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A B S T R A C T

This paper proposes an efficient and reliable eigenvalue solution technique for analytical
stochastic dynamic stiffness (SDS) formulations of beam built-up structures with parametric un-
certainties. The SDS formulations are developed based on frequency-dependent shape functions
in conjunction with both random-variable and random-field structural parameters. The overall
numerical framework is aimed towards representing the broadband dynamics of structures using
very few degrees of freedom. This paper proposes a novel approach combining the Wittrick–
Williams(WW) algorithm, the Newton iteration method and numerical perturbation method
to extract eigensolutions from SDS formulations. First, the eigenvalues and eigenvectors of
the deterministic DS formulations are computed by the WW algorithm and the corresponding
mode finding technique, which are used as the initial solution. Then, a numerical perturbation
technique based on the inverse iteration and homotopy method is proposed to update the
eigenvectors and eigenvalues. The robustness and efficiency of the proposed method are
guaranteed through several technique arrangements. Through numerical examples, the proposed
method is demonstrated to be robust within the whole frequency range. This method provides
an efficient and reliable tool for stochastic analysis of eigenvalue problems relevant to free
vibration and buckling analysis of built-up structures.

. Introduction

It is well-acknowledged that the dynamic properties of built-up structures are affected by the uncertainties of their physical
roperties, such as material properties, geometric dimensions, boundary conditions and etc. As a result, the dynamic properties of
omplex built-up structures such as trains, airplanes or machines behavior in a stochastic way, which are significantly influenced
y manufacturing and assembling techniques as well as the operating environment. However, uncertainties are not taken into
onsideration in most of structure design, instead, deterministic prediction models are used, leading to deterministic analysis and
esign. In this respect, the safety factor method is usually employed in engineering practice, which sometimes leads to either
neconomical or unsafe designs. In many high-end equipment manufacturing industries, it becomes more and more necessary to
ake parameter uncertainties into account in their modeling, guaranteeing high-fidelity design.
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Modal analysis is a fundamental technique in the analysis and design of engineering systems [1–5], which is essentially an
igenvalue problem leading to either natural frequencies and natural modes or critical buckling loads and buckling modes. In real
ngineering practice, those engineering systems contain uncertainties in, e.g. material and geometric parameters, which no doubt
ead to uncertainties into the related eigenvalues and mode shapes. For dynamical analysis, free vibration modal analysis is the
irst step to obtain the dynamic statistics of linear stochastic dynamic systems. Stochastic eigenvalue problems also arise in the
tability analysis of linear systems with random imperfections. The study of probabilistic characterization of the eigensolutions of
andom matrix and differential operators is an important research topic in the field of stochastic structural mechanics since the
id-1960s [6]. For example, the stochastic eigenvalues problems could arise from both discrete systems or continuous systems [7].
he randomness of structural or geometries parameters [8] can be described by either random variable models or random field [9].
n particular, the random variable model does not consider the variability of structural parameters in spatial domain, while the
andom field model considers the spatial variability of structural parameters. For both random variable and random field models,
ifferent formulations and the related eigenvalue solution techniques have been developed.

In recent years, stochastic finite element method (SFEM) [10–14] has been widely used in stochastic structural analysis. In this
ethod, a finite number of random variables is used to replace the random fields with element properties, and a Gaussian probability
odel with uncertainties of parameters and boundary conditions can be established to solve eigenvalue problems. Based on this

dea, researchers have developed a variety of stochastic finite element methods based on random field discretization. These random
ield discretization methods can be largely classified into three groups: (i) spatial discretization such as local averages [15] or
id-point method [16]; (ii) spectral discretization such as Karhunen–Loève (KL) expansion [17] or other orthogonal expansions

or the random fields [18] and optimal linear estimation-based methods [19]; (iii) shape function discretization such as using
tochastic shape functions [20] or weighted integrals method [21]. The eigenvalue problems corresponding to stochastic finite
lement models can be expressed as the generalized stochastic eigenvalue problem [22]. We refer to the review paper [23–31] for
variety of technologies and algorithms for stochastic eigenvalue problems. Then the statistics of eigensolutions can be computed

y using a range of different stochastic solution techniques, which include, but are not limited to, (1) Monte Carlo simulation
ased methods [32], (2) perturbation methods [7,33], (3) surrogate model based techniques such as polynomial chaos (PC) [32],
4) hybrid methods [34], (5) iterative methods [35] and asymptotic methods [3,36]. The random field model based on stochastic
inite element method and the related algorithms have significantly contributed to the field of stochastic eigenvalue problems for
ngineering applications. However, the research status of stochastic eigenvalue analysis using stochastic finite element method
s shown in Fig. 1. The solution of the stochastic eigenvalue problem can be concerned from the following three aspects: (1) the
omplexity of the structure to be solved, (2) the frequency range to be solved, and (3) the dimension of the random parameters.
or stochastic analysis, the effect of uncertainty is significant in the higher frequency ranges. As the wavelength shrinks over the
igher frequency range, a very fine mesh size is required to accurately represent the dynamic behavior, which greatly increases the
omputational effort. In addition, for complex built-up structures with multiple random structural parameters, a large number of
inite element elements are also needed to obtain the exact solution because one element cannot be used to simulate any continuous
nd uniform part of the structure. In these cases, the SFEM solution may be expensive or infeasible from a computational standpoint.
igh-frequency stochastic eigenvalue analysis of complex structures is affected by mesh density, computation amount and accuracy,
hich is an area that cannot be covered by finite element. As Fig. 1 shows, stochastic analysis requires an appropriate approach to
void these limitations and effects.

A powerful tool to fill this gap is the dynamic stiffness method (DSM) [37–48]. The method is often referred to as an exact method
s it is based on exact general solution of the governing differential equations. The method provides the analysts with much better
odel accuracy when compared to finite element or other approximate methods. This is because the analysis accuracy of DSM is

ndependent of the number of elements used in the analysis. The elegance of the method becomes apparent when higher frequencies
nd higher accuracy of results are required. The stochastic dynamic stiffness (SDS) models for two-dimensional structures such as
embranes have recently been developed by the authors [49]. The SDS models not only have the merits of the dynamic stiffness
ethod that are accurate for the whole frequency by using very few DOFs but also consider the parameter uncertainties in the model

o allow stochastic analysis. Based on these SDS models, broadband dynamic response analyses have been carried out for both beam
tructures [50] and membrane built-up structures [49]. However, to the best knowledge of the authors, there has no research on
he eigenvalue solution techniques that enable one to extract eigensolutions from the analytically expressed SDS formulations.

In this paper, an effective and reliable eigenvalue solution technique is proposed to extract both stochastic eigenvalues and
ode shapes from analytical stochastic dynamic stiffness (SDS) formulations with parameter uncertainties. The SDS formulations are
eveloped based on both random variable model and random field model to quantify the uncertainties related to system parameters
such as Young’s modulus, mass density and Poisson’s ratio). In particular, the KL expansion [10] is used to discrete the random
ields in conjunction with frequency-dependent shape function, the elemental SDS matrices for structure members are derived in an
nalytical manner. Then, the WW algorithm is used to solve the eigenvalues under the deterministic parameters, and the proper mode
hape computation technique is used to solve the eigenvectors based on deterministic model. After that, the deterministic eigenvalues
nd eigenvectors are used as the initial solutions, and the numerical perturbation method based on the inverse iteration method
ombined with the homotopy algorithm is used to iteratively compute the stochastic eigenvalues and eigenvectors. In general, this
ork combines the merits of both the KL spectral expansion and DSM mentioned above, and proposes an accurate and efficient
umerical perturbation method which provides a powerful efficient and accurate tool for stochastic eigenvalue analysis of built-up
tructures such as beam, plate and beam-plate built-up structures.

In the rest of this paper, Section 2 presents the stochastic dynamic stiffness formulations based on both random variable
2

odel and random field model. Then, Section 3 describes the stochastic eigenvalue solution techniques. In more specific, Sections
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Fig. 1. The research field of stochastic eigenvalues.

Section 3.1 reviews the Wittrick–Williams algorithm and mode shape computation techniques for deterministic DS models. A
numerical perturbation method based on inverse iteration for solving the stochastic stiffness matrix is proposed in detail in
Section 3.2. In Section 4, the proposed analysis method is applied to the beam built-up structures by using Monte Carlo simulations
which are compared with those from other results such as from stochastic finite element models. Finally, Section 5 concludes the
paper.

2. Stochastic dynamic stiffness (SDS) formulation for beam built-up structures with parameters uncertainty

The governing differential equation of a linear structural system with stochastic parameter uncertainties, subjected to external
excitations is most often a set of linear differential equation with random coefficients. The problem can be stated as finding the
solution of equation

𝐋(𝛺, 𝐫, 𝑡)𝒖(𝛺, 𝐫, 𝑡) = 𝒇 (𝛺, 𝐫, 𝑡) (1)

with prescribed boundary conditions and initial conditions. In the above equation 𝐋 is a linear stochastic differential operator, 𝒖 is
the random system response to be determined, 𝒇 is the dynamic excitation which can be random, 𝐫 is the spatial coordinate vector,
𝑡 is the time and 𝛺 is the sample space denoting the stochastic nature of the problem. Eq. (1) with 𝐋 as a deterministic operator and
𝒇 as a random forcing function, has been studied extensively within the scope of random vibration theory [51]. Here our interest
is when the operator 𝐋 itself is random. There are mainly two methods to model parametric uncertainty using the probabilistic
approach: (a) uncertainty modeling using random variables, and (b) uncertainty modeling using random fields.

In order to illustrate the difference of between a random variable and a random field, we introduce a beam built-up structure as
shown in Fig. 2. It is composed of 13 different beam members jointed at 8 nodes. The essential cross-section parameters of a beam

Fig. 2. A beam built-up structure with node 1 clamped.
3
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Fig. 3. The cross-section parameters random variable model and random field model of each beam member.

member include the axial stiffness 𝐸𝐴(𝑥), bending stiffness 𝐸𝐼(𝑥), and mass 𝑚(𝑥), where 𝑥 is the local coordinate of each beam. The
random variable model and random field model of cross-section parameters of each beam member can be demonstrated in Figs. 3(a)
and (b) respectively.

In particular for the random variable model as shown in Fig. 3(a), the cross-section parameters 𝐴𝐸(𝜃), 𝑚(𝜃) and 𝐸𝐼(𝜃) of each
beam member are constant (i.e. uniform cross-section). These parameters of those 13 beam members could be independent of each
other and each item has the following form

𝐴𝐸(𝜃) = 𝐴𝐸0
[

1 + 𝜖𝐴𝐸𝐻𝐴𝐸 (𝜃)
]

(2)

𝑚(𝜃) = 𝑚0[1 + 𝜖𝑚𝐻𝑚(𝜃)] (3)

𝐸𝐼(𝜃) = 𝐸𝐼0
[

1 + 𝜖𝐸𝐼𝐻𝐸𝐼 (𝜃)
]

(4)

The ‘strength parameters’ 𝜖𝐴𝐸 , 𝜖𝑚, 𝜖𝐸𝐼 effectively quantify the amount of uncertainty in the axial stiffness, mass per unit length
and bending stiffness of beam. The constants 𝐴𝐸0, 𝑚0 and 𝐸𝐼0 are respectively the axial stiffness, mass per unit length and bending
stiffness of the underlying baseline model. 𝐻(𝜃) is assumed to be the random process which is the random number set with Gaussian
distribution.

