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Abstract: To reduce the computational cost of assembled stochastic linear structural dynamic systems, a three-staged reduced order
model-based framework for forward uncertainty propagation was developed. First, the physical domain was decomposed by constructing
an equivalent reduced order numerical model that limited the cost of a single deterministic simulation. This was done in two phases: (1) reduc-
ing the system matrices of the subcomponents using component mode synthesis and (2) solving the resulting reduced system with the help of
domain decomposition in an efficient manner. Second, functional decomposition was carried out in the stochastic space by employing a
multioutput machine learning model that reduced the number of eigenvalue analyses to be performed. Thus, a multilevel framework was
developed that propagated the dynamic response from the subcomponent level to the assembled global system level efficiently. Subsequently,
reliability analysis was performed to assess the safety level and failure probability of linear stochastic dynamic systems. The results achieved
by solving a two-dimensional (2D) building frame and a three-dimensional (3D) transmission tower model illustrated good performance
of the proposed methodology, highlighting its potential for complex problems. DOI: 10.1061/AJRUA6.0001119. © 2021 American Society
of Civil Engineers.
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Introduction

Significant effort has been made to improve the computational
framework of numerical modeling and simulation, facilitated by
high performance computing (HPC). Accordingly, numerical
algorithms are required to scale with the number of processors
in order to realize the maximum capability of the HPC platform.
The domain decomposition (DD) method is an example of such an
algorithm that exhibits scalable features (Badia et al. 2019). In
general, the finite-element (FE) domain is decomposed into a set
of subdomains, and each of these are assigned to an individual
processor. In a discrete model, representative of a continuous sys-
tem, the resulting linear system is recast as a set of smaller linear
subsystems to be solved independently. In doing so, the critical
aspect is to ensure that the compatibility and equilibrium conditions
are established at the interface degrees of freedom (DOFs). Hence,
such partitioning of the domain by DD through scalable and paral-
lel computing allows zooming in the model resolution while min-
imizing the computational cost. The increase in model resolution is
reasonable, because it can significantly reduce the discretization
errors in the numerical simulation.

In contrast to the foregoing efficient numerical solution tech-
niques, component mode synthesis (CMS) is more of a physics-
based model reduction approach (Boo et al. 2018). CMS has been
immensely useful for structural dynamics applications. It is particu-
larly effective in large-scale structural models, because in most
cases it has been observed that the dynamics can be captured by
a relatively low number of linear modes (Hinke et al. 2009). The
literature related to CMS methods is well developed, and an exten-
sive review can be found in De Klerk et al. (2008).

Although the foregoing approaches (CMS and DD) employ
different strategies, both of them have the same utility, which
is to accelerate the solution process of FE approximations of
partial differential equations. In this regard, the relevant concep-
tual similarities and differences of these classes of methods were
discussed by Rixen (2006). It has also been noted that these meth-
ods have not found a common application arena; for example,
CMS is popular in the structural dynamics community, whereas
DD is more prevalent in problems such as wave propagation
(Sarkar et al. 2009) and flow through porous media (Subber
and Sarkar 2014). However, there has been recent interest in
DD solvers in nonlinear dynamics (Subber and Sarkar 2018).
In this work, CMS and DD are combined to solve linear structural
dynamic problems.

The underlying assumption that the material, geometric, and
load parameters are precisely known—and, therefore, a determin-
istic FE response analysis may be performed—is not necessarily
valid (Mace et al. 2005). Thus, in addition, to improve the accuracy
of a deterministic model, uncertainty quantification of the response
due to perturbations in the input parameters is equally important.
Another critical aspect of uncertainty quantification is the assess-
ment of the safety levels of a structure, which experiences fluc-
tuation in its response depending on the random heterogenous
properties and varying loads. Safety and reliability assessment of
structural systems involves identification of the failure conditions
based on the exceedance of some response parameters of interest
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from a prescribed threshold tolerance. The theory of and recent con-
tributions on reliability analysis of dynamic systems is discussed
subsequently (see “Structural Reliability Analysis” section).

