression model, H-PCFE marriages the benefits of the
Polynomial Correlated Function Expansion (PCFE) and the Gaussian
Process (GP) [39,40]. Since PCFE deals with dependent and inde-
pendent random variables without the need for any ad-hoc transfor-
mations, PCFE becomes a computationally efficient regression model
for learning the global behavior of the function, and GP effectively
captures the local variations. It is, therefore, reasonable to infer that
composing the H-PCFE corresponding to the individual fidelity utilizing
nonlinear cross-correlations prospectively results in a novel paradigm
for multi-fidelity modeling.

While the proposed framework can effectively fusion the data of
different fidelities, we first elucidate the performance of the deep-
H-PCFE as a multi-fidelity surrogate model with numerical examples
for the applications of uncertainty quantification and then employ
the framework for digital twins. The scope of the work can have a
significant impact, especially on the application of digital twins. For
instance, consider the context of digital twin-based structural health
monitoring (SHM) for large bridge structures, where a network of
sensors placed at the key locations measures system responses and the
other quantities of interest, including vibrations, strain, temperature,
and load distribution. As was discussed, the real-time processing and
communication of sensor data to the digital twin is essential to detect
signs of damage and guide maintenance decisions. However, collecting
data from SHM systems faces practical challenges. Primary among these
challenges is the ‘‘Low Rate of Sampling’’, where data collection at
2

high frequencies, such as continuous vibration measurements, becomes
expensive, leading to lower sampling rates that may fail to report
rapid and abrupt structural changes. ‘‘Poor Signal-to-Noise Ratio (SNR)
Data’’ stands as another prominent challenge, primarily arising from
the prevalent noise sources within bridge environments. Environmen-
tal factors, such as traffic and wind, contribute to this noise, which
directly impinges upon the accuracy of sensor measurements. Often
the ‘‘Missing Data’’ arises from sensor malfunctions or transmission
issues, hampers the continuous data collection and thus the accurate
long-term behavior tracking. Moreover, some bridge sections may have
‘‘sparsely sampled data’’ due to sensor placement, possibly missing lo-
calized regions requiring attention. Due to the aforementioned factors,
the utilization of automated data acquisition systems and less precise
sensors results in low-fidelity data. In contrast, obtaining high-fidelity
data necessitates direct field measurements employing accurate sensors,
which is not always feasible in practice. Considering this practical
aspect, a robust multi-fidelity surrogate model is essential for handling
data of different fidelities.

The remainder of the paper is as follows. The proposed approach is
described in Section 2. Section 3 discusses the details of Deep H-PCFE
as multi-fidelity surrogate modeling. In Section 4, the effectiveness of
the proposed approach is demonstrated through numerical examples,
which include the application of uncertainty quantification. Subse-
quently, the application of the deep H-PCFE for the digital twin is
illustrated in Section 5. Finally, the concluding remarks are given in
Section 6.

2. Proposed approach

The section provides a detailed description of the proposed multi-
fidelity approach. The overall framework is achieved through recursive
surrogate modeling with Hybrid-Polynomial Correlated Function Ex-
pansion (H-PCFE) being the basic building block. Before elaborating
on the proposed approach, we first review the H-PCFE. Note that the
discussion pertaining to the development of digital twins using the
proposed approach is not discussed in this section.

2.1. Hybrid-polynomial correlated function expansion (H-PCFE)

H-PCFE was developed by integrating the benefits of two existing
methodologies, namely PCFE and the Gaussian process (GP). The PCFE
capture the global behavior of the model using a set of component func-
tions, whereas GP interpolates local variation within the data points,
resulting in a two-stage estimate [39,41,42]. Now to describe formula-
tions o H-PCFE mathematically, we suppose, i = (𝑖1, 𝑖2,… ., 𝑖𝑁 ) ∈ 𝑁𝑁

0
with |𝐢| = (𝑖1 + 𝑖2,… . + 𝑖𝑁 ) where 𝑁 ≥ 0 is an integer and 𝒙 =
(𝑥1, 𝑥2,… ., 𝑥𝑁 ) is an N-dimensional input vector. Thus the PCFE of 𝑓 (𝒙)
can be represented as,

𝑓 (𝒙) =
𝑁
∑

|𝐢|=0
𝑓𝐢(𝑥𝐢) (1)

n the PCFE, as indicated in Eq. (1), the first-order component functions
r the univariate terms, indicate the independent influence of input
ariables. On the other hand, second-order component functions are
ivariate, and that reflects the cooperate impact of variables. To pro-
ide further elaboration, we consider 𝜓 as suitable basis for 𝒙 and 𝛼
eing unknown coefficients. Thus, PCFE of 𝑓 (𝒙) with mean response 𝑓0
an be rewritten as follows:

(𝐱) = 𝑓0 +
𝑀
∑

𝑘=1
{
𝑁−𝑘+1
∑

𝑖1=1
....

𝑁
∑

𝑖𝑘=𝑖𝑘−1

𝑘
∑

𝑟=1
[

𝑠
∑

𝑚1=1

𝑠
∑

𝑚2=1
....

𝑠
∑

𝑚𝑟=1
𝛼(𝑖1𝑖2 ...𝑖𝑘)𝑖𝑟𝑚1𝑚2 ....𝑚𝑟 𝜓

𝑖1
𝑚1
....𝜓 𝑖𝑟𝑚𝑟 ]}

(2)

Due to the key features, such as convergence of PCFE in the mean
square sense and orthogonality of the component functions, as a re-

gression method, it provides a good global approximation. However,
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it falls short of accurately capturing local variations To alleviate this
limitation, we employ Hybrid-PCFE (H-PCFE), which incorporates GP
with PCFE. We delve into the details of H-PCFE herein onwards. For the
input variable, 𝒙 =

(

𝑥1, 𝑥2,… , 𝑥𝑁
)

: 𝒙 ∈ 𝐷 ⊂ R𝑁 , the output, 𝐌(𝐇−𝐏𝐂𝐅𝐄)

an be represented as

𝙷−𝙿𝙲𝙵𝙴 ≈ 𝑓𝙷−𝙿𝙲𝙵𝙴 = 𝑓0

+
𝑀
∑

𝑘=1

{𝑁−𝑘+1
∑

𝑖1=1
....

𝑁
∑

𝑖𝑘=𝑖𝑘−1

𝑘
∑

𝑟=1

( 𝑏
∑

𝑚1=1
....

𝑏
∑

𝑚𝑟=1
𝛼(𝑖1𝑖2 ...𝑖𝑘)𝑖𝑟𝑚1 ....𝑚𝑟 𝜓 𝑖1𝑚1

....𝜓 𝑖𝑟𝑚𝑟

)}

+ 𝑓GP

(3)
n Eq. (2), 𝝍 indicate basis functions, and 𝜶 are unknown coefficients
ssociated with the bases, where 𝑓0 represents the mean response.
hough any basis function can be used for constructing extended bases
or PCFE, orthogonal basis functions are chosen for faster convergence.
he last term of Eq. (3), i.e., 𝑓GP, represents GP with zero mean.
athematically, GP with a zero mean is expressed as:

GP = 𝜎2𝑍(𝟎, 𝑘(⋅, ⋅;𝜽)) (4)

here 𝑘(⋅, ⋅;𝜽) is covariance kernel function with 𝜽 as length scale
arameter and 𝜎2 as process variance. In H-PCFE, the unknown pa-
ameters are 𝜽, 𝛼, and 𝜎2, which are computed by maximizing the
og-likelihood, which further yields the variance 𝜎2 as,
2 = 1

𝑁𝑠
(𝒅 − 𝜳𝜶)𝑇𝐑−1(𝒅 − 𝜳𝜶), (5)

and weighted normal equations as
(

𝜳 𝑇𝐑−1𝜳
)

𝜶 = 𝜳 𝑇𝐑−1𝒅. (6)

ere basis function matrix, 𝜳 , is formed from input variables. While
is the covariance matrix formed by training inputs and covariance

ernel 𝑘(⋅, ⋅;𝜽), 𝒅 is a difference between response at training inputs
nd mean response, i.e., 𝒅 = 𝒚−𝑓0. By substituting the 𝐂 =

