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A B S T R A C T

Lattice structures with Plateau borders (LSPB) have attracted increasing interests recently due to the improved
stiffness, strength, energy absorption properties. Undoubtedly, vertexes with Plateau borders (VPB) play a
significant role on the dynamic elastic moduli. This paper proposes an analytical framework of the frequency-
dependent equivalent in-plane dynamic elastic moduli (Young’s moduli 𝐸1(𝜔), 𝐸2(𝜔), Poisson’s ratio 𝜈12(𝜔),
𝜈21(𝜔) and shear modulus 𝐺12(𝜔)) of LSPB. First, dynamic stiffness (DS) matrix of a lattice cell edge (based
on rod and Timoshenko theories) connected to VPBs (modelled as rigid bodies) at both ends is formulated.
Then, based on the above DS matrix and the unit cell method, closed-form expressions of equivalent in-plane
dynamic elastic moduli are proposed, which are sufficient general to be applied to four types of lattices.
The effects of mass, inertia moment and size of VPB on the equivalent dynamic elastic moduli are studied,
with both physical and mathematical interpretations. Furthermore, the proposed expressions are applied to
honeycomb, rectangular, auxetic and rhombus LSPB and some interesting and important observations are
made. This research provides analytical expressions for broadband dynamic elastic moduli of LSPB, which
can be directly used in the design and optimization of composite structures with lattice cores.
1. Introduction

With excellent mechanical properties of light weight, high strength,
high stiffness, high energy absorption rate and specific dynamic proper-
ties [1–9], lattice structures have been widely used in civil engineering,
machinery, aerospace, transportation, and biomedicine applications as
the cores of sandwich panels [10–16]. However, microstructural imper-
fections [17,18] are avoidable to be introduced in actual manufacturing
process of lattice structures such as non-uniform cell-edge cross-section,
non-straight cell edges, missing cells and non-periodic microstructures.
It is clear that the mechanical properties (e.g., mass and stiffness distri-
bution, geometry, etc.) of lattice structures are significantly affected by
those preexisting microstructural imperfections and should therefore be
considered in dynamic analysis. Vertexes with Plateau borders (VPB) in
lattice structure are one of the most common imperfections as shown in
Fig. 1. Essentially, the lattice structures can be treated as uniform cell
edges (UCE) connected by VPB. The role-played by VPB on the dynamic
elastic moduli is the main research target of this paper.

Since cell-edge bending is the primary deformation mechanism for
lattice structures, it is expected that their mechanical properties are
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affected by VPB. Some existing investigations have been conducted
to study the effects of VPB on the stiffness [19], strength [19,20],
compressive strength [21], elastic buckling strengths [22,23], failure
surfaces [24–26], creep strain rate [27], plastic collapse strength [28]
and wave propagation [29] of lattice structures. It is interesting to
find that most of the above existing work [19–28,30] quantified the
effect of VPB by an important parameter called the solid distribu-
tion [19,22], which is defined as the ratio of the volume of VPB
over the total solid volume, i.e., 𝜙2 = 𝐴𝑝

𝐴𝑝+𝐴𝑒
where 𝐴𝑝 and 𝐴𝑒 are

defined in Fig. 1. Amongst these, Duan et al. [21] found that the
square/hexagonal honeycombs with appropriate solid distribution can
achieve more desirable compressive strength than the conventional
square/hexagonal honeycombs through experimental analysis. Simone
and Gibson [19] discussed the effects of solid distribution on the
stiffness and strength of honeycomb lattice structures with Plateau
borders using numerical method. Yang et al. [20] found that the
discrepancies between the prediction and the FE predictions on the
strength of regular hexagonal honeycombs became more significant
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Fig. 1. Honeycomb lattice structures with Plateau borders and a repeating element composed of three uniform cell edges connected at a vertex with Plateau border. 𝐴𝑒 is the
area of the three uniform cell edges, and 𝐴𝑝 is the area of the vertex with Plateau border.
Fig. 2. A repeating unit cell of honeycomb lattice structures with Plateau borders.
for larger value of solid distribution. Chuang et al. [22,23] calculated
the biaxial buckling strengths of regular hexagonal honeycombs with
Plateau borders using finite element analysis. Yang et al. [24–26]
evaluated the effects of the solid distribution on the failure surfaces,
out-of-plane elastic properties of honeycombs with Plateau borders. Lin
et al. [27] studied the effects of the solid distribution on the creep strain
rate of hexagonal honeycombs. Chuang et al. [28] focused on the effects
of solid distribution on the elastic moduli and plastic collapse strength
of hexagonal honeycombs. Zhang et al. [29] investigate the plane wave
propagation in hexagonal lattices with plateau borders and analyse
the effects of the dimensional parameters on the dynamic properties
of hexagonal lattices. However, the lattice structures often work in
vibrating system such as aerospace, high-speed trains, wind turbines,
electro-mechanical devices, base-isolation devices [31,32] and so on,
and sporadic research have been reported the dynamic mechanical
properties of the lattice structures with Plateau borders in a vibrating
environment. In a vibrating condition, deformation behaviour of lattice
structures becomes significantly different from the behaviour under a
static condition. Undoubtedly, the VPBs have significant mass, inertia
moment and stiffness which will play an important role on the dy-
namic elastic moduli of the lattice structures. Similar with the above
research [19–29], the effect of solid distribution on the dynamic elastic
moduli is an important and interesting topic. To the best knowledge of
authors, the effect of the mass, inertia moment and stiffness of VPB on
the dynamic elastic moduli has not been studied.

Although it is possible to build a detailed finite element (FE) model
for the lattice structures with Plateau borders, the FE model will contain
2

a large number of repeating elements leading to high computing costs.
This will become very inefficient and less feasible for the dynamic anal-
ysis of complex built-up structures. Alternatively, the macro-mechanics
parameters of lattice structures can be represented by equivalent me-
chanical and density properties based on either experiments [33,34]
or simulations [17,35,36]. Recently, a data-driven multilevel compu-
tational homogenization (FE2) [37–39] opens up the fusion channel
between simulations and experiments, which provides a uniform and
powerful framework with strong engineering versatility for the struc-
tural analysis of composite materials. It is well-known that equivalent
dynamic parameters of lattice structures (such as stiffness, Poisson’s
ratios) are always frequency-dependent in nature. Of course, the equiv-
alent properties obtained from experiments are very convincing, but the
results are very sensitive to experiment settings [40] and it is inconve-
nient to manufacture a large number of samples for the parametrical
studies and optimization design. Therefore, many other researchers
proposed equivalent static elastic moduli and equivalent density param-
eters of lattice structures based on homogenization methods by using
analytical methods [41–43]. Then, dynamic analysis on lattice struc-
tures could be performed [44,45]. However, these predictions based
on equivalent static elastic moduli and equivalent density parameters
are accurate only at low frequency due to the difficulty in capturing
the medium to high frequency dynamic behaviour [46]; Moreover, it
cannot give specific expressions and necessary physical insights. The
above shortcoming of static homogenization can be overcome by a
dynamic homogenization method [47] for the purpose of broadband
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dynamic predictions of lattice structures. In more specific, the dynamic
homogenization is performed by combing the unit cell method (or
representative volume element) [41,48–50] and the analytical dynamic
stiffness (DS) method [51–60]. The unit cell method helps to describe
the equivalent macro-mechanical properties by using micro-mechanical
properties based on a unit cell, whereas the DS method describes
the broadband dynamic deformation of lattice edges by using very
few degrees of freedom without resorting to discretization. Generally
speaking, there are two ways to develop the homogenization model for
lattice structures based on unit cell method, namely, (1) application of
boundary displacements leading to forces [49,61,62]; and (2) applica-
tion of boundary stress excitations leading to displacement [41,46,47].
Following either of those two methods, the constitutive relationships
of stress and strain could be obtained. By using the latter method,
Adhikari and his co-authors [46,47,63] have proposed an analytical
framework of the equivalent frequency-dependent elastic moduli of
lattice structures based on the unit cell method and DS formulations.
The analytical expressions of the equivalent dynamic elastic moduli are
(1) suitable for both statics and dynamics analysis within a broadband
frequency range; (2) quite general to be applied to a wide range of
different types of lattices; (3) in analytical sense which are easy to
be understood from both physical and mathematical aspects. However,
it is obvious a challenging task to develop the equivalent frequency-
dependent elastic moduli of lattice structures with VPB, due to the
non-uniform cell edges as well as the significant effects of VPB for the
dynamic behaviours. Existing research for modelling lattice structures
with VPB are generally either based on very fine mesh with large
number of Dofs [20,26], or rigid equilateral triangular joint in static
analysis [23,25,27]. Nevertheless, the dynamic homogenization of lat-
tice structures with Plateau borders has not been carried out in spite of
its great importance in engineering application as mentioned earlier.

In the present work, based on the unit cell method combined with
dynamic stiffness (DS) method, this paper develops an analytical frame-
work for the equivalent dynamic elastic moduli of lattice structures
with Plateau borders. First, the vertex with Plateau border (VPB) is
modelled by rigid bodies with mass, inertia moment and size properties,
whereas the uniform cell edges (UCE) are described by the exact
dynamic stiffness matrices based on rod and Timoshenko theories (see
Section 2). The close-form DS matrix of UCE connected to VPBs at
both ends is formulated based on a formulation procedure of multi-
body dynamic systems (see Section 2). Then the analytical expressions
of equivalent dynamic elastic moduli of lattice structures with Plateau
border is derived by based on the unit cell approach and the above
developed DS matrix (see Section 3). In particular, the derivation of
equivalent dynamic shear modulus is based on a unique but more
reasonable unit cell compared to existing research [47], where the
equilibrium of both joints and unit cells is satisfied (see Section 3.1.2).
Then the effect of mass, inertia moment and size (stiffness) of VPB
on equivalent dynamic elastic moduli of lattice structures are system-
atically investigated and explained with mathematical and physical
interpretations in Section 4. Next the effect of VPB on the equivalent
dynamic elastic moduli of four types of lattice structures including
honeycomb, rectangular, auxetic and rhombus lattice structures are
studied in Section 5. Section 6 provides the concluding remarks.

2. Dynamic stiffness matrix of a unit cell with Plateau borders

This paper focuses on developing the frequency-dependent equiva-
lent dynamic elastic moduli which are analytically expressed based on
the dynamic stiffness method following the concept proposed in [47].
The equivalent properties of lattice structures can be determined based
on a repeating unit cell [41,64–66]. This is acceptable within the scope
of asymptotic homogenization theory as long as other unit cells behave
in the same way under the same loading condition. Since the unit cells
are identical in nature, this is the case. It is, however, a requirement
that the dynamics of the system must be in a steady state (that is, no
3

transients are allowed). The choice of the unit cell is not unique, as long
as it physically represents the entire lattice structure [47,49,67,68].

As shown in Fig. 2, a unit cell is selected from the entire lattices with
Plateau borders. The unit cell consists of vertex with Plateau borders
(VPB) 4⃝, the divided VPBs 5⃝, 6⃝, 7⃝, vertical uniform cell edges (UCE)
2 and inclined UCEs 1⃝, 3⃝. Nodes 𝐴,𝐵, 𝐶,𝐷 are mass centres of those
PBs. The connections between UCEs and VPBs are essentially rigid
onnections. For such a model, some reasonable assumptions can be
ade: (1) The stiffness of VPBs is much larger than the stiffness of

nclined or vertical UCEs and therefore can be treated as rigid bodies.
2) The mass 𝑚 and inertia moment 𝐼 of VPBs play important role in
he dynamic behaviours of the lattice structures and cannot be ignored.
3) The distance between the mass centre of VPB to the centre of the
igid connection should be taken into account.

