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ABSTRACT

This document explains how the equivalent elastic coefficients appearing in the elasticity ma-

trix of the 2D hexagonal lattices are obtained.
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1 Introduction
The elements of the lattice structure are comprised of beams undergoing axial and bending de-

formations. This document provides detailed mathematical explanations on how the equivalent

elastic coefficients appearing in the elasticity matrix of the 2D hexagonal lattices are obtained.

This is important as the buckling analysis proposed in the main paper depends on the spectral

decomposition of the elasticity matrix. The outline of this document is as follows. The general

expressions of the equivalent elastic coefficients are discussed in section 2. These general ex-

pressions are applied to the case of small deformation of lattices comprised of Euler-Bernoulli

beams in section 3. In section 4 the exact stiffness matrix of axially loaded Euler-Bernoulli

beams is derived using a transcendental displacement function. Using this stiffness matrix, the

equivalent nonlinear elastic moduli arising due to compressive stress are obtained in section 5.

The new analytical results are validated using an independent finite element situation in sec-

tion 6. In section 7 the works presented in this document are summarised.

1



2 Elastic moduli of 2D hexagonal lattices
In this document, we express equivalent in-plane elastic properties of the hexagonal lattice

in terms of the stiffness matrix elements of the constituent beams. For the case of equivalent

properties of the lattice without the axial force, we refer to well-known references [1, 2]. In

Figure 1 a representative example of a hexagonal lattice and its corresponding unit cell are

shown. The equivalent elastic properties of a lattice can be obtained by exploiting the mechanics

Figure 1. (a) Illustration of a hexagonal lattice subjected to compressive stress in direction-1,

(b) The unit cell used to analyse the mechanics of the lattice. It comprised of three beams

connected at one point. (c) A beam element (representing each of the three beams in the unit

cell model) with six degrees of freedom and two nodes. The degrees of freedom in each node

corresponds to the axial, transverse and rotational deformation.

of the unit cell. The unit cell is selected such that it represents the whole lattice under tessellation

in both directions. Each of the cell walls will bend and compress when subjected to in-plane

compressive stresses. When the applied stress is uniform along the out-of-plane direction, each

element of the unit cell in Figure 1(b) can be modelled as a beam. In Figure 1(c) a general beam

element with six degrees of freedom and two nodes is shown. The stiffness matrix of the beam

element can be expressed by a 6×6 matrix with degrees of freedom in each node corresponding

to the axial, transverse and rotational deformation.

Considering only the bending deformation and ignoring any stretching/shortening deforma-

tions, the equivalent elastic moduli of hexagonal cellular materials are obtained by Gibson and
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Ashby [1] as

E1GA
= Eα3 cosθ

(β + sinθ)sin2 θ
(1)

E2GA
= Eα3 (β + sinθ)

cos3 θ
(2)

ν12GA
=

cos2 θ

(β + sinθ)sinθ
(3)

ν21GA
=

(β + sinθ)sinθ

cos2 θ
(4)

and G12GA
= Eα3 (β + sinθ)

β 2(1+2β )cosθ
(5)

Here E is the elastic modulus of the base material, θ is the cell angle as shown in Figure 1(b),

α and β are geometric non-dimensional ratios given by

α =
t

l
(thickness ratio) (6)

and β =
h

l
(height ratio) (7)

When external stress is applied to a cellular material as depicted in Figure 1(a), it results in

forces and moments on the unit cell shown in Figure 1(b). The deformation of the unit cell due

to the applied stress can be obtained using the coefficients of the stiffness matrix of the typical

element shown in Figure 1(c). A general derivation of the equivalent in-plane elastic properties

of 2D lattices is presented in [3, 4] in terms of the element of the stiffness matrix K ∈ R
6×6 of

the constituent beams. Following the analytical derivation in [3, 4], the exact expressions of the

five elastic constants are given by the following closed-form formulae:

E1 =
K55 cosθ

b(β + sinθ)sin2 θ
(

1+ cot2 θ K55

K44

) (8)

E2 =
K55(β + sinθ)

bcos3 θ

(

1+ tan2 θ K55

K44
+2sec2 θ K55

K
(h)
44

) (9)