(

𝜳 𝑇𝐑−1𝜳
)

nd 𝐃 = 𝜳 𝑇𝐑−1𝒅, Eq. (6) can be rewritten as, 𝐂𝛼 = 𝐃. Removal of
he redundant rows corresponding to the extended bases from 𝐂 and 𝐃
esults in 𝐂′𝛼 = 𝐃′. The least-square solution of the system of equations
s given by:

0 = 𝐂′†𝑫′ (7)

ince the Eq. (7) results in an under-determined set of equations to
btain the optimal solution, in addition to minimizing the least-squared
rror, it is also necessary to impose the hierarchical orthogonality of
he component functions [43]. To that end, the homotopy algorithm is
onveniently employed here to compute the unknown coefficients [44].
o enforce the hierarchical orthogonality condition, in the homotopy
lgorithm, an additional objective function is imposed through the
eight matrix 𝐖𝐻𝐴. Therefore, the final solution achieved as follows:

𝐇𝐀 =
[

𝐕𝑞−𝑟
(

𝐔𝑇𝑞−𝑟𝐕𝑞−𝑟
)−1

𝐔𝑇𝑞−𝑟

]

𝜶𝟎 (8)

here 𝐔 and 𝐕 are obtained by singular decomposition of 𝐏𝐖𝐻𝐴.

𝐖𝐻𝐴 = 𝐔
[

𝐃𝐫 0
0 0

]

𝐕𝑇

=
[

I −
(

𝐀′)−1 𝐀′
]

(9)

ere we note that in the equation, Eq. (8), 𝐕𝑞−𝑟 𝐔𝑞−𝑟 are last (𝑞 − 𝑟)
ows of 𝐕 and 𝐔. For a detailed explanation of the weight matrix in
he above formulations, interested readers may refer to [45] and for
etails on HA, follow [44]. Once 𝜶𝐻𝐴 is obtained, at any unknown
oint, predictive mean and variance can be calculated as,
(

𝒙∗
)

= 𝑓0 +𝜱
(

𝒙∗
)

𝜶𝐻𝐴 + 𝒓
(

𝒙∗
)

𝐑−1 (𝒅 − 𝜳𝑯𝐴
)

2 (𝒙∗
)

= 𝜎2
{

1 − 𝒓
(

𝒙∗
)

𝐑−1𝒓
(

𝒙∗
)𝑇 +

1 − 𝜳 𝑇𝐑−1𝒓 (𝒙∗)𝑇

𝜳 𝑇𝐑−1𝜳

} (10)

n the above expression, 𝜱 (𝒙∗) is basis function vector evaluated
t 𝒙∗ and 𝒓(𝒙∗) denotes the correlation between training inputs and
∗. A step-by-step implementation of the H-PCFE is illustrated in the
lgorithm 1
3

d

Algorithm 1 H-PCFE
Requirements: Training data set, input order of H-PCFE, correspond-
ing parameters and variable bounds.
Output: The set of unknown coefficients of the basis functions 𝛼 in
Eq. (3).
1: Calculate 𝑓0 from:
𝑓0 ←

1
𝑛
∑

𝑛 𝑓 (𝑥𝑖)
2: Using the training output data(𝑦), formulate 𝒅 as
𝒅 ← 𝒚 − 𝑓0
𝒅 ← [𝑑1 𝑑2 ... 𝑑𝑛]𝑇

3: Calculate basis function matrix 𝛹
4: Select an appropriate functional form for covariance matrix 𝐑.
5: To obtain the length scale parameter 𝜃, We maximize the likelihood

estimate
6: 𝐂 ← (𝚿𝑇𝐑−1𝚿), 𝐃 ← 𝚿𝑇R−1𝒅
7: Obtain 𝐂′ and 𝐃′ by removing redundant in matrices 𝐂 and 𝐃 ⊳

Eq. (7)
8: 𝜶0 ← (𝐂′)†𝐃′ ⊳ Eq. (7)
9: 𝐏 ← 𝐈 − (𝐂′)−1𝐂′ ⊳ Eq. (9)
0: Using homotopy algorithm weight matrix 𝐖𝐻𝐴 is formed.
1: From the singular value decomposition of 𝐏𝐖𝐻𝐴 , 𝐔 and 𝐕 are

obtained.
2: 𝜶𝐻𝐴 ← [𝐕𝑞−𝑟(𝐔𝑇𝑞−𝑟𝐕𝑞−𝑟)

−1𝐔𝑇𝑞−𝑟]𝜶0 ⊳ Eq. (8)

2.2. Deep H-PCFE as multi-fidelity surrogate modeling

So far, we have discussed H-PCFE as a surrogate model which
learns the mapping between the paired input and output. This sec-
tion discusses a systematic approach for constructing a multi-fidelity
model utilizing H-PCFE. As the name implies, the multi-fidelity concept
involves information of two or more levels of fidelity. Multi-fidelity
models strive to provide the most accurate model predictions by the
effective fusion of data of different fidelity; such that model training
requires fewer high-fidelity/high-cost data points. It is generally ob-
served that the performance of multi-fidelity models is enhanced when
the low and high-fidelity data are strongly correlated [46]. While there
exist several information fusion methods, here we adopt a recursive
modeling approach due to two significant advantages: Firstly, the suc-
cessive model learns the correlation of lower fidelity data with higher
fidelity data through the prediction of the previous model. As a result,
these models require lesser high-fidelity data points, which reduces
computational expenses. Secondly, it also eliminates the erroneous
results solely obtained by low-fidelity data.

The notion of recursive prediction was inspired by nonlinear au-
toregression methods [47], in which models are commonly used to
predict successive time responses. In the following section, we pro-
vide a brief overview of nonlinear autoregression schemes to motivate
multi-fidelity modeling using the information fusion technique.

2.2.1. Non linear auto-regression
The auto-regression enables the model prediction at the current

variable state based on the output corresponding to the previous vari-
able state. As a pedagogical example, consider the case of any discrete
dynamical system having time series response data with 𝑦𝑡 as output
at time t, and 𝑦𝑡−1 at 𝑡 − 1 time and so on, then a general nonlinear
auto-regression scheme can be represented as:

𝑦𝑡 = 𝐹 (𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3...) + 𝜀𝑡, (11)

here 𝑦𝑡 is output prediction at the time 𝑡 and 𝐹 is a nonlinear mapping
unction. 𝜀𝑡 in the Eq. (11) represents the error associated with the
urrogate approximation of the nonlinear function. For further calcula-
ion, 𝜀𝑡 can be treated as a random variable with a specified probability

istribution. As 𝐹 learns the mapping between 𝑦𝑡−1 and 𝑦𝑡, we can yield
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the prediction of 𝑦𝑡 using 𝑦𝑡−1 and 𝑦𝑡−2...𝑦1. Following the analogy,
the approximation of the multi-fidelity model of the function 𝐹 can
be achieved such that the output at 𝑖𝑡ℎ level i.e 𝑦𝑖 is estimated from
𝑦𝑖−1 and 𝑦𝑖−2...𝑦1, which corresponds to output at (𝑖− 1)𝑡ℎ, (𝑖− 2)𝑡ℎ...1st
fidelity levels.

2.2.2. Deep H-PCFE
Consider the data having n number of fidelity levels, {𝒙1, 𝑦1},

{𝒙2, 𝑦2}, ......{𝒙𝑀 , 𝑦𝑀}, such that index varies from 1 to 𝑀 represents
he level of fidelity data which varies from lowest fidelity to high-
st fidelity. With multiple level of mapping functions 𝑓𝑖s with 𝑖 =
, 2, 3,… ,𝑀 , the recursive surrogate modeling is formulated as:

1(𝑥) = 𝑔1(𝒙1) (12)

2(𝑥) = 𝑔2(𝒙2, 𝑓 ∗
1 (𝒙

2)) (13)

3(𝑥) = 𝑔3(𝒙3, 𝑓 ∗
2 (𝒙

3), 𝑓 ∗
1 (𝒙

3)) (14)

ontinuing further in this manner till 𝑖 =𝑀 .