For random field model as shown in Fig. 3(b), the cross-section parameters 𝐴𝐸(𝑥, 𝜃), 𝑚(𝑥, 𝜃) and 𝐸𝐼(𝑥, 𝜃) are continuously changed
as the local coordinate 𝑥 changes and each item has the following form

𝐴𝐸(𝑥, 𝜃) = 𝐴𝐸0
[

1 + 𝜖𝐴𝐸𝐻𝐴𝐸 (𝑥, 𝜃)
]

(5)

𝑚(𝑥, 𝜃) = 𝑚0[1 + 𝜖𝑚𝐻𝑚(𝑥, 𝜃)] (6)

𝐸𝐼(𝑥, 𝜃) = 𝐸𝐼0
[

1 + 𝜖𝐸𝐼𝐻𝐸𝐼 (𝑥, 𝜃)
]

(7)

where 𝐻(𝑥, 𝜃) is assumed to be the random field associated with the local coordinates.
Stochastic dynamic stiffness formulations are developed for beam member structures based on both random variable and random

field in Sections 2.1 and 2.2 , respectively. The assembly procedure of beam built-up structures considering axial and bending
vibration is described in Section 2.3.

2.1. SDS formulation for a beam member based on random variable modal

Based on the above two random models, the corresponding stochastic dynamic stiffness (SDS) formulations can be derived. For
the random variable model, because the cross-section parameters 𝐴𝐸(𝜃), 𝑚(𝜃) and 𝐸𝐼(𝜃) of each beam element are constant, they
can be directly introduced into the classical dynamic stiffness formulations of the structure in the following form

𝒇 𝑎
𝑙 = 𝑫𝑎

𝑙 (𝜔, 𝜃)𝒅
𝑎
𝑙 𝒇 𝑏

𝑙 = 𝑫𝑏
𝑙 (𝜔, 𝜃)𝒅

𝑏
𝑙 (8)

where 𝑫𝑎
𝑙 (𝜔, 𝜃) and 𝑫𝑏

𝑙 (𝜔, 𝜃) are the dynamic stiffness matrices considering axial vibration and bending vibration in the local
coordinate system respectively and the cross-section parameters are essentially random variables. 𝒇 𝑎

𝑙 , 𝒅
𝑎
𝑙 and 𝒇 𝑏

𝑙 , 𝒅
𝑏
𝑙 are the force

and displacement matrices considering axial vibration and bending vibration in the local coordinate system respectively. Since the
derivation process is very mature, interested readers are referred [37–39].

2.2. SDS formulation for a beam member based on random field model

The derivation of the stochastic dynamic stiffness formulation based on the random field model is more complicated. Section 2.2.1
describes the spectral discretization of the random fields. Next, Sections 2.2.2 and 2.2.3 provide respectively the SDS formulations
for axial and bending vibration of a beam member.

2.2.1. Random field discretization
Assume that all structural parameters are treated as a Gaussian random field 𝐻(𝑥, 𝜃) with an exponentially decaying autocorre-

lation function.
( ) −𝑐|𝑥1−𝑥2|
4

𝐶 𝑥1, 𝑥2 = 𝑒 (9)
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Fig. 4. Axial vibration of a bar member, where the axial stiffness 𝐸𝐴(𝑥, 𝜃) and mass per unit length 𝑚(𝑥, 𝜃) are assumed to be random fields.

where the quantity 𝑐 is inversely proportional to the correlation length. The random field 𝐻(𝑥, 𝜃) can be expanded by using the
Karhunen–Loève (KL) expansion in the interval −𝑙 ≤ 𝑥 ≤ 𝑙 as

𝐻(𝑥, 𝜃) =
∞
∑

𝑗=1
𝜉𝑗 (𝜃)

√

𝜆𝑗𝜑𝑗 (𝑥) (10)

where 𝜉𝑗 (𝜃) are uncorrelated random coefficients, 𝜆𝑗 and 𝜑𝑗 (𝑥) are eigenvalues and eigenfunctions. Since 𝐻(𝑥, 𝜃) is assumed to be
a Gaussian random field, without any loss of generality we assumed the mean to be zero, thus the eigenvalues and eigenfunctions
in the KL expansion for odd 𝑗 are given by

𝜆𝑗 =
2𝑐

𝛼2𝑗 + 𝑐2
, 𝜑𝑗 (𝑥) =

cos(𝛼𝑗𝑥)
√

𝑙 +
sin(2𝛼𝑗 𝑙)

2𝛼𝑗

, where tan(𝛼𝑗 𝑙) =
𝑐
𝛼𝑗

, (11)

and for even 𝑗

𝜆𝑗 =
2𝑐

𝛼𝑗2 + 𝑐2
, 𝜑𝑗 (𝑥) =

sin(𝛼𝑗𝑥)
√

𝑙 −
sin(2𝛼𝑗 𝑙)

2𝛼𝑗

, where tan(𝛼𝑗 𝑙) =
𝛼𝑗
−𝑐

. (12)

These eigenvalues and eigenfunctions in the KL expansion will be used to obtain the stochastic elemental mass and stiffness
matrices. For all practical purposes, the infinite series in Eq. (10) needs to be truncated at a finite number of terms. The number of
terms could be selected based on the ‘amount of information’ to be retained. This in turn can be related to the number of eigenvalues
retained, since the eigenvalues, 𝜆𝑗 , in Eq. (10) are arranged in a decreasing order. For example, if 90% of the information is to be
retained, then one can choose the number of terms, 𝑁 , such that 𝜆𝑁∕𝜆1 = 0.1. The value of 𝑁 mainly depends on the correlation
length of the underlying random field. One needs more terms when the correlation length is small. Intuitively this means that more
independent variables are needed for fields with smaller correlation lengths and vice versa.

2.2.2. SDS formulation for axial vibration of a stochastically inhomogeneous bar member
The governing differential equation for a stochastically inhomogeneous bar as shown in Fig. 4 under axial vibration is given as

follows
𝜕
𝜕𝑥

[

𝐴𝐸(𝑥)
𝜕𝑈 (𝑥, 𝑡)

𝜕𝑥

]

= 𝑚(𝑥)
𝜕2𝑈 (𝑥, 𝑡)

𝜕𝑡2
(13)

where 𝑈 (𝑥, 𝑡) is the axial displacement. The axial stiffness 𝐴𝐸(𝑥, 𝜃) and the mass per unit length 𝑚(𝑥, 𝜃) are assumed to be random
fields taking the form of Eqs. (5)–(6).

Next, we need to use the shape function 𝐍(𝑥, 𝜔) to derive the deterministic and random part of the elemental matrices, i.e., the
elemental stiffness and the mass matrices. we can express these matrices as [39]

𝐊𝑎(𝜔, 𝜃) = 𝐊𝑎
0(𝜔) + 𝛥𝐊𝑎(𝜔, 𝜃),𝐌𝑎(𝜔, 𝜃) = 𝐌𝑎

0(𝜔) + 𝛥𝐌𝑎(𝜔, 𝜃) (14)

The deterministic stiffness and mass matrix can be obtained from equation as

𝐊𝑎
0(𝜔) = 𝜞 (𝜔)�̃�𝑎

0(𝜔)𝜞
𝑇 (𝜔),𝐌𝑎

0(𝜔) = 𝜞 (𝜔)�̃�𝑎
0(𝜔)𝜞

𝑇 (𝜔) (15)

To obtain the matrices associated with the random components, note that for each 𝑗 there will be two different matrices
corresponding to the two eigenfunctions in Eqs. (11)–(12). 𝛥𝐊𝑎(𝜔, 𝜃) and 𝛥𝐌𝑎(𝜔, 𝜃) are the random part of the matrices which
can be conveniently expressed as

𝛥𝐊𝑎(𝜔, 𝜃) = 𝜞 (𝜔)𝛥�̃�𝑎(𝜔, 𝜃)𝜞 𝑇 (𝜔), 𝛥𝐌𝑎(𝜔, 𝜃) = 𝜞 (𝜔)𝛥�̃�𝑎(𝜔, 𝜃)𝜞 𝑇 (𝜔) (16)

The matrix 𝛥�̃�𝑎(𝜔) and 𝛥�̃�𝑎(𝜔) can be expanded by utilizing the Karhunen–Loève expansion as

𝛥�̃�𝑎(𝜔, 𝜃) =
𝑀K
∑

𝜉K𝑗
(𝜃)

√

𝜆K𝑗
�̃�𝑎

𝑗 (𝜔), 𝛥�̃�
𝑎(𝜔, 𝜃) =

𝑀K
∑

𝜉M𝑗
(𝜃)

√

𝜆M𝑗
�̃�𝑎

𝑗 (𝜔) (17)
5

𝑗=1 𝑗=1
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Fig. 5. Bending vibration of a beam member, where the bending stiffness 𝐸𝐼(𝑥, 𝜃) and mass per unit length 𝑚(𝑥, 𝜃) are assumed to be random fields.

where
√

𝜆K𝑗
and

√

𝜆M𝑗
are the eigenvalues corresponding to the random field. The derivation of the matrices �̃�𝑎

𝑗 (𝜔) and �̃�𝑎
𝑗 (𝜔)

are given in the Appendix A. Finally, the stochastic dynamic stiffness matrix 𝐃𝑎
𝑙 (𝜔, 𝜃) for the axial vibration of a bar member under

local coordinates can be obtain as

𝐃𝑎
𝑙 (𝜔, 𝜃) = −𝜔2𝐌𝑎(𝜔, 𝜃) +𝐊𝑎(𝜔, 𝜃) (18)

such that 𝒇 𝑎
𝑙 = 𝐃𝑎

𝑙 (𝜔, 𝜃)𝒅
𝑎
𝑙 , where 𝒇 𝑎

𝑙 = [𝐹𝑥1 , 𝐹𝑥2 ]
T, 𝒅𝑎

𝑙 = [𝑢1, 𝑢2]T, where 𝐹𝑥 with suffices 1 and 2 represent the axial force at the
two end nodes (1 and 2) of the bar member; 𝑢 with suffices 1 and 2 represent amplitudes of the axial displacement of the bar
cross-section at the two end nodes of the bar member.

2.2.3. SDS formulation for bending vibration of a stochastically inhomogeneous beam member
The governing differential equation for a stochastically inhomogeneous Euler–Bernoulli beam as shown in Fig. 5 under bending

vibration is given by

𝜕2

𝜕𝑥2

[

𝐸𝐼(𝑥)
𝜕2𝑊 (𝑥, 𝑡)

𝜕𝑥2

]

+ 𝑚(𝑥)
𝜕2𝑊 (𝑥, 𝑡)

𝜕𝑡2
= 0 (19)

where 𝑊 (𝑥, 𝑡) is the transverse flexural displacement. The mass per unit length 𝑚(𝑥, 𝜃) and the bending stiffness 𝐸𝐼(𝑥, 𝜃) are
assumed to be random fields of the form given by Eqs. (6)-(7).