ν12 =
cos2 θ

(

1− K55

K44

)

(β + sinθ)sinθ
(

1+ cot2 θ K55

K44

) (10)

ν21 =
(β + sinθ)sinθ

(

1− K55

K44

)

cos2 θ

(

1+ tan2 θ K55

K44
+2sec2 θ K55

K
(h)
44

) (11)
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and

G12 =
(β + sinθ)

bcosθ

1


− h2

2lK65
+

4K
(h/2)
66

(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
) + (cosθ+(β+sinθ ) tanθ )2

K44





(12)

In the above equations, b is the depth of the lattice and Ki j are the i j-th element of the stiff-

ness matrix of the beam element corresponding to the inclined member in the unit cell shown

in Figure 1(b). The notation (•)h/2 denotes stiffness matrix coefficients of the beam element

corresponding to the vertical member in the unit cell shown in Figure 1(b) with half the length

(that is h/2). In the rest of this document, these general expressions will be employed to obtain

explicit expressions of the equivalent elastic properties of the hexagonal lattice.

3 The special case of small deformation
In the previous section, the expressions of five quantities characterising the effective in-plane

elastic properties of 2D cellular materials have been expressed in terms of the stiffness elements

of a beam. The stiffness matrix of an Euler-Bernoulli beam element [5, 6] is expressed by

K =





















EA
L

0 0 −EA
L

0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0

0 −12EI
L3 −6EI

L2 0 12EI
L3 −6EI

L2

0 6EI
L2

2EI
L

0 −6EI
L2

4EI
L





















(13)

We are considering beam elements with rectangular cross section as shown in Figure 1. The

moment of inertia and the cross section area appearing in the stiffness matrix in equation (13)

are therefore given by

I =
1

12
bt3 and A = bt (14)

From the expressions in the previous section, it can be observed that two coefficients of the

6×6 element stiffness matrix of the inclined member and one coefficients of the 6×6 element

stiffness matrix of vertical member, namely, K55, K44 and K
(h)
44 , are necessary to obtain E1, E2

ν12 and ν21. Using the expressions of the moment of inertia and the cross-sectional area in

equation (14), the stiffness coefficients are given by

K55 =
12EI

l3
= Ebα3, K44 =

EA

l
= Ebα and K

(h)
44 =

EA

h
=

Ebt

h
=

Ebα

β
(15)

Using these, we obtain the ratios

K55

K44
= α2 and

K55

K
(h)
44

= α2β (16)
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Therefore, when the Euler-Bernoulli beam stiffness elements are used, from equations (8), (9),

(10) and (11) we have

E1 =
K55 cosθ

b(β + sinθ)sin2 θ
(

1+ cot2 θ K55

K44

) =
Eα3 cosθ

(β + sinθ)
(

sin2 θ +α2 cos2 θ
) (17)

E2 =
K55(β + sinθ)

bcos3 θ

(

1+ tan2 θ K55

K44
+2sec2 θ K55

K
(h)
44

) =
Eα3(β + sinθ)

(1−α2)cos3 θ +α2(2β +1)cosθ
(18)

ν12 =
cos2 θ

(

1− K55

K44

)

(β + sinθ)sinθ
(

1+ cot2 θ K55

K44

) =
cos2 θ

(

1−α2
)

(β + sinθ)sinθ (1+α2 cot2 θ)
(19)

ν21 =
(β + sinθ)sinθ

(

1− K55

K44

)

cos2 θ

(

1+ tan2 θ K55

K44
+2sec2 θ K55

K
(h)
44

) =
(β + sinθ)sinθ

(

1−α2
)

(1−α2)cos2 θ +α2(2β +1)
(20)

For the shear modulus, five elements from two different stiffness matrices are necessary. They

are two coefficients of the 6×6 element stiffness matrix of the inclined member, namely, K65,

K44 as in equation (15) with K65 = −6EI
l2 = −1/2 Ebt3

l2 . We also need three elements of the

stiffness matrix of the vertical member with half the length given by

K
(h/2)
55 =

12EI

(h/2)3
=

8Ebt3

h3
, K

(h/2)
56 =−

6EI

(h/2)2
=−

2Ebt3

h2
and K

(h/2)
66 =

4EI

(h/2)
=

2Ebt3

3h
(21)