Next we will derive the dynamic stiffness matrix for a typical
PB 5⃝ -UCE 1⃝ -VPB 4⃝ in Fig. 3 as an illustrative example. The
erivation follows a similar procedure proposed by the first author
ecently [69]. In Fig. 3, the nodes of the divided VPB 5⃝ are 𝐴
nd 𝐷. Through balance and geometric relationship, the force and
isplacement relationship between nodes 𝐴 and 𝐷 can be obtained as

𝐴 = 𝑁𝐷

𝐴 = 𝑉𝐷
𝐴 = 𝑀𝐷 + 𝑉𝐷𝛥𝑥 −𝑁𝐷𝛥𝑦
𝐷 = 𝑈𝐴 − 𝜃𝐴𝛥𝑦
𝐷 = 𝑊𝐷 + 𝜃𝐴𝛥𝑥

𝐷 = 𝜃𝐴

(1)

Similarly, for VPB 4⃝, the force and displacement relationship be-
ween nodes 𝑂 and 𝐸 can also be given as

𝑂 = 𝑁𝐸

𝑂 = 𝑉𝐸
𝑂 = 𝑀𝐸 − 𝑉𝐸𝛥𝑥 +𝑁𝐸𝛥𝑦
𝐸 = 𝑈𝑂 + 𝜃𝐸𝛥𝑦
𝐸 = 𝑊𝑂 − 𝜃𝐸𝛥𝑥

𝐸 = 𝜃𝑂

(2)

UCEs are of high aspect ratio which are modelled as flexible beam
lements. Thus, the force and displacement relationship in the fre-
uency domain between nodes 𝐷 and 𝐸 of the inclined UCE 1⃝ can
e formulated in the dynamic stiffness matrix in the form

⎡
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𝑎1 0 0 𝑎2 0 0
0 𝑑1 𝑑2 0 𝑑4 𝑑5
0 𝑑2 𝑑3 0 −𝑑5 𝑑6
𝑎2 0 0 𝑎1 0 0
0 𝑑4 −𝑑5 0 𝑑1 −𝑑2
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(3)

here 𝑎1 and 𝑎2 are dynamic stiffness coefficients for axial defor-
ation of beam elements of the inclined member 𝐷𝐸 of length 𝑙.
1 − 𝑑6 are stiffness coefficients for bending deformation of the beam
lement 𝐷𝐸. Their derivations based on both classical rod and Timo-
henko beam theories are given in Appendices A and B for the sake of
elf-containedness.

Finally, eliminating the force and displacement relationship be-
ween nodes 𝐷 and 𝐸 based on Eqs. (1)–(3), the relationship between
odes 𝐴 and 𝑂 can be expressed in the form of dynamic stiffness matrix
ollowing the formulation procedure in [69]
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𝐾𝑂𝐴
11 (𝜔) 0 0 𝐾𝑂𝐴

14 (𝜔) 0 𝐾𝑂𝐴
16 (𝜔)

𝐾𝑂𝐴
22 (𝜔) 𝐾𝑂𝐴

23 (𝜔) 0 𝐾𝑂𝐴
25 (𝜔) 𝐾𝑂𝐴

26 (𝜔)
𝐾𝑂𝐴

33 (𝜔) 0 𝐾𝑂𝐴
35 (𝜔) 𝐾𝑂𝐴

36 (𝜔)
𝐾𝑂𝐴

44 (𝜔) 0 𝐾𝑂𝐴
46 (𝜔)

𝑠𝑦𝑚 𝐾𝑂𝐴
55 (𝜔) 𝐾𝑂𝐴
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Fig. 3. Inclined component consisting of the divided VPB 5⃝ -UCE 1⃝ -VPB 4⃝. 𝑁𝑖, 𝑉𝑖 and 𝑀𝑖 represent the axial force, shear force and bending moment at node 𝑖 (𝑖 = 𝐴,𝐷,𝐸,𝑂),
respectively; 𝑈𝑖, 𝑊𝑖 and 𝜃𝑖 represent amplitudes of the axial displacement, the vertical or bending displacement, and the angular or bending rotation at node 𝑖 (𝑖 = 𝐴,𝐷,𝐸,𝑂),
respectively. 𝛥𝑥 is the distance between the mass centre of VPB and the geometric centre of the rigid connection in the direction of inclined member. 𝛥𝑦 is the distance between
the mass centre of VPB and the geometric centre of the rigid connection in the direction perpendicular to the inclined member.
where

𝐾𝑂𝐴
11 (𝜔) = 𝑎1 − 𝑚𝜔2, 𝐾𝑂𝐴

22 (𝜔) = 𝑑1 − 𝑚𝜔2, 𝐾𝑂𝐴
33 (𝜔) = 𝑑3 − 𝐼𝜔2

𝐾𝑂𝐴
44 (𝜔) = 𝑎1 − 𝜑𝑚𝜔2, 𝐾𝑂𝐴

55 (𝜔) = 𝑑1 − 𝜑𝑚𝜔2, 𝐾𝑂𝐴
66 (𝜔) = 𝑑3 − 𝜑𝐼𝜔2

𝐾𝑂𝐴
14 (𝜔) = 𝑎2, 𝐾𝑂𝐴

16 (𝜔) = 𝑎2𝛥𝑦,𝐾𝑂𝐴
23 (𝜔) = −𝑑2

𝐾𝑂𝐴
25 (𝜔) = 𝑑4, 𝐾𝑂𝐴

26 (𝜔) = −𝑑5, 𝐾𝑂𝐴
35 (𝜔) = −𝑑5

𝐾𝑂𝐴
36 (𝜔) = 𝑑6 + 𝑑5𝛥𝑥,𝐾𝑂𝐴

46 (𝜔) = 𝑎1𝛥𝑦,𝐾𝑂𝐴
56 (𝜔) = −𝑑2

(5)

and

𝑑2 = 𝑑1𝛥𝑥 + 𝑑2
𝑑3 = 𝑑1𝛥𝑥2 + 2𝑑2𝛥𝑥 + 𝑑3 + 𝑎1𝛥𝑦2

𝑑5 = −𝑑4𝛥𝑥 + 𝑑5; 𝑑6 = 𝑑5𝛥𝑥 + 𝑑6
(6)

In this matrix, 𝜑 is the ratio between the area of the divided VPB 5⃝
to that of VPB 4⃝. We also define 𝜑ℎ is the ratio between the area of
the divided VPB 6⃝ to that of VPB 4⃝. 𝑚 and 𝐼 are the mass and inertia
moment of VPB 4⃝. Using the same method, the force and displacement
relationship between nodes 𝑂 and 𝐶 can also be obtained. It should
be noted that the shape of the VPBs can be arbitrarily defined in a
sufficiently general manner, which provides the possibility to study the
equivalent dynamic elastic moduli of different types of lattices.

3. Equivalent dynamic elastic moduli of lattice structures with
Plateau borders

Section 2 has proposed the dynamic stiffness matrix of a unit cell
with Plateau borders. In order to derive the equivalent dynamic elastic
moduli of lattice structures with Plateau borders, the derivation of
equivalent dynamic elastic moduli based on unit cell equilibrium is
given in Section 3.1. Based on the work of Sections 2 and 3.1, the
analytical expressions of equivalent dynamic elastic moduli are given
in Section 3.2.

3.1. Equivalent elastic moduli based on a unit cell

The objective of this section is to express equivalent in-plane elastic
moduli of the lattice structures in terms of the dynamic stiffness matrix
coefficients using the unit cell approach. It should be noted that the
expressions of Young’s moduli 𝐸1(𝜔), 𝐸2(𝜔) and Poisson’s ratio 𝜈12(𝜔)
and 𝜈21(𝜔) are in the same form as [47], whereas that of the shear
modulus 𝐺12(𝜔) is different. The derivation of 𝐺12(𝜔) is based on
different but more physically reasonable unit cell compared to [47].
4

3.1.1. Review of Young’s moduli and Poisson’s ratios
For the sake of self-containedness, the derivations of the analytical

expressions for in-plane dynamic elastic moduli 𝐸1(𝜔), 𝐸2(𝜔), 𝜈12(𝜔)
and 𝜈21(𝜔) [47] are reviewed briefly as follows.

As shown in Fig. 4(a), the model is used to derive the Young’s mod-
uli 𝐸1(𝜔) and Poisson’s ratio 𝜈12(𝜔) in direction-1. Uniform harmonic
stress 𝜎1(𝜔)𝑒𝑖𝜔𝑡 is applied in direction-1, resulting in nodes 𝐴 and 𝐵 to
be applied at harmonic force 𝐹1 = 𝐹1(𝜔)𝑒𝑖𝜔𝑡, here

𝐹1(𝜔) = 𝜎1(𝜔)𝑏(ℎ + 𝑙 sin 𝜃) (7)

where 𝑏 is the height of lattice structure, 𝜃 is the cell angle. Since the de-
formations of inclined members 𝑂𝐴 and 𝑂𝐵 are symmetric about 𝑂𝐶,
only 𝑂𝐴 is needed for analysis. At node 𝐴, 𝐹1(𝜔) can be decomposed
into 𝐹1(𝜔) cos 𝜃 and 𝐹1(𝜔) sin 𝜃 along the axial and transverse directions
of 𝑂𝐴. 𝛾 and 𝜂 are the deformations transverse and along the inclined
member AO. According to [47], the strain in direction-1 can be given
as

𝜀1 (𝜔) =
𝛿1 (𝜔)
𝑙 cos 𝜃

=
𝜎1 (𝜔) 𝑏 (ℎ∕𝑙 + sin 𝜃) sin2𝜃

𝐾𝑂𝐴
55 (𝜔) cos 𝜃

(

1 + cot2𝜃
𝐾𝑂𝐴

55 (𝜔)

𝐾𝑂𝐴
44 (𝜔)

)

(8)

Therefore, the Young’s moduli 𝐸1(𝜔) is obtained as

𝐸1 (𝜔) =
𝜎1 (𝜔)
𝜀1 (𝜔)

=
𝐾𝑂𝐴

55 (𝜔) cos 𝜃

𝑏 (ℎ∕𝑙 + sin 𝜃) sin2𝜃
(

1 + cot2𝜃
𝐾𝑂𝐴
55 (𝜔)

𝐾𝑂𝐴
44 (𝜔)

) (9)

The strain in direction-2 is

−𝜀2 (𝜔) =
−𝛿2 (𝜔)
ℎ + 𝑙 sin 𝜃

=
𝜎1𝑏 sin 𝜃 cos 𝜃

𝐾𝑂𝐴
55 (𝜔)

(

1 −
𝐾𝑂𝐴

55 (𝜔)

𝐾𝑂𝐴
44 (𝜔)

)

(10)

After calculating the strains 𝜀1(𝜔) and 𝜀2(𝜔) in direction-1 and
direction-2, the Poisson’s ratio can be obtained as

𝜈12 (𝜔) = −
𝜀2 (𝜔)
𝜀1 (𝜔)

=
cos2𝜃

(

1 −
𝐾𝑂𝐴
55 (𝜔)

𝐾𝑂𝐴
44 (𝜔)

)

(ℎ∕𝑙 + sin 𝜃) sin 𝜃
(

1 + cot2𝜃
𝐾𝑂𝐴
55 (𝜔)

𝐾𝑂𝐴
44 (𝜔)

) (11)

Similarly, the model shown in Fig. 4(b) is used to derive Young’s
moduli 𝐸2(𝜔) and Poisson’s ratio 𝜈21(𝜔) in direction-2. 𝛾 and 𝜂 are
the deformations transverse and along the inclined member AO. 𝛿𝑂 is
the displacement of point 𝑂 in the 2-direction arising from the axial
deformation of the vertical member 𝑂𝐶. We can arrive at

𝐸2 (𝜔) =
𝜎2 (𝜔)
𝜀2 (𝜔)

=
𝐾𝑂𝐴

55 (𝜔) (ℎ∕𝑙 + sin 𝜃)

𝑏cos3𝜃
(

1 + tan2𝜃
𝐾𝑂𝐴
55 (𝜔)
𝑂𝐴 +

2𝐾𝑂𝐴
55 (𝜔)

2 𝑂𝐶

) (12)
𝐾44 (𝜔) cos 𝜃𝐾44 (𝜔)
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Fig. 4. (a) In order to derive 𝐸1(𝜔) and 𝜈12(𝜔), uniform harmonic stress 𝜎1(𝜔)𝑒𝑖𝜔𝑡 is applied in direction-1. (b) In order to derive 𝐸2(𝜔) and 𝜈21(𝜔), uniform harmonic stress 𝜎2(𝜔)𝑒𝑖𝜔𝑡

is applied in direction-2.
Fig. 5. Improved dynamic equilibrium and deformation patters of the unit cell under
the application of the harmonic shear stress field 𝜏(𝜔)𝑒𝑖𝜔𝑡, which is used for deriving
the in-plane shear modulus 𝐺12(𝜔).