However, uncertainty quantification of dynamical systems can
be computationally expensive. To address this issue, various ap-
proaches have been exploited, and some of these are discussed
here. CMS combined with perturbation methods for quantifying
the uncertainty in the structural dynamic response was studied
by Hinke et al. (2009) and Sarsri and Azrar (2016). In the presence
of a high level of input uncertainty (when the perturbation methods
do not generally work well), efficient stochastic reduced basis
projection schemes have been utilized with CMS for the modeling
and propagation of spatially distributed joint uncertainties (Dohnal
et al. 2009). A CMS technique based on dominant fixed-interface
normal modes and the static contribution of higher order modes
was developed in Jensen et al. (2017) and employed in stochastic
dynamic analysis (González et al. 2019). Sarkar et al. (2009)
proposed a theoretical framework for the nonoverlapping DD of
stochastic systems. The intrusive polynomial chaos expansion
(PCE)-based nonoverlapping DD methods with preconditioned
conjugate gradient techniques have demonstrated excellent scal-
ability for problems with high mesh resolution (Subber and
Sarkar 2014). More recently, scalable sparse iterative solvers with
efficient preconditioners have been proposed in order to deal with
high-dimensional problems (Desai et al. 2018). A frequency trans-
formation strategy with a principal component analysis technique
was proposed to overcome the limitations of PCE for frequency
response function (FRF) simulation in Yaghoubi et al. (2017).
Modal analysis was performed to investigate the stochastic dy-
namic properties of FRFs in Pichler et al. (2009), Chatterjee et al.
(2016), and Pryse et al. (2018). Recently, Gaussian process mod-
eling was employed in Lu et al. (2019) and Chatterjee et al. (2020,
2021) to estimate the FRFs of stochastic dynamic systems by a re-
duced subspace projection technique.

Following the aforementioned discussion on model-order reduc-
tion, domain decomposition, and uncertainty quantification in
dynamical systems, a reduced-order predictive emulator for for-
ward uncertainty propagation and reliability analysis in linear struc-
tural dynamic systems is proposed. To the authors’ knowledge, the
proposed decomposition framework is the first of its kind, resulting
from a unique combination of three existing approaches, that is,
CMS, DD, and artificial neural network (ANN). The following in-
tegral features form the core of the proposed framework:
• CMS was implemented in conjunction with DD solvers to

achieve higher computational efficiency compared to the
individual methods. The strategy recently proposed by the
same authors in Chatterjee et al. (2020) was followed (see
“Proposed Deterministic Methodology” section); and

• For efficient uncertainty quantification and reliability analysis,
a multioutput neural network was devised in the modal
space to propagate the input uncertainty to the frequency re-
sponse and determine the failure probability in an efficient
manner. This is illustrated in the section “Proposed Framework
for Stochastic Systems.” This is a point of improvement of the
present work compared to Chatterjee et al. (2020).
The remainder of the paper is organized in the following

sequence. The section “Proposed Deterministic Methodology”
presents the proposed deterministic model-order reduced DD
method. The stochastic version of the proposed deterministic
method is illustrated in the section “Proposed Framework for
Stochastic Systems.” The section “Numerical Study” demonstrates
the proposed approach on two structural engineering applications.
Last, the key aspects and contribution of the present work are sum-
marized in the section “Summary and Conclusions.”

Proposed Deterministic Methodology

Integrating Model-Reduction in the Framework of
Domain Decomposition

Domain decomposition solvers partition the original problem into
various subproblems in a parallel manner using different process-
ors. Several domain decomposition solvers are available depending
on whether the subdomains are overlapping or nonoverlapping
(Bjorstad et al. 1996). Here, we employed the generalized frame-
work of DD for nonoverlapping subdomains as proposed by Sarkar
et al. (2009) to illustrate the improvements.

Considering the whole domainΩ of the FE model of an arbitrary
system in an n-dimensional subspace partitioned into two nonover-
lapping subdomains, the dynamic equation of motion of the system
in the frequency domain is

2
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where Ds
ij ¼ ð−ω2Ms

ij þ iωCs
ij þKs

ijÞ denotes the dynamic stiff-
ness matrix; the superscript s represents the subsystems α or β;
and the subscripts ij ¼ II;BB, and IB refer to the internal DOFs,
interface DOFs, and coupling DOFs, respectively.

To capture complex geometries, mesh refinement often leads to
a significant increase in the size of the resulting system [represented
by Eq. (1)] from the FE model. However, as previously mentioned,
in most structural applications, it has been found that the dynamics
can be captured by a relatively low number of linear modes (Hinke
et al. 2009). Taking advantage of this useful feature, we have
integrated model-reduction (specifically the Craig-Bampton ap-
proach) into the framework of domain decomposition so as to avoid
solving the full system in Eq. (1) and efficiently evaluate the
dynamic response.