Using these expressions we obtain

G12 =
(β + sinθ)

bcosθ

1


− h2

2lK65
+

4K
(h/2)
66

(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
) + (cosθ+(β+sinθ ) tanθ )2

K44





=
Eα3(β + sinθ)

(

β 2(1+2β )+α2 (cosθ +(β + sinθ) tanθ)2
)

cosθ

(22)

For a lattice with very thin constituent beams α2 << 1. Therefore, substituting α2 → 0 in

the equations derived here, it can be observed that they exactly reduce to the corresponding

classical expressions by Gibson and Ashby [1] given in equations (1) – (5). This provides an

independent analytical validation of the general expressions given here for the special case of

small deformation showing a linear stress-strain relationship.
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4 The exact stiffness matrix of axially loaded beams
When the entire lattice is subjected to compressive stress, the constitutive beam members un-

dergo a compressive force. If the axial forces are small, they do not have a significant impact on

the bending of the beam. However, if such forces are large, their effect cannot be ignored. We

use the Euler-Bernoulli beam theory to characterise the underlying deformation of the beams.

A beam with a compressive axial force N is shown in Figure 2. The equation governing the

NN

E, I, L, A

1 3

42

1 2

Figure 2. An Euler-Bernoulli beam subjected to an axial force N. The beam element has 2

nodes and four degrees of freedom as shown.

transverse deflection of a beam modelled using the Euler-Bernoulli beam theory [see for exam-

ple, 5] subjected to a compressive axial force N is given by the following fourth-order ordinary

differential equation

EI
d4W (x)

dx4
+N

d2W (x)

dx2
= F(x) (23)

Here W (x) and F(x) are the transverse displacement and applied transverse forcing on the beam.

The quantity EI is the bending stiffness of the beam, I is the inertia moment of the beam cross

section and E is the Young’s modulus of the beam material. The natural boundary conditions of

the beam are expressed in terms of the displacement, rotation (Θ(x)), bending moment (M(x))

and shear force (V (x)). They are given by

Θ(x) =
dW

dx
,M(x) = EI

d2W

dx2
and −V (x) = EI

d3W

dx3
+N

dW

dx
(24)

Introducing the normalised length

ξ = x/L (25)

where L is the length of the beam, the governing equation without the forcing term can be

expressed as

d4w(ξ )

dξ 4
+µ2 d2w(ξ )

dξ 2
= 0 (26)

Here w(ξ )≡W (x) and the non-dimensional axial force is given by

µ2 =
NL2

EI
(27)

Assuming a solution of the form

w(ξ ) = exp{λξ} (28)
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and substituting in the governing equation (26) results

λ 2(λ 2 +µ2) = 0 or λ 2 = 0,λ =±iµ (29)

In view of the roots in equation (29), the general solution can be expressed as

w(ξ ) = c1 + c2ξ + c3 sin µξ + c4 cos µξ

or w(ξ ) = s
T (ξ )c

(30)

where the vectors

s(ξ ) = {1,ξ ,sinµξ ,cos µξ}T
(31)

and c = {c1,c2,c3,c4}
T

(32)

Applying the force and displacement boundary conditions at the two ends of the beam (denoted

by ‘1’ and ‘2’ in Figure 2) and eliminating the unknown constant vector c, the stiffness matrix

of the beam can be derived. After some algebraic simplifications we obtain











V1

M1

V2

M2











=
EI

L3











d1 d2L −d1 d2L

d3L2 −d2L d4L2

d1 −d2L

sym d3L2





















W1

Θ1

W2

Θ2











(33)

The non dimensional coefficients in the above equation are given by

d1 =−µ3 sin(µ)/∆,d2 = µ2(cos(µ)−1)/∆

d3 = µ(µ cos(µ)− sin(µ))/∆,d4 = µ(sin(µ)−µ)/∆

and ∆ = µ sin(µ)−2(1− cos(µ))

(34)

The four unique non-dimensional coefficients are functions of the axial force parameter µ only.