𝜈21 (𝜔) =
−𝜀1 (𝜔)
𝜀2 (𝜔)

=
(ℎ∕𝑙 + sin 𝜃) sin 𝜃

(

1 −
𝐾𝑂𝐴
55 (𝜔)

𝐾𝑂𝐴
44 (𝜔)

)

cos2𝜃
(

1 + tan2𝜃
𝐾𝑂𝐴
55 (𝜔)

𝐾𝑂𝐴
44 (𝜔)

+
2𝐾𝑂𝐴

55 (𝜔)

cos2𝜃𝐾𝑂𝐶
44 (𝜔)

) (13)

3.1.2. Shear modulus 𝐺12(𝜔) based on a novel unit cell
In the derivation of the in-plane equivalent shear modulus 𝐺12(𝜔),

the novel model used in this work has the following differences com-
pared with [47]: (1) [47] requires two unit cells as shown in Ap-
pendix C, while this paper requires only one unit cell as shown in
Fig. 5. (2) The equilibrium of both joints and unit cells is satisfied in
the present analysis model while the analysis model of [47] cannot
satisfy equilibrium strictly. Therefore, the cell model used in this paper
is simpler and more physically reasonable.

In order to derive the shear modulus 𝐺12(𝜔), we put forward three
assumptions: (1) Nodes 𝐴, 𝑂 and 𝐵 have no relative displacements [41,
5

46]. (2) Each node rotates at the same angle. (3) The shear deformation
is caused by the bending deformation of 𝑂𝐶 and its deflection due to
rotation of node 𝑂 arising from the bending of 𝑂𝐴.

First, the bending deformation of 𝑂𝐶 can be obtained as

𝜂𝐶 (𝜔) =
𝐾𝑂𝐶

66 (𝜔)𝐹1 (𝜔) +2𝐾𝑂𝐶
56 (𝜔)𝑀 (𝜔)

𝐾𝑂𝐶
55 (𝜔)𝐾𝑂𝐶

66 (𝜔) −𝐾𝑂𝐶
56 (𝜔)𝐾𝑂𝐶

65 (𝜔)
(14)

Then according to the equilibrium of 𝑂𝐴, the rotation angle of node 𝑂
arising from the bending of 𝑂𝐴 is

𝜙𝑂 (𝜔) =
𝑀 (𝜔)

(

𝐾𝑂𝐴
66 (𝜔) −𝐾𝑂𝐴

36 (𝜔)
)

𝐾𝑂𝐴
33 (𝜔)𝐾𝑂𝐴

66 (𝜔) −𝐾𝑂𝐴
36 (𝜔)𝐾𝑂𝐴

63 (𝜔)
(15)

According to the equilibrium, we can obtain

𝑀(𝜔) =
𝐹1(𝜔)ℎ

4
(16)

Therefore the total shear deformation is given as

𝛾1 =
(

𝜙𝑂 (𝜔)ℎ + 𝜂𝐶 (𝜔)
)

= 𝐹1 (𝜔)
⎛

⎜

⎜

⎝

2𝐾𝑂𝐶
66 (𝜔)+ℎ𝐾𝑂𝐶

56 (𝜔)

2
(

𝐾𝑂𝐶
55 (𝜔)𝐾𝑂𝐶

66 (𝜔)−
(

𝐾𝑂𝐶
56 (𝜔)

)2
) +

(

𝐾𝑂𝐴
66 (𝜔)−𝐾𝑂𝐴

36 (𝜔)
)

ℎ2

4
[

𝐾𝑂𝐴
33 (𝜔)𝐾𝑂𝐴

66 (𝜔)−𝐾𝑂𝐴
36 (𝜔)𝐾𝑂𝐴

63 (𝜔)
]

⎞

⎟

⎟

⎠

(17)

The total shear strain is

𝛾(𝜔) =
𝛾1

ℎ + 𝑙 sin 𝜃
(18)

Then the shear modulus 𝐺12(𝜔) is expressed as

𝐺12 =
𝜏 (𝜔)
𝛾 (𝜔)

=
(ℎ + 𝑙 sin 𝜃)

𝑏𝑙 cos 𝜃

(

2𝐾𝑂𝐶
66 (𝜔)+ℎ𝐾𝑂𝐶

56 (𝜔)

𝐾𝑂𝐶
55 (𝜔)𝐾𝑂𝐶

66 (𝜔)−
(

𝐾𝑂𝐶
56 (𝜔)

)2 +

(

𝐾𝑂𝐴
66 (𝜔)−𝐾𝑂𝐴

36 (𝜔)
)

ℎ2

2
[

𝐾𝑂𝐴
33 (𝜔)𝐾𝑂𝐴

66 (𝜔)−𝐾𝑂𝐴
36 (𝜔)𝐾𝑂𝐴

63 (𝜔)
]

)

(19)

In particular, for the unit cell of lattice structures without Plateau
borders

𝐾𝑂𝐴 𝜔 = 𝐾𝑂𝐴 𝜔 ,𝐾𝑂𝐴 𝜔 = 𝐾𝑂𝐴 𝜔 (20)
36 ( ) 63 ( ) 33 ( ) 66 ( )
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Fig. 6. Unit cells used for studying the effect of VPB.
The above equation can be simplified as

𝐺12 =
𝜏 (𝜔)
𝛾 (𝜔)

=
(ℎ + 𝑙 sin 𝜃)

𝑏𝑙 cos 𝜃

(

2𝐾𝑂𝐶
66 (𝜔)+ℎ𝐾𝑂𝐶

56 (𝜔)

𝐾𝑂𝐶
55 (𝜔)𝐾𝑂𝐶

66 (𝜔)−
(

𝐾𝑂𝐶
56 (𝜔)

)2 + ℎ2

2
(

𝐾𝑂𝐴
66 (𝜔)+𝐾𝑂𝐴

63 (𝜔)
)

)

(21)

3.2. Analytical expressions of equivalent dynamic elastic moduli

In Section 2, Eq. (5) provides the dynamic stiffness coefficients
of 𝑂𝐴 (𝐾𝑂𝐴

𝑖𝑗 ). 𝐾𝑂𝐶
𝑖𝑗 can be also obtained using the same method. By

substituting these dynamic stiffness coefficients into Eqs. (9), (11), (12),
(13), (19), the analytical expressions of equivalent in-plane dynamic
elastic moduli can be summarized as

𝐸1 (𝜔) =
cos 𝜃

𝑏 (ℎ∕𝑙 + sin 𝜃) sin2𝜃

𝑑1 − 𝜑𝑚𝜔2
(

1 + cot2𝜃 𝑑1−𝜑𝑚𝜔2

𝑎1−𝜑𝑚𝜔2

) (22)

𝜈12 (𝜔) =
cos2𝜃

(ℎ∕𝑙 + sin 𝜃) sin 𝜃

1 − 𝑑1
𝑎1

(

1 + 𝑑1
𝑎1
cot2𝜃 − 𝜑𝑚𝜔2csc2𝜃

𝑎1

) (23)

𝐸2 (𝜔) =
ℎ∕𝑙 + sin 𝜃
𝑏cos3𝜃

𝑑1 − 𝜑𝑚𝜔2
(

1 + tan2𝜃 𝑑1−𝜑𝑚𝜔2

𝑎1−𝜑𝑚𝜔2 + 2(𝑑1−𝜑𝑚𝜔2)
cos2𝜃

(

𝑎ℎ1−𝜑𝑚𝜔
2
)

) (24)

𝜈21 (𝜔) =
(ℎ∕𝑙 + sin 𝜃) sin 𝜃

cos2𝜃

×
1 − 𝑑1

𝑎1
(

1 + 𝑑1
𝑎1
tan2𝜃 − 𝜑𝑚𝜔2sec2𝜃

𝑎1
+ 2(𝑎1−𝜑𝑚𝜔2)(𝑑1−𝜑𝑚𝜔2)

𝑎1
(

𝑎ℎ1−𝜑ℎ𝑚𝜔2
)

cos2𝜃

) (25)

𝐺12 (𝜔) =
(ℎ∕𝑙 + sin 𝜃)

𝑏 cos 𝜃
⎛

⎜

⎜

⎝

ℎ𝑑
ℎ
2+2𝑑

ℎ
3−2𝜑ℎ𝐼𝜔2

(

𝑑
ℎ
1−𝜑ℎ𝑚𝜔2

)(

𝑑
ℎ
3−𝜑ℎ𝐼𝜔2

)

−
(

𝑑
ℎ
2

)2 +
ℎ2

(

𝑑3−𝑑6−𝑑5𝛥𝑥−𝜑𝐼𝜔2
)

2
(

(

𝑑3−𝜑𝐼𝜔2
)(

𝑑3−𝐼𝜔2
)

−
(

𝑑6+𝑑5𝛥𝑥
)2

)

⎞

⎟

⎟

⎠

(26)

When 𝑚 = 0, 𝐼 = 0, 𝛥𝑥 = 0, 𝛥𝑦 = 0, 𝛥𝑥ℎ = 0, 𝛥𝑦ℎ = 0 in Eqs. (22)–
(26), the equivalent dynamic elastic moduli of lattice structures without
Plateau borders are obtained, which are the same as [47] except for the
shear modulus based on a different unit cell, namely

𝐸1𝑛𝑠 (𝜔) =
cos 𝜃

𝑏 (ℎ∕𝑙 + sin 𝜃) sin2𝜃

𝑑1
(

1 + cot2𝜃 𝑑1
𝑎1

) (27)

𝜈12𝑛𝑠 (𝜔) =
cos2𝜃

(ℎ∕𝑙 + sin 𝜃) sin 𝜃

1 − 𝑑1
𝑎1

(

1 + 𝑑1 cot2𝜃
) (28)
6

𝑎1
𝐸2𝑛𝑠 (𝜔) =
ℎ∕𝑙 + sin 𝜃
𝑏cos3𝜃

𝑑1
(

1 + tan2𝜃 𝑑1
𝑎1

+ 2𝑑1
cos2𝜃𝑎ℎ1

) (29)

𝜈21𝑛𝑠 (𝜔) =
(ℎ∕𝑙 + sin 𝜃) sin 𝜃

cos2𝜃

1 − 𝑑1
𝑎1

(

1 + 𝑑1
𝑎1
tan2𝜃 + 2𝑑1

𝑎ℎ1 cos
2𝜃

) (30)

𝐺12𝑛𝑠 (𝜔) =
(ℎ∕𝑙 + sin 𝜃)

𝑏 cos 𝜃

(

2𝑑
ℎ
3+ℎ𝑑

ℎ
2

𝑑ℎ1 𝑑
ℎ
3 −

(

𝑑ℎ2
)2 + ℎ2

2
(

𝑑3+𝑑6
)

)
(31)

It should be noted that the above formulations are applicable in the
relatively low frequency region so that the global wavelength is much
larger than the size of a unit cell (since in engineering practice, the size
of the unit cell is normally much smaller than the overall geometry
of the lattice core, this is a reasonable assumption). In such a case,
the periodic nature of the stress/displacement is valid as the global
waveform is smooth and effectively uniform within a unit cell.

4. The effect of Plateau borders on the equivalent dynamic elastic
moduli

In Section 3, we have obtained the analytical expressions of equiv-
alent in-plane dynamic elastic moduli of lattice structures with Plateau
borders. The objective of this section is to investigate the role-played by
the vertex with Plateau borders (VPB), which are quantified by the mass
𝑚, inertia moment 𝐼 and size (stiffness) of VPB. Then the dependence of
these factors on the dynamic elastic moduli of different types of lattice
structures is discussed in Section 5.

The geometric parameters of lattice structures and intrinsic material
properties are taken as: 𝑡∕𝑙 = 0.1, 𝑏 = 0.05 mm, 𝐸 = 2 × 103 N∕mm2,
𝜌 = 7800 kg∕m3, the Poisson’s ratio of the underlying material 𝜈 = 0.3.
For uniform cell edges (UCE) based on classical rod and Timoshenko
beam theories in Appendices A and B, shear factor 𝑘 = 5∕6, damping
value 𝑐𝑚 = 10−2 and 𝑐𝑘 = 10−5.