Applying the Craig-Bampton approach (Bampton and Craig
1968) on the individual subsystems α and β leads to a reduced
assembled system (D 0x 0 ¼ f 0):
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where D 0 ¼ GTDG and G represent the global modal matrix
(component modal matrices in assembled form) given by

G ¼

2
664
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where ϕIj are the eigenvectors corresponding to each subcompo-
nent. Only the first p and qmodes are retained in subcomponents α
and β, respectively; thus, the dimension of the model is reduced.
Out of the three columns of G illustrated in Eq. (3), the first two
denote the retained fixed-interface normal modes, and the third
denotes the static constraint modes. More details on the Craig-
Bampton approach can be found in Krattiger et al. (2019).

Efficient Solution Scheme by Schur Complement

The reduced system of equations represented by Eq. (2) can be
partitioned and rearranged in the following form:
0
B@½Dα

BB� − ½D 0
BI �½Dα 0

II �−1½Dα 0
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The interface DOFs can be obtained by solving the Schur
complement matrices S1 and S2 in parallel using Eq. (4). Then,
xB is substituted into Eqs. (5) and (6) to obtain the response at
the internal DOFs xα 0

I and xβ 0
I . This partitioning of the domain into

interior and interface DOFs results in a more efficient solution of
the global system compared to the direct inversion of the coefficient
matrix in Eq. (2). This seamlessly provides the general treatment
for solving an assembled system comprising multiple subdomains
in a parallel manner. For the generalized formulation for multiple
subdomains, refer to Chatterjee et al. (2020). In the next section, the
implementation of the proposed approach in stochastic systems is
illustrated.

Proposed Framework for Stochastic Systems

This section has been divided into two subsections. The first
subsection briefly discusses the theory of and recent contributions
to reliability analysis. The second subsection illustrates functional
decomposition in the stochastic space and efficient implementation
of a neural network in the presence of parametric uncertainties.

Structural Reliability Analysis

Structural reliability analysis (SRA) can be viewed as the postpro-
cessing of the stochastic response analysis. The aim of SRA is to
quantify the probability of system failure considering the effects of
variation in the system parameters and/or loads. Intuitively, it in-
volves assessing if the resistance of the structure exceeds the effect
of applied load. This is considered as a safe instance; otherwise,
the case corresponds to failure. The simulations are performed
for combinations of random realizations of the stochastic parame-
ters (Zhu et al. 2020). This classification is based upon a perfor-
mance function gðXÞ, referred to as the limit state function,
where X denotes the vector of random input parameters, gðXÞ ¼
0 refers to the hyperplane, which represents the boundary of the
safe fXjgðXÞ < 0g and failure fXjgðXÞ > 0g regions. Thus, the

failure probability pf can be evaluated by solving the integral prob-
lem given by

pf ¼
Z
fXjgðXÞ>0g

fXðXÞdX ð7Þ

where fXðXÞ is the joint probability density function of X.
Solving the foregoing integral problem is often computationally

expensive, because, in most cases, closed form solutions do not
exist. Monte Carlo simulation (MCS) is one of the most straight-
forward techniques for SRA (Zhang et al. 2010). However, it
requires large numbers of samples for convergence. Several im-
provements to address this issue have been proposed (Misraji et al.
2020). These approaches fall under the category of sampling-based
SRA; nonsampling-based SRA approaches are well documented in
Haldar and Mahadevan (2000). The latter category of approaches is
more efficient than the former; however, they are only effective for
solving linear or weakly nonlinear problems (Bagheri et al. 2020).
Metamodel-based techniques, which are a hybrid combination of
the aforementioned approaches, are used in this work. Important
recent applications of metamodels in SRA are briefly discussed
in the following.