𝑀 (𝑥) = 𝑔𝑀 (𝒙, 𝑓 ∗
𝑀−1(𝒙

𝑀 ), 𝑓 ∗
𝑀−2(𝒙

𝑀 ), 𝑓 ∗
𝑀−3(𝒙

𝑀 ).....𝑓 ∗
1 (𝒙

𝑀 )) (15)

Here, there are M equations having each 𝑓𝑖 depending on the previous
𝑖− 1 number of outputs predicted by 𝑓 . The outputs of 𝑓𝑖 are obtained
at each level fidelity through 𝑔𝑖s, where 𝑔𝑖 represents the trained H-
PCFE model described in the section Section 2.1 with 𝒙𝑖 being the
input and 𝑦𝑖 being the output. In the first level, we train the 𝑔1, the
H-PCFE model with the lowest fidelity data. Subsequently, we train 𝑔2

ith input as 𝑥2 and prediction of previous model 𝑓1(𝑥2) with H-PCFE
ethod. Similarly, for training 𝑔𝑖 we use 𝑥𝑖 as the input along with the

utput prediction of all the previous 𝑖−1 models at 𝑥𝑖. Since we utilize
he predictions of all lower-level models as input to the highest fidelity
odel, it is referred to as deep H-PCFE.

In order to comprehend the prediction with Deep H-PCFE having
-level fidelity, let us consider the test data 𝒙∗. We first provide the

ata to the trained low fidelity mapping function 𝑔1(𝒙∗) = 𝑓1(𝒙∗). Once
he prediction 𝑓1(𝒙∗) are obtained, we concatenate it with the 𝒙∗, i.e.
𝒙∗, 𝑓1(𝒙∗)] passes to 𝑔2. Once the prediction of 𝑔2, 𝑓2(𝒙∗) is obtained
s 𝑓2(𝒙∗) = 𝑔2(𝒙∗, 𝑓1(𝒙∗)), 𝑓2(𝒙∗) along with the 𝒙∗ and 𝑓1(𝒙∗) are
rovided to 𝑔3 as input. The procedure repeats for every subsequent
rediction till 𝑀 𝑡ℎ level fidelity. Thus finally the prediction of 𝑓𝑀 (𝒙∗)
an be represented as 𝑓𝑀 (𝒙∗) = 𝑔𝑀 (𝒙∗, 𝑓𝑀−1(𝒙∗), 𝑓𝑀−2(𝒙∗),… .., 𝑓1(𝒙∗)).
he training algorithm is described in Algorithm 2, while the testing
lgorithm is demonstrated in Algorithm 3. Here we note that, in the
roposed multi-fidelity approach, we conveniently assume the mean
unction corresponding to the H-PCFE corresponding to the certain
idelity level as zero. This case with the deep H-PCFE is referred as mod-
fied Deep-H-PCFE. We have used the modified Deep H-PCFE approach
n some of the numerical examples below, such as Section 3.3.2, where
ctual H-PCFE is employed at the lowest fidelity level, i.e. only 𝑔1, and
or the rest of the models (𝑔𝑖 where 𝑖 ∈ [2 to M]), H-PCFE with mean
unction zero is used. A step-by-step implementation of deep H-PCFE is
llustrated in the Algorithm 2 and Algorithm 3.

A schematic depiction of the proposed approach is shown in Fig. 1.
he codes for the proposed framework along with implementation
f all the examples can be found at https://github.com/csccm-iitd/
ultifidelity-dt.

. Application of deep H-PCFE for uncertainty quantification

.1. Context of the problem

Let us consider a general computational model of the form 𝑦 = 𝑔(𝒙)
ith 𝑦 as system response and 𝑥 as input parameters such that for a
iven realization of 𝑥, the computational model yields an output. When
4

he input parameters vary in a certain range, accordingly, the output e
Algorithm 2 deep H-PCFE training
Requirements: Training data set consisting M number of output
vectors and input vectors
1: Declare 𝑝𝑟𝑒𝑣 as a null matrix
2: for 𝑖 ← 1 to 𝑀 do
3: 𝒙𝑖 are 𝑖𝑡ℎ fidelity inputs, 𝑦𝑖 is corresponding output at 𝑖𝑡ℎ fidelity

level.
4: Train 𝑔𝑖 model with HPCFE, where input={𝒙𝑖, 𝑝𝑟𝑒𝑣}, output=𝑦𝑖.
5: Add 𝑔𝑖({𝒙𝑖+1, 𝑝𝑟𝑒𝑣}) to 𝑝𝑟𝑒𝑣.
6: end for
7: Finally we cascades the 𝑔𝑖 HPCFE models where 𝑖 ∈ [2 to 𝑀]

such that 𝑦𝑖 is the output and [𝒙, 𝑓𝑖−1(𝒙), 𝑓𝑖−2(𝒙), .....𝑓1(𝒙)] are the
input. The resulting expression of deep-HPCFE can be obtained as
: 𝑓𝑖(𝒙) = 𝑔𝑖([𝒙, 𝑓𝑖−1(𝒙), 𝑓𝑖−2(𝒙), .....𝑓1(𝒙)])

utput: We get output as 𝑔1 HPCFE model and 𝑔𝑖 where i ∈ [2 to M].

Algorithm 3 deep H-PCFE prediction
Requirements: Trained deep-HPCFE with 𝑔𝑖 HPCFE model correspond-
ing to the each fidelity level, where 𝑖 ∈ [2 to M], and the input vector
𝒙∗ at which output predictions are sought.
1: Declare 𝐶 as a null matrix
2: for 𝑖 ← 1 to 𝑀 do
3: We will find 𝑦𝑖 i.e output at 𝑖𝑡ℎ fidelity level by 𝑦𝑖 = 𝑔𝑖(𝒙∗, 𝐶)
4: Add previous fidelity level output to input such that

C=(C,𝑔𝑖(𝒙∗))
5: end for
utput: The highest fidelity (𝑛𝑡ℎ level) output prediction at given input
𝒙∗ can be obtained as:

6: 𝑓𝑀 (𝒙∗) = 𝑔𝑀 (𝒙∗, 𝑔𝑀−1(𝒙∗, 𝑔𝑀−2(𝒙∗).....𝑔1(𝒙∗))....𝑔3(𝒙∗, 𝑔2(𝒙∗, 𝑔1(𝑥 ∗
)), 𝑔1(𝒙∗)), 𝑔2(𝒙∗, 𝑔1(𝑥 ∗)), 𝑔1(𝒙∗))

also varies. Here we aim to estimate the uncertainty in the output due
to the variation in the input 𝒙. The varying input can be represented as
an N-dimensional vector of random variables 𝑿, 𝑿 =

(

𝑋1, 𝑋2,… ., 𝑋𝑁
)

:
𝑿 → R𝑁 , with probability density function 𝑃𝑿 (𝒙) and having cu-
ulative distribution function 𝐹𝑿 (𝒙) = P (𝑿 ≤ 𝒙). Here P denotes

he probability, and 𝛺𝑿 denotes the probability space. To compute
he probability density of output 𝑃𝒀 (𝒚) we employ a surrogate model,
𝑔̂(𝒙), which approximates the actual computational model through a

apping between the inputs and the output. Here the training samples
re generated using design of experiments 𝜩 =

[

𝑿(1),𝑿(2),… ,𝑿(𝑁𝑠)
]𝑇

or the corresponding function evaluations 𝒀 =
[

𝑌 (1), 𝑌 (2),… , 𝑌 (𝑁𝑠)
]𝑇 ,

ith 𝑁𝑠 as the number of training samples. Mathematically it can be
epresented as:

(𝒙) = 𝑔̂(𝒙;𝜽) + 𝜖, (16)

here 𝜽 denotes the set of surrogate parameters and 𝜖 denotes the
urrogate error. As we discussed earlier, most of the time, a simple
urrogate fails to handle multi-fidelity data. Suppose we have pair
f input parameters and corresponding responses of the system from
ultiple sources having 𝑀 different fidelities (sensors with different
recision) of the form {𝐗1, 𝒚1}, {𝐗2, 𝒚2}, ......{𝐗𝑀 , 𝒚𝑀}, the challenging
ask here will be to fuse the multi fidelity data. To that end, we leverage
he proposed deep H-PCFE to integrate the information efficiently from
ulti-fidelity data.