Next, we need to use the shape function 𝐍(𝑥, 𝜔) to derive the deterministic and random part of the elemental matrices. Like the
axial vibration of beam, the elemental stiffness and mass matrices are given in Appendix B (It should be noted that there are many
mistakes in the explicit expressions for the elemental stiffness and mass matrices in Ref. [50], which have all been corrected in the
Appendix B). Finally, the stochastic dynamic stiffness matrix 𝐃𝑏

𝑙 (𝜔, 𝜃) for the bending vibration of a beam can be given as

𝐃𝑏
𝑙 (𝜔, 𝜃) = −𝜔2𝐌𝑏(𝜔, 𝜃) +𝐊𝑏(𝜔, 𝜃) (20)

such that 𝒇 𝑏
𝑙 = 𝐃𝑏

𝑙 (𝜔, 𝜃)𝒅
𝑏
𝑙 , where 𝒇 𝑏

𝑙 = [𝐹𝑦1 ,𝑀1, 𝐹𝑦2 ,𝑀2]T, 𝒅𝑏
𝑙 = [𝑤1, 𝜃1, 𝑤2, 𝜃2]T, where 𝐹𝑦 and 𝑀 with suffices 1 and 2 represent the

shear force, and bending moment at the two end nodes (1 and 2) of the beam member, respectively; 𝑤 and 𝜃 with suffices 1 and
2 represent amplitudes of the vertical and bending displacement, and the angular or bending rotation of the beam cross-section at
the two end nodes of the beam member, respectively.

Fig. 6. Both axial and bending vibrations of a beam member, where the bending stiffness 𝐸𝐼(𝑥, 𝜃), mass per unit length 𝑚(𝑥, 𝜃) and axial stiffness 𝐴𝐸(𝑥, 𝜃) are
assumed to be random fields.
6
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Fig. 7. A beam member in the global coordinate system.

2.3. The assembly procedure of SDS elements for stochastically inhomogeneous beam built-up structures

A stochastically inhomogeneous beam member under axial and bending vibration is shown in Fig. 6. The elemental stochastic
dynamic stiffness matrix 𝐃𝑒

𝑙 (𝜔) of a beam member in local coordinate can be written in the form

𝒇 𝑒
𝑙 = 𝐃𝑒

𝑙 (𝜔, 𝜃)𝒅
𝑒
𝑙 (21)

where
𝒇 𝑒
𝑙 = [𝐹𝑥1, 𝐹𝑦1,𝑀1, 𝐹𝑥2, 𝐹𝑦2,𝑀2]T 𝒅𝑒

𝑙 = [𝑢1, 𝑤1, 𝜃1, 𝑢2, 𝑤2, 𝜃2]T (22)

𝐃𝑒
𝑙 (𝜔, 𝜃) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐃𝑎
𝑙11

0 0 𝐃𝑎
𝑙12

0 0
0 𝐃𝑏

𝑙11
𝐃𝑏
𝑙12

0 𝐃𝑏
𝑙13

−𝐃𝑏
𝑙14

0 𝐃𝑏
𝑙21

𝐃𝑏
𝑙22

0 −𝐃𝑏
𝑙23

𝐃𝑏
𝑙24

𝐃𝑎
𝑙21

0 0 𝐃𝑎
𝑙22

0 0
0 𝐃𝑏

𝑙31
−𝐃𝑏

𝑙32
0 𝐃𝑏

𝑙33
−𝐃𝑏

𝑙34
0 −𝐃𝑏

𝑙41
𝐃𝑏
𝑙42

0 −𝐃𝑏
𝑙43

𝐃𝑏
𝑙44

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(23)

where 𝐹𝑥, 𝐹𝑦 and 𝑀 with suffices 1 and 2 represent the axial force, shear force, and bending moment at the two end nodes (1 and 2)
of the beam member, respectively; 𝑢, 𝑤 and 𝜃 with suffices 1 and 2 represent amplitudes of the axial displacement, the vertical and
bending displacement, and the angular or bending rotation of the beam cross-section at the two end nodes of the beam member,
respectively, where the coefficients 𝐃𝑎

𝑙 (𝜔, 𝜃) and 𝐃𝑏
𝑙 (𝜔, 𝜃) have been given in Eqs. (18) and (20). Finally, the stochastic dynamic

stiffness matrix 𝐃𝑒
𝑔(𝜔, 𝜃) of a beam member in the global coordinate can be given as

𝐃𝑒
𝑔(𝜔, 𝜃) = 𝑻𝐃𝑒

𝑙 (𝜔, 𝜃)𝑻
T (24)

where 𝑻 is the transfer matrix taking the form

𝑻 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝑡 𝑆𝑡 0 0 0 0
−𝑆𝑡 𝐶𝑡 0 0 0 0
0 0 1 0 0 0
0 0 0 𝐶𝑡 𝑆𝑡 0
0 0 0 −𝑆𝑡 𝐶𝑡 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(25)

where 𝐶𝑡 = cos(𝜑) and 𝑆𝑡 = sin(𝜑), and 𝜑 is the angle of the beam member as shown in Fig. 7 (from node 1 to node 2) in the global
coordinate system. Then, the elemental SDS matrices can be assembled directly to form the overall SDS matrix of the final built-up
structure.

3. Stochastic eigenvalue solution techniques for stochastic dynamic stiffness formulations

In Section 2, we have developed the stochastic dynamic stiffness (SDS) formulations for beam built-up structures based on
both the random variable and random field models. Then the stochastic eigenvalues and mode shapes can be extracted from
the analytically formulated SDS matrices. It is worth noting that the stochastic eigenvalue problems in the form of analytical
SDS formulations are essentially transcendental functions of frequencies. Therefore the normal used linear algebraic solvers like
Lanczos method is not applicable any more, and it is necessary to propose the corresponding solution techniques for these analytical
SDS formulations. This section mainly devotes to two eigenvalue solution techniques and the associated mode shape computation
techniques for those dynamic stiffness formulations. As illustrated in Table 1, the well-known Wittrick–Williams (WW) algorithm is
applicable to both deterministic DS formulations and the SDS formulations based on random variable models, but is not applicable
7

to the SDS formulations based on random field models as described in Section 2.2. Under this background, a numerical perturbation
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Table 1
The application of Wittrick–Williams (WW) algorithm and numerical perturbation
method (NPM) for different dynamic stiffness formulations.
DS formulations Solution techniques

WW algorithm NPM

Deterministic
√

Not necessary
Random variable

√ √

Random field ×
√

method (NPM) based on inverse iteration with high robustness and high efficiency is proposed for extracting eigensolutions from
stochastic dynamic stiffness (SDS) formulations based on both random variable models and random field models with the whole
frequency range. It should be mentioned by passing that the proposed NPM is numerical perturbation method based on both the
eigenvalues and eigenvectors computed by the WW algorithm and the corresponding mode shape computation technique. Therefore,
it is very critical that both the eigenvalues and eigenvectors extracted from the baseline model should be accurate and reliable. Next,
in Section 3.1, we first present the highly robust, efficient and accurate WW algorithm and the associated mode shape computation
technique, then followed by the proposition of the NPM in Section 3.2.

3.1. Wittrick–williams algorithm for eigenvalue computation and mode shape computation technique

Both the deterministic dynamic stiffness (DS) formulations and the SDS formulations based on random variable models are
ranscendental functions of frequency where its elements are trigonometric and hyper-trigonometric functions of frequency.

reliable and efficient solution technique to extract eigenvalue of natural frequencies from the analytical deterministic DS
ormulations of a structure is the powerful Wittrick–Williams (WW) algorithm [52]. This algorithm ensures that no eigenvalue
s missed by monitoring the Sturm sequence of the ensuring matrix. According to the WW algorithm, the number of eigenvalues
etween 0 and a trial frequency 𝜔∗ (mode count 𝐽 ) of the final structure is

𝐽 = 𝐽0 + 𝑠{𝐊𝑓 } (26)

here 𝐽0 count is mode count of an element with all nodes clamped, and 𝑠(𝐊𝑓 ) is the sign count (negative inertia) of the final
tructure 𝐊𝑓 evaluated at the trial frequency. For convenience, the natural frequencies of any member with both ends clamped
re denoted by 𝜔𝑐 and are called member clamped–clamped frequencies, with the corresponding modes being called local ones.
nd 𝐽0 =

∑

𝐽𝑚, where 𝐽𝑚 is the number of 𝜔𝑐 of a member subject to 𝜔𝑐 ≤ 𝜔∗, and the summation is over all members. By
pplying the bisection method, the eigenvalues where the mode count 𝐽 shifts can be determined. It is worth emphasis that the
W algorithm [52], which has been used in many DS formulations, e.g., [53–57]. The WW algorithm is probably the most suitable

olution technique for dynamic stiffness models with the following advantages

(i) Accuracy: Eigenvalues within any required precision can be computed;
(ii) High efficiency: It is highly efficient mainly due to the small-size matrix;

(iii) Analytical elegance: Infinite eigenvalues can be extracted from finite dimensional matrix;
(iv) Certainty: The algorithm ensures that no eigenvalue will be missed.

However, the advantages of (ii), (iii) and (iv) can be realized only when the key problem of the so called 𝐽0 count (the mode
ount of all fully clamped members) in the WW algorithm can be effectively solved; Otherwise, either some spurious modes will
nter into the calculation or some true modes will be missed, so that the advantage of the above (iv) certainty cannot be fully
ealized. However, in the SDS formulations based on the random field model, the 𝐽0 count is not likely to be deduced since the SDS
atrices of each elements are essentially the superposition of many stochastic components as evident in Eq. (23) and Appendices A

nd B. Therefore, for such SDS formulations, a new solution technique will be proposed in Section 3.2.
Once an eigenvalue is obtained, the corresponding eigenvectors (mode shapes) can be computed. As mentioned earlier,

onsidering that Monte Carlo simulation in random problems requires a large number of samples, it is very important to select
he most reliable and fast computational technique. Here, based on the criteria suggested [58], four main different mode shape
omputation techniques are compared and contrasted in Table 2, include, (M1) Let the last (or a chosen) element of the eigenvector
0 be an arbitrary value, and calculate the rest elements. (M2) Let the last ℎ-1 elements of the eigenvector 𝒖0 null and the ℎth from
ast element having an arbitrary value, where ℎ is the distance up the diagonal of dynamic stiffness matrix 𝐊𝛥 changing through the
pper triangle to its lowest negative element. (M3) For the form containing the external force 𝐏, the eigenvector 𝒖0 can be directly
btained from 𝐏 ×𝐊−1. (M4) The transcendental eigenvalue problem is first reduced to a generalized linear eigenvalue problem by
sing Newton’s method in the vicinity of an exact natural frequency identified by the Wittrick–Williams algorithm. Then the exact
igenvectors can be obtained by using standard inverse iteration or subspace iteration.

This paper uses the M4 method for mode shapes computation. The M4 method applies Newton’s method see Eq. (27), expanding
he approximation 𝜔𝑎 ∈ (𝜔𝑙 , 𝜔𝑢) of 𝐊(𝜔𝑘)𝒅𝑘 = 0 with respect to the eigenvalue 𝜔𝑘.