A wavelet support vector machine—(SVM-) based neural net-
work metamodel was developed for reliability analysis in Dai et al.
(2015). Time dependent reliability assessment was performed for
welded joints with surface cracks in Dong et al. (2020) by employ-
ing adaptive metamodels. An online learning–based metamodel
framework coupled with importance sampling was proposed to es-
timate multiple rare failure events (Razaaly and Congedo 2018).
Adaptive kriging was used in conjunction with stratified impor-
tance sampling for SRA in Xiao et al. (2020). Sequential adaptive
sampling-based support vector regression (SVR) was employed for
SRA in Roy and Chakraborty (2020). Reliability analysis of cor-
roded pipelines was performed using tree regression in Keshtegar
and Kisi (2017). A polynomial chaos-based kriging metamodel was
developed for determining small failure probabilities in Schobi et al.
(2017). Compressive sensing with an adaptive wavelet basis was
utilized for SRA under missing data in Comerford et al. (2017).
An adaptive parametric metamodel was used to measure the first
excursion probability of structural systems with friction-based de-
vices under stochastic excitation in Jensen et al. (2020). An adap-
tive approach was developed for reliability analysis by ensemble
learning of multiple competitive metamodels, including kriging,
polynomial chaos expansion, and SVR in Cheng and Lu (2020).
A multicomponent dynamic reliability analysis of an aeroengine
high-pressure turbine blisk with blade and disk was performed us-
ing a decomposition and coordination strategy, genetic algorithm,
and kriging in Fei et al. (2019) and Lu et al. (2020). A review of
applications of ANN in the reliability analysis of steel structures
can be found in Chojaczyk et al. (2015).

Next, the implementation of the metamodel and the proposed
framework is illustrated in presence of parametric uncertainties.

Functional Decomposition in the Stochastic Space
Using Machine Learning

Repeated simulations were required in order to compute the system
response corresponding to the random realizations of the input
parameters. MCS performed on the proposed model-reduction
based DD required a smaller computational effort compared to
DD of the unreduced system. The computational cost was further
reduced by limiting the number of actual function evaluations.

The basic idea was to approximate the eigenvectors of the
retained DOFs of the model-reduced substructures by using a
metamodel and then performing the DD and Schur complement
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operations based on metamodel predictions of the reduced system.
To be specific, the term ϕIj corresponding to each subcomponent in
Eq. (3) was estimated via the metamodel. This leads to the follow-
ing advantages. First, only nsamp eigenvalue analyses have to be
performed, where nsamp denotes the number of training samples
for the metamodel, compared to nMCS eigenvalue analyses, where
nMCS is the number of MCS samples. This can lead to time effi-
ciency for solving real-world structural systems in which even a
single simulation takes significant time. Second, to some extent,
the accuracy aspect of the metamodel may be compromised as a
trade-off with computational cost in the case of large-scale systems,
because it is well known that the effect of eigenvectors on the
dynamic response is not particularly strong.

Therefore, to limit the number of eigenvalue analyses, func-
tional decomposition in the stochastic space was performed using
an ANN. ANNs are considered to be complex predictive models
due to their ability to handle multidimensional data, nonlinearity,
and adaptive learning capability and generalization (Goodfellow
et al. 2016). The basic framework of a neural network comprises
four atomic elements, namely: (1) nodes, (2) connections/weights,
(3) layers, and (4) activation function. In an ANN, the neurons re-
present the building blocks. The neurons represent the simplest
processing units, which return weighted input signals and an output
signal using an activation function. The neural network reduces
the error by optimization algorithms, such as a back-propagation
algorithm (Rumelhart et al. 1986). The optimal weights of each
connection between a set of layers are evaluated during each
backward pass of a training dataset, which is also used for weight
optimization using the derivatives obtained from the input and
predicted values of the training data.

A particular variation of neural networks is the feed-forward
neural network (FFNN), also known as multilayer perceptron. It
is widely used in modeling complex tasks, and the generic archi-
tecture is shown in Fig. 1. As the figure shows, the elementary
model structure comprises three type of layers—the input, hidden,
and output layers. In an FFNN, each individual neuron is intercon-
nected to the output of each unit within the next layer, as shown in
Fig. 1. Consequently, it has been proven that an ANN, trained to
minimize a loss or cost function between an input and output target
variable using sufficient data, can accurately produce an estimate of
the posterior probability of the output classes based on the discrimi-
native conditioning of the input vector, which is the applied strategy
in this work.

To help understanding, a self-explanatory flowchart of the pro-
posed framework is shown in Fig. 2 in order to illustrate the model

reduction-based DD in stochastic systems (see “Proposed Deter-
ministic Methodology” and “Proposed Framework for Stochastic
Systems” sections). Fig. 2 shows that the metamodel building
block that involves a limited number of high-fidelity simulations
(computationally expensive, because they involve actual FE analy-
sis) and the MCS block that involves large number of low-fidelity
simulations (cheap to compute, because they are performed on the
metamodel) are separately represented. The multioutput ANN
model is only trained to approximate the mode shape vectors up
to the retained modes of individual subsystems, because the re-
duced configuration is already selected in a deterministic sense
corresponding to the nominal values of input parameters (as
indicated by the left-hand block in Fig. 2). To ensure common
modal vector shapes and reasonable approximation accuracy
by the metamodel, the sign of the modes was kept consistent by
using a reference mode shape, and the mode shapes were mass
normalized.