To interpret the results more clearly, this paper put forward the
following instructions: (1) The equivalent dynamic elastic moduli are
plotted in the form of a three-dimensional graph. (i.e. The 𝑧-coordinate
corresponds to the equivalent elastic moduli, and the 𝑥/𝑦-coordinate
for normalized frequency/other parameters). (2) The local maximum/
minimum of elastic moduli corresponds to the anti-resonance/resonance
point. (3) For comparative purposes, the equivalent dynamic elastic
moduli of lattice structures without Plateau borders are denoted by
𝐸1𝑛𝑠 (𝜔), 𝐸2𝑛𝑠 (𝜔), 𝜈12𝑛𝑠 (𝜔), 𝜈21𝑛𝑠 (𝜔) and 𝐺12𝑛𝑠 (𝜔). (4) In Sections 4 and
5, the results of this paper are sometimes compared with the following
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Fig. 7. The equivalent dynamic elastic moduli are normalized with respect to their corresponding static elastic moduli in Eqs. (32), (34) and (36). Absolute value of the results
are plotted as functions of the normalized frequency 𝜔∕𝜔0 for different 𝑚∕𝑚𝑏. Here 𝑡∕𝑙 = 0.1, ℎ∕𝑙 = 1 and 𝜃 = 𝜋∕6.
static elastic moduli [41]

𝐸1GA = 𝐸𝛼3 cos 𝜃
(𝛽 + sin 𝜃) sin2 𝜃

(32)

𝐸2GA = 𝐸𝛼3
(𝛽 + sin 𝜃)
cos3 𝜃

(33)

𝜈12GA = cos2 𝜃
(𝛽 + sin 𝜃) sin 𝜃

(34)

𝜈21GA =
(𝛽 + sin 𝜃) sin 𝜃

cos2 𝜃
(35)

𝐺12GA = 𝐸𝛼3
(𝛽 + sin 𝜃)

𝛽2(1 + 2𝛽) cos 𝜃
(36)

where

𝛼 = 𝑡
𝑙
, 𝛽 = ℎ

𝑙
(37)

In order to investigate the roles played by the VPB on the equivalent
dynamic elastic moduli, we propose three representative cases as shown
in Fig. 6. In Fig. 6(a), 𝑚 is imposed at the joints, whereas in Fig. 6(b) 𝐼 is
applied at the joints. In order to study the effect of the size of VPB, the
massless stiffened circular joints (without 𝑚 and 𝐼) is used for analysis
in Fig. 6(c), where the radius of stiffened circular joints is 𝑟. Then we
discuss the roles played by the three parameters, respectively. Here, we
consider the special case of lattice structures with ℎ∕𝑙 = 1, ℎ∕𝑙 = 1 and
𝜃 = 𝜋∕6, it is therefore expected that 𝐸1(𝜔) = 𝐸2(𝜔) and 𝜈12(𝜔) = 𝜈21(𝜔)
as shown in Eqs. (38) and (39).

𝐸1 (𝜔) = 𝐸2 (𝜔) =
4
√

3
3

𝑑1 − 𝜑𝑚𝜔2
(

1 + 3 𝑑1−𝜑𝑚𝜔2

𝑎1−𝜑𝑚𝜔2

) (38)

𝜈12 (𝜔) = 𝜈21 (𝜔) =
1 − 𝑑1

𝑎1

1 + 3 𝑑1
𝑎1

− 4 𝜑𝑚𝜔2

𝑎1

(39)

Thus, there is no need to give all 5 equivalent in-plane dynamic
elastic moduli, we only look at 𝐸 (𝜔), 𝜈 (𝜔) and 𝐺 (𝜔).
7

1 12 12
4.1. Effect of mass of VPB on equivalent dynamic elastic moduli

In Fig. 6(a), concentrated mass 𝑚 is imposed at the joints. The abso-
lute value of equivalent dynamic elastic moduli is plotted in Fig. 7. 𝑚𝑏
is the mass of UCE with length 𝑙. 𝜔0 is the first-order natural frequency
of transverse vibration of simply supported UCE with length 𝑙 (i.e. 𝜔𝑜 =
√

𝐸𝐼
𝜌𝐴𝑙4

). We also made comparisons to demonstrate the differences with
static equivalent elastic moduli of Eqs. (32), (35) and (36). A three-
dimensional surface diagrams from two different perspectives are given
in Fig. 7.

A closer look at Fig. 7 reveals that: (1) The effect of 𝑚 on Young’s
moduli and Poisson’s ratio is relatively significant, while that on the
shear modulus is not so obvious. This is expected since the mass of VPB
only affects the stiffness coefficients 𝐾𝑂𝐴

44 (𝜔) and 𝐾𝑂𝐴
55 (𝜔) in Eq. (5) and

subsequently 𝐸1(𝜔) and 𝜈12(𝜔). In comparison, 𝐺12(𝜔) is only affected
by 𝐾𝑂𝐴

55 (𝜔) and other stiffness coefficients which are not affected by
𝑚. (2) The effect of 𝑚 on the equivalent dynamic elastic moduli is
relatively large 0–0.5𝑚∕𝑚𝑏, while the trend is stable for 0.5𝑚∕𝑚𝑏 and
higher. (3) When 𝜔∕𝜔0 is greater than 50, the equivalent dynamic
elastic moduli changes monotonically with the increase of 𝑚. It is
completely expected due to the inertia effect.

4.2. Effect of the inertia moment of VPB on equivalent dynamic elastic
moduli

As can be seen from Fig. 6(b), concentrated inertia moment 𝐼
representing the VPB is applied on joints, whereas 𝐼𝛼 is the inertia
moment of the inclined UCE with length 𝑙. An inspection on Eq. (5)
indicates that the inertia moment of VPB 𝐼 only affects 𝐾𝑂𝐴

66 (𝜔) and
𝐾𝑂𝐶

66 (𝜔), and subsequently 𝐺12(𝜔). It is therefore expected that 𝐼 affect
the equivalent 𝐺12(𝜔) only. This is evidently in Fig. 8.

Moreover, the effect of 𝐼 on 𝐺12(𝜔) is relatively large at 0–0.1𝐼∕𝐼𝛼 ,
while the trend becomes stable once greater than 0.1𝐼∕𝐼𝛼 . When
𝜔∕𝜔 > 50, 𝐺 (𝜔) changes monotonically with the increase of 𝐼 . It
0 12
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Fig. 8. The equivalent dynamic shear modulus 𝐺12(𝜔) is normalized with respect to its corresponding static shear modulus in Eq. (36). Absolute value of the results are plotted
as functions of the normalized frequency 𝜔∕𝜔0 and 𝐼∕𝐼𝛼 .
Table 1
The dependency of the dynamic elastic moduli on 𝑚, 𝐼 and 𝑟∕𝑙 (size), as well as the interpretations from mathematical and physical aspects.

m I r/l

Dependency 𝐸1, 𝜈12 ⧫⧫ N/A ⧫⧫
N/A: irrelevant 𝐸2, 𝜈21 ⧫⧫ N/A ⧫⧫
⧫: weak, ⧫⧫: strong 𝐺12 ⧫ ⧫⧫ ⧫⧫

Mathematical interpretation
𝐸1, 𝜈12 𝑚 → 𝐾𝑂𝐴

44 , 𝐾𝑂𝐴
55 → 𝐸1, 𝜈12 N/A

𝑟∕𝑙 → ℎ, 𝑙 → 𝐾𝑂𝐴
𝑖𝑗 , 𝐾𝑂𝐶

𝑖𝑗 → 𝐸1, 𝐸2, 𝜈12, 𝜈21, 𝐺12𝐸2, 𝜈21 𝑚 → 𝐾𝑂𝐴
44 , 𝐾𝑂𝐶

44 , 𝐾𝑂𝐴
55 → 𝐸2, 𝜈21 N/A

𝐺12 𝑚 → 𝐾𝑂𝐶
55 → 𝐺12 𝐼 → 𝐾𝑂𝐴

66 , 𝐾𝑂𝐶
66 , 𝐾𝑂𝐴

33 → 𝐺12

Physical interpretation Translational inertia Rotational inertia Stiffness caused by VPB
Fig. 9. The equivalent dynamic elastic moduli are normalized with respect to their corresponding static elastic moduli in Eqs. (32), (34) and (36). Absolute value of the results
are plotted as functions of the normalized frequency 𝜔∕𝜔0 and 𝑟∕𝑙. Here 𝑡∕𝑙 = 0.1, ℎ∕𝑙 = 1 and 𝜃 = 𝜋∕6.
can be seen that the influence mechanism of 𝐼 is very similar to that
of 𝑚.

4.3. Effect of size (stiffness) of VPB on equivalent dynamic elastic moduli

In Fig. 6(c), the massless circular stiffened joints (without 𝑚 and 𝐼)
is rigidly connected to UCEs. As a result, the presence of the circular
stiffened joints increase the ‘stiffness’ of the lattice structures as the
radius of the joints increases. The absolute value of equivalent dynamic
elastic moduli are plotted as 3D surface plot with respect to 𝜔∕𝜔0 and
𝑟∕𝑙 in Fig. 9.

It can be seen from Fig. 9 that, the size of the stiffened joints (𝑟∕𝑙)
affect the dynamic elastic moduli significantly. The size of the stiffened
joints has much greater effect on dynamic elastic moduli compared
with the influence of 𝑚 or 𝐼 . The larger size of the stiffened joints, the
fewer the resonance and anti-resonance points occur with 𝜔∕𝜔0 until
the dynamic elastic moduli is no longer affected by 𝜔∕𝜔0. That is, the
resonance/anti-resonance points move to higher frequency.
8

In addition, we explored the effect of the size (stiffness) of the
circular stiffened joints on static equivalent elastic moduli of the lattice
structures as shown in Fig. 10. The static equivalent Young’s moduli
and shear modulus increase with the increment of rigid joint size. The
positive Poisson’s ratio decreases as rigid joint size becomes larger,
while the negative Poisson’s ratio decreases with the increase of the
rigid joint size (i.e. the transverse deformation becomes smaller).

In summary, we have obtained three different effects of VPB on the
equivalent dynamic elastic moduli. In order to have a more clear and
direct understanding of the influence mechanism, Table 1 summarizes
the roles played by 𝑚, 𝐼 and size (stiffness) of VPB, companied by the
interpretation from mathematical and physical aspects.

5. Equivalent dynamic elastic moduli of four different types of
lattice structures with Plateau borders

The roles played by mass, the inertia moment and size (stiffness)

of VPB has been investigated and interpreted in Section 4. Our model
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Fig. 10. The equivalent elastic moduli using static Timoshenko beam theory. The results are plotted as functions of 𝑟∕𝑙 for different 𝜃. Here 𝑡∕𝑙 = 0.1, ℎ∕𝑙 = 1.
Fig. 11. (a) Hexagonal lattice structure (𝜃 > 0) with Plateau borders. (b) Rectangular lattice structure (𝜃 = 0) with Plateau borders. (c) Auxetic lattice structure (𝜃 < 0) with Plateau
borders. (d) Rhombus lattice structure (ℎ = 0) with Plateau borders.
can cover four types of lattice structures as shown in Fig. 11(a)–(d) by
varying 𝜃, ℎ∕𝑙 and shape of VPB. In what follows, we discuss the roles
played by VPB on the equivalent dynamic elastic moduli of those four
types of lattice structures.

5.1. Hexagonal honeycomb lattice structures (𝜃 > 0) with Plateau borders

Hexagonal honeycomb lattice structure is one of the most common
lattice structures in nature and engineering. As shown in Fig. 11(a), the
dark parts correspond to VPBs, while the pale yellow parts correspond
to UCEs. Here 𝜃 = 30◦, ℎ∕𝑙 = 1, 𝑟1 = 𝑟2 = 𝑟. Assuming that the density
of VPBs 𝜌 is equal to that of UCEs 𝜌𝑏, the equivalent dynamic elastic
moduli of the hexagonal honeycomb lattice structure with Plateau
borders is first explored by varying 𝑟∕𝑙, as shown in Fig. 12(a–c).

As can be seen from Fig. 12, as the size of the VPB increases,
the resonant/anti-resonance points of the plots shift toward higher
frequency. Considering the existence of 𝑚 and 𝐼 , the resonant/anti-
resonance points are less than that in Fig. 9. These conclusions agree
well with the physical interpretation summarized in Table 1.
9

Suppose 𝜌 = 5𝜌𝑏, the results in Fig. 13 are different from that in
Fig. 12. Increased 𝜌 leads to larger 𝑚. It can be found 𝐸1(𝜔) and 𝐺12(𝜔)
become larger while 𝜈12(𝜔) becomes smaller. Fewer resonant/anti-
resonance points shift to higher frequency, which is similar to the
results in Fig. 7.