𝐊(𝜔 )𝒅 = 𝐊 𝒅 + (𝜔 − 𝜔 )𝐊′ 𝒅 + 𝑂((𝜔 − 𝜔 )2) (27)
8
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Table 2
Comparison of four main mode shapes computation techniques. Note that for an
element of subjective judgement is used to score from one-star to four-star.
Criterion Method

M1 M2 M3 M4

Simple ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Fast ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Cheap ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Accurate ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Reliable ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

where 𝐊𝑎 = 𝐊(𝜔𝑎), 𝐊′
𝑎 = d𝐊(𝜔𝑎)∕d𝜔. Note that 𝐊(𝜔𝑘)𝒅𝑘 = 0, ignoring the second order and higher order terms, the natural frequency

𝜔𝑘 and eigenvector 𝒅𝑘 can be obtained by solving the generalized matrix eigenvalue problem

𝐊𝑎𝒅 = 𝜏𝐊′
𝑎𝒅 (28)

here 𝜏 = 𝜔𝑎−𝜔𝑘. The method to solve the generalized matrix eigenvalue problem is the inverse power iteration method commonly
sed in the linear matrix eigenvalue problem. According to Eq. (28), we can get the following form

�̄�(𝑖+1) = 𝐊−1
𝑎 𝐊′

𝑎𝒅
(𝑖) (29)

here i is the number of steps of iteration, and the 𝒅(0) is a random vector. Then the updated 𝜏(𝑖+1) can be obtained by

𝜏(𝑖+1) = 1
d̄(𝑖+1)𝑗∗

(30)

where |d̄(𝑖+1)𝑗∗ | = max |d̄(𝑖+1)𝑗 |. Finally, the updated eigenvector 𝐝(𝑖+1) is obtained by

𝐝(𝑖+1) = 𝜏(𝑖+1)�̄�(𝑖+1) (31)

The whole iterative process is terminated when

max ||
|

d(𝑖+1)𝑗 − d(𝑖)𝑗
|

|

|

< Tol 1 or 𝑖 = 𝑖max (32)

where d(𝑖)𝑗 is the 𝑗th element of 𝐝(𝑖), max denotes the maximum value for any 𝑗, Tol 1 is the user specified error tolerance. 𝑖max is
the maximum number of iterations allowed. It is worth noting that since 𝐝(𝑖) has been normalized, only absolute error control is
used in Eq. (32). This method can ensure the convergence to the eigenvalue and eigenvector with the minimum absolute value.
The complete algorithm steps of this method are given in Ref. [58]. The above WW algorithm and the mode shapes computational
technique can be applied to both deterministic DS formulations and stochastic DS formulations based on random variable models,
but cannot be applied to stochastic DS formulations based on random field models.

3.2. Numerical perturbation method for stochastic DS formulations

The numerical perturbation method based on inverse iteration can be used to solve the stochastic dynamic stiffness formulations
based on both random variable and random field models. It provides a powerful solution for the dynamic stiffness method to
solve stochastic problems. The derivation process is described in detail below. The numerical perturbation method needs to take
the deterministic eigenvalues and eigenvectors as the basis of iteration, based on deterministic dynamic stiffness formulation, the
deterministic eigenvalue problem can be written as

𝐊(𝜔0, 𝐱0)𝒖0 = 𝟎 (33)

where 𝐊 is the deterministic dynamic stiffness matrix of the structure, 𝜔0 denotes the deterministic eigenvalue, 𝐱0 ∈ C𝑁×1 represents
the deterministic parameter vector and 𝒖0 is the corresponding deterministic eigenvector for displacement amplitude. Note that both
𝜔0 and �̄�0 have already been determined by the procedure given in Section 3.1, thus can be treated as constants in the following
stochastic eigenvalue analysis.

Without any loss of generality, if uncertainties are considered in the dynamic stiffness model, the stochastic dynamic stiffness
formulation becomes

𝐊(𝜔0 + d𝜔(d𝐱), 𝐱0 + d𝐱)(𝒖0 + d𝒖(d𝐱)) = 𝟎 (34)

which covers both the random variable models and random field models. It should be noted that compared to the deterministic
model, the perturbation on the eigenvalue 𝜔0 and eigenvector 𝒖0, i.e., d𝜔 and d𝒖 are nonlinear functions of the perturbation of
parameter vector d𝐱. Therefore, the homotopy method is used to obtain eigenvalues and eigenvectors, The specific form is as follows:
9
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𝐱0 = 𝟎, 𝐱1,… , 𝐱𝑘,… , 𝐱𝑀 = 𝐱𝑔 , where 𝐱𝑘 = 𝑘(𝐱 − 𝐱0)∕𝑀 (35)

𝜔0, 𝜔1,… , 𝜔𝑘,… , 𝜔𝑀 = 𝜔𝑔 , where 𝜔𝑘 = 𝑘(𝜔 − 𝜔0)∕𝑀 (36)

𝒖0, 𝒖1,… , 𝒖𝑘,… , 𝒖𝑀 = 𝒖𝑔 , where 𝒖𝑘 = 𝑘(𝒖 − 𝒖0)∕𝑀 (37)

where 𝑀 is the total homotopy number, the value of 𝑀 can directly affect the convergence of the final stochastic eigenvalues and
igenvectors. For different types of beam, it is necessary to choose the appropriate 𝑀 to adjust the convergence. 𝑘 (𝑘 = 0, 1,… ,𝑀−1)

is the step of the current iteration. 𝐱0, 𝜔0 and 𝒖0 are deterministic parameters, eigenvalue and eigenvector. 𝐱𝑘, 𝜔𝑘, and 𝒖𝑘 respectively
represent the stochastic parameters, stochastic eigenvalues and stochastic eigenvectors obtained in each iteration process. 𝐱𝑔 , 𝜔𝑔 , and
𝑔 respectively represent the final stochastic parameters and computed stochastic eigenvalues and eigenvectors. The characteristic
olution iterated in each step will be used as the initial guess of the next iteration process. At the end of iteration, stochastic
igenvalues and eigenvectors can be obtained. The detailed iterative process of the algorithm is as follows:

For iteration at step 𝑘:
The eigenvector is updated by using inverse iteration. First of all, applying Taylor expansion onto Eq. (34) at 𝐊(𝜔𝑘, 𝐱𝑘+1), one

ill have
[

𝐊(𝜔𝑘, 𝐱𝑘+1) +
𝜕𝐊(𝜔𝑘, 𝐱𝑘+1)

𝜕𝜔
d𝜔

]

𝒖𝑘+1 = 𝟎 (38)

where 𝐱𝑘+1 represents the parameter vector. Eq. (38) can be recast into the following form

𝐊(𝜔𝑘, 𝐱𝑘+1)𝒖𝑘+1 = −d𝜔
𝜕𝐊(𝜔𝑘, 𝐱𝑘+1)

𝜕𝜔
𝒖𝑘+1 ≃ −d𝜔

𝜕𝐊(𝜔𝑘, 𝐱𝑘+1)
𝜕𝜔

𝒖𝑘 (39)

Therefore, the eigenvector 𝒖𝑘+1 can be updated by using the inverse iteration to be

�̄�𝑘+1 = −𝐊(𝜔𝑘, 𝐱𝑘+1)−1
(

d𝜔
𝜕𝐊(𝜔𝑘, 𝐱𝑘+1)

𝜕𝜔

)

𝒖𝑘

= −𝐊(𝜔𝑘, 𝐱𝑘+1)−1
[

𝐊(𝜔𝑘 + d𝜔, 𝐱𝑘+1) −𝐊(𝜔𝑘, 𝐱𝑘+1)
]

𝒖𝑘
=

[

𝐈 −𝐊(𝜔𝑘, 𝐱𝑘+1)−1𝐊(𝜔𝑘 + d𝜔, 𝐱𝑘+1)
]

𝒖𝑘 (40)

Then, the updated eigenvector �̄�𝑘+1 needs to be normalized to 𝒖𝑘+1 such that

𝒖𝑇𝑘+1
𝜕𝐊(𝜔𝑘, 𝐱𝑘+1)

𝜕𝜔
𝒖𝑘+1 = −1 (41)

in order to ensure the convergence of the iteration procedure, namely

𝒖𝑘+1 =
�̄�𝑘+1

√

|�̄�𝑇𝑘+1
𝜕𝐊(𝜔𝑘, 𝐱𝑘+1)

𝜕𝜔
�̄�𝑘+1|

(42)

After normalization of the updated eigenvector, the eigenvector �̄�𝑘+1 for the 𝑘+1 step is obtained. Then the eigenvalue is updated
y using Rayleigh quotient in combination with the iterated eigenvectors. By replacing d𝜔 of Eq. (34) by 𝛥𝜔𝑘, we have

[

𝐊(𝜔𝑘, 𝐱𝑘+1) +
𝜕𝐊(𝜔𝑘, 𝐱𝑘+1)

𝜕𝜔
𝛥𝜔𝑘

]

𝒖𝑘+1 = 𝟎 (43)

thus, by considering Eq. (41), one has
𝛥𝜔𝑘 = �̄�𝑇𝑘+1𝐊(𝜔𝑘, 𝐱𝑘+1)�̄�𝑘+1 (44)

and therefore the updated eigenvalue becomes

𝜔𝑘+1 = 𝜔𝑘 + �̄�𝑇𝑘+1𝐊(𝜔𝑘, 𝐱𝑘+1)�̄�𝑘+1 (45)

Based on the above iterative process, we can obtain the eigenvalues and eigenvectors of 𝑘 + 1 step. Finally, the stochastic
eigenvalues and eigenvectors of the stochastic dynamic stiffness formulations based on either random variables or random fields
can be computed by using the above technique.

4. Numerical results and discussion

The above eigenvalue and mode shape solution technique have been implemented in a Matlab code. Next, we used this code for
stochastic analysis of eigenvalue problems in the form of stochastic dynamic formulations based on both random variable model and
random field model. Section 4.1 demonstrates modal analysis of the random variable model through the Monte Carlo simulations
(MCS). For the SDS formulations for beam built-up structures based on random variable model, both the Wittrick–Williams (WW)
algorithm and the numerical perturbation method (NPM) are used in the MCS, in which the eigen-solutions computed by the WW
algorithm can be treated as benchmark results. The NPM results are validated against and compared with the results from the WW
algorithm, to demonstrate the high accuracy, reliability and efficiency of the NPM. Later in Section 4.2, for the SDS formulations for
beam built-up structures based on random field model, the proposed NPM is applied for the stochastic eigenvalue problems, whose
results are compared with those by the stochastic finite element method (SFEM).
10
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Fig. 8. Statistical scatter of the first six eigenvalues of the beam built-up structures shown in Fig. 2 based on random variable models by using numerical
perturbation method (NPM). The six vertical continuous lines represent the deterministic eigenvalues for the first six eigenmodes.

4.1. Modal analysis of the random variable model

This section adopts the beam built-up structures shown in Fig. 2 as an example. The mean material properties are considered
𝜌0 = 2700 kg/m3 and 𝐸0 = 69 GPa. The area and the area moment of inertia of the cross-section of the underlying baseline model
are 𝐴0 = 1 cm2 and 𝐼0 = 2.876 × 10−11 m4. Node 1 of the beam built-up structures is clamped and the rest nodes are all free. As
mentioned in Section 2.1, the 𝐸𝐴(𝜃), 𝐸𝐼(𝜃) and 𝑚(𝜃) are assumed to be uncorrelated, constantly distributed in length, zero-mean,
unit-standard-deviation Gaussian random parameters (N(0,1)). The ‘strength parameters’ 𝜖 is assumed to be 0.1, that is, we consider
10% randomness for all the parameter values.