MCS is performed on the metamodel to obtain the approximate
eigenvectors of the individual subsystems. Using these estimated
eigenvectors, the transformation matrix in Eq. (3) is formed, result-
ing in reduced system matrices of the individual subsystems in
Eq. (2). Next, the reduced system matrices of the subsystems
are repartitioned and assembled and solved efficiently with the help
of Eqs. (4)–(6). The frequency response functions of the assembled
system are computed for each MCS realization. The uncertainty
propagated in the assembled system response due to the random
input parameters of the individual subsystems are quantified by
the global FRF statistics. Furthermore, the forced response is
evaluated in the frequency domain. The time domain response is
obtained by inverse Fourier transformation. All instances of the
response magnitude exceeding the prescribed safety threshold
are counted as structural system failure. The probability of failure
is computed, and the reliability is evaluated as the ratio of the num-
ber of failure instances to the total number of (MCS) simulations
(as per the definition of the limit state).

By using the proposed methodology, the cost of a single analy-
sis can be reduced due to the model reduction performed within the
DD framework, as illustrated in the section “Proposed Determin-
istic Methodology,” and the number of actual simulations can be
reduced by the ANN presented in the section “Proposed Frame-
work for Stochastic Systems.” Therefore, a two-tier improvement
of both aspects of computational cost can be achieved by the pro-
posed framework via bilayered decomposition in the physical and
functional space.

Fig. 1. Schematic of the architecture of a deep neural network. Note that three hidden layers have been shown for illustration.
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Numerical Study

Eight-Story Building Frame

A two-dimensional building frame is considered in this section,
as presented in Fig. 3. The eight-story and three-bay structure
was modeled as a plane frame having three DOFs per node and
consisting of 140 nodes and 160 elements. The four supports
(bottom nodes) were assumed to be fixed in all DOFs. In total,
there were 408 DOFs in the plane frame model. The structure was
meshed using Gmsh version 4.5.3, an open-source meshing soft-
ware (Geuzaine and Remacle 2009). The mesh details were ex-
ported to MATLAB version 2018b for the finite-element modeling.
A snapshot of the mesh with the node locations within the Gmsh
environment is presented in Fig. 3.

Nominal values of material density, namely ρ ¼ 2,700 kg=m3,
elastic modulus E ¼ 200 GPa, modulus of rigidity G ¼ 77 GPa
and a square cross section with a width of 0.3 m, were adopted
for performing the FE analysis. The damping of the system was
assumed to be proportional, with the form C ¼ θK, where the
parameter θ is assumed to be 10−3, and K is the stiffness matrix.

To implement the proposed CMS integrated DD framework, the
three-bay frame of each story was considered as a subcomponent.
Hence, there were eight subcomponents and seven interfaces.
In this context, the multiple subdomain formulation for model-
reduced DD can be found in Chatterjee et al. (2020). The number
of internal DOFs in subcomponents 1–7 was 39, and the number
in subcomponent 8 was 51. Each of the seven interfaces comprised
12 DOFs; hence, the total number of interface DOFs was 84. In
this work, our intent was only to reduce the internal DOFs of the
subcomponents; all of the interface DOFs were retained in the
subsequent analysis. However, when there is a high number of
interface DOFs (common in plate structures), they can easily be
reduced with the help of characteristic constraint modes.

The relative L2 error of the Frobenius norm of the frequency
response of the deterministic assembled structure was studied by
varying the number of modes in the individual subcomponents
(with regard to the unreduced model). A reduced model

Fig. 3. Schematic diagram of the building frame model showing the
node locations.

Fig. 2. Schematic representation of the proposed framework for uncertainty propagation from component to system level and structural reliability
analysis.
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configuration was then selected which was capable of capturing the
full model-based assembled system response without significant
loss of accuracy. The convergence of the error norm with varying
number of modes in the subcomponents is shown in Fig. 4. Each of
the line plots in Fig. 4(a) corresponds to the error convergence by
varying the number of modes in one subcomponent when the full
models of the other subcomponents are considered. By contrast,
Fig. 4(b) shows the error convergence by varying the number of
modes of all the subcomponents simultaneously. Considering
the error tolerance to be 10−3, the number of modes retained from
each subcomponent for subcomponents 1–7 and from subcompo-
nent 8 were 7 and 12, respectively. This implies that the reduced
model utilized 18.8% of the internal DOFs compared to the full
model in a deterministic sense. Thus, 81.2% savings in the size
of the system matrices were obtained due to the reduced model
configuration with regard to the full model corresponding to every
stochastic simulation.