Next, we explore the effect of 𝜃 on the equivalent dynamic elastic
moduli as shown in Fig. 14, where the lattice is hexagonal and 𝜃 is
positive. Here 𝜌 = 𝜌𝑏, ℎ∕𝑙 = 1, ℎ∕ℎ = 𝑙∕𝑙 = 0.4.

The equivalent dynamic elastic moduli of the hexagonal honeycomb
lattice structures with Plateau borders for different 𝜃 are plotted in
Fig. 14(a), which are compared with those for the hexagonal honey-
comb lattice structures without Plateau borders plotted in Fig. 14(b).
By comparing the above conditions, it can be found the number of
resonant/anti-resonance points is less due to the presence of VPB.

When ℎ∕𝑙 ≠ 1, the equivalent dynamic elastic moduli will also
change significantly. Here 𝜃 = 𝜋∕6, 𝑟∕𝑙 = 0.3, 𝑙 = 1 and ℎ∕𝑙 ∈ (1, 10).
The equivalent dynamic elastic moduli with change of ℎ∕𝑙 is studied in
Figs. 15(a–b) and 16.

As can be seen from Fig. 15, dynamic elastic moduli in direction-1
is less affected by ℎ∕𝑙. We assume that 𝑙 = 1 and ℎ is varying. 𝐸 (𝜔) and
1
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Fig. 12. The equivalent dynamic elastic moduli are normalized with respect to their corresponding static elastic moduli in Eqs. (32), (34) and (36). Absolute value of the results
are plotted as functions of the normalized frequency 𝜔∕𝜔0 and 𝑟∕𝑙. Here 𝜌 = 𝜌𝑏 (the density of the VPB and UCE are the same), 𝜃 = 30◦, ℎ∕𝑙 = 1.

Fig. 13. The same as for Fig. 12 except that 𝜌 = 5𝜌𝑏, i.e. the density of the VPB is five times of the UCE.

Fig. 14. The equivalent dynamic elastic moduli are normalized with respect to their corresponding static elastic moduli in Eqs. (32)–(36). Absolute value of the results are plotted
as functions of the normalized frequency 𝜔∕𝜔0 and 𝜃.



Composite Structures 299 (2022) 116056X. Liu et al.
Fig. 15. The equivalent dynamic elastic moduli(𝐸1(𝜔), 𝜈12(𝜔)) are normalized with respect to their corresponding static elastic moduli in Eqs. (32) and (34). Absolute value of the
results are plotted as functions of the normalized frequency 𝜔∕𝜔0 and ℎ∕𝑙. Here 𝜃 = 𝜋∕6, 𝑟∕𝑙 = 0.3, 𝑙 = 1.
Fig. 16. Absolute value of the equivalent dynamic elastic moduli and dynamic stiffness coefficients are plotted as functions of the normalized frequency 𝜔∕𝜔0 and ℎ∕𝑙. Here
𝜃 = 𝜋∕6, 𝑟∕𝑙 = 0.3, 𝑙 = 1.
𝜈12(𝜔) is mainly influenced by the deformation of the inclined members.
The dynamic stiffness coefficients of vertical members (i.e. 𝐾𝑂𝐶

𝑖𝑗 ) did
not affect 𝐸1(𝜔) and 𝜈12(𝜔) from Eqs. (9)–(11).

However, the effect on the dynamic elastic moduli in direction-2 is
relatively significant in Fig. 16(a). As ℎ∕𝑙 increases, the resonant/anti-
resonance points move to the lower frequency due to the smaller size
of VPB. Besides, the local maximum/minimum of 𝐾𝑂𝐴

44 (𝜔), 𝐾𝑂𝐴
55 (𝜔) and

𝐾𝑂𝐴
33 (𝜔) + 𝐾𝑂𝐴

63 (𝜔) are not affected by ℎ from Fig. 16(b). These val-
ues lead to the unchanged resonant/anti-resonance points of dynamic
elastic moduli in direction-2.

5.2. The rectangle lattice (𝜃 = 0◦) with Plateau border

Based on the unit cell in this paper, if 𝜃 = 0◦ , then the rectangular
lattice structure [70,71] is obtained. The equivalent dynamic elastic
11
moduli can be expressed as

𝐸1 (𝜔) =
𝐾𝑂𝐴

44 (𝜔)
𝑏

, 𝐸2 (𝜔) =
𝐾𝑂𝐴

55 (𝜔)

𝑏
(

1 + 2
𝐾𝑂𝐴
55 (𝜔)

𝐾𝑂𝐶
44 (𝜔)

) (40)

𝜈12(𝜔) = 𝜈21(𝜔) = 0 (41)

𝐺12 (𝜔) =
1

𝑏
⎛

⎜

⎜

⎝

2𝐾𝑂𝐶
66 (𝜔)+ℎ𝐾𝑂𝐶

56 (𝜔)
(

𝐾𝑂𝐶
55 (𝜔)𝐾𝑂𝐶

66 (𝜔)−
(

𝐾𝑂𝐶
56 (𝜔)

)2
) +

(

𝐾𝑂𝐴
66 (𝜔)−𝐾𝑂𝐴

36 (𝜔)
)

ℎ2

2
(

𝐾𝑂𝐴
33 (𝜔)𝐾𝑂𝐴

66 (𝜔)−𝐾𝑂𝐴
36 (𝜔)𝐾𝑂𝐴

63 (𝜔)
)

⎞

⎟

⎟

⎠

(42)

In Eq. (41), the Poisson’s ratios are 0. Thus, we only explore the
Young’s moduli and shear modulus. The rectangular lattice structure
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Fig. 17. Absolute value of equivalent dynamic elastic moduli is plotted as functions of the normalized frequency 𝜔∕𝜔0 and 𝑟1∕𝑙.
with Plateau borders is shown in Fig. 11(b). Here 𝜌 = 𝜌𝑏. To make a
comparison, we explore the equivalent dynamic elastic moduli of the
rectangular lattice and hexagonal lattice as 𝑟1∕𝑙 changes in Fig. 17,
respectively.

Compared with the results in Fig. 17(a), we can draw the following
conclusions on the rectangle lattice from Fig. 17(b): (1) The upper and
lower magnitude limits of the equivalent dynamic elastic moduli of
rectangle lattice structure with Plateau borders are larger than that of
hexagonal lattice structure with Plateau borders. (2) The resonant/anti-
resonance points of 𝐸1(𝜔) of rectangle lattice structure with Plateau
borders are less than that of hexagonal lattice structure with Plateau
borders, as a result of which the deformation in direction-1 is only
dominated by stretching (𝐾𝑂𝐴

44 (𝜔)). However, because the deformation
in direction-2 is still dominated by stretching and bending (𝐾𝑂𝐶

44 (𝜔) and
𝐾𝑂𝐴

55 (𝜔)), the change of resonant/anti-resonance points of 𝐸2(𝜔) is not
obvious.

5.3. Auxetic lattice structure (𝜃 < 0) with Plateau borders

The schematic diagram of auxetic lattice structure [72,73] with
Plateau borders is shown in Fig. 11(c). The important feature of aux-
etic lattice structure is the negative Poisson’s ratio [72,74–76]. Since
damping is taken into account, the equivalent dynamic elastic moduli
are complex values. Therefore, in addition to analysing the absolute
value of equivalent dynamic elastic moduli, the real part of Poisson’s
ratio is also studied. Here 𝜌 = 𝜌𝑏, ℎ∕𝑙 = 2, ℎ∕ℎ = 𝑙∕𝑙 = 0.4.

The equivalent dynamic elastic moduli of the auxetic lattice with
Plateau borders for different 𝜃 are plotted in Fig. 18(a), which are
compared with those for the auxetic lattice without Plateau borders
plotted in Fig. 18(b). Similar conclusions can be drawn from Fig. 18
with those from Fig. 14. Besides, different 𝜃 leads to different shapes
and therefore different 𝑚 of VPB, especially for 𝜃 < 0. For example,
when 𝜃 ∈

(

− 𝜋
9 ,−

5𝜋
18

)

, the effect of 𝜃 on resonant/anti-resonance points
is very obvious as shown in Fig. 18(a).
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5.4. Rhombus lattice (ℎ = 0) with Plateau borders

If we take ℎ = 0 from the unit cell model considered in this paper,
it becomes rhombus lattice structure with Plateau borders as illustrated
in Fig. 11(d). Therefore, we have

𝐸1 (𝜔) =
𝐾𝑂𝐴

44 (𝜔)

𝑏 sin 𝜃 cos 𝜃
(

1 + tan2𝜃
𝐾𝑂𝐴
44 (𝜔)

𝐾𝑂𝐴
55 (𝜔)

) ,

𝐸2 (𝜔) =
𝐾𝑂𝐴

55 (𝜔) sin 𝜃

𝑏cos3𝜃
(

1 + tan2𝜃
𝐾𝑂𝐴
55 (𝜔)

𝐾𝑂𝐴
44 (𝜔)

) , 𝐺12 (𝜔) =
tan 𝜃
𝑏

(43)

𝜈12 (𝜔) =

𝐾𝑂𝐴
44 (𝜔)

𝐾𝑂𝐴
55 (𝜔)

− 1

tan2𝜃
𝐾𝑂𝐴
44 (𝜔)

𝐾𝑂𝐴
55 (𝜔)

+ 1
, 𝜈21 (𝜔) =

sin2𝜃
(

1 −
𝐾𝑂𝐴
55 (𝜔)

𝐾𝑂𝐴
44 (𝜔)

)

cos2𝜃
(

1 + tan2𝜃
𝐾𝑂𝐴
55 (𝜔)

𝐾𝑂𝐴
44 (𝜔)

) (44)

It is clear from Eqs. (43) that the shear modulus 𝐺12 is independent of
frequency.

Here, 𝜌 = 𝜌𝑏 (the density of the VPB and UCE are the same). The
geometric parameters of the rhombus lattice with Plateau borders are
taken as: ℎ∕𝑙 = 1, ℎ∕ℎ = 0, 𝑙∕𝑙 = 0.4, while that of the hexagonal
honeycomb structure with Plateau borders are: ℎ∕𝑙 = 1, ℎ∕ℎ = 𝑙∕𝑙 = 0.4.
Their dynamic elastic moduli for different 𝜃 are plotted in Fig. 19(a)
and (b), respectively. By comparing the results of Figs. 19(a) and (b),
the change of the dynamic elastic moduli for different 𝜃 is small. This is
because the deformation of the vertical members has a smaller weight
than that of the inclined members.

6. Conclusion

A general analytical framework is presented for the broadband
equivalent dynamic elastic moduli of lattice structures with Plateau
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Fig. 18. Absolute value of equivalent dynamic elastic moduli and real part of 𝜈12(𝜔) are plotted as functions of the normalized frequency 𝜔∕𝜔0 and 𝜃.
Fig. 19. Absolute value of equivalent elastic moduli is plotted as functions of the normalized frequency 𝜔∕𝜔0 and 𝜃.
borders under steady-state conditions. Key novel features of this paper
include:

(1) First, the analytical dynamic stiffness formulation of a unit cell
of lattice structures with Plateau borders is developed. For the unit cell,
the flexible cell edge is modelled by the exact beam DS formulations
13
based on rod and Timoshenko theories, whereas the vertexes with
Plateau borders (VPBs) are modelled by rigid bodies with mass, inertia
moment and size properties. The DS formulations of both the flexible
cell edge and VPB are assembled for the unit cell according to rigid
body dynamics.
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(2) Then, the analytical expressions of equivalent dynamic elastic
moduli are proposed by applying the associate boundary conditions. In
particular, the equivalent shear modulus is developed based on a novel
but more reasonable unit cell.

(3) Based on the above analytical expressions, investigations reveal
that the VPBs exert significant influence on the equivalent dynamic
elastic moduli of lattice structures. It is found that Young’s moduli 𝐸1
nd 𝐸2 and Poisson’s ratio 𝜈12 and 𝜈21 are obviously affected by the
PB mass, whereas the shear modulus 𝐺12 is mainly affected by the
oment of inertia of the VPB as expected. Moreover, all dynamic elastic
oduli are influenced by the VPB size (stiffness). Related physical and
athematical interpretations are provided.