The statistical scatter of the first six eigenvalues of the beam built-up structures with 1500 samples shown in Fig. 2 based on
random variable model by using numerical perturbation method (NPM) is shown in Fig. 8. Solid lines represent the eigenvalues for
the corresponding deterministic built-up structure model with average parameters, whose values are 𝜆1 = 311.39 𝙷𝚣, 𝜆2 = 369.03 𝙷𝚣,
𝜆3 = 707.47 𝙷𝚣, 𝜆4 = 736.54 𝙷𝚣, 𝜆5 = 835.93 𝙷𝚣, 𝜆6 = 889.67 𝙷𝚣. While each random scatter denotes the eigenvalue of the
corresponding random parameters with the given sample. It can be seen that the first two eigenvalues are well separated and little
statistical overlap exists between them. However, the third to sixth eigenvalues are close to each other and there is distinct statistical
overlap between them. Besides, the scatter degree becomes larger for higher modes than smaller modes, indicating that uncertainties
in stiffness and mass distributions play a more important role for higher modes. The probability density distribution curves from
the MSC results (using kernel density estimation) calculated by both the numerical perturbation method and WW algorithm are
shown in Fig. 9(a) corresponds to the first two eigenvalues which are well separated, whereas Fig. 9(b) related to the third-sixth
eigenvalues which are close. The results agree well with the scattering pattern of stochastic eigenvalues. Combined with Figs. 8
and 9, the distribution of stochastic eigenvalues can be considered in the following two forms:

𝐶𝑎𝑠𝑒 1: 𝑊 𝑒𝑙𝑙 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠. As in Fig. 9(a), the first two eigenvalues are well separated. The first two deterministic
eigenvalues of the corresponding baseline model are given by

𝜆1 = 311.39 𝙷𝚣 and 𝜆2 = 369.03 𝙷𝚣 (46)

It can be seen that there is little statistical overlap between them because the eigenvalues are well separated.
𝐶𝑎𝑠𝑒 2: 𝐶𝑙𝑜𝑠𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠. As in Fig. 9(b), the third to fourth and fifth to sixth eigenvalues are close to each other. As shown

in Fig. 8, the deterministic eigenvalues of the last four eigenvalues are

𝜆3 = 707.47 𝙷𝚣, 𝜆4 = 736.54 𝙷𝚣, 𝜆5 = 835.93 𝙷𝚣 and 𝜆6 = 889.67 𝙷𝚣 (47)

Clearly 𝜆3 and 𝜆4 are close to each other, while 𝜆5 and 𝜆6 are close to each other. There is significant statistical overlap between
the third to fourth and fifth to sixth eigenvalues which can also be verified from Fig. 9.

Fig. 10 shows the relative error of the mean of the first six stochastic natural frequencies of 1500 samples by using numerical
perturbation method compared to those by the WW algorithm. These errors are very small (less than 1.2×10−5) considering that the
strength of randomness for all random variables (𝐸𝐴(𝜃), 𝐸𝐼(𝜃) and 𝑚(𝜃)) are 10%. The well separated first two eigenvalues have a
relatively small error, whereas the errors corresponding to third, fourth, fifth and sixth stochastic natural frequencies are relatively
higher. This is expected since normally close eigenvalues introduce relatively more challenge to eigenvalue solution techniques than
well-separated eigenvalues.
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Fig. 9. Probability density functions of the first six stochastic natural frequencies of the beam built-up structures shown in Fig. 2 based on random variable
model by using both Wittrick–Williams (WW) algorithm and numerical perturbation method (NPM).

Table 3
The mean of natural frequencies covering low-, mid- to high-frequencies ranges for the beam
built-up structure shown in Fig. 2 based on random variable model, computed by both the
Wittrick–Williams (WW) algorithm and the numerical perturbation method (NPM), compared
with the corresponding eigenvalues of deterministic model computed from the WW algorithm.
Modes Deterministic model Random variable modal

WW algorithm (Hz) WW algorithm (Hz) NPM (Hz)

1 311.39 310.95 310.95
2 369.03 369.17 369.17
3 707.47 702.07 702.08
30 3849.2 3843.6 3843.8
40 5358.0 5355.5 5355.6
50 6829.2 6890.6 6890.4
100 16324 16226 16226

Computation times (s) 174.05 120.19
12
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Fig. 10. Relative error of the mean of the first six stochastic eigenvalues of the beam built-up structures shown in Fig. 2 based on random variable model
calculated by numerical perturbation method (NPM) and Wittrick–Williams (WW) algorithm (Benchmark method).

In order to demonstrate the reliability and efficiency of the proposed NPM, Table 3 shows the mean of natural frequencies
covering low-, mid- to high-frequencies ranges for the beam built-up structure computed by both the Wittrick–Williams (WW)
algorithm and the numerical perturbation method (NPM) based on random variable model, and compared with the corresponding
eigenvalues of deterministic model computed from the WW algorithm. It can be seen that the mean results calculated by the proposed
NPM matches very well to those by the benchmark solutions computed by the Wittrick–Williams (WW) algorithm within the whole
frequencies ranges. Moreover, the proposed NPM requires only three quarters of the computation time of the WW algorithm. The
mean and the absolute value of standard deviation of the first 100 stochastic natural frequencies of 1500 samples calculated by the
two methods are shown in Figs. 11(a) and (b) respectively. It can be seen that both the curves follow each other very closely. Fig. 12
shows the mean (a) and standard deviation (b) of the first three stochastic mode shapes of the beam built-up structures based on
random variables model by using both Wittrick–Williams (WW) algorithm and numerical perturbation method (NPM). All mode

Fig. 11. The statistics of the first 100 natural frequencies of the beam built-up structures shown in Fig. 2 based on random variable models by using the
numerical perturbation method (NPM) and Wittrick–Williams (WW) algorithm. (a) Mean and (b) The absolute value of standard deviation of the first 100
stochastic natural frequencies.
13
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Fig. 12. The statistics of the first three mode shapes of the beam built-up structures shown in Fig. 2 based on random variable models by using the numerical
perturbation method (NPM) and Wittrick–Williams (WW) algorithm. (a) Mean and (b) standard deviation of the first three stochastic mode shapes. ‘– –’ Numerical
perturbation method, ‘——’ Wittrick–Williams algorithm.

Table 4
The mean of natural frequencies covering low-, mid- to high-frequencies ranges for the axial vibration and the bending vibration of a beam
based on random field models, computed by both the SDSM combine with numerical perturbation method(SDSM+NPM) and SFEM.

Method Element
number

Natural frequencies (Hz) Computation
times (s)

1 2 3 30 50 100

Axial
vibration

SDSM
(NPM)

1 5292.1 15876 26460 312233 523916 1053125 20.07

SFEM
(Eigs)

300 5292.1 15876 26467 312612 524595 1053824 32.16
500 5292.1 15876 26463 312272 524002 1053298 57.02
600 5292.1 15876 26460 312235 523918 1053145 119.72

Bending
vibration

SDSM
(NPM)

1 4.6915 29.229 82.389 11439 32208 130135 115.67

SFEM
(Eigs)

400 4.6919 29.257 82.730 11435 32212 130333 139.65
500 4.6917 29.226 82.399 11440 32208 130165 250.65
600 4.6913 29.229 82.385 11439 32208 130144 531.45

shapes are normalized for maximum displacement. It can be seen that the mean of the first three stochastic mode shapes obtained
by the two methods are very consistent.

4.2. Modal analysis of the random field model

First, two simple numerical examples are considered to illustrate the application of the method proposed in this paper for axial
vibration and bending vibration of a clamp-free beam respectively. The mean material properties of the beam are considered as
𝜌0 = 7800 kg/m3 and 𝐸0 = 210 GPa. The length of the beam is 𝐿 = 1.5 m and the rectangular cross section has width 40.06 mm and
thickness 2.05 mm. The area moment of inertia of the cross-section 𝐼0 = 2.876 × 10−11 m4. The ‘strength parameters’ 𝜖 is assumed
to be 0.1, that is, 𝜖𝐸𝐼 = 0.1, 𝜖𝑚 = 0.1 and 𝜖𝐴𝐸 = 0.1. The correlation length of the random fields describing 𝐸𝐼(𝑥), 𝑚(𝑥) and 𝐴𝐸 are
assumed to be 𝐿∕2.
14
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Fig. 13. The statistics of the first six natural frequencies of the axial vibration and the bending vibration of a beam based on random field models by using
the SDSM combined with the numerical perturbation method (SDSM+NP) and SFEM. (a) Mean and (b) standard deviation of the first six stochastic natural
frequencies.

The mean and the standard deviation of the first six stochastic natural frequencies of 1500 samples of axial vibration and bending
vibration of a beam obtained by using the SDSM combined with the numerical perturbation method (NPM) are shown in Fig. 13,
compared with the SFEM results. It can be seen that the results obtained from the SFEM match those of the SDSM developed in
this paper with excellent accuracy. In addition, it can be found that for the same standard deviation, the discrete degree of natural
frequencies of the axial vibration of a beam is significantly affected by the random field model. Table 4 shows the mean of natural
frequencies covering low-, mid- to high-frequencies ranges for the axial vibration and the bending vibration of a beam, computed by
both the SDSM combine with numerical perturbation method (SDSM+NPM) and SFEM. The results in the table have converged to
four significant numbers. It can be seen from the table that with the increase of the number of elements, the convergence of low-order
average eigenvalue of finite element calculation of random samples is relatively stable, while the convergence of high-order average
eigenvalue is not stable. Moreover the method proposed in this paper has nearly four times the computational advantage compared
with the stochastic finite element method (SFEM).

Another numerical example is the beam built-up structures shown in Fig. 2. The results for this example are obtained based
on random field model by using numerical perturbation method (NPM) with 1500 samples. The random ‘scatter’ of the first six
eigenvalues is shown in Fig. 14. The six vertical continuous lines represent the deterministic eigenvalues for the corresponding

Fig. 14. Statistical scatter of the first six eigenvalues of the beam built-up structures shown in Fig. 2 based on random field model by using numerical perturbation
method (NPM). The six vertical continuous lines represent the deterministic eigenvalues for the first six eigenmodes.
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Fig. 15. Probability density functions of the first six stochastic natural frequencies of the beam built-up structures shown in Fig. 2 based on random fields model
by using numerical perturbation method (NPM).

built-up structure model with average parameters, whose values are 𝜆1 = 311.39 𝙷𝚣, 𝜆2 = 369.03 𝙷𝚣, 𝜆3 = 707.47 𝙷𝚣, 𝜆4 = 736.54 𝙷𝚣,
𝜆5 = 835.93 𝙷𝚣, 𝜆6 = 889.67 𝙷𝚣. While each random scatter denotes the eigenvalue of the corresponding random field with the given
sample. It can be seen that compared with the eigenvalue results calculated by the random parameter model, the statistical overlap
area of the first two orders of random eigenvalues corresponding to the random field model increases, but it still maintains a certain
separation.And the statistical overlap region of the last four order eigenvalues also increases relatively. Besides, the scatter degree
becomes larger for higher modes than smaller modes, indicating that uncertainties in stiffness and mass distributions play a more
important role for higher modes.

The probability density distribution curves from the MSC results (using kernel density estimation) calculated by numerical
perturbation method (NPM) are shown in Fig. 15 which are corresponding to the first two eigenvalues and the last four eigenvalues
of the scatter graph. There is a significant region of statistical overlap which can also be verified from the plot of the actual samples in
Fig. 14. In addition, it is worth noting that in Fig. 15, although the probability density distribution we obtained is about the third to
sixth determined eigenvalue solution, we can see that there is a probability distribution near the position of 𝜔 = 1020𝙷𝚣. This can be
proved by the scattered point distribution at the same position in Fig. 14. This is similar to the seventh eigenvalue 𝜔7 = 1016.03𝙷𝚣
of the beam built-up structures. This is a very interesting phenomenon that first appeared in the eigenvalue probability density
distribution curves of structural uncertain parameters. This is because after the introduction of stochastic dynamic stiffness theory,
the core of the eigenvalue solution is the solution of 𝐽 . The principle is described in Section 3.1. When 𝐽 changes, 𝐽 + 1, the latter
eigenvalue of the structure will be obtained. Here, when we are studying random problems, we set the dispersion of the sample to
0.1. Therefore, the sample range in which the sixth eigenvalue will occur involves the frequency sample that will change 𝐽 . The
change will occur near the seventh eigenvalue, so that the given sample will be discrete near the seventh eigenvalue. This is why
we can see the extra probability distribution in the probability density graph.