To simulate the randomness in the system, the material and
geometric properties of each discretized element of the individual
subsystems was considered as stochastic. Specifically, the density,
elastic modulus, and cross-sectional dimension of each element
was considered to be lognormally distributed with 10% variation.
The mean of these parameters was the same as their nominal values
reported in the foregoing.

Eighty training points were generated by Latin-hypercube sam-
pling to train the network. One ANN model was trained to approxi-
mate each mode shape up to the retained internal DOFs of the
individual substructures. To do this, a multioutput architecture
of the neural network was employed; this is not possible with most
conventional metamodels, because they are single-output only. For
implementation, the FFNN toolbox in MATLAB was used; trainlm
was used as the network training function that updated the weight
and biases. This back-propagation algorithm utilizes Levenberg-
Marquardt optimization and has been observed to be one of the
fastest algorithms. However, several other options are available in
the toolbox. The network architecture was selected based on the
root-mean square error (RMSE) convergence presented in Table 1.
Note that the RMSE values reported represent the mean obtained
by approximating the terms of the mode shape matrix. The RMSE
was evaluated in comparison to 5,000 samples of MCS. The ANN,
composed of three layers and 40 neurons in each layer, was selected
based on RMSE ¼ 0.0479 (below the set threshold of 0.05) as in-
dicated in bold in Table 1. The hyperbolic tangent sigmoid transfer
function was used for all of the layers.

As stated previously, the model was trained to approximate
the eigenvectors corresponding to the retained internal DOFs of
the individual subcomponents. Specifically, the dimensions of
the approximated quantities (mode shape matrix) were (39 × 7) and
(51 × 12) for each subcomponent among subcomponents 1–7 and
subcomponent 8, respectively. Therefore, only 7 and 12 ANNmod-
els were required to be trained (one for each of the retained mode
shapes) for each subcomponent among subcomponents 1–7 and
subcomponent 8, respectively, because the multioutput feature
was utilized here (unlike single-output conventional surrogate
models). The stochastic frequency response of the assembled sys-
tem was obtained by solving the proposed model reduced DD
framework as illustrated in Eqs. (4)–(6) in conjunction with the
ANN-predicted mode shapes. Sample FRF band plots obtained us-
ing MCS (5,000 samples) and ANN (80 samples) are presented in
Fig. 5. Close proximity between the predicted (right-hand side) and
actual results (left-hand side) demonstrate that a satisfactory level
of approximation accuracy was achieved.

For the reliability analysis, lateral forces acting at every story
level of the building frame were considered. Harmonic forces of
randomly varying amplitudes (with a lognormal distribution) were
assumed to act at the story level. The mean force amplitudes at
stories 1–8 were 5, 10, 10, 15, 15, 15, 20, and 20 kN, respectively.
A 5% variation was considered in the force amplitudes to simulate
loading uncertainty. The analysis was solved as a series system reli-
ability problem in which at least one of the potential failure events
can lead to system failure (Mahadevan et al. 2001). Therefore,
system failure FS ¼∪i Ei can be defined as the union of potential
failure events Ei. Three limit state functions were considered to
simulate three potential failure modes specific to high-rise building
designs subjected to lateral forces (for example, seismic and wind
forces). The failure events Ei were defined as (1) E1: the overall
drift exceeding 0.1% of the story height; (2) E2: the interstory drift
ratio exceeding 0.2% of the story height; and (3) E3: the maximum

Fig. 4. Convergence of RMS of relative L2 error of the Frobenius norm of the frequency response of the reduced model with respect to the full model
with varying numbers of retained modes in the individual subcomponents: (a) model reduction in individual components when full models of the
other subcomponents are considered; and (b) model reduction in all the subcomponents considered simultaneously. RMS = root mean square.