(4) Besides, the present framework is sufficient general to be applied
o a wide range of lattice structures with Plateau borders, such as, hon-
ycomb, rectangular, auxetic and rhombic lattice structures. Physical
nd mathematical insights on the effects of the VPB on the dynamic
lastic moduli have been gained due to the analytical essence of this
ork.

This work not only provides analytical expressions of frequency-
ependent equivalent dynamic elastic moduli for the dynamic analysis
f structures composed of lattice structures with VPB, but also sheds
ights on the enhancement design of lattice structures by taking ad-
antage of VPB. It also proposed a general analytical framework for
he dynamic homogenization of lattice structures with imperfections.
xtensions of the current research include, but not limited to, the equiv-
lent dynamic moduli of different types of 2D or 3D lattice structures
ith different shapes of stiffened vertex and their applications to the
roadband dynamic analysis of lattice-core panels.
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ppendix A. Axial vibration based on classical rod theory

According to classical rod theory, the equation governing axial
otion of a damped beam is [77,78]

𝐴
(

1+𝜁k
𝜕
𝜕𝑡

) 𝜕2𝑢
𝜕𝑥2

− 𝜌𝐴𝜕2𝑢
𝜕𝑡2

− 𝑐𝑎
𝜕𝑢
𝜕𝑡

= 0 (A.1)

where 𝐸𝐴 is the stiffness of axial deformation, 𝜌𝐴 is the mass per
nit length, 𝜁𝑘 is the stiffness damping factor of stiffness, and 𝑐𝑎 is

the velocity-dependent viscous damping coefficient. According to the
derivation process of [47], the specific expressions of 𝑎1 and 𝑎2 in the
matrix can be obtained

𝑎1 =
𝐸𝐴

(

1 + 𝑖𝜔𝜁k
)

𝑘1 cot
(

𝑘1
)

, 𝑎2 = −
𝐸𝐴

(

1 + 𝑖𝜔𝜁k
)

𝑘1 csc
(

𝑘1
)

(A.2)
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𝑙 𝑙
where

𝑘21 =

(

𝜌𝐴𝜔2 − 𝑖𝜔𝑐𝑎
)

𝑙
2

𝐸𝐴
(

1 + 𝑖𝜁𝑘𝜔
) (A.3)

Appendix B. Bending vibration based on Timoshenko beam theory

According to Timoshenko beam theory, the governing differential
equation for bending vibration is given as follows [77]

𝑘𝐴𝐺
(

1+𝜁𝑘
𝜕
𝜕𝑡

) 𝜕
𝜕𝑥

( 𝜕𝜔
𝜕𝑥

− 𝜃
)

− 𝜌𝐴𝜕2𝜔
𝜕𝑡2

− 𝑐𝑠
𝜕𝜔
𝜕𝑡

= 0 (B.1)

𝐸𝐼
(

1+𝜁𝑘
𝜕
𝜕𝑡

) 𝜕2𝜃
𝜕𝑥2

+ 𝑘𝐴𝐺
(

1+𝜁𝑘
𝜕
𝜕𝑡

)( 𝜕𝜔
𝜕𝑥

− 𝜃
)

− 𝜌𝐼 𝜕
2𝜃
𝜕𝑡2

− 𝑐𝑏
𝜕𝜃
𝜕𝑡

= 0 (B.2)

where 𝐸𝐼 is the bending stiffness of the beam, 𝐼 is the inertia moment
of the beam, 𝜌 is the density of the beam, 𝐴 is the cross-section area of
the beam, then 𝜌𝐴 is the mass per unit length of the beam, 𝑘𝐴𝐺 is the
hear stiffness of the beam, 𝑘 is the shear correction value (also known
s the shape function), and 𝑐𝑠 and 𝑐𝑏 are the velocity-dependent viscous
amping coefficients of shear and bending deformation. The ampli-
udes of shear force and bending moment are given by the following
quations

(𝑥) = −𝑘𝐴𝐺
( 𝜕𝜔
𝜕𝑥

− 𝜃
)

= 𝐸𝐼 𝜕
2𝜃

𝜕𝑥2
+𝜌𝐼𝜔2𝜃 (B.3)

(𝑥) = −𝐸𝐼 𝜕𝜃
𝜕𝑥

(B.4)

Then we can get

𝑑1 = 𝑅3𝑏
2
𝛼
(

𝑐𝑆 + 𝜂2𝑠𝐶
)

∕
(

𝑘1𝑘2
)

𝑑2 = 𝑅2𝛼𝜆1
[(

𝑘1 + 𝜂1𝑘2
)

𝑠𝑆 −
(

𝑘2 − 𝜂2𝑘1
)

(1 − 𝑐𝐶)
]

∕
(

𝑘2 + 𝜂2𝑘1
)

𝑑3 = 𝑅1𝛼
(

𝑠𝐶 − 𝜂1𝑐𝑆
)

𝑑4 = −𝑅3𝑏
2
𝛼
(

𝑆 + 𝜂2𝑠
)

∕
(

𝑘1𝑘2
)

𝑑5 = 𝑅2𝛼𝜆1 (𝐶 − 𝑐)
𝑑6 = 𝑅1𝛼

(

𝜂1𝑆 − 𝑠
)

(B.5)

where

𝛼 = 𝑘2+𝜂2𝑘1
2𝜂2(1−𝐶𝑐)+(1−𝜂12)𝑆𝑠

, 𝜂1 =
𝜆1
𝜆2
, 𝜂2 = 𝑗 𝜆1

𝜆2

𝑅𝑖 =
(1+𝑖𝜔𝜁𝑘)𝐸𝐼

𝑙
𝑖 ,

[

𝑠
𝑐

]

=
[

sin 𝑘1
cos 𝑘1

]

[

𝑆
𝐶

]

=
[

sinh 𝑘2
cosh 𝑘2

]

, 𝑓𝑜𝑟 𝑏
2
𝑟2𝑠2 < 1

[

𝑆
𝐶

]

=
[

sin 𝑘2
cos 𝑘2

]

, 𝑓𝑜𝑟 𝑏
2
𝑟2𝑠2 > 1

𝜆1 =
𝑘12−𝑏

2
𝑠2

𝑘1
, 𝜆2 =

𝑘22+𝑗𝑏
2
𝑠2

𝑘2

1
2 = 𝑏

2(
𝑟2+𝑠2

)

2 + 𝑏
2

2

√

(

𝑟2 + 𝑠2
)2 + 4

𝑏
2

(

1 − 𝑏
2
𝑟2𝑠2

)

𝑘22 =
−

𝑏2
(

𝑟2+𝑠2
)

2 + 𝑏2

2

√

(𝑟2+𝑠2)2+ 4

𝑏2

(

1−𝑏
2
𝑟2𝑠2

)

𝑗

𝑏
2
=

(

𝜌𝐴𝜔2−𝑖𝜔𝑐𝑠
)

𝑙
4

𝐸𝐼(1+𝑖𝜔𝜁𝑘)
, 𝑟2 = 𝜌𝐼𝜔2−𝑖𝜔𝑐𝑏

(𝜌𝐴𝜔2−𝑖𝜔𝑐𝑠)𝑙
2 , 𝑠2 =

𝐸𝐼

𝑘𝐴𝐺𝑙
2

(B.6)

Appendix C. The unit cell model and expression of 𝑮𝟏𝟐(𝝎) in [47]

To illustrate the difference of derivation of 𝐺12(𝜔) between this
paper and [47], unit cell model and expression of 𝐺12(𝜔) in [47] are
provided as follows.

See Fig. C.1

𝐺12(𝜔) =
(𝛽 + sin 𝜃)
𝑏 cos 𝜃

1
⎛

⎜

⎜

⎝

− ℎ2

2𝑙𝐾65 (𝜔)
+ 4𝐾 (ℎ∕2)

66 (𝜔)
(

𝐾 (ℎ∕2)
55 (𝜔)𝐾 (ℎ∕2)

66 (𝜔)−
(

𝐾 (ℎ∕2)
56 (𝜔)

)2
) + (cos 𝜃+(ℎ∕𝑙+sin 𝜃) tan 𝜃)2

𝐾44 (𝜔)

⎞

⎟

⎟

⎠

(C.1)
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Fig. C.1. Two separate unit cells are used for deriving the in-plane shear modulus in [47].
Fig. D.2. Unit cell of lattice structures with Plateau borders.

Appendix D. Geometric and physical parameters of the vertexes
with plateau border (VPB)

When analysing the equivalent dynamic elastic moduli of different
types of lattice structures with Plateau borders, we need to know
geometric and physical parameters of VPB such as the mass, the inertia
moment, and the distance between the mass centre of VPB to the
centre of the rigid connection. Thus, we give the derivation procedure
for these parameters of the typical honeycomb lattice structures with
Plateau borders as follows. As can be seen from Fig. D.2, supposing the
𝑂1𝑂2 is perpendicular to the inclined uniform cell edge (UCE), we have

𝑟2 =
𝑐

sin 𝜃
− 𝑟1 − 𝑡 (D.1)

where

𝑐 = 𝑟1 + 𝑡∕2 (D.2)

Then we find out the centres of sector 1⃝, 2⃝, 3⃝ and triangles
composed of 1⃝, 2⃝, 3⃝ and VPB 4⃝. Finally, the centre of VPB 4⃝ can
be obtained by overlap method

𝑥𝑐 =
6𝑐𝜃𝑟22 cot 𝜃 − 2𝑐3 cot2 𝜃 − 4𝑟32 sin 𝜃 + 8𝑟31 sin

2(𝜃∕2 − 𝜋∕4)
( 2 2 2 2

) (D.3)
15

3 −2𝜃𝑟1 + 𝜋𝑟1 + 2𝜃𝑟2 − 2𝑐 cot 𝜃
Then, according to geometrical relationships, the distance between
the mass centre of VPB to the centre of the rigid connection in the
direction of inclined UCE is obtained

𝛥𝑥 = (1 + sin 𝜃)𝑥1 − 𝑥𝑐 sin 𝜃 (D.4)

The distance in the direction perpendicular to the inclined UCE is

𝛥𝑦 =
(

𝑥1 − 𝑥𝑐
)

cos 𝜃 (D.5)

where

𝑥1 =
(

𝑟1 + 𝑡∕2
)

tan(𝜋∕4 − 𝜃∕2) (D.6)

The distance between the mass centre of VPB to the centre of the rigid
connection in the direction of vertical member is

𝛥𝑥ℎ = 𝑥𝑐 (D.7)

The distance in the direction perpendicular to the vertical member is

𝛥𝑦ℎ = 0 (D.8)

The mass of VPB can be obtained through multiplying the area of
Plateau borders by height 𝑏 and then multiplying the density 𝜌, whereas
the inertia moment of VPB is also based on superposition method
and parallel axis theorem. Moreover, the derivation method for the
geometric and physical parameters of other types of lattice structures
with Plateau borders is similar but is not repeated here.

References

[1] Dharmasena KP, Wadley HNG, Xue Z, Hutchinson JW. Mechanical response of
metallic honeycomb sandwich panel structures to high-intensity dynamic loading.
Int J Impact Eng 2008;35:1063–74.

[2] Song J, Zhou W, Wang Y, Fan R, Wang Y, Chen J, Lu Y, Li L. Octet-truss cellular
materials for improved mechanical properties and specific energy absorption.
Mater Des 2019;173:107773.

[3] Li W, Fan H, Bian Y, Yang F. Plastic deformation and energy absorption of
polycrystalline-like lattice structures. Mater Des 2021;198:109321.

[4] Yungwirth CJ, Radford DD, Aronson M, Wadley HNG. Experiment assessment of
the ballistic response of composite pyramidal lattice truss structures. Composites
B 2008;39:556–69.

[5] Zheng J, Zhao L, Fan H. Energy absorption mechanisms of hierarchical woven lat-
tice composites. Composites B 2012;43(3):1516–22. http://dx.doi.org/10.1016/
j.compositesb.2011.08.034.

[6] Hu J, Zhou J, Zhang A, Yi L, Wang J. Temperature dependent mechanical proper-
ties of graphene based carbon honeycombs under tension and compression. Phys
Lett A 2021;391:127130. http://dx.doi.org/10.1016/j.physleta.2020.127130.

[7] Fabbrocino F, Carpentieri G. Three-dimensional modeling of the wave dynamics
of tensegrity lattices. Compos Struct 2017;173:9–16. http://dx.doi.org/10.1016/
j.compstruct.2017.03.102.