5. Conclusions

This paper proposes an efficient and reliable eigenvalue solution technique for free vibration analysis of beam-based built-
up structures with parametric uncertainties. The method takes advantages of the stochastic dynamic stiffness (SDS) formulations
that represent uncertain dynamic systems by using very few degrees of freedom. The dimension reduction has been achieved by
combining the spectral discretization of the time-domain in the form of dynamic stiffness and the spectral discretization of the
random domain in the form of Karhunen–Loève expansion. The numerical perturbation method based on the inverse iteration is
proposed to extract the stochastic eigenvectors and eigenvalues from the stochastic dynamic stiffness formulations. The novelty of
the proposed approach include:

• The accurate eigenvalues and eigenvectors are used as the initial iterative solutions of the numerical perturbation method to
ensure the accuracy of the results.

• The numerical perturbation method is based on the inverse iteration method and uses the homotopy method to iterate the
initial solution to obtain the stochastic eigenvalues and eigenvectors which has high robustness.

• In the iteration process, the calculation steps of each iteration are simple, which greatly improves the calculation efficiency.
It is also well proved by comparing the results with other methods.

For the beam-based built-up structures, unlike the conventional finite element approach, a fine meshing is not necessary. This
greatly saves the calculation time, particularly for stochastic problems. The advantages will be more obvious during the structure
optimization design. In summary, the key advantages of the method developed are:
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• It has obvious computational advantages for the modal analysis of medium and high-frequency vibration of beam built-up
structures considering parameter uncertainties.

• This method can solve the dynamic stiffness formula of the arbitrarily assembled beam built-up structure and can conduct the
stochastic modal analysis of the arbitrarily assembled beam built-up structure to study its dynamic characteristics.

• This method is applicable to the stochastic dynamic stiffness formulations based on both the random variable model and
random field model. It can reasonably quantify the uncertainty of the structural parameters for different engineering cases,
and propagate it into the structure to reflect the real properties of the structure.

By comparing with the WW algorithm and SFEM method, the accuracy and efficiency of the proposed method are verified. In
he following research, the method will be used to further study plate structures and beam-plate built-up structures considering
arameter uncertainties and connection uncertainties.
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ppendix A. Expression of spectral elemental matrices associated with the KL expansion of a beam member under axial
ibration

This appendix gives the derivation of the matrices �̃�𝑎
𝑗 (𝜔) and �̃�𝑎

𝑗 (𝜔) with the KL expansion for the axial vibration of a beam
ember.

�̃�𝑎
𝑗 (𝜔) = ∫

𝐿

0

𝜖𝐴𝐸𝐴𝐸0 cos(𝛼𝑗 (−𝐿∕2 + 𝑥))
√

𝐿∕2 + sin(𝛼𝑗𝐿)
2𝛼𝑗

{

𝜕𝐬(𝑥, 𝜔)
𝜕𝑥

}{

𝜕𝐬(𝑥, 𝜔)
𝜕𝑥

}𝑇
d𝑥 (A.1)

=
𝜖𝐴𝐸𝐴𝐸0

√

(

𝐿∕2 + 𝑐𝛼𝑠𝛼∕𝛼𝑗
)

𝑎2

𝛼𝑗
(

4𝑎2 − 𝛼2𝑗
)×

[

2𝛼𝑗𝑎𝑐𝛼𝑗 𝑐𝑠 +
(

−𝛼𝑗2 + 4𝑎2 − 𝛼𝑗2𝑐2
)

𝑠𝛼𝑗
(

−2𝛼𝑗𝑎 + 2𝛼𝑗𝑎𝑐2
)

𝑐𝛼𝑗 + 𝛼𝑗2𝑠𝛼𝑗 𝑐𝑠
(

−2𝛼𝑗𝑎 + 2𝛼𝑗𝑎𝑐2
)

𝑐𝛼𝑗 + 𝛼𝑗2𝑠𝛼𝑗 𝑐𝑠 −2𝛼𝑗𝑎𝑐𝛼𝑗 𝑐𝑠 +
(

4𝑎2 − 𝛼𝑗2 + 𝛼𝑗2𝑐2
)

𝑠𝛼𝑗

]

(A.2)

In the above expression
𝑐𝛼𝑗 = cos

(

𝛼𝑗𝐿∕2
)

and 𝑠𝛼𝑗 = sin
(

𝛼𝑗𝐿∕2
)

(A.3)

and the eigenvalues 𝛼𝑗 should be obtained by solving the transcendental Eq. (11) with 𝑙 = 𝐿∕2. In Eq. (A.1) the KL eigenfunction
is shifted to take account of the fact that Eq. (11) is defined for −𝐿∕2 ≤ 𝑥 ≤ 𝐿∕2 while the element shape functions are defined
over 0 ≤ 𝑥 ≤ 𝐿. In Eq. (A.1) we have used the identity sin(𝛼𝑗𝐿) = 2 cos

(

𝛼𝑗𝐿∕2
)

sin
(

𝛼𝑗𝐿∕2
)

= 2𝑐𝛼𝑠𝛼 . In a similar manner, using the
expression of the eigenfunction for the even values of 𝑗 as in Eq. (12) one has

�̃�𝑎
𝑗 (𝜔) = ∫

𝐿

0

𝜖𝐴𝐸𝐴𝐸0 sin(𝛼𝑗 (−𝐿∕2 + 𝑥))
√

𝐿∕2 − sin(𝛼𝑗𝐿)
2𝛼𝑗

{

𝜕𝐬(𝑥, 𝜔)
𝜕𝑥

}{

𝜕𝐬(𝑥, 𝜔)
𝜕𝑥

}𝑇
d𝑥 (A.4)

=
𝜖𝐴𝐸𝐴𝐸0

√

(

𝐿∕2 − 𝑐𝛼𝑠𝛼∕𝛼𝑗
)

𝑎2

𝛼𝑗
(

4𝑎2 − 𝛼2𝑗
)×

[
(

−𝛼𝑗2 + 𝛼𝑗2𝑐2
)

𝑐𝛼𝑗 + 2𝛼𝑗𝑎𝑠𝛼𝑗 𝑐𝑠 −𝛼𝑗2𝑐𝛼𝑗 𝑐𝑠 + 2𝛼𝑗𝑎𝑠𝛼𝑗 𝑐
2

−𝛼𝑗2𝑐𝛼𝑗 𝑐𝑠 + 2𝛼𝑗𝑎𝑠𝛼𝑗 𝑐
2 (

𝛼𝑗2 − 𝛼𝑗2𝑐2
)

𝑐𝛼𝑗 − 2𝛼𝑗𝑎𝑠𝛼𝑗 𝑐𝑠

]

(A.5)

The mass matrix can also be represented as Eqs. (14)-(17). The eigenvalues and eigenfunctions corresponding to the random
ield 𝐻𝑚(𝑥, 𝜃) needs to be used to obtain the elements of �̃�𝑎

𝑗 (𝜔). Using the expression of the eigenfunction for the odd values of 𝑗
s in Eq. (11) one has

�̃�𝑎
𝑗 (𝜔) = ∫

𝐿

0

𝜖𝑚𝑚0 cos(𝛼𝑗 (−𝐿∕2 + 𝑥))
√

𝐿∕2 + sin(𝛼𝑗𝐿)
2𝛼𝑗

𝐬(𝑥, 𝜔)𝐬𝑇 (𝑥, 𝜔) d𝑥 (A.6)

=
𝜖𝑚𝑚0

√

(

𝐿∕2 + 𝑐𝛼𝑠𝛼∕𝛼𝑗
)

1

𝛼𝑗
(

4𝑎2 − 𝛼2𝑗
)×

[

−2𝛼𝑗𝑎𝑐𝛼𝑗 𝑐𝑠 +
(

4𝑎2 − 𝛼𝑗2 + 𝛼𝑗2𝑐2
)

𝑠𝛼𝑗
(

2𝛼𝑗𝑎 − 2𝛼𝑗𝑎𝑐2
)

𝑐𝛼𝑗 − 𝛼𝑗2𝑠𝛼𝑗 𝑐𝑠
(

2𝛼𝑗𝑎 − 2𝛼𝑗𝑎𝑐2
)

𝑐𝛼𝑗 − 𝛼𝑗2𝑠𝛼𝑗 𝑐𝑠 2𝛼𝑗𝑎𝑐𝛼𝑗 𝑐𝑠 +
(

−𝛼𝑗2 + 4𝑎2 − 𝛼𝑗2𝑐2
)

𝑠𝛼𝑗

]

(A.7)
17



Mechanical Systems and Signal Processing 166 (2022) 108354X. Liu et al.

e

A
v

s
m

w

In the above expression the eigenvalues 𝛼𝑗 should be obtained by solving the transcendental Eq. (11). In a similar manner, using
the expression of the eigenfunction for the even values of 𝑗 as in Eq. (12) one has

�̃�𝑎
𝑗 (𝜔) = ∫

𝐿

0

𝜖𝑚𝑚0 sin(𝛼𝑗 (−𝐿∕2 + 𝑥))
√

𝐿∕2 − sin(𝛼𝑗𝐿)
2𝛼𝑗

𝐬(𝑥, 𝜔)𝐬𝑇 (𝑥, 𝜔) d𝑥 (A.8)

=
𝜖𝑚𝑚0

√

(

𝐿∕2 − 𝑐𝛼𝑠𝛼∕𝛼𝑗
)

1

𝛼𝑗
(

4𝑎2 − 𝛼2𝑗
)×

[
(

𝛼𝑗2 − 𝛼𝑗2𝑐2
)

𝑐𝛼𝑗 − 2𝛼𝑗𝑎𝑠𝛼𝑗 𝑐𝑠 𝛼𝑗2𝑐𝛼𝑗 𝑐𝑠 − 2𝛼𝑗𝑎𝑠𝛼𝑗 𝑐
2

𝛼𝑗2𝑐𝛼𝑗 𝑐𝑠 − 2𝛼𝑗𝑎𝑠𝛼𝑗 𝑐
2 (

−𝛼𝑗2 + 𝛼𝑗2𝑐2
)

𝑐𝛼𝑗 + 2𝛼𝑗𝑎𝑠𝛼𝑗 𝑐𝑠

]

(A.9)

Eqs. (A.1)–(A.8) completely define the random parts of the elemental stiffness and mass matrices. The exact closed-form
xpression of the elements of the above four matrices further reduces the computational cost in deriving these matrices.

ppendix B. Expression of spectral elemental matrices associated with the KL expansion of a beam member under bending
ibration

This appendix gives the derivation of the matrices �̃�𝑏
0(𝜔), �̃�

𝑏
0(𝜔), �̃�

𝑏
𝑗 (𝜔) and �̃�𝑏

𝑗 (𝜔) and the explicit expressions for the spectral
tiffness and mass matrices associated with the KL expansion for the bending vibration of a beam member. The deterministic stiffness
atrix and mass matrix can be obtained from Eq. (15), �̃�𝑏