Expanding them in a Taylor series about µ = 0 results

d1 = 12−
6

5
µ2 −

1

700
µ4 −

1

63000
µ6 −

37

194040000
µ8 −

59

25225200000
µ10 +O

(

µ12
)

d2 = 6−
1

10
µ2 −

1

1400
µ4 −

1

126000
µ6 −

37

388080000
µ8 −

59

50450400000
µ10 +O

(

µ12
)

d3 = 4−
2

15
µ2 −

11

6300
µ4 −

1

27000
µ6 −

509

582120000
µ8 −

14617

681080400000
µ10 +O

(

µ12
)

d4 = 2+
1

30
µ2 +

13

12600
µ4 +

11

378000
µ6 +

907

1164240000
µ8 +

27641

1362160800000
b10 +O

(

µ12
)

(35)

Considering only the first term in the above expansion, it can be confirmed that the stiffness

matrix in equation (33) reduces to the classical stiffness matrix of the Euler-Bernoulli beam [5].

If the second term of this expansion is considered, then we obtain the classical tangent stiffness
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matrix of Euler-Bernoulli beams. The higher-order terms, therefore, quantify the extended

effect of the axial force on the transverse deflection of the beam. From (34) we observe that the

coefficients of the stiffness matrix are nonlinear functions of the in-plane force. As the stiffness

coefficients are exact, they are valid for any values of the axial force parameter µ , including the

case of buckling. By applying different boundary conditions, it can be shown that the classical

Euler buckling loads can be obtained exactly by setting the determinant of the coefficient matrix

to zero.

When the axial deformation is considered, the governing equation is expressed by a second-

order ordinary differential equation as

EA
∂ 2U(x)

∂x2
= Fa(b) (36)

where U(x) and Fa(x) are the axial displacement and applied axial forcing on the beam. Here EA

is the axial stiffness of the beam and A is the area of the beam cross-section. The complete beam

element is shown in Figure 1(c) with two nodes and three degrees of freedom per node. The

degrees of freedom in each node corresponds to the axial, transverse and rotational deformation.

The stiffness matrix of the beam element in Figure 1(c) can be expressed by

K =





















EA
L

0 0 −EA
L

0 0

0 d1EI

L3
d2EI

L2 0 −d1EI

L3
d2EI

L2

0 d2EI

L2
d3EI

L
0 −d2EI

L2
d4EI

L

−EA
L

0 0 EA
L

0 0

0 −d1EI

L3 −d2EI

L2 0 d1EI

L3 −d2EI

L2

0 d2EI

L2
d4EI

L
0 −d2EI

L2
d3EI

L





















(37)

The displacements corresponding to degrees of freedom 1 and 4 correspond to the axial deforma-

tion governed by equation (36), while the displacements corresponding to degrees of freedom 2,

3, 5 and 6 correspond to the bending deformation governed by equation (23). Next, we utilise

this stiffness matrix in the general expressions of the equivalent elastic properties derived in

section 2.

5 Equivalent elastic properties of compressed lattices
From the general expression in section 2 (equations (8)–(12)), it can be observed that two

coefficients of the 6× 6 element stiffness matrix of the inclined member and one coefficient

of the 6× 6 element stiffness matrix of the vertical member, namely, K55, K44 and K
(h)
44 , are

necessary to obtain E1, E2, ν21 and ν21. The respective coefficients are given in the element

stiffness matrix in equation (37). Using the expressions of moment of inertia and the cross-

sectional area in equation (14), the stiffness coefficients are derived as

K55 =
d1EI

l3
= Ebα3 d1

12
,K44 =

EA

l
= Ebα and K

(h)
44 =

EA

h
=

Ebt

h
=

Ebα

β
(38)
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Using these, we obtain the ratios

K55

K44
= α2 d1

12
and

K55

K
(h)
44

= α2β
d1

12
(39)

Substituting these expressions in equations (8) – (11) we obtain the general expressions

E1 =
Eα3d1 cosθ

(β + sinθ)
(

12sin2 θ +d1α2 cos2 θ
) (40)

E2 =
Eα3d1(β + sinθ)

(12−d1α2)cos3 θ +d1α2(2β +1)cosθ
(41)

ν12 =
cos2 θ

(

12−d1α2
)