.2. Numerical examples

Three numerical examples are presented in this section to demon-
trate the application of the proposed Deep-H-PCFE for multi-fidelity
odeling in uncertainty quantification. All of the examples employ
ither analytical or numerical methods to generate multi-level data.

https://github.com/csccm-iitd/multifidelity-dt
https://github.com/csccm-iitd/multifidelity-dt
https://github.com/csccm-iitd/multifidelity-dt
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Fig. 1. A schematic illustration of Multi-fidelity H-PCFE. Here 𝑋∗ represents the input data and 𝑌 ∗
𝑛 denotes the output data corresponding to the 𝑛th fidelity.
Despite the fact that any other experimental design might be employed
instead, uniformly distributed sample points are used as training data
here. The goal here is to quantify the uncertainty in the output response
in terms of the probability density function of the quantity of interest.
However, it is also required to evaluate the efficacy of the proposed
method. For that, we compare the results obtained by the proposed
framework to that of Crude MCS results. A detailed illustration is
provided in each numerical example.

3.3. Benchmark mathematical examples

3.3.1. A pedagogical example
We start with a relatively simpler example, where we deal with data

of two levels of fidelities, i.e. high fidelity and low fidelity. While the
low fidelity function is a sinusoidal wave with four periods, the high
fidelity function is obtained by transforming low fidelity non-uniform
scaling and quadratic non-linearity. The expressions of analytical for-
mulations used for generating high-fidelity and low-fidelity data are
given below in Eq. (17):

𝑔1𝑜𝑤(𝑥) = sin(8𝜋𝑥)

𝑔high(𝑥) = (𝑥 −
√

2)𝑔21𝑜𝑤(𝑥).
(17)

Let us suppose we have a finite number of low-fidelity data and
very few high-fidelity data points. The primary objective here is to
achieve the closest approximation for the high-fidelity response data.
In general, the efficiency of the surrogate is determined by the number
of training samples and the accuracy metrics. However, here the con-
straint is more challenging as we need to achieve accurate prediction
from the limited number of low-fidelity data and fewer higher-fidelity
points. Both low-fidelity and high-fidelity data are used. For the current
example, the number of low-fidelity points used to train the model is
n1=50, whereas the number of high-fidelity points utilized is n2=16.
The points are chosen such that 𝑛1 points form data set 𝐴1 and 𝑛2 points
form data set 𝐴2, where 𝐴2 ⊆ 𝐴1 [46]. We provide a further visual
illustration of generated samples in Fig. 2. The vanilla H-PCFE trained
solely with high-fidelity data leads to inaccurate prediction as the data
is too scarce to identify the underlying signal.

The prediction results are demonstrated in the Fig. 3. The Fig. 3(a)
showcases high fidelity function predicted by deep H-PCFE in compar-
ison with predictions of the H-PCFE models trained with only high
fidelity data and low fidelity data, and actual high fidelity function.
Further, to evaluate the performance of the proposed framework in
uncertainty quantification, we examine the probability density plots
depicted in Fig. 3(b). In the depicted results, the deep H-PCFE is
referred to as multi-fidelity H-PCFE (MF-H-PCFE). The results elucidate
that the prediction by MF-HPCFE matches closely with the ground truth
for the prescribed number of high-fidelity and low-fidelity training
data points. Similarly, the apparent visual resemblance can be seen
in probability density plots of MF-H-PCFE predictions and the ground
5

Fig. 2. Exact low-fidelity and high-fidelity functions (refer to Eq. (17)), and the chosen
data points for training the MF-HPCFE (50 low-fidelity points and 16 high-fidelity
points)

truth values, where x follows a uniform distribution. On the other hand,
the predictions of H-PCFEs, trained either solely with the high-fidelity
data or solely with the low-fidelity data, referred to here as HF-HPCFE
and LF-HPCFE, deviate from the ground truth values significantly.

In order to further investigate the effect of the number of high-
fidelity data points on the accuracy of the model prediction, a case
study has been carried out and is presented in Fig. 4. The illustrated plot
shows the variation of the root mean square error between predictions
by MF-HPCFE and ground truth with a number of high-fidelity data
points. The plot clearly infers that with an increase in the number of
high-fidelity points, root means square error decreases, and the model
enhances the performance as expected.

3.3.2. Buckling of plate problem
As the second example, we illustrate the problem of buckling of a

plate. Contrary to the first numerical example, the problem we consider
here is a more challenging problem and corresponds to a practical ap-
plication setting. The boundary condition is set to be simply supported
from all sides, whereas the uniform load is applied along the length.
For the given problem setting, the primary objective is to quantify the
uncertainty in the critical buckling load of the plate. To estimate the
critical buckling load, the obvious choice is to rely on the analytical
formulations [48]. However, these formulation does not yield accurate
results due to the underlying assumptions. More realistic results can be
obtained through numerical approaches such as finite element compu-
tational models or scientific computing approaches physics informed
learning [49]. While the analytical formulations are considered as the
low-fidelity model, the high fidelity and the intermediate level fidelity
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Fig. 4. Convergence of the prediction error (Root mean square error of actual and
predicted values) with increase in number of high-fidelity points, keeping number of
low fidelity points = 50.

Table 1
Distribution type and distribution of input parameters used for simulating critical
buckling load of the plate.

Variable no. Variable Mean COV Distribution

1 𝑎 m 3 0.05 Normal
2 𝑏 m 2 0.05 Normal
3 𝑡 m 0.2 0.075 Rayleigh
4 𝐸 kpascal 2 × 109 0.1 Lognormal
5 𝜇 0.3 0.025 Lognormal

data are generated by employing finite element simulations with 3-
D elements (solid section element) and 2-D elements (shell section
element). Considering the influence of various factors, plate dimensions
and material properties are taken as random variables. Thus the ran-
dom input variables to the mathematical model/computational model
include length (a), breadth (b), thickness (t), Young’s modulus(E), and
Poisson’s ratio(𝜇). The detailed information on these parameters is
resented in the Table 1.

The results of the study are demonstrated in Fig. 5.
The PDF plots of the output (critical buckling load) are presented

n Fig. 5. The reported results investigate the efficacy of the proposed
ethod for two sets of samples having different numbers of high

idelity points while keeping the low fidelity points (𝐿𝐹 = 210) and
intermediate fidelity sample points (𝐻𝐹1 = 15) constant. The PDF plots
of the deep-HPCFE (MF-HPCFE) predictions show good agreement with
6

that of the ground truth. As is seen in Fig. 5(a), though the results
of MF-HPCFE deviate slightly from the PDF of the true values, with
an increase in the number of high fidelity points to (𝐻𝐹2 = 5) the
DF plots of the MF-HPCFE emulates the PDF plots of the ground
ruth almost exactly. The noteworthy observation is that similar to
he previous example, the surrogate models trained with single fidelity
ata, HF-HPCFE and LF-HPCFE, fail to obtain the desired performance.