[8] Mancusi G, Fabbrocino F, Feo L, Fraternali F. Size effect and dynamic properties
of 2D lattice materials. Composites B 2017;112:235–42. http://dx.doi.org/10.
1016/j.compositesb.2016.12.026.

http://refhub.elsevier.com/S0263-8223(22)00796-6/sb1
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb1
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb1
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb1
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb1
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb2
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb2
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb2
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb2
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb2
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb3
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb3
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb3
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb4
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb4
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb4
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb4
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb4
http://dx.doi.org/10.1016/j.compositesb.2011.08.034
http://dx.doi.org/10.1016/j.compositesb.2011.08.034
http://dx.doi.org/10.1016/j.compositesb.2011.08.034
http://dx.doi.org/10.1016/j.physleta.2020.127130
http://dx.doi.org/10.1016/j.compstruct.2017.03.102
http://dx.doi.org/10.1016/j.compstruct.2017.03.102
http://dx.doi.org/10.1016/j.compstruct.2017.03.102
http://dx.doi.org/10.1016/j.compositesb.2016.12.026
http://dx.doi.org/10.1016/j.compositesb.2016.12.026
http://dx.doi.org/10.1016/j.compositesb.2016.12.026


Composite Structures 299 (2022) 116056X. Liu et al.
[9] Liu X, Lu Z, Adhikari S, Li Y, Banerjee JR. Exact wave propagation analysis of lat-
tice structures based on the dynamic stiffness method and the Wittrick–Williams
algorithm. Mech Syst Signal Process 2022;174:109044.

[10] Yahaya MA, Ruan D, Lu G, Dargusch MS. Response of aluminium honeycomb
sandwich panels subjected to foam projectile impact e An experimental study.
Int J Impact Eng J 2015;75:100–9.

[11] Olympio KR, Gandhi F. Flexible skins for morphing aircraft using cellular
honeycomb cores. J Intell Mater Syst Struct 2010;21(17):1719–35.

[12] Davalos JF, Qiao P, Xu XF, Robinson J, Barth KE. Modeling and characterization
of fiber-reinforced plastic honeycomb sandwich panels for highway bridge
applications. Compos Struct 2001;52. 52.

[13] Yao S, Xiao X, Xu P, Qu Q, Che Q. The impact performance of honeycomb-
filled structures under eccentric loading for subway vehicles. Thin-Walled Struct
2018;123(October 2017):360–70.

[14] Mahmoud D, Elbestawi MA. Lattice structures and functionally graded materials
applications in additive manufacturing of orthopedic implants : A review. J
Manuf Mater Process Rev 2017;1–19.

[15] Zhang Q, Yang X, Li P, Huang G, Lu TJ. Bio-inspired engineering of honey-
comb structure - using nature to inspire human innovation. Prog Mater Sci
2015;74:332–400.

[16] Choe J, Huang Q, Yang J, Hu H. An efficient approach to investi-
gate the post-buckling behaviors of sandwich structures. Compos Struct
2018;201(June):377–88. http://dx.doi.org/10.1016/j.compstruct.2018.06.025.

[17] Chen TJ, Huang JS. Creep-buckling of hexagonal honeycombs with dual
imperfections. Compos Struct 2009;89(1):143–50. http://dx.doi.org/10.1016/j.
compstruct.2008.07.018.

[18] Restrepo D, Mankame ND, Zavattieri PD. Programmable materials based
on periodic cellular solids. Part I: Experiments. Int J Solids Struct
2016;100–101:485–504. http://dx.doi.org/10.1016/j.ijsolstr.2016.09.021.

[19] Simone AE, Gibson LJ. Effects of solid distribution on the stiffness and strength
of metallic foams. Acta Mater 1998;46(6):2139–50.

[20] Yang MY, Huang JS. Numerical analysis of the stiffness and strength of regular
hexagonal honeycombs with plateau borders. Compos Struct 2004;64(1):107–14.

[21] Duan S, Tao Y, Lei H, Wen W, Liang J, Fang D. Enhanced out-of-plane
compressive strength and energy absorption of 3D printed square and hexagonal
honeycombs with variable-thickness cell edges. Extreme Mech Lett 2018;18:9–18.

[22] Yang MY, Huang JS. Elastic buckling of regular hexagonal honeycombs with
plateau borders under biaxial compression. Compos Struct 2005;71(2):229–37.
http://dx.doi.org/10.1016/j.compstruct.2004.10.014.

[23] Chuang C-h, Huang J-s. Effects of solid distribution on the elastic bucklingof
honeycombs Cheng-Hsin. Int J Mech Sci 2002;44:1429–43.

[24] Yang MY, Huang JS. Failure surfaces for brittle honeycombs with plateau borders
under in-plane biaxial loads. Compos Struct 2006;72(4):512–20. http://dx.doi.
org/10.1016/j.compstruct.2005.01.019.

[25] Yang MY, Huang JS, Hu JW. Elastic buckling of hexagonal honeycombs with
dual imperfections. Compos Struct 2008;82(3):326–35.

[26] Lin TC, Yang MY, Huang JS. Effects of solid distribution on the out-of-plane
elastic properties of hexagonal honeycombs. Compos Struct 2013;100:436–42.

[27] Lin JY, Huang JS. Creep of hexagonal honeycombs with Plateau borders. Compos
Struct 2005;67(4):477–84. http://dx.doi.org/10.1016/j.compstruct.2004.02.006.

[28] Chuang CH, Huang JS. Elastic moduli and plastic collapse strength of hexagonal
honeycombs with plateau borders. Int J Mech Sci 2002;44(9):1827–44. http:
//dx.doi.org/10.1016/S0020-7403(02)00139-X.

[29] Zhang K, Deng ZC, Meng JM, Xu XJ. Wave propagation in hexagonal lattices with
plateau borders. Compos Struct 2016;140:525–33. http://dx.doi.org/10.1016/j.
compstruct.2015.12.046.

[30] Meng J, Deng Z, Zhang K, Xu X. Wave propagation in hexagonal and re-
entrant lattice structures with cell walls of non-uniform thickness. Waves Random
Complex Media 2015;25(2):223–42. http://dx.doi.org/10.1080/17455030.2015.
1005195.

[31] Amendola A, Fabbrocino F, Feo L, Auricchio F, Fraternali F. Dependence of
the mechanical properties of pentamode materials on the lattice microstructure.
In: ECCOMAS congress 2016 - Proceedings of the 7th European congress on
computational methods in applied sciences and engineering, Vol. 1. 2016, p.
2134–50. http://dx.doi.org/10.7712/100016.1947.6004, (January).

[32] Fabbrocino F, Amendola A, Benzoni G, Fraternali F. Seismic application of
pentamode lattices. Ing Sismica 2016;33(1–2):62–70.

[33] Foo CC, Chai GB, Seah LK. Mechanical properties of nomex material and nomex
honeycomb structure. Compos Struct 2007;80(4):588–94. http://dx.doi.org/10.
1016/j.compstruct.2006.07.010.

[34] Wallach JC, Gibson LJ. Mechanical behavior of a three-dimensional truss
material. Int J Solids Struct 2001;38(40–41):7181–96.

[35] Karakoç A, Santaoja K, Freund J. Simulation experiments on the effective in-
plane compliance of the honeycomb materials. Compos Struct 2013;96:312–20.
http://dx.doi.org/10.1016/j.compstruct.2012.09.021.

[36] Tauhiduzzaman M, Carlsson LA. Influence of constraints on the effective in-
plane extensional properties of honeycomb core. Compos Struct 2019;209(April
2018):616–24. http://dx.doi.org/10.1016/j.compstruct.2018.10.080.
16
[37] van Bree SE, Rokoš O, Peerlings RH, Doškář M, Geers MG. A Newton solver for
micromorphic computational homogenization enabling multiscale buckling anal-
ysis of pattern-transforming metamaterials. Comput Methods Appl Mech Engrg
2020;372. http://dx.doi.org/10.1016/j.cma.2020.113333, arXiv:2008.12850.

[38] Xu R, Yang J, Yan W, Huang Q, Giunta G, Belouettar S, Zahrouni H, Zineb TB,
Hu H. Data-driven multiscale finite element method: From concurrence to
separation. Comput Methods Appl Mech Engrg 2020;363:112893. http://dx.doi.
org/10.1016/j.cma.2020.112893.

[39] Huang W, Xu R, Yang J, Huang Q, Hu H. Data-driven multiscale simulation of
FRP based on material twins. Compos Struct 2021;256(September 2020):113013.
http://dx.doi.org/10.1016/j.compstruct.2020.113013.

[40] Bodaghi M, Damanpack AR, Hu GF, Liao WH. Large deformations of soft
metamaterials fabricated by 3D printing. Mater Des 2017;131(April):81–91. http:
//dx.doi.org/10.1016/j.matdes.2017.06.002.

[41] Gibson L, Ashby M. Cellular solids structures and properties. Cambridge
University Press; 1999.

[42] Hassani B, Hinton E. A review of homogenization and topology opimization II -
Analytical and numerical solution of homogenization equations. Comput Struct
1998;69(6):719–38. http://dx.doi.org/10.1016/S0045-7949(98)00132-1.

[43] Ongaro F. Estimation of the effective properties of two-dimensional cellular
materials: a review. Theor Appl Mech Lett 2018;8(4):209–30. http://dx.doi.org/
10.1016/j.taml.2018.04.010.

[44] Zhang K, Deng Z, Meng J, Xu X, Wang Y. Symplectic analysis of dynamic
properties of hexagonal honeycomb sandwich tubes with plateau borders. J
Sound Vib 2015;351:177–88. http://dx.doi.org/10.1016/j.jsv.2015.04.012.

[45] Sun WQ, Cheng W. Finite element model updating of honeycomb sandwich
plates using a response surface model and global optimization technique. Struct
Multidiscip Optim 2017;55(1):121–39. http://dx.doi.org/10.1007/s00158-016-
1479-1.

[46] Mukhopadhyay T, Adhikari S, Alu A. Probing the frequency-dependent elastic
moduli of lattice materials. Acta Mater 2019;165:654–65.

[47] Sa A, Tm B, Xl C. Broadband dynamic elastic moduli of honeycomb lattice
materials: A generalized analytical approach. Mech Mater 2021.

[48] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic
behaviour of multiphase materials. J Mech Phys Solids 1963;11(2):127–40.
http://dx.doi.org/10.1016/0022-5096(63)90060-7.

[49] Malek S, Gibson L. Effective elastic properties of periodic hexagonal honeycombs.
Mech Mater 2015;91:226–40.

[50] Yang P, Hu N, Guo X, Dong L, Chen Y, Guo Z. An ultra-simple universal model
for the effective elastic properties of isotropic 3D closed-cell porous materials.
Compos Struct 2020;249(June):112531. http://dx.doi.org/10.1016/j.compstruct.
2020.112531.

[51] Kolouek V. Anwendung des gesetzes der virtuellen verschiebungen und des
reziprozitätssatzes in der stabwerksdynamik. Ing-Arch 1941;12(6):363–70.

[52] Banerjee JR, Sobey AJ. Dynamic stiffness formulation and free vibration analysis
of a three-layered sandwich beam. Int J Solids Struct 2006;42(8):2181–97.

[53] Banerjee JR, Gunawardana WD. Dynamic stiffness matrix development and free
vibration analysis of a moving beam. J Sound Vib 2007;303(1–2):135–43.

[54] Kennedy D. Dynamic stiffness analysis of graphene sheets and carbon nanotubes.
Civ-Comp Proc 2012;99:1–12. http://dx.doi.org/10.4203/ccp.99.99.

[55] Liu X, Liu X, Adhikari S, Zhao X. An analytical framework for broadband dynamic
analysis of plate built-up structures with uncertain viscoelastic boundary or con-
nection conditions. Mech Syst Signal Process 2022;177(November 2021):109121.
http://dx.doi.org/10.1016/j.ymssp.2022.109121.

[56] Liu X, Chang L, Banerjee JR, Dan HC. Closed-form dynamic stiffness formulation
for exact modal analysis of tapered and functionally graded beams and their
assemblies. Int J Mech Sci 2022;214(July 2021):106887. http://dx.doi.org/10.
1016/j.ijmecsci.2021.106887.