Table 1. Convergence of RMSE with different network architectures

No. of layers No. of neurons per layer RMSE

1 30 0.0668
2 30 0.0533
2 40 0.0533
3 20 0.0531
3 40 0.0479
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displacement exceeding threshold (defined in Table 2). It was
observed that events (1) and (2) were not satisfied at any instance,
and, therefore, did not lead to failure. The failure probabilities
corresponding to different threshold displacement values obtained
by MCS and ANN are reported in Table 2. Other existing metamo-
dels such as kriging and SVR are also compared for validation.
From the results in Table 2, ANN and the other metamodels are
observed to approximate the failure probability accurately.

Three-Dimensional Transmission Tower Model

A three-dimensional transmission tower model studied in Chatter-
jee et al. (2020) is presented in this section, and is shown in Fig. 6.
The structure was modeled as a space frame having six DOFs per
node and consisted of 175 nodes and 246 elements. The four sup-
ports (nodes at level z ¼ 0) were assumed to be fixed in all DOFs.
In total, there were 1,026 DOFs in the space frame model. All other
details regarding the FE model, system parameters, subcomponent
division, and stochastic modeling can be found in Section 6 of
Chatterjee et al. (2020).

The same configuration of the ANN used in the previous
example (selected on the basis of the RMSE) was employed here.
Specifically, the dimensions of the approximated quantities (mode
shape matrices) were (114 × 30), (600 × 175) and (192 × 78) for
subcomponents 1, 2, and 3, respectively [see Chatterjee et al.
(2020) for details of the substructuring and model reduction].
Therefore, only 30, 175, and 78 ANN models were required to be
trained (one for each of the retained mode shapes) for each of
the subcomponents, because the multioutput feature was utilized
here (unlike single-output conventional surrogate models). Sample
FRF band plots obtained using MCS (5,000 samples) and ANN
(100 samples) are presented in Fig. 7. Close proximity between
the predicted (right-hand side) and actual results (left-hand side)

Fig. 5. Displacement FRF band plots (dB) for the building frame example, H(13,13): (a) MCS; and (b) ANN. Note that 5,000 MCS samples were
performed. Eighty training points were employed to construct the neural network.

Table 2. Comparison of failure probabilities obtained by MCS and ANN corresponding to different threshold displacement values for the building frame
example

Threshold
displacement (m)

Probability of failure
(MCS; 5,000 samples)

Probability of failure
(ANN; 80 samples)

Probability of failure
(kriging; 80 samples)

Probability of failure
(SVR; 80 samples)

5 × 10−2 0.1010 0.1020 0.1020 0.0990
8 × 10−2 0.0530 0.0540 0.0530 0.0510
1 × 10−1 0.0370 0.0370 0.0370 0.0350

Fig. 6. Schematic diagram of the transmission tower model showing
the node locations.

© ASCE 04021003-7 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2021, 7(1): 04021003 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
an

m
oy

 C
ha

tte
rj

ee
 o

n 
01

/1
9/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



demonstrate that a satisfactory level of approximation accuracy was
achieved.

For the reliability analysis, harmonic forces of randomly varying
amplitudes (with a lognormal distribution) were assumed to act at
different locations. The mean force amplitudes at DOFs 1, 2, 3, 8, 9,
13, 26, 31, 32, 37, 50, 55, 56, 61, 74, 79, 80, 85, 92, 103, 104, 109,
116, 121, and 122 were 10, −20, −20, −20, −20, 10, −20, 10,
−20, 7.5, −15, 7.5, −15, 7.5, −15, 7.5, −15, 5, −10, 5, −10, 5,
−10, 5, and −10 kN, respectively. The positive directions of the
coordinate axes are shown in Fig. 6. A 5% variation was considered
in the force amplitudes to simulate loading uncertainty. The limit
state function was based on the maximum displacement exceeding
threshold (defined in Table 3). The failure probabilities corre-
sponding to different threshold displacement values obtained by
MCS and ANN are reported in Table 3. From the results, ANN
is observed to approximate the failure probability accurately.

Summary and Conclusions

An efficient computational framework was developed for forward
uncertainty propagation from the individual subcomponent level
to system level response in built-up structures. In doing so, a theo-
retical framework of dynamic substructuring combining model
reduction with the domain decomposition approach was presented.
A multioutput configuration of neural networks was utilized to
approximate the mode shapes. Thus, in this context, the present
work can be considered as an improvement on the work of
Chatterjee et al. (2020). In addition, structural reliability assessment
was performed with the help of machine learning.