0(𝜔) and �̃�𝑏
0(𝜔) are obtained by the following equation

�̃�𝑏
0(𝜔) = 𝐸𝐼0 ∫

𝐿

𝑥=0

{

𝜕2𝐬(𝑥, 𝜔)
𝜕𝑥2

}{

𝜕2𝐬(𝑥, 𝜔)
𝜕𝑥2

}𝑇

d𝑥 (B.1)

=
𝐸𝐼0𝑏3

2

⎡

⎢

⎢

⎢

⎢

⎣

𝑏𝐿 − 𝑐𝑠 1 − 𝑐2 𝑐𝑆 − 𝑠𝐶 −1 + 𝑐𝐶 − 𝑠𝑆
1 − 𝑐2 𝑐𝑠 + 𝑏𝐿 1 − 𝑐𝐶 − 𝑠𝑆 −𝑐𝑆 − 𝑠𝐶
𝑐𝑆 − 𝑠𝐶 1 − 𝑐𝐶 − 𝑠𝑆 𝐶𝑆 − 𝑏𝐿 −1 + 𝐶2

−1 + 𝑐𝐶 − 𝑠𝑆 −𝑐𝑆 − 𝑠𝐶 −1 + 𝐶2 𝐶𝑆 + 𝑏𝐿

⎤

⎥

⎥

⎥

⎥

⎦

(B.2)

�̃�𝑏
0(𝜔) = 𝑚0 ∫

𝐿

𝑥=0
𝐬(𝑥, 𝜔)𝐬𝑇 (𝑥, 𝜔)d𝑥 (B.3)

=
𝑚0
2𝑏

⎡

⎢

⎢

⎢

⎢

⎣

𝑏𝐿 − 𝑐𝑠 1 − 𝑐2 −𝑐𝑆 + 𝑠𝐶 1 − 𝑐𝐶 + 𝑠𝑆
1 − 𝑐2 𝑐𝑠 + 𝑏𝐿 −1 + 𝑐𝐶 + 𝑠𝑆 𝑐𝑆 + 𝑠𝐶

−𝑐𝑆 + 𝑠𝐶 −1 + 𝑐𝐶 + 𝑠𝑆 𝐶𝑆 − 𝑏𝐿 −1 + 𝐶2

1 − 𝑐𝐶 + 𝑠𝑆 𝑐𝑆 + 𝑠𝐶 −1 + 𝐶2 𝐶𝑆 + 𝑏𝐿

⎤

⎥

⎥

⎥

⎥

⎦

(B.4)

Note that for each 𝑗 there will be two different matrices corresponding to the two eigenfunctions to obtain the matrices associated
ith the random components.

Using the expression of the eigenfunction for the odd values of 𝑗 as in Eq. (11) one has

�̃�𝑏
𝑗 (𝜔) = ∫ 𝐿

0
𝜖𝐸𝐼𝐸𝐼0 cos

[

𝛼𝑗 (−𝐿∕2+𝑥)
]

√

𝐿∕2+
sin(𝛼𝑗𝐿)

2𝛼𝑗

{

𝜕2𝐬(𝑥,𝜔)
𝜕𝑥2

}{

𝜕2𝐬(𝑥,𝜔)
𝜕𝑥2

}𝑇
𝑑𝑥

= 𝜖𝐸𝐼𝐸𝐼0
√

(

𝐿∕2+𝑐𝛼𝑠𝛼∕𝛼𝑗
)

�̂�𝑗

(B.5)

where 𝑐𝛼 , 𝑠𝛼 are defined in Eq. (A.3) and �̂�𝑗 ∈ C4×4 is a symmetric matrix obtained in Appendix A. In a similar manner, using
the expression of the eigenfunction for the even values of 𝑗 as in Eq. (12) one has

�̃�𝑏
𝑗 (𝜔) = ∫ 𝐿

0
𝜖𝐸𝐼𝐸𝐼0 sin

[

𝛼𝑗 (−𝐿∕2+𝑥)
]

√

𝐿∕2−
sin(𝛼𝑗𝐿)

2𝛼𝑗

{

𝜕2𝐬(𝑥,𝜔)
𝜕𝑥2

}{

𝜕2𝐬(𝑥,𝜔)
𝜕𝑥2

}𝑇
𝑑𝑥

= 𝜖𝐸𝐼𝐸𝐼0
√

(

𝐿∕2−𝑐𝛼𝑠𝛼∕𝛼𝑗
)

�̂�𝑗

(B.6)

The mass matrix can also be represented as above. The eigenvalues and eigenfunctions corresponding to the random field 𝐻𝑚(𝑥, 𝜃)
needs to be used to obtain the elements of �̃�𝑏

𝑗 (𝜔). Using the expression of the eigenfunction for the odd values of 𝑗 as in Eq. (11)
one has

�̃�𝑏
𝑗 (𝜔) = ∫

𝐿

0

𝜖𝑚𝑚0 cos(𝛼𝑗 (−𝐿∕2 + 𝑥))
√

𝐿∕2 + sin(𝛼𝑗𝐿)
2𝛼𝑗

𝐬(𝑥, 𝜔)𝐬𝑇 (𝑥, 𝜔) d𝑥 (B.7)

=
𝜖𝑚𝑚0

√

( )

�̂�𝑗
18

𝐿∕2 + 𝑐𝛼𝑠𝛼∕𝛼𝑗
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In the above expression the eigenvalues 𝛼𝑗 should be obtained by solving the transcendental Eq. (11). In a similar manner, using
the expression of the eigenfunction for the even values of 𝑗 as in Eq. (12) one has

�̃�𝑏
𝑗 (𝜔) = ∫

𝐿

0

𝜖𝑚𝑚0 sin(𝛼𝑗 (−𝐿∕2 + 𝑥))
√

𝐿∕2 − sin(2𝛼𝑗𝑎)
2𝛼𝑗

𝐬(𝑥, 𝜔)𝐬𝑇 (𝑥, 𝜔) d𝑥 (B.8)

=
𝜖𝑚𝑚0

√

(

𝐿∕2 − 𝑐𝛼𝑠𝛼∕𝛼𝑗
)

�̂�𝑗

Eqs. (B.5)–(B.8) completely define the random parts of the elemental stiffness and mass matrices. The definite integrals appearing
in these expressions can be evaluated in closed-form. This further reduces the computational cost in deriving the elemental matrices.
The exact closed-form expression of the elements of the above four matrices can be obtained as

𝐾11 =
4𝑏6𝑠𝛼𝑗 −2𝑏

5𝛼𝑗 𝑐𝛼𝑗 𝑐𝑠+
(

−𝛼𝑗 2+𝛼𝑗 2𝑐2
)

𝑠𝛼𝑗 𝑏
4

−𝛼𝑗 3+4𝛼𝑗𝑏2

𝐾12 =
(

2−2𝑐2
)

𝑐𝛼𝑗 𝑏
5−𝑏4𝛼𝑗 𝑠𝛼𝑗 𝑐𝑠

−𝛼𝑗 2+4𝑏2

𝐾13 =
(2𝑐𝑆−2𝑠𝐶)𝑐𝛼𝑗 𝑏

7+
(

2𝛼𝑗+2𝛼𝑗𝐶𝑐
)

𝑠𝛼𝑗 𝑏
6+

(

−𝛼𝑗 2𝐶𝑠−𝛼𝑗 2𝑐𝑆
)

𝑐𝛼𝑗 𝑏
5−𝑏4𝛼𝑗 3𝑠𝛼𝑗 𝑆𝑠

4𝑏4+𝛼𝑗 4

𝐾14 =
(−2𝑆𝑠−2+2𝐶𝑐)𝑐𝛼𝑗 𝑏

7+2𝑏6𝛼𝑗 𝑠𝛼𝑗 𝑐𝑆+
(

−𝛼𝑗 2𝑆𝑠+𝛼𝑗 2−𝛼𝑗 2𝐶𝑐
)

𝑐𝛼𝑗 𝑏
5−𝑏4𝛼𝑗 3𝐶𝑠𝛼𝑗 𝑠

4𝑏4+𝛼𝑗 4

𝐾22 =
4𝑏6𝑠𝛼𝑗 +2𝑏

5𝛼𝑗 𝑐𝛼𝑗 𝑐𝑠+
(

−𝛼𝑗 2−𝛼𝑗 2𝑐2
)

𝑠𝛼𝑗 𝑏
4

−𝛼𝑗 3+4𝛼𝑗𝑏2

𝐾23 =
(2−2𝑆𝑠−2𝐶𝑐)𝑐𝛼𝑗 𝑏

7−2𝑏6𝛼𝑗𝐶𝑠𝛼𝑗 𝑠+
(

−𝛼𝑗 2𝐶𝑐+𝛼𝑗 2𝑆𝑠+𝛼𝑗 2
)

𝑐𝛼𝑗 𝑏
5−𝑏4𝛼𝑗 3𝑠𝛼𝑗 𝑐𝑆

4𝑏4+𝛼𝑗 4

𝐾24 =
(−2𝑐𝑆−2𝑠𝐶)𝑐𝛼𝑗 𝑏

7−2𝑏6𝛼𝑗 𝑠𝛼𝑗 𝑆𝑠+
(

𝛼𝑗 2𝐶𝑠−𝛼𝑗 2𝑐𝑆
)

𝑐𝛼𝑗 𝑏
5+

(

−𝛼𝑗 3−𝛼𝑗 3𝐶𝑐
)

𝑠𝛼𝑗 𝑏
4

4𝑏4+𝛼𝑗 4

𝐾33 =
−4𝑏6𝑠𝛼𝑗 +2𝑏

5𝛼𝑗𝑆𝐶𝑐𝛼𝑗 +
(

𝛼𝑗 2𝐶2−𝛼𝑗 2
)

𝑠𝛼𝑗 𝑏
4

4𝛼𝑗𝑏2+𝛼𝑗 3

𝐾34 =
(

−2+2𝐶2)𝑐𝛼𝑗 𝑏
5+𝑏4𝛼𝑗𝑆𝐶𝑠𝛼𝑗

4𝑏2+𝛼𝑗 2

𝐾44 =
4𝑏6𝑠𝛼𝑗 +2𝑏

5𝛼𝑗𝑆𝐶𝑐𝛼𝑗 +
(

𝛼𝑗 2𝐶2+𝛼𝑗 2
)

𝑠𝛼𝑗 𝑏
4

4𝛼𝑗𝑏2+𝛼𝑗 3
.