[57] Liu X, Zhao Y, Zhou W, Banerjee JR. Dynamic stiffness method for exact
longitudinal free vibration of rods and trusses using simple and advanced
theories. Appl Math Model 2022;104:401–20. http://dx.doi.org/10.1016/j.apm.
2021.11.023.

[58] Liu X, Liu X, Adhikari S, Yin S. Extended Wittrick–Williams algorithm for
eigenvalue solution of stochastic dynamic stiffness method. Mech Syst Sig-
nal Process 2022;166(March 2021):108354. http://dx.doi.org/10.1016/j.ymssp.
2021.108354.

[59] Liu X, Qiu S, Xie S, Banerjee JR. Extension of the wittrick-williams algo-
rithm for free vibration analysis of hybrid dynamic stiffness models connecting
line and point nodes. Mathematics 2022;10(1). http://dx.doi.org/10.3390/
math10010057.

[60] Liu X, Zhao X, Liu X. A highly accurate spectral dynamic stiffness method
for efficient broadband modal and dynamic response analysis of membranes
assemblies with arbitrary boundary conditions. Comput Struct 2022;267:106797.

[61] Catapano A, Montemurro M. A multi-scale approach for the optimum de-
sign of sandwich plates with honeycomb core. Part I: Homogenisation of
core properties. Compos Struct 2014;118(1):664–76. http://dx.doi.org/10.1016/
j.compstruct.2014.07.057.

[62] Huang T, Gong Y, Zhao S. Effective in-plane elastic modulus of a periodic regular
hexagonal honeycomb core with thick walls. J Eng Mech 2018;144(2):06017019.
http://dx.doi.org/10.1061/(asce)em.1943-7889.0001412.

http://refhub.elsevier.com/S0263-8223(22)00796-6/sb9
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb9
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb9
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb9
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb9
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb10
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb10
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb10
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb10
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb10
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb11
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb11
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb11
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb12
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb12
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb12
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb12
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb12
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb13
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb13
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb13
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb13
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb13
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb14
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb14
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb14
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb14
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb14
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb15
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb15
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb15
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb15
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb15
http://dx.doi.org/10.1016/j.compstruct.2018.06.025
http://dx.doi.org/10.1016/j.compstruct.2008.07.018
http://dx.doi.org/10.1016/j.compstruct.2008.07.018
http://dx.doi.org/10.1016/j.compstruct.2008.07.018
http://dx.doi.org/10.1016/j.ijsolstr.2016.09.021
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb19
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb19
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb19
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb20
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb20
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb20
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb21
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb21
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb21
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb21
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb21
http://dx.doi.org/10.1016/j.compstruct.2004.10.014
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb23
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb23
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb23
http://dx.doi.org/10.1016/j.compstruct.2005.01.019
http://dx.doi.org/10.1016/j.compstruct.2005.01.019
http://dx.doi.org/10.1016/j.compstruct.2005.01.019
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb25
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb25
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb25
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb26
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb26
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb26
http://dx.doi.org/10.1016/j.compstruct.2004.02.006
http://dx.doi.org/10.1016/S0020-7403(02)00139-X
http://dx.doi.org/10.1016/S0020-7403(02)00139-X
http://dx.doi.org/10.1016/S0020-7403(02)00139-X
http://dx.doi.org/10.1016/j.compstruct.2015.12.046
http://dx.doi.org/10.1016/j.compstruct.2015.12.046
http://dx.doi.org/10.1016/j.compstruct.2015.12.046
http://dx.doi.org/10.1080/17455030.2015.1005195
http://dx.doi.org/10.1080/17455030.2015.1005195
http://dx.doi.org/10.1080/17455030.2015.1005195
http://dx.doi.org/10.7712/100016.1947.6004
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb32
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb32
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb32
http://dx.doi.org/10.1016/j.compstruct.2006.07.010
http://dx.doi.org/10.1016/j.compstruct.2006.07.010
http://dx.doi.org/10.1016/j.compstruct.2006.07.010
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb34
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb34
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb34
http://dx.doi.org/10.1016/j.compstruct.2012.09.021
http://dx.doi.org/10.1016/j.compstruct.2018.10.080
http://dx.doi.org/10.1016/j.cma.2020.113333
http://arxiv.org/abs/2008.12850
http://dx.doi.org/10.1016/j.cma.2020.112893
http://dx.doi.org/10.1016/j.cma.2020.112893
http://dx.doi.org/10.1016/j.cma.2020.112893
http://dx.doi.org/10.1016/j.compstruct.2020.113013
http://dx.doi.org/10.1016/j.matdes.2017.06.002
http://dx.doi.org/10.1016/j.matdes.2017.06.002
http://dx.doi.org/10.1016/j.matdes.2017.06.002
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb41
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb41
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb41
http://dx.doi.org/10.1016/S0045-7949(98)00132-1
http://dx.doi.org/10.1016/j.taml.2018.04.010
http://dx.doi.org/10.1016/j.taml.2018.04.010
http://dx.doi.org/10.1016/j.taml.2018.04.010
http://dx.doi.org/10.1016/j.jsv.2015.04.012
http://dx.doi.org/10.1007/s00158-016-1479-1
http://dx.doi.org/10.1007/s00158-016-1479-1
http://dx.doi.org/10.1007/s00158-016-1479-1
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb46
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb46
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb46
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb47
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb47
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb47
http://dx.doi.org/10.1016/0022-5096(63)90060-7
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb49
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb49
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb49
http://dx.doi.org/10.1016/j.compstruct.2020.112531
http://dx.doi.org/10.1016/j.compstruct.2020.112531
http://dx.doi.org/10.1016/j.compstruct.2020.112531
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb51
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb51
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb51
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb52
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb52
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb52
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb53
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb53
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb53
http://dx.doi.org/10.4203/ccp.99.99
http://dx.doi.org/10.1016/j.ymssp.2022.109121
http://dx.doi.org/10.1016/j.ijmecsci.2021.106887
http://dx.doi.org/10.1016/j.ijmecsci.2021.106887
http://dx.doi.org/10.1016/j.ijmecsci.2021.106887
http://dx.doi.org/10.1016/j.apm.2021.11.023
http://dx.doi.org/10.1016/j.apm.2021.11.023
http://dx.doi.org/10.1016/j.apm.2021.11.023
http://dx.doi.org/10.1016/j.ymssp.2021.108354
http://dx.doi.org/10.1016/j.ymssp.2021.108354
http://dx.doi.org/10.1016/j.ymssp.2021.108354
http://dx.doi.org/10.3390/math10010057
http://dx.doi.org/10.3390/math10010057
http://dx.doi.org/10.3390/math10010057
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb60
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb60
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb60
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb60
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb60
http://dx.doi.org/10.1016/j.compstruct.2014.07.057
http://dx.doi.org/10.1016/j.compstruct.2014.07.057
http://dx.doi.org/10.1016/j.compstruct.2014.07.057
http://dx.doi.org/10.1061/(asce)em.1943-7889.0001412


Composite Structures 299 (2022) 116056X. Liu et al.
[63] Mukhopadhyay T. Theoretical limits for negative elastic moduli in subacoustic
lattice materials. Phys Rev B 2019;094108:1–7.

[64] Li Y, Abbès F, Hoang MP, Abbès B, Guo Y. Analytical homogenization for in-plane
shear, torsion and transverse shear of honeycomb core with skin and thickness
effects. Compos Struct 2016;140:453–62.

[65] Tao Y, Duan S, Wen W, Pei Y, Fang D. Enhanced out-of-plane crushing
strength and energy absorption of in-plane graded honeycombs. Composites B
2017;118:33–40.

[66] Guo Z, Wang L, Chen Y, Zheng L, Yang Z, Dong L. A universal model for pre-
dicting the effective shear modulus of two-dimensional porous materials. Mech
Mater 2017;110:59–67. http://dx.doi.org/10.1016/j.mechmat.2017.04.006.

[67] Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice
material. J Mech Phys Solids 2001;49:1747–69.

[68] Scarpa F. Elastic buckling of hexagonal chiral cell honeycombs. Composites A
2007;38:280–9.

[69] Liu X, Sun C, Banerjee JR, Dan H-C, Chang L. An exact dynamic stiffness method
for multibody systems consisting of beams and rigid-bodies. Mech Syst Signal
Process 2021;150:107264.

[70] Rathbun HJ, Radford DD, Xue Z, He MY, Yang J, Deshpande V, Fleck NA,
Hutchinson JW, Zok FW, Evans AG. Performance of metallic honeycomb-core
sandwich beams under shock loading. Int J Solids Struct 2006;43:1746–63.
17
[71] Deshpande VS, Fleck NA, Evans AG. The out-of-plane compressive behavior of
metallic honeycombs. Mater Sci Eng A 2004;380:272–80.

[72] Wan H, Ohtaki H, Kotosaka S, Hu G. A study of negative Poisson ’ s ratios in
auxetic honeycombs based on a large deflection model. Eur J Mech A Solids
2004;23:95–106.

[73] Yang L, Harrysson O, West H, Cormier D. Mechanical properties of 3D re-entrant
honeycomb auxetic structures realized via additive manufacturing. Int J Solids
Struct 2015;69–70:475–90.

[74] Mousanezhad D, Babaee S, Ebrahimi H, Ghosh R. Hierarchical honeycomb
auxetic metamaterials. Nature Publishing Group; 2015, p. 1–8.

[75] N. Gaspar, X.J. Ren b, C.W. Smith, J.N. Grima KE. Novel honeycombs with
auxetic behaviour. Acta Mater 2005;53:2439–45.

[76] Abramovitch H, Burgard M, Edery-Azulay L, Evans KE, Hoffmeister M, Miller W,
Scarpa F, Smith CW, Tee KF. Smart tetrachiral and hexachiral honeycomb:
Sensing and impact detection. Compos Sci Technol 2010;70(7):1072–9. http:
//dx.doi.org/10.1016/j.compscitech.2009.07.017.

[77] Leung AYT. Dynamic stiffness and substructures. Springer London; 1993.
[78] Paz M. Structural dynamics: Theory and computation. Van Nostrand, Reinhold.

http://refhub.elsevier.com/S0263-8223(22)00796-6/sb63
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb63
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb63
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb64
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb64
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb64
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb64
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb64
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb65
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb65
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb65
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb65
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb65
http://dx.doi.org/10.1016/j.mechmat.2017.04.006
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb67
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb67
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb67
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb68
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb68
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb68
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb69
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb69
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb69
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb69
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb69
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb70
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb70
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb70
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb70
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb70
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb71
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb71
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb71
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb72
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb72
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb72
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb72
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb72
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb73
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb73
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb73
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb73
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb73
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb74
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb74
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb74
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb75
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb75
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb75
http://dx.doi.org/10.1016/j.compscitech.2009.07.017
http://dx.doi.org/10.1016/j.compscitech.2009.07.017
http://dx.doi.org/10.1016/j.compscitech.2009.07.017
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb77
http://refhub.elsevier.com/S0263-8223(22)00796-6/sb78

	Equivalent in-plane dynamic elastic moduli of lattice structures with Plateau borders
	Introduction
	Dynamic stiffness matrix of a unit cell with Plateau borders
	Equivalent dynamic elastic moduli of lattice structures with Plateau borders
	Equivalent elastic moduli based on a unit cell
	Review of Young's moduli and Poisson's ratios
	Shear modulus G12() based on a novel unit cell

	Analytical expressions of equivalent dynamic elastic moduli

	The effect of Plateau borders on the equivalent dynamic elastic moduli
	Effect of mass of VPB on equivalent dynamic elastic moduli
	Effect of the inertia moment of VPB on equivalent dynamic elastic moduli
	Effect of size (stiffness) of VPB on equivalent dynamic elastic moduli

	Equivalent dynamic elastic moduli of four different types of lattice structures with Plateau borders
	Hexagonal honeycomb lattice structures (>0) with Plateau borders
	The rectangle lattice (=0) with Plateau border
	Auxetic lattice structure ( < 0) with Plateau borders
	Rhombus lattice (h=0) with Plateau borders

	Conclusion
	CRediT authorship contribution statement
	Data availability
	Acknowledgements
	Appendix A. Axial vibration based on classical rod theory
	Appendix B. Bending vibration based on Timoshenko beam theory
	Appendix C. The unit cell model and expression of G12(ω) in Adhikari2021 
	Appendix D. Geometric and physical parameters of the vertexes with Plateau border (VPB)
	References