. Application of deep H-PCFE for the enhanced digital twin frame-
ork

.1. Context of the problem

A DT describes the time evolution of a physical system from the
ominal model to the updated state of the system based on the response
easurements achieved through data acquisition systems. For engineer-

ng dynamical systems, the nominal model is generally a physics-based
odel which has been verified, validated, and calibrated. We explain

he essential ideas through a single degree of freedom (SDOF) dynamic
ystem. We begin with considering the equation of motion of a single
egree of freedom dynamic system [50] is expressed of the form:

0𝑢̈0(𝑡)𝑡 + 𝑐0𝑢̇0(𝑡)𝑡 + 𝑘0𝑢0(𝑡) = 𝑓0(𝑡) (18)

e call the system given by Eq. (18) as the nominal dynamical system.
ere 𝑚0, 𝑐0, and 𝑘0 are the nominal mass, damping, and stiffness coef-

icients. The forcing function and the dynamic response are denoted by
0(𝑡) and 𝑢0(𝑡), respectively. It is worthwhile to note that the described
DOF model in Eq. (18) can be regarded as either a simplified model of
more complex dynamic system or the representation of the dynamics
f a modal coordinate of a multiple-degree freedom system. We proceed
urther by driving 𝑚0 throughout the equation, and thus the equation
f motion Eq. (18) can be rewritten as:

̈0(𝑡) + 2𝜁0𝜔0𝑢̇0(𝑡) + 𝜔2
0𝑢0(𝑡) =

𝑓 (𝑡)
𝑚0

(19)

Here the undamped natural frequency (𝜔0), the damping factor (𝜁0)
and the natural time period of the underlying undamped system are
expressed as:

𝜔0 =
√

𝑘0
𝑚0
, (20)

𝑐0
𝑚0

= 2𝜁0𝜔0 or 𝜁0 =
𝑐0

2
√

𝑘0𝑚0
(21)

𝑇0 = 2𝜋
𝜔0

(22)
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Fig. 5. Probability density function corresponding to the predictions of (a) deep-HPCFE trained with 210 LF points, 15 𝐻𝐹1 points, and 5 𝐻𝐹 − 2 points and (b) deep-HPCFE
trained with 210 LF points, 15 HF1 points, 8 HF2 points, where LF denotes low-fidelity, 𝐻𝐹1 denotes intermediate fidelity, and 𝐻𝐹2 denotes high-fidelity.
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aking the Laplace transform of Eq. (19), the expression results in:

2𝑈0(𝑠) + 𝑠2𝜁0𝜔0𝑈0(𝑠) + 𝜔2
0𝑈0(𝑠) =

𝐹0(𝑠)
𝑚0

, (23)

where 𝑈0(𝑠) and 𝐹0(𝑠) are the Laplace transforms of 𝑢0(𝑡) and 𝑓0(𝑡)
respectively. Solving the equation associated with coefficient of 𝑈0(𝑠)
in Eq. (19) without the forcing term, the complex natural frequencies
of the system are given by:

𝜆01,2 = −𝜁0𝜔0 ± 𝑖𝜔0

√

1 − 𝜁20 = −𝜁0𝜔0 ± 𝑖𝜔𝑑0 (24)

ere the imaginary number 𝑖 =
√

−1 and the damped natural frequency
s expressed as

𝑑0 = 𝜔0

√

1 − 𝜁20 (25)

or a damped oscillator, at resonance, the frequency of oscillation is
iven by 𝜔𝑑0 < 𝜔0. Therefore, for positive damping, the resonance
requency of a damped system is always lower than the corresponding
nderlying undamped system.

Now for the same single degree of freedom system, the digital twin
odel can be described as:

(𝑡𝑠)𝑢̈(𝑡, 𝑡𝑠)𝑡 + 𝑐(𝑡𝑠)𝑢̇(𝑡, 𝑡𝑠)𝑡 + 𝑘(𝑡𝑠)𝑢(𝑡, 𝑡𝑠) = 𝑓 (𝑡, 𝑡𝑠) (26)

ere 𝑡 represents the system time 𝑡𝑠 represents the ‘‘slow time’’ (service
ime), which can be considered as a time variable having a much slower
ariation than 𝑡. When the system degrades over the service period, the
ystem properties, mass 𝑚(𝑡𝑠), damping 𝑐(𝑡𝑠), stiffness 𝑘(𝑡𝑠) and forcing
𝐹 (𝑡, 𝑡𝑠) change with 𝑡𝑠 also varies in the stipulated time. Moreover,
the forcing term is a function of time 𝑡 and slow time 𝑡𝑠. Thus, in
essence, Eq. (26) represents the mathematical model of a digital twin
of a (Single degree of Freedom) SDOF dynamical system having the
response 𝑢(𝑡, 𝑡𝑠) such that when 𝑡𝑠 = 0, that is at the beginning of the
service life, the model represents the nominal model Eq. (18). In a
realistic scenario, the sensors, along with the data acquisition systems,
collect measurements at discretized time instances of the time 𝑡𝑆 . Upon
obtaining the sensor data, the unknown functional form of the system
properties and the forcing term with time 𝑡𝑠 can be estimated. A general
overview representing the implementation of a digital twin for a single-
degree-of-freedom dynamic system is schematically depicted in Fig. 6.
While the digital twin model enables to obtain the embodied functions
of 𝑘(𝑡𝑠), 𝑚(𝑡𝑠), and 𝑐(𝑡𝑠) effectively, it is apparent that the feasible
choices of the functional forms are not limited but several. For instance,
the stiffness function 𝑘(𝑡 ) can be considered as a random function (i.e.,
7

𝑠

a random process). Further we also assume that damping is small so
that the effect of variations in 𝑐(𝑡𝑠) is negligible. In effect only variations
n the mass and stiffness is considered. Thus it is legitimate to express
unctional forms 𝑘(𝑡𝑠) and 𝑚(𝑡𝑠) as follows:

(𝑡𝑠) = 𝑘0(1 + 𝛥𝑘(𝑡𝑠)), and
(𝑡𝑠) = 𝑚0(1 + 𝛥𝑚(𝑡𝑠)),

(27)

here it is given that 𝛥𝑘(𝑡𝑠) = 𝛥𝑚(𝑡𝑠) = 0 for 𝑡𝑠 = 0. Typically, the
tiffness of the system 𝑘(𝑡𝑠) deteriorates with the progression of time,
nd thus it is assumed to be a decaying function over a long time.
owever, the same is not the case with 𝑚(𝑡𝑠). Loading of cargo and
assengers and use of fuel with the progression of flight exemplify such
situation where 𝑚(𝑡𝑠) can be an increasing or decreasing function.

n light of the above discussions, the following functions are chosen
onveniently as representative examples:

𝑘(𝑡𝑠) = 𝑒−𝛼𝑘𝑡𝑠
(1 + 𝜖𝑘 cos(𝛽𝑘𝑡𝑠))

(1 + 𝜖𝑘)
− 1 (28)

𝛥𝑚(𝑡𝑠) = 𝜖𝑚 SawTooth(𝛽𝑚(𝑡𝑠 − 𝜋∕𝛽𝑚)) sin2(2𝛽𝑚𝑡𝑠) (29)

ere the function, SawTooth(∙), denotes a sawtooth wave with a period
𝜋. A visualization of the overall variation of the modeled stiffness and
ass of the system is provided in Fig. 7, where time is normalized to

he natural time period of the nominal model. The parameter values
n the functions are chosen to be 𝛼𝑘 = 4 × 10−4, 𝜖𝑘 = 0.05, 𝛽𝑘 = 0.2,
𝑚 = 0.15 and 𝜖𝑚 = 0.35. One may consider fatigue crack growth in
n aircraft over repeated pressurization as a valid reason for stiffness
egradation over time in a periodic manner. On the other hand, the
ass of the aircraft may increase and decrease over the nominal value
ue to re-fueling and fuel burn over a flight period. Ideally, the digital
odel aims to track the variation in the system properties through the
easured sensor data.