The proposed framework was explored for application in linear
stochastic dynamic systems. Two practical structural engineering
application problems were undertaken in which the performance
of the proposed approach was observed to be satisfactory. There-
fore, the main contribution of this work is that the proposed
framework leads to a three-tier improvement in the computational
framework of conventional domain decomposition as follows:
• First, the existing computational framework of DD solvers was

enhanced by integrating model-order reduction for the local dy-
namic behavior of substructures together with interface solution
problems. This improvement led to a reduction in the computa-
tional effort required to solve the actual FE model in a determin-
istic sense;

• Second, in the presence of random parameters at the subcom-
ponent level, functional decomposition in the stochastic space
efficiently captured the uncertainty propagation from the input
variables in the individual substructures to the assembled system
level dynamic response. The proposed framework was also
able to accurately perform reliability assessment of the global
structural system; and

• At the stochastic level, further computational leverage was
gained by the use of a multioutput framework of neural net-
works for estimating the retained mode shapes compared to
conventional single-output metamodels.
The proposed method will be extended in terms of increasing

the complexity of application problems. This can be seamlessly
executed without any loss of generality to realize the actual poten-
tial of the proposed framework (especially in terms of time
efficiency), because it is scalable to the size of the model. Cur-
rently, the proposed framework is being extended for multilevel
robust and/or reliability-based design optimization with hybrid
intelligent machine learning, as recently proposed in Fei et al.
(2020). Although this work considers parametric uncertainty mod-
eling, random field modeling will be performed in the future to
capture the spatial variability within the subcomponents and the
joint/interface using the proposed framework. Another potential
area for extending the proposed methodology would be to employ
recently developed physics informed deep learning approaches
(Raissi et al. 2019) and develop a simulation-free uncertainty
quantification framework for structural dynamic systems (Karumuri
et al. 2020).

Fig. 7.Displacement FRF band plots (dB) for the transmission tower, H(5,5): (a) MCS; and (b) ANN. Note that 5,000 MCS samples were performed.
One hundred training points were employed to construct the neural network.

Table 3. Comparison of failure probabilities obtained by MCS and ANN
corresponding to different threshold displacement values for the
transmission tower example

Threshold
displacement (m)

Probability of failure
(MCS; 5,000 samples)

Probability of failure
(ANN; 100 samples)

0.22 0.182 0.176
0.25 0.050 0.048
0.28 0.014 0.014
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Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request. Specifically, (1) the MATLAB data files in (.mat) format
for both examples and (2) the geometric details of the second
example in Gmsh will be available.

Acknowledgments

The authors gratefully acknowledge the support of the Engineering
and Physical Sciences Research Council through the award of a
program grant, “Digital Twins for Improved Dynamic Design,”
Grant No. EP/R006768.

References

Badia, S., A. Martin, and H. Nguyen. 2019. “Physics-based balancing
domain decomposition by constraints for multi-material problems.”
J. Sci. Comput. 79 (2): 718–747. https://doi.org/10.1007/s10915-018
-0870-z.

Bagheri, M., B. Keshtegar, S. Zhu, D. Meng, J. A. F. O. Correia, and
A. M. P. De Jesus. 2020. “Fuzzy reliability analysis using genetic
optimization algorithm combined with adaptive descent chaos control.”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 6 (2):
04020022. https://doi.org/10.1061/AJRUA6.0001064.

Bampton, M., and R. R. J. Craig. 1968. “Coupling of substructures for
dynamic analyses.” AIAA J. 6 (7): 1313–1319. https://doi.org/10
.2514/3.4741.

Bjorstad, P., B. Smith, and W. Gropp. 1996. Domain decomposition,
parallel multilevel methods for elliptic partial differential equations.
Cambridge, MA: Cambridge University Press.

Boo, S. H., J. H. Kim, and P. S. Lee. 2018. “Towards improving the
enhanced Craig-Bampton method.” Comput. Struct. 196 (Feb): 63–75.
https://doi.org/10.1016/j.compstruc.2017.10.017.

Chatterjee, T., S. Adhikari, and M. I. Friswell. 2020. “Uncertainty propa-
gation in dynamic sub-structuring by model reduction integrated do-
main decomposition.” Comput. Methods Appl. Mech. Eng. 366 (Jul):
113060. https://doi.org/10.1016/j.cma.2020.113060.

Chatterjee, T., S. Chakraborty, and R. Chowdhury. 2016. “A bi-level
approximation tool for the computation of FRFs in stochastic dynamic
systems.” Mech. Syst. Signal Process. 70–71 (Mar): 484–505. https://
doi.org/10.1016/j.ymssp.2015.09.001.
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