(β + sinθ)sinθ (12+d1α2 cot2 θ)
(42)

ν21 =
(β + sinθ)sinθ

(

12−d1α2
)

(12−d1α2)cos2 θ +d1α2(2β +1)
(43)

For the shear modulus, five elements from two different stiffness matrices are necessary. They

are two coefficients of the 6×6 element stiffness matrix of the inclined member, namely, K65,

K44 and three elements of the stiffness matrix of the vertical member with half the length (see

the supplementary document for further details). The vertical member is not subjected to any

axial forcing due to the applied shear stress. Therefore, the only term in the expression of the

shear modulus in equation (12) affected by axial stress is K65 corresponding to the inclined

members of the unit cell. Therefore, we have

K65 =−d2
EI

l2
=−d2

Ebt3

12l2
(44)

We also need three elements of the stiffness matrix of the vertical member with half the length

given by

K
(h/2)
55 =

12EI

(h/2)3
=

8Ebt3

h3
,K

(h/2)
56 =−

6EI

(h/2)2
=−

2Ebt3

h2
and K

(h/2)
66 =

4EI

(h/2)
=

2Ebt3

3h
(45)

Using these expressions we obtain

G12 =
(β + sinθ)

bcosθ

1


− h2

2lK65
+

4K
(h/2)
66

(

K
(h/2)
55 K

(h/2)
66 −

(

K
(h/2)
56

)2
) + (cosθ+(β+sinθ ) tanθ )2

K44





=
Eα3(β + sinθ)

(

β 2(6/d2+2β )+α2 (cosθ +(β + sinθ) tanθ)2
)

cosθ

(46)

Substituting α2 = 0 and taking the limµ→0, the equations derived here exactly reduce to the

corresponding classical expressions by Gibson and Ashby [1] in equations (1) – (5) (i.e., the
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case of considering only the bending deformation without any prestress). For a lattice without

the axial compression effect, d1 → 12 and d1 → 6. Substituting these in equations (40) – (43)

and (46) it can be observed that they exactly reduce to the corresponding expressions for the

small deformation case given by equations (17) – (20) and (22). Therefore, equations (40) –

(43) and (46) are the most general expressions of the equivalent elastic properties of hexagonal

lattices subjected to compressive stress. Note that these expressions are nonlinear functions of

the compressive force parameter µ as the coefficients d1 and d2 appearing in these equations are

nonlinear functions of µ as given by equation (35). In the main paper, these exact closed-form

expressions are used for the eigenbuckling analysis of the lattice.

6 Comparison with the finite element analysis
The analytical expressions of the equivalent elastic properties of the lattice were derived

exactly considering one beam element for each section of the unit cell shown in Figure 1(c).

Although the expressions are exact, it might be insightful to compare the analytical results with

independent numerical results. The commercial software ANSYS has been used to obtain the

finite element results. In Figure 3 we show finite element models of the entire lattice and the

corresponding unit cell models for two geometrical configurations. Two geometrical configura-

tions, namely, when θ = 30◦, α = 0.1, β = 1 and θ = 45◦, α = 0.1, β = 1 are shown. Solid

elements are used in the finite element models. A mesh convergence study has been carried out

and the final number of nodes and elements used are as below:

(a) the unit cell model for θ = 30◦, α = 0.1, β = 1, 20,000 nodes, 3846 elements,

(b) the full lattice model for θ = 30◦, α = 0.1, β = 1, 156,320 nodes, 82,390 elements,

(c) the unit cell model for θ = 45◦, α = 0.1, β = 1, 20,148 nodes, 3870 elements, and

(d) the full lattice model for θ = 45◦, α = 0.1, β = 1, 150,757 nodes, 78,323 elements.

For the solution, the nonlinear analysis was used by invoking the ‘large deformation’ option.