In essence, the digital twin model corresponding to the single degree
f freedom system enables us to track the variation of the mass and
tiffness (𝛥𝑚, 𝛥𝑘) with time. To that end, the real-time measurements
f displacements and the dampened natural frequency of the system
re inevitable. However, in practice, several factors impede the seam-
ess acquisition of sensor data, and thus the collected data may have
ifferent fidelities. In the context of digital twin having two fidelities
n the measured data, i.e, a high fidelity data 𝑓 =

{

𝒙𝑖, 𝒚𝑓,𝑖
}

𝑖=1𝑁𝑓 and
low-fidelity data 𝑐 =

{

𝒙𝑖, 𝒚𝑐,𝑖
}

𝑖=1𝑁𝑐 , we aim to obtain the mapping
 ∶ 𝒙 ↦ 𝑦𝑓 . Here input 𝒙 represents the time, whereas the output 𝒚
represents system parameters (e.g., mass, stiffness, damping).
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Fig. 6. The overview of constructing a digital twin for a multi-degree-of-freedom dynamic system.
Fig. 7. Examples (refer to Eq. (28)) of model functions representing long-term variation in the mass and stiffness properties of a digital twin system.
4.2. Numerical example

By definition, the digital twin model solves an inverse problem.
In a real-time setting, we lack first-hand information on the varying
system parameters (𝛥𝑚 or 𝛥𝑘), whereas the digital twin model learns
the parameters from the measured data. However, we note that, for the
sake of numerical illustration and validation of the proposed framework
in the present work, we utilize synthetic data instead of the actual field
data. The synthetic data is generated by assuming some stiffness and
mass degradation functions (see Eq. (28)) to be true for high-fidelity
data. In order to obtain low-fidelity data, we perform certain operations
on the high-fidelity data function. The modified stiffness degradation
function used here to generate the low-fidelity data is as follows:

𝛥 = 0.75𝛥 + 0.01 sin(1000 + 𝜋 𝑡𝛥 ). (30)
8

𝑙𝑜𝑤𝑘 𝑘 10 𝑘
For the low-fidelity mass degradation function, we have explored two
plausible forms of equations, and are expressed as:

𝛥𝑙𝑜𝑤𝑚1 = 0.75𝛥𝑚 + 0.01 cos(𝑡 𝜋
10

) + 0.025 (31)

𝛥𝑙𝑜𝑤𝑚2 = 0.25SawTooth(0.15(𝑡 − 20𝜋
3
)) (32)

4.2.1. Digital twin using time domain data
For the current study, we examine two cases in which the system

properties of the dynamic system vary: in the first case, we assume
that the change in the natural frequency with time is solely due to the
change in the mass of the system, where the stiffness and damping of
the nominal model are kept unchanged, and in the second case, we
consider that the time-evolution of the natural frequency is only due
to the stiffness deterioration, where the mass and the damping of the
nominal model are presumed to be invariants. We begin the numerical
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llustration by considering the first case where the proposed framework
s employed to track the change in the mass of the SDOF system. The
quation of motion of the digital twin of an SDOF system for a fixed
alue of 𝑡𝑠 with variation only in the mass property is given by:

0(1 + 𝛥𝑚(𝑡𝑠))𝑢̈(𝑡)𝑡 + 𝑐0𝑢̇(𝑡)𝑡 + 𝑘0𝑢(𝑡) = 𝑓 (𝑡). (33)

The free vibration response of a dynamic system is one of the most
implest and convenient measurements that can be used to develop the
igital twin. The dynamic response of the digital twin model described
n Eq. (33) due to an initial displacement 𝑢𝑖0 and initial velocity 𝑢̇𝑖0 can
e expressed as following [50]:

𝑢𝑠(𝑡𝑠, 𝑡) = 𝐴𝑠(𝑡𝑠)𝑒−𝜁𝑠(𝑡𝑠)𝜔𝑠(𝑡𝑠) 𝑡 sin
(

𝜔𝑑𝑠 (𝑡𝑠)𝑡 + 𝜙𝑠(𝑡𝑠)
)

(34)

where 𝐴𝑠(𝑡𝑠) =

√

√

√

√

√

√

(

𝑢̇𝑖0 + 𝜁𝑠(𝑡𝑠)𝜔𝑠(𝑡𝑠)𝑢𝑖0
)2

+
(

𝜔𝑑𝑠 (𝑡𝑠)𝑢𝑖0
)2

𝜔𝑑𝑠 (𝑡𝑠)
2

(35)

and 𝜙𝑠(𝑡𝑠) = tan−1
𝜔𝑑𝑠 (𝑡𝑠)𝑢𝑖0

𝑢̇𝑖0 + 𝜁𝑠(𝑡𝑠)𝜔𝑠(𝑡𝑠)𝑢𝑖0
(36)

The dynamic response of the system (see Fig. 8) is obtained from
Eq. (34), where a zero initial velocity normalized with 𝑢𝑖0 is used. The
time axis is normalized with the undamped time period of the nominal
system

𝑇0 =
2𝜋
𝜔0

(37)

s is seen in Fig. 8, the difference in the decay rate of the response
f the nominal system and the digital twin model is clearly identi-
ied. Therefore, by considering the decay rate, it would be possible
o estimate 𝛥𝑚 from their difference at a certain point in the slow
ime. This can be done by directly measuring the displacement or
elocity readouts (using optical readout for example) and obtaining
wo successive peaks as shown in Fig. 8. To that end, we leverage
he logarithmic decrement method (see for example, [50]) to obtain
he damping factor. The basic premise here is to estimate the damping
actor through measurements of the heights of two (or more) successive
eaks. For any given damped oscillator, the logarithmic decrement is
efined as:

= ln
𝑢(𝑡)

𝑢(𝑡 + 𝑇 )
(38)

sing the expression of 𝑢(𝑡) as given in Eq. (34), it can be shown that
or the digital twin:

𝑚 =
2𝜋𝜁𝑚

√

1 − 𝜁2
. (39)
9

𝑚 t
Similarly, the logarithmic decrement for the nominal system 𝛿0 can be
xpressed by replacing 𝜁𝑚 with the 𝜁0 in Eq. (39). Assuming that the

logarithmic decrements for the nominal system and the digital twin
have been experimentally measured from the response readouts, we
propose an approach for obtaining the mass absorption factor (𝛥𝑚). We
proceed further by taking the ratio of the logarithmic decrements for
both the oscillators, which results in the following expression

𝛿0
𝛿𝑚

=
𝜁0
𝜁𝑚

√

1 − 𝜁2𝑚
√

1 − 𝜁20

. (40)

Subsequently, taking the square of the above equation yields:
(

𝛿0
𝛿𝑚

)2
=

1 + 𝛥𝑚 − 𝜁20
1 − 𝜁20

. (41)

The mass absorption factor therefore can be obtained by solving this
equation as

𝛥𝑚 =
(

1 − 𝜁20
)

{

(

𝛿0
𝛿𝑚

)2
− 1

}

(42)

lthough this sensing technique relies on the measurement of the
ecrement of the dynamic response, small damping is not a requirement
or this to be applicable. For systems with even very high Q-factor, the
ogarithmic decrements can be calculated by measuring response peaks
everal cycles apart as:

= 1
𝑛
ln

𝑢(𝑡)
𝑢(𝑡 + 𝑛𝑇 )

. (43)

ere, 𝑛 > 1, is the number of periods the measured peaks are apart.
hen the Q-factor of the nominal system is high (𝜁20 ≈ 0), Eq. (42) can

e further simplified as:

𝑚 ≈
(

𝛿0
𝛿𝑚

)2
− 1 (44)

o far, we have discussed the numerical setup to capture the variation
f mass in the digital twin model of the SDOF dynamical system.
owever, such an analytical approach has several limitations. Firstly,

n a realistic scenario, the data collected are always contaminated
y a certain percentage of noise. The analytical framework proposed
bove only works for clean data. In other words, this only works in
theoretical setting. Secondly, the analytical can update the system

arameter; however, it cannot predict the variation of system parame-
ers with time. In other words, a digital twin developed based on only

he formulation above will not be predictive. Last but not least, the
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formulation proposed approach cannot account for data of multiple
fidelity. To address these challenges, we propose to combine the MF-
HPCFE proposed in the previous section with the analytical formulation
presented above. In essence, the formulation presented above is used as
a data processing tool for converting the time–history measurement to
mass degradation (or parameter degradation to be more specific). Data
of fidelity are processed using the same process and hence, we obtain
parameter estimates of different fidelity. The MF-HPCFE is then used to
track the temporal evolution of the parameters. An algorithm depicting
the steps involved is shown in Algorithm 4.