The subscript 𝑗 is omitted in 𝐾 for notational convenience. Because the matrix is symmetric, only the upper triangular part is
shown. All the terms appearing in the above expressions have been defined in the main body of the chapter. The elements of the
stiffness matrix associated with the even values of 𝑗 in Eq. (B.6) can be obtained as

𝐾11 =
−2𝑏5𝑠𝛼𝑗 𝑐𝑠+

(

𝛼𝑗−𝛼𝑗 𝑐2
)

𝑐𝛼𝑗 𝑏
4

−𝛼𝑗 2+4𝑏2

𝐾12 =
𝑏4𝑐𝛼𝑗 𝑐𝛼𝑗 𝑠−2𝑏

5𝑐2𝑠𝛼𝑗
−𝛼𝑗 2+4𝑏2

𝐾13 =
(2𝑐𝑆−2𝑠𝐶)𝑠𝛼𝑗 𝑏

7+
(

−2𝛼𝑗𝐶𝑐+2𝛼𝑗
)

𝑐𝛼𝑗 𝑏
6+

(

−𝛼𝑗 2𝐶𝑠−𝛼𝑗 2𝑐𝑆
)

𝑠𝛼𝑗 𝑏
5+𝑏4𝛼𝑗 3𝑐𝛼𝑗 𝑆𝑠

4𝑏4+𝛼𝑗 4

𝐾14 =
(2𝐶𝑐−2𝑆𝑠+2)𝑠𝛼𝑗 𝑏

7−2𝑏6𝛼𝑗 𝑐𝛼𝑗 𝑐𝑆+
(

−𝛼𝑗 2𝐶𝑐−𝛼𝑗 2−𝛼𝑗 2𝑆𝑠
)

𝑠𝛼𝑗 𝑏
5+𝑏4𝛼𝑗 3𝐶𝑐𝛼𝑗 𝑠

4𝑏4+𝛼𝑗 4

𝐾22 =

(

−2𝑠𝛼𝑗 𝛼𝑗 cos
(

𝛼𝑗𝐿
)

𝑐𝑠+2𝑐𝛼𝑗 𝛼𝑗 sin
(

𝛼𝑗𝐿
)

𝑐𝑠
)

𝑏5+
(

(

−𝛼𝑗 2+𝛼𝑗 2 cos
(

𝛼𝑗𝐿
)

𝑐2
)

𝑐𝛼𝑗 +𝑠𝛼𝑗 𝛼𝑗
2 sin

(

𝛼𝑗𝐿
)

𝑐2
)

𝑏4

−𝛼𝑗 3+4𝛼𝑗𝑏2

𝐾23 =
(−2−2𝐶𝑐−2𝑆𝑠)𝑠𝛼𝑗 𝑏

7+2𝑏6𝛼𝑗𝐶𝑐𝛼𝑗 𝑠+
(

−𝛼𝑗 2𝐶𝑐−𝛼𝑗 2+𝛼𝑗 2𝑆𝑠
)

𝑠𝛼𝑗 𝑏
5+𝑏4𝛼𝑗 3𝑐𝛼𝑗 𝑐𝑆

4𝑏4+𝛼𝑗 4

𝐾24 =
(−2𝑐𝑆−2𝑠𝐶)𝑠𝛼𝑗 𝑏

7+2𝑏6𝛼𝑗 𝑐𝛼𝑗 𝑆𝑠+
(

𝛼𝑗 2𝐶𝑠−𝛼𝑗 2𝑐𝑆
)

𝑠𝛼𝑗 𝑏
5+

(

−𝛼𝑗 3+𝛼𝑗 3𝐶𝑐
)

𝑐𝛼𝑗 𝑏
4

4𝑏4+𝛼𝑗 4

𝐾33 =
2𝑏5𝑆𝐶𝑠𝛼𝑗 +

(

𝛼𝑗−𝛼𝑗𝐶2)𝑐𝛼𝑗 𝑏
4

4𝑏2+𝛼𝑗 2

𝐾34 =
2𝐶2𝑏5𝑠𝛼𝑗 −𝐶𝑏4𝛼𝑗𝑆𝑐𝛼𝑗

4𝑏2+𝛼𝑗 2

𝐾44 =
2𝑏5𝑆𝐶𝑠𝛼𝑗 +

(

𝛼𝑗−𝛼𝑗𝐶2)𝑐𝛼𝑗 𝑏
4

4𝑏2+𝛼𝑗 2
.

The elements of the mass matrix associated with the odd values of 𝑗 in Eq. (B.7) can be obtained as
𝑀11 =

4𝑏2𝑠𝛼𝑗 −2𝑏𝛼𝑗 𝑐𝛼𝑗 𝑐𝑠+
(

−𝛼𝑗 2+𝛼𝑗 2𝑐2
)

𝑠𝛼𝑗
−𝛼𝑗 3+4𝛼𝑗𝑏2

𝑀12 =
(

2−2𝑐2
)

𝑐𝛼𝑗 𝑏−𝛼𝑗 𝑠𝛼𝑗 𝑐𝑠

−𝛼𝑗 2+4𝑏2

𝑀13 =
(2𝑐𝑆−2𝑠𝐶)𝑐𝛼𝑗 𝑏

3+
(

2𝛼𝑗+2𝛼𝑗𝐶𝑐
)

𝑠𝛼𝑗 𝑏
2+

(

−𝛼𝑗 2𝐶𝑠−𝛼𝑗 2𝑐𝑆
)

𝑐𝛼𝑗 𝑏−𝛼𝑗
3𝑠𝛼𝑗 𝑆𝑠

4𝑏4+𝛼𝑗 4

𝑀14 =
(−2𝑆𝑠−2+2𝐶𝑐)𝑐𝛼𝑗 𝑏

3+2𝑏2𝛼𝑗 𝑠𝛼𝑗 𝑐𝑆+
(

−𝛼𝑗 2𝑆𝑠+𝛼𝑗 2−𝛼𝑗 2𝐶𝑐
)

𝑐𝛼𝑗 𝑏−𝛼𝑗
3𝐶𝑠𝛼𝑗 𝑠

4𝑏4+𝛼𝑗 4

𝑀22 =
4𝑏2𝑠𝛼𝑗 +2𝑏𝛼𝑗 𝑐𝛼𝑗 𝑐𝑠+

(

−𝛼𝑗 2−𝛼𝑗 2𝑐2
)

𝑠𝛼𝑗 𝑏

−𝛼𝑗 3+4𝛼𝑗𝑏2

𝑀 =
(2−2𝑆𝑠−2𝐶𝑐)𝑐𝛼𝑗 𝑏

3−2𝑏2𝛼𝑗𝐶𝑠𝛼𝑗 𝑠+
(

−𝛼𝑗 2𝐶𝑐+𝛼𝑗 2𝑆𝑠+𝛼𝑗 2
)

𝑐𝛼𝑗 𝑏−𝛼𝑗
3𝑠𝛼𝑗 𝑐𝑆
19

23 4𝑏4+𝛼𝑗 4
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𝑀24 =
(−2𝑐𝑆−2𝑠𝐶)𝑐𝛼𝑗 𝑏

3−2𝑏2𝛼𝑗 𝑠𝛼𝑗 𝑆𝑠+
(

𝛼𝑗 2𝐶𝑠−𝛼𝑗 2𝑐𝑆
)

𝑐𝛼𝑗 𝑏+
(

−𝛼𝑗 3−𝛼𝑗 3𝐶𝑐
)

𝑠𝛼𝑗
4𝑏4+𝛼𝑗 4

𝑀33 =
−4𝑏2𝑠𝛼𝑗 +2𝑏𝛼𝑗𝑆𝐶𝑐𝛼𝑗 +

(

𝛼𝑗 2𝐶2−𝛼𝑗 2
)

𝑠𝛼𝑗
4𝛼𝑗𝑏2+𝛼𝑗 3

𝑀34 =
(

−2+2𝐶2)𝑐𝛼𝑗 𝑏+𝛼𝑗𝑆𝐶𝑠𝛼𝑗
4𝑏2+𝛼𝑗 2

𝑀44 =
4𝑏2𝑠𝛼𝑗 +2𝑏𝛼𝑗𝑆𝐶𝑐𝛼𝑗 +

(

𝛼𝑗 2𝐶2+𝛼𝑗 2
)

𝑠𝛼𝑗
4𝛼𝑗𝑏2+𝛼𝑗 3

.
The elements of the mass matrix associated with the even values of 𝑗 in Eq. (B.8) can be obtained as
𝑀11 =

−2𝑏𝑠𝛼𝑗 𝑐𝑠+
(

𝛼𝑗−𝛼𝑗 𝑐2
)

𝑐𝛼𝑗
−𝛼𝑗 2+4𝑏2

𝑀12 =
𝑐𝛼𝑗 𝑐𝛼𝑗 𝑠−2𝑏𝑐

2𝑠𝛼𝑗
−𝛼𝑗 2+4𝑏2

𝑀13 =
(2𝑐𝑆−2𝑠𝐶)𝑠𝛼𝑗 𝑏

3+
(

−2𝛼𝑗𝐶𝑐+2𝛼𝑗
)

𝑐𝛼𝑗 𝑏
2+

(

−𝛼𝑗 2𝐶𝑠−𝛼𝑗 2𝑐𝑆
)

𝑠𝛼𝑗 𝑏+𝛼𝑗
3𝑐𝛼𝑗 𝑆𝑠

4𝑏4+𝛼𝑗 4

𝑀14 =
(2𝐶𝑐−2𝑆𝑠+2)𝑠𝛼𝑗 𝑏

3−2𝑏2𝛼𝑗 𝑐𝛼𝑗 𝑐𝑆+
(

−𝛼𝑗 2𝐶𝑐−𝛼𝑗 2−𝛼𝑗 2𝑆𝑠
)

𝑠𝛼𝑗 𝑏+𝛼𝑗
3𝐶𝑐𝛼𝑗 𝑠

4𝑏4+𝛼𝑗 4

𝑀22 =

(

−2𝑠𝛼𝑗 𝛼𝑗 cos
(

𝛼𝑗𝐿
)

𝑐𝑠+2𝑐𝛼𝑗 𝛼𝑗 sin
(

𝛼𝑗𝐿
)

𝑐𝑠
)

𝑏+
(

(

−𝛼𝑗 2+𝛼𝑗 2 cos
(

𝛼𝑗𝐿
)

𝑐2
)

𝑐𝛼𝑗 +𝑠𝛼𝑗 𝛼𝑗
2 sin

(

𝛼𝑗𝐿
)

𝑐2
)

−𝛼𝑗 3+4𝛼𝑗𝑏2

𝑀23 =
(−2−2𝐶𝑐−2𝑆𝑠)𝑠𝛼𝑗 𝑏

3+2𝑏2𝛼𝑗𝐶𝑐𝛼𝑗 𝑠+
(

−𝛼𝑗 2𝐶𝑐−𝛼𝑗 2+𝛼𝑗 2𝑆𝑠
)

𝑠𝛼𝑗 𝑏+𝛼𝑗
3𝑐𝛼𝑗 𝑐𝑆

4𝑏4+𝛼𝑗 4

𝑀24 =
(−2𝑐𝑆−2𝑠𝐶)𝑠𝛼𝑗 𝑏

3+2𝑏2𝛼𝑗 𝑐𝛼𝑗 𝑆𝑠+
(

𝛼𝑗 2𝐶𝑠−𝛼𝑗 2𝑐𝑆
)

𝑠𝛼𝑗 𝑏+
(

−𝛼𝑗 3+𝛼𝑗 3𝐶𝑐
)

𝑐𝛼𝑗
4𝑏4+𝛼𝑗 4

𝑀33 =
2𝑏𝑆𝐶𝑠𝛼𝑗 +

(

𝛼𝑗−𝛼𝑗𝐶2)𝑐𝛼𝑗
4𝑏2+𝛼𝑗 2

𝑀34 =
2𝐶2𝑏𝑠𝛼𝑗 −𝐶𝛼𝑗𝑆𝑐𝛼𝑗

4𝑏2+𝛼𝑗 2

𝑀44 =
2𝑏𝑆𝐶𝑠𝛼𝑗 +

(

𝛼𝑗−𝛼𝑗𝐶2)𝑐𝛼𝑗
4𝑏2+𝛼𝑗 2

.
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