In Figure 4 analytical results are compared with direct nonlinear finite element simulation

results. Equivalent normalised Young’s modulus E1/Eα3 is plotted as functions of the nor-

malised compressive stress σ1/Eα3 in direction 1. Using the displacement responses at the

nodes of the right edge of the lattice (where the distributed force is applied) in Figure 3, the

effective displacement is calculated by computing the average of nodal displacements over all

the edge nodes. The strain is obtained by diving this average displacement with the length of

the lattice. The effective stress is derived by diving the total force with the surface area of the

edge. Finally, the equivalent Young’s modulus is obtained by diving the stress with the effective

strain. A similar process is implemented for the unit cell also. In Figure 4, the result obtained

using the classical expression by Gibson and Ashby in equation (1) is also shown. These values

do not change with increasing axial forces. The finite element modes shown in Figure 3(a) and
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(a) θ = 30◦, α = t/l = 0.1 and β = h/l = 1.

(b) θ = 45◦, α = t/l = 0.1 and β = h/l = 1.

Figure 3. Finite element models of the entire lattice and their corresponding unit cell for two

geometrical configurations. The left edge of the lattice is fixed and a uniformly distributed

force is applied at the right edge for the analysis of in-plane displacement.

Figure 3 (b) correspond to the results shown in Figure 4(a) and Figure 4(c) respectively. It can

be seen that the finite element results from the unit cell match well with the full lattice simu-

lation results. Although the finite element results are not identical to the results obtained from

the analytical expressions, the trend is similar, and the error is within 10%. It is remarkable

that even simple closed-form expressions such as the one in equation (40) produce an excellent

agreement with the full scale nonlinear finite element analysis for the four different geometries

analysed in Figure 4.

In the main paper, the eigenvalue problem involving the elasticity matrix is solved. It is shown

that the eigenvalues can be directly related to the equivalent stiffness coefficients compared here.

Similarity with the finite element results reported here, therefore, verifies the subsequent analyt-

ical developments on buckling loads as they are mathematically exact. It may also be possible

to directly compare the expressions of the critical buckling stresses derived in the main paper
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(a) θ = 30◦, α = t/l = 0.1 and β = h/l = 1. (b) θ = 30◦, α = t/l = 0.1 and β = h/l = 2.

(c) θ = 45◦, α = t/l = 0.1 and β = h/l = 1. (d) θ = 45◦, α = t/l = 0.1 and β = h/l = 2.

Figure 4. Equivalent normalised Young’s modulus E1/Eα3 plotted as functions of the

normalised compressive stress σ1/Eα3 in direction 1. The results from analytical expressions

are directly compared with the results from nonlinear finite element analysis (with the full

lattice and the unit cell). Results for four different lattice geometries are shown.

with finite element results. In order to achieve this, care must be taken on how the finite element

model is constructed. The critical buckling stresses are derived from a ‘materials’ perspective

instead of a ‘structures’ perspective often adopted in practice. As a result, the expressions are

independent of boundary conditions. In contrast, boundary conditions are necessary for a finite

element model, and results are in general dependent on such boundary conditions. One way this

conceptual discrepancy could be addressed is by considering a very large finite element model.

Future research is necessary in this direction.
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7 Summary
The in-plane mechanics of compressible lattice materials is considered. A key feature of this

problem is the underlying geometric nonlinearly leading to axial softening of the constituent

beam elements. A physics-based analytical approach leading to closed-form expressions of

in-plane equivalent elastic properties of hexagonal lattices was presented. The route to this

analytical derivation has three key steps. Firstly, using the mechanics of a selected unit cell,

Young’s moduli, Poisson’s ratios and the shear modulus of the lattice were presented such that

the resulting expressions utilise the stiffness matrix elements of constituent beams. Secondly,

noting that the constitutive members of lattices are thin beams, the stiffness matrix of a beam

under compression is derived exactly. This is achieved using transcendental displacement func-

tions which are exact solutions of the governing ordinary differential equation with appropriate

boundary conditions. Finally, combining these two steps, equivalent elastic properties were ob-

tained for compressed lattices. Equivalent elastic properties are nonlinear functions of applied

compressive stresses (through trigonometric functions). This results in a nonlinear homoge-

neous stress-strain relationship for the cellular material. The closed-form expressions of the

equivalent elastic constants were validated for the special case of thin beams with respect to

classical expressions for the case of small deformation. For the case of large deformation, the

equivalent elastic moduli were validated using independent nonlinear finite element analysis.

The expressions of the element of the elasticity matrix derived here are utilised in the main

paper for the eigenbuckling analysis.
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