Algorithm 4 The proposed enhanced digital twin
Requirements: Nominal model
1: Collect data from sensors of different fidelity
2: Process the low-fidelity and high-fidelity data to obtain the evolu-

tion of system parameters (low-fidelity and high-fidelity estimates)
with time (See Section 4.2.1 / Section 4.2.2)

3: Use MF-HPCFE to learn the evolution of the system parameters (see
algorithm 2

4: Update the system properties of the nominal model such that 𝑚 =
𝑚0(1 + 𝛥𝑚), 𝑘 = 𝑘0(1 + 𝛥𝑘)

5: Make the decisions regarding the health of the system, mainte-
nance, and service

6: Repeat the step 1 to 5

With this setup, the digital twin can handle noisy, sparse, and multi-
idelity data to update itself. Additionally, MF-HPCFE being a Bayesian
urrogate provide an estimate of the predictive uncertainty and entails
rust in the digital twin prediction. Overall, the final outcome is a
rustworthy, uncertainty aware digital twin that can tackle data of
ultiple fidelity.

Now, we closely examine the results yielded by the proposed ap-
roach. As we discussed earlier, for the numerical experiment, the
ow-fidelity data and high-fidelity data are synthetically generated
sing Eqs. (29) and (32), respectively. The visualizations of the ground
ruth and the low fidelity function of 𝛥𝑚 are provided in Fig. 9. Further,
e investigate the performance of the proposed framework for different

raining scenarios. The results are summarized in Fig. 10. Four cases,
hown in Fig. 10(a–d) illustrate the significance of the high-fidelity data
oints in the effective training of the proposed approach. Here we note
hat the proposed multi-fidelity approach is conveniently denoted as a
ulti-fidelity digital twin. Along with the ground truth values of 𝛥𝑚, the
rediction obtained by the single-fidelity digital twin is also compared.
he model is trained with 501 low-fidelity data points, whereas the
umber of high-fidelity data points is varied. As is seen from the results,
he proposed model efficiently captures the variation in the mass (𝛥𝑚),
hereas the single fidelity DT fails to emulate the ground truth function

n all the cases presented.
Now, we consider the second case where the mass and damping of

he nominal model are unchanged, and thus, only the time evolution
f stiffness properties affects the digital twin. The overall framework is
ame and hence we directly proceed with the numerical illustration.

Eqs. (29) and (32) are utilized to generate low-fidelity and high-
idelity data evolving stiffness. The variation of the 𝛥𝑘 using the
ow-fidelity function and high-fidelity functions are illustrated in the
ig. 11. A further evaluation of the performance of the proposed
ulti-fidelity digital twin is carried out by varying the high-fidelity
oints, and the results of the same are summarized in Fig. 12(a–d).
or the presented study, the experimental design is chosen such that
he low-fidelity points are fixed to 501 while the high-fidelity points
re varied from 3 to 11 intermittently. The results apparently indicate
hat the proposed framework emulates the ground truth better with an
ncrease in the number of high-fidelity points. Here we note that our
bjective is to obtain the desired accuracy of the framework with a
10

inimum number of high-fidelity training points as we consider the s
Fig. 9. Low fidelity (Eq. (32)) and high fidelity (Eq. (29)) functions representing the
mass evolution of the system with normalized time.

scarcity of high-fidelity points in real-time scenarios. In regards to the
performance of single-fidelity digital twin, it fails to yield the desired
result, even with an increased number of high-fidelity points, as was
observed previously.

4.2.2. Digital twin using frequency domain data
When steady-state response due to harmonic or broadband random

excitations are considered, the frequency-domain methods provide the
most physically intuitive and analytically simplest solutions. Assuming
the amplitude of the harmonic excitation as 𝐹 , from the Laplace
transform of Eq. (33), the response in the frequency domain can be
expressed by substituting 𝑠 = 𝑖𝜔 as
(

−𝜔2(1 + 𝛥) + 𝑖𝜔2𝜁0𝜔0 + 𝜔2
0
)

𝑈𝑚(𝑖𝜔) =
𝐹
𝑚0

(45)

ividing this by 𝜔2
0, the frequency response function of the mass-

bsorbed oscillator can be expressed as

𝑚(𝑖𝛺) =
𝑈𝑠𝑡

−𝛺2(1 + 𝛥) + 2𝑖𝛺𝜁0 + 1
(46)

here the normalized frequency and the static response are given by

= 𝜔
𝜔0

and 𝑈𝑠𝑡 =
𝐹
𝑘

(47)

In Fig. 13, the frequency response given by Eq. (46) is plotted by
normalizing it with 𝑈𝑠𝑡. It can be observed that the mass-absorbed
scillators show a reduced resonance frequency and reduced damping
or all Q-factor values of the reference oscillator. Frequency response
unctions such as the ones shown in Fig. 13 can be obtained by the
ast Fourier Transform (FFT) of a measured readout signal in the time
omain. In practice, the natural frequency and the damping factor are
ften obtained from the frequency response function measurements.
herefore, the natural frequency and the damping factor are effectively
btained by ‘post-processing’ the frequency response functions. In some
ases, this process can introduce errors. Here we develop a mass sensing
pproach that directly uses the frequency response function and avoids
irect derivation of the natural frequency and the damping factor.

We assume that the maxima or the peak of the frequency response
unction can be located and measured. In Fig. 14, the peak of the
requency response of the reference oscillator and the mass-absorbed
scillator are shown. The shift in frequency, as well as damping, are
arked in the plot. The aim is to utilize both of this information
imultaneously to obtain an estimate of the absorbed mass.
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Fig. 10. Prediction results of proposed MF-DT and Single-Fidelity-DT of mass evolution based on time domain formulations: Normalized response of the oscillator plotted against
normalized time 𝜏 = 𝑡∕𝑇0. The results show the prediction of MF-DT trained (a) with 7 HF and 501 LF data points, (b) with 11 HF and 501 LF data points, (c) with 12 HF and
501 LF data points, and (d) with 19 HF and 501 LF data points, where LF denotes low-fidelity (Eq. (31)), and 𝐻𝐹2 denotes high-fidelity.
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Fig. 11. stiffness degradation Low and high fidelity system with time domain.

To obtain the maxima of the frequency response, we take a square
f the amplitude given by Eq. (46) and set its derivative with respect
11
to 𝛺2 to zero, that is

𝑑|𝑈𝑚|
2

𝑑𝛺2
= 0 or 𝑑

𝛺2

{

1
(1 −𝛺2(1 + 𝛥))2 + 4𝛺2𝜁20

}

= 0 (48)

Solving this equation for 𝛺, it can be shown that the normalized fre-
quency corresponding to the maximum frequency response amplitude
is given by:

𝛺max =

√

1 + 𝛥 − 2𝜁20
1 + 𝛥

=
√

1 − 2𝜁2𝑚 (49)

The normalized (by 𝑈𝑠𝑡) amplitude of the maximum response at the
bove frequency point can be obtained as:

𝑚 = |𝑈𝑚(𝑖𝛺 = 𝑖𝛺max)|∕𝑈𝑠𝑡 =
1 + 𝛥

2𝜁0
√

1 + 𝛥 − 𝜁20

= 1

2𝜁𝑚
√

1 − 𝜁2𝑚
(50)

In a similar way the maximum frequency response for the reference
oscillator 0 can also be expressed. Assuming that the maximum
requency response for the reference oscillator and the mass-absorbed
scillator have been experimentally measured, we propose an approach
or obtaining the mass absorption factor. Taking the ratio of the maxi-
um frequency response for both of the oscillators we have

 =
𝑚
0

= (1 + 𝛥)

√

1 − 𝜁20
√

1 + 𝛥 − 𝜁20

(51)

Squaring both sides, this equation can be simplified to a quadratic
equation in 𝛥. Solving that equation and keeping only the relevant root,
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Fig. 12. Prediction results of proposed MF-DT and Single-Fidelity-DT of stiffness evolution based on time domain formulations: Normalized response of the oscillator plotted against
normalized time 𝜏 = 𝑡∕𝑇0. The results show the prediction of MF-DT trained (a) with 3 HF and 501 LF data points, (b) with 5 HF and 501 LF data points, (c) with 6 HF and 501
LF data points, and (d) with 11 HF and 501 LF data points, where LF denotes low-fidelity (Eq. 38), and HF2 denotes high-fidelity.
Fig. 13. Normalized response amplitude of the oscillator in the frequency domain as a function of the normalized frequency 𝛺 = 𝜔∕𝜔0 for two different mass absorption factors
and four different Q-factors.
e

𝛥

N
t

he mass absorption factor can be obtained as:

=
𝑅

(

𝑅 +
√

𝑅2
 − 4𝜁20 + 4𝜁40

)

2
(

1 − 𝜁20
) − 1 (52)

= (𝑅2
 − 1)

(

1 + 𝜁20 +
𝑅2
 + 1

𝑅2


𝜁40 +⋯

)

(53)

he last equation was obtained by a Taylor series expansion of the
xpression of 𝛥 in Eq. (52) about 𝜁0 = 0. For systems with high Q-factor,
eglecting higher-order terms in 𝜁 , the absorbed mass can be explicitly
12

0 r
xpressed in terms of the peak responses of both the oscillators as

≈

{

(

𝑚
0

)2
− 1

}

(

1 + 𝜁20
)

(54)

For further lightly damped systems (𝜁20 ≪ 1) we have the following
simplification

𝛥 ≈
(

𝑚
0

)2
− 1 × 𝛼 (55)

either the calculation of the resonance frequencies nor the calcula-
ion of the damping factors is required to apply this expression. This
esult is also independent of the Q-factor of the oscillator. Since the
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Fig. 14. Normalized response amplitude of the oscillator in the frequency domain as
function of the normalized frequency 𝛺 = 𝜔∕𝜔0 for mass absorption factor 𝛥 = 0.5

and 𝑄0 = 20. 0 ,𝑚: Maxima of the frequency response of the reference oscillator and
the mass absorbed oscillator.

frequency response maxima amplitudes appear as a ratio in Eq. (55),
units of measurement or normalization do not affect the result. From
13

t

the point of view of ease of measurement, Eq. (55) represents the
simplest mass sensing approach. The above formulations yield the
evolution of the digital solely due to the variation in the mass while a
similar formulation can be derived for the digital twin model in which
only the stiffness property is varied. However, the limitations of the
time-domain approach are present here as well; this is addressed by
employing the MF-HPCFE as before.

Similar to the previous case, i.e., Section 4.2.1 for the numerical
experiment, low-fidelity data and high-fidelity data are synthetically
generated utilizing the Eq. (29) and (32). The results of four different
scenarios are showcased in Fig. 15(a–d). The four scenarios are com-
posed such that low-fidelity data points are kept at 501 data points,
whereas the number of high-fidelity points is chosen to be 3, 7, 10, and
12, respectively. It can be apparently observed from the results that the
proposed multi-fidelity DT effectively captures the change in the mass
(𝛥𝑚). However, the single-fidelity digital twin fails to yield accurate
esults. In digital twin, Mass is evaluated while keeping frequency as
nput. Similar to the time mass domain, we applied the MF-DT ap-
roach to predict the mass degradation function and compared it with
he assumed one. We took 501 low-fidelity points from the equation
nd 3, 5, 7, 9, 10, 12 high-fidelity data points.

We further analyze the corresponding results of the stiffness degra-
ation in Fig. 16(a–d). The results indicate the supremacy of the
roposed framework. The multi-fidelity digital twin trained with 10
igh-fidelity points and 501 low-fidelity points emulates the ground
ruth almost exactly. On the other hand, the single-fidelity digital

win yields poor performance in all cases. The results reinforce the
Fig. 15. Prediction results of proposed MF-DT and Single-Fidelity-DT of mass evolution based on frequency domain formulations: Normalized response of the oscillator plotted
gainst normalized time 𝜏 = 𝑡∕𝑇0. The results show the prediction of MF-DT trained (a) with 5 HF and 501 LF data points, (b) with 7 HF and 501 LF data points, (c) with 10 HF

and 501 LF data points, and (d) with 12 HF and 501 LF data points, where LF denotes low-fidelity (Eq. (31)), and 𝐻𝐹2 denotes high-fidelity.
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Fig. 16. Prediction results of proposed MF-DT and Single-Fidelity-DT of stiffness evolution based on frequency domain formulations: Normalized response of the oscillator plotted
against normalized time 𝜏 = 𝑡∕𝑇0. The results show the prediction of MF-DT trained (a) with 3 HF and 501 data points, (b) with 4 HF and 501 data points, (c) with 5 HF and
501 LF data points, and (d) with 10 HF and 501 LF data points, where LF denotes low-fidelity (Eq. (31)), and 𝐻𝐹2 denotes high-fidelity.
consistency of the proposed multi-fidelity digital twin even with the
frequency domain-based data processing.

5. Conclusion

The significance of digital twin technology is rapidly increasing
in various engineering and industrial domains, including aerospace,
infrastructure, and automotive. However, the practical implementation
of digital twins faces challenges due to a lack of detailed application-
specific information. To overcome this, data-driven models play a
crucial role by integrating data and computational models, enabling
real-time updates and predictions. Nevertheless, the efficiency of sur-
rogate models, which bridge the physical systems and digital twin
models, is often hindered by limited and inaccurate sensor data. An
ideal surrogate mode for a digital twin should be able to incorporate
data of multiple fidelity. To this end, we propose a novel frame-
work that involves developing a robust multi-fidelity surrogate model,
which can then be used for effective tracking of digital twin systems.
Our proposed multi-fidelity modeling technique allows for the capture
of nonlinear relationships between different fidelity data sets while
eliminating erroneous information obtained from low-fidelity models.
We introduce a framework called deep-Hybrid-Polynomial Correlated
Function Expansion (deep-H-PCFE), which consists of nested individual
H-PCFE models corresponding to different fidelity levels. Additionally,
we refer to this framework as Multi-Fidelity H-PCFE (MF-H-PCFE)
and Multi-Fidelity Digital Twin (MF-DT) throughout the paper. The
basic building block of our framework is the H-PCFE, which combines
14
Gaussian Process (GP) and Polynomial Correlated Function Expansion
(PCFE) to efficiently approximate the actual function. Summarizing, the
key novel features of the proposed framework include:

1. The MF-H-PCFE proposed in this paper allows integrating data of
multiple fidelity. Such as model is particularly useful for devel-
oping digital twin technology; this is because a realistic digital
twin will have to incorporate multi-source and multi-fidelity
data to update itself.

2. The deep-HPCFE algorithm proposed in this paper is a Bayesian
surrogate model and hence, provides an estimate of the predic-
tive uncertainty. This, again, is a key feature toward enabling
an uncertainty-aware digital twin framework. This, in the long
run, will be helpful in taking an informed decision based on the
digital twin predictions.

3. The multi-fidelity surrogate model proposed in this paper is
highly data efficient and requires only a few high-fidelity train-
ing samples. This can potentially be beneficial in developing
digital twins from sparse and limited data.

4. Last but not least, we have presented a framework that enables
the development of digital twin technology from both time and
frequency domain data. This is another major departure from
our previous work on digital twin [11,15]

The proposed framework’s applicability is demonstrated through
numerical examples, starting with the validation of its performance
in uncertainty quantification and, subsequently, its application in the
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development of digital twins from multi-fidelity data. The result ob-
tained reinforces our claim and illustrates the advantages highlighted
above. Overall, the proposed approach is a positive step towards the
development of realistic digital twins of dynamical systems.

While the case studies yield excellent results, we acknowledge that
our proposed digital twin has a few limitations due to its underlying
assumptions. In the current study, we do not account for the evolving
governing physics of the problem as exemplified by scenarios such
as altering of dynamics of a structure due to fracture formation. We
also note that the proposed approach to digital twins lacks the ca-
pability to handle uncertain forces, such as stochastic forces. Future
research endeavors will be directed toward addressing these identified
limitations.
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